1
|
Leite JMDS, Oliveira ACDJ, Dourado D, Santana LMD, Medeiros TS, Nadvorny D, Silva MLR, Rolim-Neto PJ, Moreira DRM, Formiga FR, Soares MFDLR, Soares-Sobrinho JL. Rifampicin-loaded phthalated cashew gum nano-embedded microparticles intended for pulmonary administration. Int J Biol Macromol 2025; 303:140693. [PMID: 39914544 DOI: 10.1016/j.ijbiomac.2025.140693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Tuberculosis is a serious infectious disease commonly treated with rifampicin (RIF), which has low water solubility and high permeability. Polymeric nanoparticles (PNs) are used for controlled drug delivery to improve drug efficacy. However, PNs can be easily expelled via pulmonary administration. Nano-embedded microparticles (NEMs) are designed to bypass pulmonary barriers. Cashew gum, a versatile heteropolysaccharide, was modified into phthalated cashew gum (PCG), which targets alveolar macrophages, to increase hydrophobicity and improve drug encapsulation efficiency. In this study, the PCG was successfully obtained. Polymeric nanoparticle (PN)-PCG-RIF was fabricated, and its performance characteristics were investigated. PN-PCG-RIF exhibits mucoadhesive properties. An in vitro release study showed the release of 66.57 % of RIF after 6 h. An in vitro cytotoxicity study in A549 cells showed that PN-PCG-RIF is cytocompatible. The cellular uptake study demonstrated efficient cellular internalization in J774 macrophages, which was attributed to the PCG composition binding to the galactose-type lectin C receptor (MGL-2/CD301b). NEM-RIF was optimized by the Box Behnken designer with a particle size of 240.80 nm, PdI of 0.185, and redispersion index of 1.63. Scanning electron microscopy revealed NEMs-RIF in the form of spherical agglomerates. Collectively, RIF-NEMs were successfully developed from PN-PCG-RIF, having potential for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Douglas Dourado
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Lucas Marinho de Santana
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thayse Silva Medeiros
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Daniela Nadvorny
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Pedro José Rolim-Neto
- Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Fábio Rocha Formiga
- Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil; Faculty of Medical Sciences, University of Pernambuco, 50100-130, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
2
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
3
|
Antunes SS, Forn-Cuní G, Romeiro NC, Spaink HP, Verbeek FJ, Muzitano MF. Embryonic and larval zebrafish models for the discovery of new bioactive compounds against tuberculosis. Drug Discov Today 2024; 29:104163. [PMID: 39245344 DOI: 10.1016/j.drudis.2024.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Tuberculosis (TB) is a world health challenge the treatment of which is impacted by the rise of drug-resistant strains. Thus, there is an urgent need for new antitubercular compounds and novel approaches to improve current TB therapy. The zebrafish animal model has become increasingly relevant as an experimental system. It has proven particularly useful during early development for aiding TB drug discovery, supporting both the discovery of new insights into mycobacterial pathogenesis and the evaluation of therapeutical toxicity and efficacy in vivo. In this review, we summarize the past two decades of zebrafish-Mycobacterium marinum research and discuss its contribution to the field of bioactive antituberculosis therapy development.
