1
|
Yusuf H, Fitriana SC, Darmawan NLEP, Nisa RA, Sari R, Setyawan D. Spray-Dried Powders of Casein-Encapsulated Rutin Stabilized With Sugars for the Enhancement of Intestinal Drug Solubility. Adv Pharmacol Pharm Sci 2025; 2025:9952737. [PMID: 40225228 PMCID: PMC11991810 DOI: 10.1155/adpp/9952737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 04/15/2025] Open
Abstract
Numerous therapeutic potentials of rutin (RUT) including cardioprotective, neuroprotective, and antihypertension activities have attracted many studies to bring it into clinical use. RUT is phytochemically derived from plants such as apples and tea. It is poorly soluble and very sensible to acidic pH in the stomach environment which leads to conceded oral bioavailability. In contrast, RUT is better soluble in basic environment, thus, encapsulating RUT within enteric microparticles (RUT-MP) using casein (CAS) resolved such problems. The encapsulation by spray-drying employed sugars (lactose, sucrose, and maltodextrin) as bulking agents and for stabilization of the amorphous drug. The developed RUT-MP formulations were prepared in two groups i.e., lower and higher RUT concentrations. The solid states were studied by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Solubility tests were also carried out on the samples to examine the outcome of the engineered physical modification. The results showed that the RUT-MPs were spherical in morphology. The RUT was transformed into amorphous structure as suggested by the XRD and DTA results indicating that RUT was molecularly dispersed in the RUT-MP. There were no phase separations that occurred as confirmed by the DTA data. Solubility tests carried out on the RUT-MPs showed that the encapsulation with CAS in group with higher concentration of RUT prevented the drug against recovery of the crystallinity and phase separations. The solubility test revealed various substantial enhancements of RUT solubility of the RUT-MPs at pH 7.0. The highest enhancement of RUT solubility was 191,5-fold, with respect to pure RUT. The presence of sugars was beneficial as they improved the yield percentage and might have contributed to the prevention of nano-crystal aggregation which made them a determining aspect for the successful application of spray-dried encapsulation.
Collapse
Affiliation(s)
- Helmy Yusuf
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Sinta Choirunissa Fitriana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | | | - Revalida Ainun Nisa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Dwi Setyawan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Song Y, Teng L, Chen Y, Dong CM. Glycopolypeptide Coordinated Nanovaccine: Fabrication, Characterization, and Antitumor Immune Response. CHEM & BIO ENGINEERING 2024; 1:633-646. [PMID: 39974696 PMCID: PMC11835264 DOI: 10.1021/cbe.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 02/21/2025]
Abstract
Cancer nanovaccine is a frontier immunotherapy strategy, in which the delivery carrier can protect antigen and adjuvant from degradation, increase blood circulation half-life, and improve antigen permeability and presentation, thus enhancing the security and potency of nanovaccine. To address the barriers of antigen delivery, we design and fabricate a kind of intracellular pH-sensitive glycopolypeptide coordinated nanovaccine (OVA-HPGM-Mn) with ∼30% loading capacity of ovalbumin (OVA). The nanovaccine OVA-HPGM-Mn could specifically deliver antigen to dendritic cells (DCs) and effectively escape from endolysosomes to cytoplasm after 6 h of incubation, while the blank counterpart HPGM-Mn acted as an adjuvant to promote DCs maturation and increase the percentage of maturated cells to 26.5% from 11.8% in vitro. Furthermore, the mannosylated polypeptide nanovaccine prolonged the retention time of OVA for 72 h to facilitate 29.5% DCs maturation in lymph nodes, activated 48.8% CD8+T cells in spleen, increased the CD8+/CD4+T cell ratio twice to 1.06, and upregulated the levels of pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-6, thus inhibiting the tumor growth of ∼80%. Consequently, this work provides a versatile strategy for the fabrication of glycosylated polypeptide coordinated nanomaterials for antigen delivery and cancer immunotherapy.
Collapse
Affiliation(s)
- Yingying Song
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Teng
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanzheng Chen
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Mehmood Y, Shahid H, Barkat K, Arshad N, Rasul A, Uddin MN, Kazi M. Novel Hydrolytic Degradable Crosslinked Interpenetrating Polymeric Networks (IPNs): An Efficient Hybrid System to Manage the Controlled Release and Degradation of Misoprostol. Gels 2023; 9:697. [PMID: 37754378 PMCID: PMC10529051 DOI: 10.3390/gels9090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE The goal of this study was to make pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) that could be used to treat different diseases. An assembled novel carrier system was demonstrated in this study to achieve multiple functions such as drug protection and self-regulated release. METHODS Misoprostol (MPT) was incorporated as a model drug in hydroxyl-propyl-methylcellulose (HPMC)- and Neocel C19-based IPNs for controlled release. HPMC- and Neocel C19-based IPNs were fabricated through an aqueous polymerization method by utilizing the polymers HPMC and Neocel C19, the initiator ammonium peroxodisulfate (APS), the crosslinker methylenebisacrylamide (MBA), and the monomer methacrylic acid (MAA). An IPN based on these materials was created using an aqueous polymerization technique. Samples of IPN were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermal analysis (TGA), and powder X-ray diffraction (PXRD). The effects of the pH levels 1.2 and 7.4 on these polymeric networks were also studied in vitro and through swelling experiments. We also performed in vivo studies on rabbits using commercial tablets and hydrogels. RESULTS The thermal stability measured using TGA and DSC for the revised formulation was higher than that of the individual components. Crystallinity was low and amorphousness was high in the polymeric networks, as revealed using powder X-ray diffraction (PXRD). The results from the SEM analysis demonstrated that the surface of the polymeric networks is uneven and porous. Better swelling and in vitro results were achieved at a high pH (7.4), which endorses the pH-responsive characteristics of IPN. Drug release was also increased in 7.4 pH (80% in hours). The pharmacokinetic properties of the drugs showed improvement in our work with hydrogel. The tablet MRT was 13.17 h, which was decreased in the hydrogels, and its AUC was increased from 314.41 ng h/mL to 400.50 ng h/mL in hydrogels. The blood compatibility of the IPN hydrogel was measured using different weights (100 mg, 200 mg, 400 mg, and 600 mg; 5.34%, 12.51%, 20.23%, and 29.37%, respectively). CONCLUSIONS As a result, IPN composed of HPMC and Neocel C19 was successfully synthesized, and it is now possible to use it for the controlled release of MPT.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore P.O. Box 54000, Pakistan;
| | - Numera Arshad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore P.O. Box 54000, Pakistan;
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Mehmood Y, Shahid H, Arshad N, Rasul A, Jamshaid T, Jamshaid M, Jamshaid U, Uddin MN, Kazi M. Amikacin-Loaded Chitosan Hydrogel Film Cross-Linked with Folic Acid for Wound Healing Application. Gels 2023; 9:551. [PMID: 37504430 PMCID: PMC10379863 DOI: 10.3390/gels9070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing. METHODS Free-radical polymerization was used to generate the hydrogel film, and different concentrations of the CS polymer were used. Measurements were taken of the film thickness, weight fluctuation, folding resistance, moisture content, and moisture uptake. HPLC, FTIR, SEM, DSC, and AFM analyses were some of the different techniques used to confirm that the films were successfully developed. RESULTS The AM release profile demonstrated regulated release over a period of 24 h in simulated wound media at pH 5.5 and 7.4, with a low initial burst release. The antibacterial activity against gram-negative bacterial strains exhibited substantial effectiveness, with inhibitory zones measuring approximately 20.5 ± 0.1 mm. Additionally, in vitro cytocompatibility assessments demonstrated remarkable cell viability, surpassing 80%, specifically when evaluated against human skin fibroblast (HFF-1) cells. CONCLUSIONS The exciting findings of this study indicate the promising potential for further development and testing of these hydrogel films, offering effective and controlled antibiotic release to enhance the process of wound healing.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Numera Arshad
- Department of Pharmacy, COMSAT University Islamabad, Lahore Campus, Lahore P.O. Box 54000, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore P.O. Box 54000, Pakistan
| | - Usama Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore P.O. Box 54000, Pakistan
| | - Mohammad N Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Wang C, Xu P, Li X, Zheng Y, Song Z. Research progress of stimulus-responsive antibacterial materials for bone infection. Front Bioeng Biotechnol 2022; 10:1069932. [PMID: 36636700 PMCID: PMC9831006 DOI: 10.3389/fbioe.2022.1069932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Infection is one of the most serious complications harmful to human health, which brings a huge burden to human health. Bone infection is one of the most common and serious complications of fracture and orthopaedic surgery. Antibacterial treatment is the premise of bone defect healing. Among all the antibacterial strategies, irritant antibacterial materials have unique advantages and the ability of targeted therapy. In this review, we focus on the research progress of irritating materials, the development of antibacterial materials and their advantages and disadvantages potential applications in bone infection.