Collapse
Affiliation(s)
- Stella S Antunes
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nelilma C Romeiro
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Michelle F Muzitano
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Van Nguyen TH, Tsapis N, Benrabah L, Gouilleux B, Baltaze JP, Domenichini S, Fattal E, Moine L. Poly(malic acid) Nanoconjugates of Pyrazinoic Acid for Lung Delivery in the Treatment of Tuberculosis. Bioconjug Chem 2024. [PMID: 39327983 DOI: 10.1021/acs.bioconjchem.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Tuberculosis (TB) remains a major global infection, and TB treatments could be improved by site-specific targeting with delivery systems that allow tissue and cell uptake. To increase the drug concentration at the target sites following lung delivery, polymeric nanoconjugates based on biodegradable poly(malic acid) were designed. Pyrazinoic acid (POA), the active moiety of pyrazinamide─a first-line antituberculosis drug─was covalently bound to poly(malic acid) using a hydrophobic linker at mole ratios of 25%, 50%, and 75%. Three linkers, hexanediol, octanediol, and decanediol, were considered. Independently of the linker or ratio, all the conjugates were able to self-assemble, forming nanoconjugates (NCs) in water with 130-190 nm in diameter. Pyrazinoic acid could be released in a controlled manner without any burst release effect. Its kinetics can be adjusted by modifying the grafting ratio and linker length. No cytotoxicity was observed on RAW 264.7 macrophages up to ∼14 μg/mL of POA. In addition, the nanoconjugates were efficiently taken up by these cells over 5 h. Thanks to their high loading capacity and modulable release profiles, these nanoconjugates hold great promise for more effective treatment of tuberculosis.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Lynda Benrabah
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Boris Gouilleux
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, UFR des Sciences d'Orsay, Université Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Jean-Pierre Baltaze
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, UFR des Sciences d'Orsay, Université Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Séverine Domenichini
- UMS IPSIT Université Paris-Saclay - US 31 INSERM - UAR 3679 CNRS, 17-19, Avenue des Sciences, Orsay, F-91400, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Laurence Moine
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| |
Collapse
|
5
|
Kattel P, Sulthana S, Trousil J, Shrestha D, Pearson D, Aryal S. Effect of Nanoparticle Weight on the Cellular Uptake and Drug Delivery Potential of PLGA Nanoparticles. ACS OMEGA 2023; 8:27146-27155. [PMID: 37546678 PMCID: PMC10398700 DOI: 10.1021/acsomega.3c02273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Biodegradable and biocompatible polymeric nanoparticles (NPs) stand out as a key tool for improving drug bioavailability, reducing the inherent toxicity, and targeting the intended site. Most importantly, the ease of polymer synthesis and its derivatization to add functional properties makes them potentially ideal to fulfill the requirements for intended therapeutic applications. Among many polymers, US FDA-approved poly(l-lactic-co-glycolic) acid (PLGA) is a widely used biocompatible and biodegradable co-polymer in drug delivery and in implantable biomaterials. While many studies have been conducted using PLGA NPs as a drug delivery system, less attention has been given to understanding the effect of NP weight on cellular behaviors such as uptake. Here we discuss the synthesis of PLGA NPs with varying NP weights and their colloidal and biological properties. Following nanoprecipitation, we have synthesized PLGA NP sizes ranging from 60 to 100 nm by varying the initial PLGA feed in the system. These NPs were found to be stable for a prolonged period in colloidal conditions. We further studied cellular uptake and found that these NPs are cytocompatible; however, they are differentially uptaken by cancer and immune cells, which are greatly influenced by NPs' weight. The drug delivery potential of these nanoparticles (NPs) was assessed using doxorubicin (DOX) as a model drug, loaded into the NP core at a concentration of 7.0 ± 0.5 wt % to study its therapeutic effects. The results showed that both concentration and treatment time are crucial factors for exhibiting therapeutic effects, as observed with DOX-NPs exhibiting a higher potency at lower concentrations. The observations revealed that DOX-NPs exhibited a higher cellular uptake of DOX compared to the free-DOX treatment group. This will allow us to reduce the recommended dose to achieve the desired effect, which otherwise required a large dose when treated with free DOX. Considering the significance of PLGA-based nanoparticle drug delivery systems, we anticipate that this study will contribute to the establishment of design considerations and guidelines for the therapeutic applications of nanoparticles.