Collapse
Affiliation(s)
| | | | | | - Yuhao Zheng
- Department of Sports Medicine, Orthopaedic Center, The First Hospital of Jilin University, Changchun, China
| | - Zhiming Song
- Department of Sports Medicine, Orthopaedic Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Maryam S, Barkat K, Khalid I, Mehmood Y, Syed MA, Malik NS, Aslam M. Polymeric blends of okra gum/gelatin prepared by aqueous polymerization technique: their characterization and toxicological evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
11
|
Rubio-Camacho M, Martínez-Tomé MJ, Mira A, Mallavia R, Mateo CR. Formation of Multicolor Nanogels Based on Cationic Polyfluorenes and Poly(methyl vinyl ether-alt-maleic monoethyl ester): Potential Use as pH-Responsive Fluorescent Drug Carriers. Int J Mol Sci 2021; 22:9607. [PMID: 34502514 PMCID: PMC8431760 DOI: 10.3390/ijms22179607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, we employed the copolymer poly(methyl vinyl ether-alt-maleic monoethyl ester) (PMVEMA-Es) and three fluorene-based cationic conjugated polyelectrolytes to develop fluorescent nanoparticles with emission in the blue, green and red spectral regions. The size, Zeta Potential, polydispersity, morphology, time-stability and fluorescent properties of these nanoparticles were characterized, as well as the nature of the interaction between both PMVEMA-Es and fluorescent polyelectrolytes. Because PMVEMA-Es contains a carboxylic acid group in its structure, the effects of pH and ionic strength on the nanoparticles were also evaluated, finding that the size is responsive to pH and ionic strength, largely swelling at physiological pH and returning to their initial size at acidic pHs. Thus, the developed fluorescent nanoparticles can be categorized as pH-sensitive fluorescent nanogels, since they possess the properties of both pH-responsive hydrogels and nanoparticulate systems. Doxorubicin (DOX) was used as a model drug to show the capacity of the blue-emitting nanogels to hold drugs in acidic media and release them at physiological pH, from changes in the fluorescence properties of both nanoparticles and DOX. In addition, preliminary studies by super-resolution confocal microscopy were performed, regarding their potential use as image probes.
Collapse
Affiliation(s)
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (M.R.-C.); (A.M.); (R.M.)
| | | | | | - Carmen Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (M.R.-C.); (A.M.); (R.M.)
| |
Collapse
|
12
|
Zarour A, Omar S, Abu-Reziq R. Preparation of Poly(ethylene glycol)@Polyurea Microcapsules Using Oil/Oil Emulsions and Their Application as Microreactors. Polymers (Basel) 2021; 13:polym13152566. [PMID: 34372169 PMCID: PMC8348332 DOI: 10.3390/polym13152566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The development process of catalytic core/shell microreactors, possessing a poly(ethylene glycol) (PEG) core and a polyurea (PU) shell, by implementing an emulsion-templated non-aqueous encapsulation method, is presented. The microreactors' fabrication process begins with an emulsification process utilizing an oil-in-oil (o/o) emulsion of PEG-in-heptane, stabilized by a polymeric surfactant. Next, a reaction between a poly(ethylene imine) (PEI) and a toluene-2,4-diisocyanate (TDI) takes place at the boundary of the emulsion droplets, resulting in the creation of a PU shell through an interfacial polymerization (IFP) process. The microreactors were loaded with palladium nanoparticles (NPs) and were utilized for the hydrogenation of alkenes and alkynes. Importantly, it was found that PEG has a positive effect on the catalytic performance of the developed microreactors. Interestingly, besides being an efficient green reaction medium, PEG plays two crucial roles: first, it reduces the palladium ions to palladium NPs; thus, it avoids the unnecessary use of additional reducing agents. Second, it stabilizes the palladium NPs and prevents their aggregation, allowing the formation of highly reactive palladium NPs. Strikingly, in one sense, the suggested system affords highly reactive semi-homogeneous catalysis, whereas in another sense, it enables the facile, rapid, and inexpensive recovery of the catalytic microreactor by simple centrifugation. The durable microreactors exhibit excellent activity and were recycled nine times without any loss in their reactivity.
Collapse
Affiliation(s)
| | | | - Raed Abu-Reziq
- Correspondence: ; Tel.: +972-2-6586097; Fax: +972-2-6585469
| |
Collapse
|
13
|
Gonçalves JLM, Lopes ABC, Baleizão C, Farinha JPS. Mesoporous Silica Nanoparticles Modified inside and out for ON:OFF pH-Modulated Cargo Release. Pharmaceutics 2021; 13:716. [PMID: 34068257 PMCID: PMC8153141 DOI: 10.3390/pharmaceutics13050716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Highly efficient pH-modulated cargo release was achieved with a new hybrid nanocarrier composed of a mesoporous silica core with functionalized pores and a grafted pH-responsive crosslinked polymer shell of 2-(diisopropylamino)ethyl methacrylate (pKa ≈ 6.5). The retention/release performance of the system was optimized by a novel approach using selective functionalization of the silica pores to tune the carrier-cargo interaction and by tunning the amount of grafted polymer. The system features excellent retention of cationic cargo at low pH and a burst release at higher pH. This results from the expanded-collapsed conformation transition of the pH-responsive polymer shell and the simultaneous change in the interaction between the cargo and the polymer shell and the modified pore walls. At low pH, the electrostatic interaction of the cationic cargo with the protonated amine groups of the extended polymer shell retains the cargo, resulting in very low leakage (OFF state). At high pH, the electrostatic interaction with the cargo is lost (due to deprotonation of the polymer amine groups), and the polymer shell collapses, squeezing out the cargo in a burst release (ON state). Pore functionalization in combination with the stimuli-responsive polymer shell is a very promising strategy to design high-performance ON:OFF smart hybrid nanocarriers for stimuli-actuated cargo release, with great potential for application in the controlled release of drugs and other biologically active agents.
Collapse
Affiliation(s)
| | | | - Carlos Baleizão
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.L.M.G.); (A.B.C.L.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.L.M.G.); (A.B.C.L.)
| |
Collapse
|
14
|
Pérez-Chávez NA, Albesa AG, Longo GS. Thermodynamic Theory of Multiresponsive Microgel Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Néstor A. Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Alberto G. Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| |
Collapse
|
15
|
Degradable polymeric vehicles for postoperative pain management. Nat Commun 2021; 12:1367. [PMID: 33649338 PMCID: PMC7921139 DOI: 10.1038/s41467-021-21438-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
Effective control of pain management has the potential to significantly decrease the need for prescription opioids following a surgical procedure. While extended release products for pain management are available commercially, the implementation of a device that safely and reliably provides extended analgesia and is sufficiently flexible to facilitate a diverse array of release profiles would serve to advance patient comfort, quality of care and compliance following surgical procedures. Herein, we review current polymeric systems that could be utilized in new, controlled post-operative pain management devices and highlight where opportunities for improvement exist.
Collapse
|
16
|
L. M. Gonçalves J, J. Castanheira E, P. C. Alves S, Baleizão C, Farinha JP. Grafting with RAFT-gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture. Polymers (Basel) 2020; 12:E2175. [PMID: 32977680 PMCID: PMC7598713 DOI: 10.3390/polym12102175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive polymer materials are used in smart nanocarriers to provide the stimuli-actuated mechanical and chemical changes that modulate cargo delivery. To take full advantage of the potential of stimuli-responsive polymers for controlled delivery applications, these have been grafted to the surface of mesoporous silica particles (MSNs), which are mechanically robust, have very large surface areas and available pore volumes, uniform and tunable pore sizes and a large diversity of surface functionalization options. Here, we explore the impact of different RAFT-based grafting strategies on the amount of a pH-responsive polymer incorporated in the shell of MSNs. Using a "grafting to" (gRAFT-to) approach we studied the effect of polymer chain size on the amount of polymer in the shell. This was compared with the results obtained with a "grafting from" (gRAFT-from) approach, which yield slightly better polymer incorporation values. These two traditional grafting methods yield relatively limited amounts of polymer incorporation, due to steric hindrance between free chains in "grafting to" and to termination reactions between growing chains in "grafting from." To increase the amount of polymer in the nanocarrier shell, we developed two strategies to improve the "grafting from" process. In the first, we added a cross-linking agent (gRAFT-cross) to limit the mobility of the growing polymer and thus decrease termination reactions at the MSN surface. On the second, we tested a hybrid grafting process (gRAFT-hybrid) where we added MSNs functionalized with chain transfer agent to the reaction media containing monomer and growing free polymer chains. Our results show that both modifications yield a significative increase in the amount of grafted polymer.
Collapse
Affiliation(s)
| | | | | | - Carlos Baleizão
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (J.L.M.G.); (E.J.C.); (S.P.C.A.)
| | - José Paulo Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (J.L.M.G.); (E.J.C.); (S.P.C.A.)
| |
Collapse
|
17
|
Bermejo M, Sanchez-Dengra B, Gonzalez-Alvarez M, Gonzalez-Alvarez I. Oral controlled release dosage forms: dissolution versus diffusion. Expert Opin Drug Deliv 2020; 17:791-803. [DOI: 10.1080/17425247.2020.1750593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marival Bermejo
- Department of Engineering, Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Barbara Sanchez-Dengra
- Department of Engineering, Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta Gonzalez-Alvarez
- Department of Engineering, Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Gonzalez-Alvarez
- Department of Engineering, Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
18
|
Wu N, Schultz KM. Microrheological characterization of covalent adaptable hydrogels for applications in oral delivery. SOFT MATTER 2019; 15:5921-5932. [PMID: 31282533 PMCID: PMC6677256 DOI: 10.1039/c9sm00714h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The feasibility of a covalent adaptable hydrogel (CAH) as an oral delivery platform is explored using μ2rheology, microrheology in a microfluidic device. CAH degradation is initiated by physiologically relevant pHs, including incubation at a single pH and consecutively at different pHs. At a single pH, we determine CAH degradation can be tuned by changing the pH, which can be exploited for controlled release. We calculate the critical relaxation exponent, which defines the gel-sol transition and is independent of the degradation pH. We mimic the changing pH environment through part of the gastrointestinal tract (pH 4.3 to 7.4 or pH 7.4 to 4.3) in our microfluidic device. We determine that dynamic material property evolution is consistent with degradation at a single pH. However, the time scale of degradation is reduced by the history of degradation. These investigations inform the design of this material as a new vehicle for targeted delivery.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr, Iacocca Hall, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
19
|
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019; 19:e1900071. [PMID: 31298803 DOI: 10.1002/mabi.201900071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research CentreDepartment of ScienceWaterford Institute of Technology Cork Road Waterford X91K0EK Republic of Ireland
| |
Collapse
|
20
|
Xu J, Zhang Y, Xu J, Wang M, Liu G, Wang J, Zhao X, Qi Y, Shi J, Cheng K, Li Y, Qi S, Nie G. Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment. Biomaterials 2019; 216:119247. [PMID: 31200145 DOI: 10.1016/j.biomaterials.2019.119247] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023]
Abstract
The acquisition of stemness in colorectal cancer (CRC) attributed to the recurrence and metastasis in CRC treatment. Therefore, targeting the stemness of CRC forms a basis for the development of novel therapeutic approaches. However, the pain and systemic side effect from long-term of venipuncture injection remain great challenges to neoplastic treatment. Here, we introduce an oral drug delivery system for sustained release of BMI-1 inhibitor (PTC209) that reverses the stemness of CRC to overcome these obstacles. In this system, nanoparticles modified with hyaluronic acid (HA) showed high-affinity to CD44/CD168 overexpressed-CRC cells, and efficiently targeted to tumor site in a metastatic orthotropic colon cancer mouse model by oral administration. Significantly, the observed tumor growth inhibition is accompanied by decreased expression of stemness markers in the tumor tissues. Furthermore, HA-NPs-PTC209 also significantly prevented metastasis to the gastrointestinal system, while failing to exhibit acute side effects. In summary, we have developed an orally active, easily synthesized nanomedicine that shows promise for the treatment of colon cancer.
Collapse
Affiliation(s)
- Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meifang Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yingqiu Qi
- School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Peng Q, Liu J, Zhang T, Zhang TX, Zhang CL, Mu H. Digestive Enzyme Corona Formed in the Gastrointestinal Tract and Its Impact on Epithelial Cell Uptake of Nanoparticles. Biomacromolecules 2019; 20:1789-1797. [PMID: 30893550 DOI: 10.1021/acs.biomac.9b00175] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fate of intravenously injected nanoparticles (NPs) is significantly affected by nano-protein interaction and corona formation. However, such an interaction between NPs and digestive enzymes occurring in the gastrointestinal tract (GIT) and its impacts on epithelial cell uptake are little known. We synthesized the poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)-based cationic NPs (CNPs) and investigated the CNP-digestive enzyme interaction and its effect on the cellular uptake. The formation of enzyme corona was confirmed by size/zeta potential analysis, morphology, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and enzyme quantification. The cellular uptake of CNPs by Caco-2 cells was significantly reduced upon the formation of enzyme corona. Our findings demonstrate the digestive enzyme corona formation and its inhibited effect on the epithelial cell uptake of CNPs for the first time. Understanding the enzyme corona could offer a new insight into the fate of nanomedicines in the GIT, and this understanding would be highly beneficial for guiding future nanomedicine designs.
Collapse
Affiliation(s)
- Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingying Liu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian-Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
22
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Liu C, Gong H, Liu W, Lu B, Ye L. Separation and Recycling of Functional Nanoparticles Using Reversible Boronate Ester and Boroxine Bonds. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chen Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Haiyue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box
124, 221 00 Lund, Sweden
| | - Weifeng Liu
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box
124, 221 00 Lund, Sweden
| | - Bin Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box
124, 221 00 Lund, Sweden
| |
Collapse
|
24
|
Liu L, Yang H, Lou Y, Wu JY, Miao J, Lu XY, Gao JQ. Enhancement of oral bioavailability of salmon calcitonin through chitosan-modified, dual drug-loaded nanoparticles. Int J Pharm 2019; 557:170-177. [DOI: 10.1016/j.ijpharm.2018.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
|
25
|
Sun L, Liu Z, Tian H, Le Z, Liu L, Leong KW, Mao HQ, Chen Y. Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery. Biomacromolecules 2018; 20:528-538. [PMID: 30537806 DOI: 10.1021/acs.biomac.8b01530] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oral drug delivery is a more favored mode of administration because of its ease of administration, high patient compliance, and low healthcare costs. However, no oral protein formulations are commercially available currently due to hostile gastrointestinal (GI) barriers resulting in insignificant oral bioavailability of macromolecular drugs. Herein, we used insulin as a model protein drug; insulin-loaded N-(2-hydroxy)-propyl-3-trimethylammonium chloride modified chitosan (HTCC)/sodium tripolyphosphate (TPP) nanocomplex (NC) as a nanocore was further encapsulated into enteric Eudragit L100-55 material, through a two-step flash nanocomplexation (FNC) process in a reliable and scalable manner, forming our NC-in-Eudragit composite particles (NE). Particle size and surface properties of our optimized NE were tailored to protect the loaded insulin from acidic degradation in the hostile stomach environment and to achieve intestinal site-specific drug release as well as the improvement of oral delivery efficiency of insulin. In addition, the oral administration of the optimized NE to type 1 diabetic rats could induce a very significant hypoglycemic effect with a relative oral bioavailability of 13.3%. Our results demonstrated that enteric encapsulation of nanotherapeutics using a FNC apparatus could cause drug formulations to possess better size controllability, batch-mode reproducibility, and homogeneous surface coating and then significantly enhance their oral bioavailability of insulin, indicating its great potential for clinical translation of oral protein therapeutics.
Collapse
Affiliation(s)
- Lilong Sun
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China.,Department of Biomedical Engineering, School of Engineering , Sun Yat-sen University , Guangzhou 510006 , China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Houkuan Tian
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zhicheng Le
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Kam W Leong
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States.,Department of Biomedical Engineering and Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , United States
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
26
|
Sun M, Bai R, Yang X, Song J, Qin M, Suo Z, He X. Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804916. [PMID: 30252962 DOI: 10.1002/adma.201804916] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Developing ultrasensitive chemical sensors with small scale and fast response through simple design and low-cost fabrication is highly desired but still challenging. Herein, a simple and universal sensing platform based on a hydrogel interferometer with femtomol-level sensitivity in detecting (bio)chemical molecules is demonstrated. A unique local concentrating effect (up to 109 folds) in the hydrogel induced by the strong analyte binding and large amount of ligands, combined with the signal amplification effect by optical interference, endows this platform with an ultrahigh sensitivity, specifically 10-14 m for copper ions and 1.0 × 10-11 mg mL-1 for glycoprotein with 2-4 order-of-magnitude enhancement. The specific chemical reactions between selected ligands and target analytes provide high selectivity in detecting complex fluids. This universal principle with broad chemistry, simple physics, and modular design allows for high performance in detecting wide customer choices of analytes, including metal ions and proteins. The scale of the sensor can be down to micrometer size. The nature of the soft gel makes this platform transparent, flexible, stretchable, and compatible with a variety of substrates, showing high sensing stability and robustness after 200 cycles of bending or stretching. The outstanding sensing performance grants this platform great promise in broad practical applications.
Collapse
Affiliation(s)
- Mo Sun
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Ruobing Bai
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Xingyun Yang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jiaqi Song
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Meng Qin
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Zhou S, Sun W, Zhai Y. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2201-2217. [PMID: 30285542 DOI: 10.1080/09205063.2018.1532136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Currently, nanoparticles (NPs) made of amphiphilic block copolymer are still an essential part of drug delivery system. Here, we report a novel amphiphilic block copolymer and paclitaxel (PTX)-loaded copolymer NPs for the controlled delivery of PTX. The block copolymer was synthesized via melt polycondensation method of methoxy poly(ethylene glycol) (mPEG), sebacic acid (SA) and ricinoleic acid (RA). A series of characterization approaches such as Fourier Transform Infrared Spectroscopy (FTIR), 1Hydrogen-Nuclear Magnetic Resonance (1H-NMR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD) and Gel Permeation Chromatography (GPC) applied have shown that the amphiphilic block copolymer was prepared as designed. NPs prepared by nanoprecipitation method consist of mPEG segments as the hydrophilic shell and RA-SA segments as the hydrophobic core, hydrophobic PTX was encapsulated as model drug. Subsequently, Transmission Electron Microscopy (TEM) analysis indicated that the spherical NPs have effective mean diameters ranging from 100 to 400 nm. Dynamic Light Scattering (DLS) analysis also revealed the controllable NPs diameter by modulating the mass ratio of RA to SA and drug loading amount (DLA). Besides, biphasic profile with zero order drug release was observed in general in vitro release behaviors of PTX from NPs. Further investigation confirmed that the release behaviors depend on the crystallinity of hydrophobic RA-SA segments. Results above suggest that NPs with amphiphlic block copolymer mPEG-b-P(RA-SA)-b-mPEG have a remarkable potential as a carrier for hydrophobic drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Shiya Zhou
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei Sun
- b School of Medical Devices , Shenyang Pharmaceutical University , Shenyang , China
| | - Yinglei Zhai
- b School of Medical Devices , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
28
|
Kang SH, Hong SJ, Lee YK, Cho S. Oral Vaccine Delivery for Intestinal Immunity-Biological Basis, Barriers, Delivery System, and M Cell Targeting. Polymers (Basel) 2018; 10:E948. [PMID: 30960873 PMCID: PMC6403562 DOI: 10.3390/polym10090948] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Most currently available commercial vaccines are delivered by systemic injection. However, needle-free oral vaccine delivery is currently of great interest for several reasons, including the ability to elicit mucosal immune responses, ease of administration, and the relatively improved safety. This review summarizes the biological basis, various physiological and immunological barriers, current delivery systems with delivery criteria, and suggestions for strategies to enhance the delivery of oral vaccines. In oral vaccine delivery, basic requirements are the protection of antigens from the GI environment, targeting of M cells and activation of the innate immune response. Approaches to address these requirements aim to provide new vaccines and delivery systems that mimic the pathogen's properties, which are capable of eliciting a protective mucosal immune response and a systemic immune response and that make an impact on current oral vaccine development.
Collapse
Affiliation(s)
- Sung Hun Kang
- Department of Medical Sciences, College of Medicine, Hallym University, Chuncheon 24252, Korea.
| | - Seok Jin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University, Dongtan Sacred Heart Hospital, Hwaseong 18450, Korea.
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea.
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Korea.
| | - Sungpil Cho
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Korea.
| |
Collapse
|