Collapse
Affiliation(s)
- Prabhat Kattel
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Shoukath Sulthana
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Jiří Trousil
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 16200, Czech Republic
| | - Dinesh Shrestha
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - David Pearson
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| |
Collapse
|
6
|
Bhandari M, Soria-Carrera H, Wohlmann J, Dal NJK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci 2023; 11:2103-2114. [PMID: 36723226 DOI: 10.1039/d2bm01835g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The combination drug regimens that have long been used to treat tuberculosis (TB), caused by Mycobacterium tuberculosis, are fraught with problems such as frequent administration, long duration of treatment, and harsh adverse effects, leading to the emergence of multidrug resistance. Moreover, there is no effective preventive vaccine against TB infection. In this context, nanoparticles (NPs) have emerged as a potential alternative method for drug delivery. Encapsulating antibiotics in biodegradable NPs has been shown to provide effective therapy and reduced toxicity against M. tuberculosis in different mammalian models, when compared to conventional free drug administration. Here, we evaluate the localization, therapeutic efficacy and toxic effects of polymeric micellar NPs encapsulating a promising but highly hydrophobic and toxic antitubercular drug bedaquiline (BQ) in zebrafish embryos infected with Mycobacterium marinum. Our study shows that the NP formulation of BQ improves survival and reduces bacterial burden in the infected embryos after treatment when compared to its free form. The intravenously injected BQ NPs have short circulation times due to their rapid and efficient uptake into the endothelial cells, as observed by correlative light and electron microscopy (CLEM).
Collapse
Affiliation(s)
- Madhavi Bhandari
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Héctor Soria-Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | | | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
7
|
Dal NJK, Schäfer G, Thompson AM, Schmitt S, Redinger N, Alonso-Rodriguez N, Johann K, Ojong J, Wohlmann J, Best A, Koynov K, Zentel R, Schaible UE, Griffiths G, Barz M, Fenaroli F. Π-Π interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models. J Control Release 2023; 354:851-868. [PMID: 36681282 DOI: 10.1016/j.jconrel.2023.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.
Collapse
Affiliation(s)
- Nils-Jørgen K Dal
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gabriela Schäfer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Natalja Redinger
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | | | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jessica Ojong
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ulrich E Schaible
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
8
|
Acharya AP, Sezginel KB, Gideon HP, Greene AC, Lawson HD, Inamdar S, Tang Y, Fraser AJ, Patel KV, Liu C, Rosi NL, Chan SY, Flynn JL, Wilmer CE, Little SR. In silico identification and synthesis of a multi-drug loaded MOF for treating tuberculosis. J Control Release 2022; 352:242-255. [PMID: 36273529 DOI: 10.1016/j.jconrel.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Conventional drug delivery systems have been applied to a myriad of active ingredients but may be difficult to tailor for a given drug. Herein, we put forth a new strategy, which designs and selects the drug delivery material by considering the properties of encapsulated drugs (even multiple drugs, simultaneously). Specifically, through an in-silico screening process of 5109 MOFs using grand canonical Monte Carlo simulations, a customized MOF (referred as BIO-MOF-100) was selected and experimentally verified to be biologically stable, and capable of loading 3 anti-Tuberculosis drugs Rifampicin+Isoniazid+Pyrazinamide at 10% + 28% + 23% wt/wt (total > 50% by weight). Notably, the customized BIO-MOF-100 delivery system cleared naturally Pyrazinamide-resistant Bacillus Calmette-Guérin, reduced growth of virulent Erdman infection in macaque macrophages 10-100-fold compared to soluble drugs in vitro and was also significantly reduced Erdman growth in mice. These data suggest that the methodology of identifying-synthesizing materials can be used to generate solutions for challenging applications such as simultaneous delivery of multiple, small hydrophilic and hydrophobic molecules in the same molecular framework.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Kutay B Sezginel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Ashlee C Greene
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Harrison D Lawson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Ying Tang
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Amy J Fraser
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Kush V Patel
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Electrical and Computer Engineering, University of Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15261, USA; Department of Ophthalmology, University of Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh School of Medicine, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
10
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Sarkar K, Kumar M, Jha A, Bharti K, Das M, Mishra B. Nanocarriers for tuberculosis therapy: Design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Knudsen Dal NJ, Speth M, Johann K, Barz M, Beauvineau C, Wohlmann J, Fenaroli F, Gicquel B, Griffiths G, Alonso-Rodriguez N. The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. Dis Model Mech 2022; 15:dmm049147. [PMID: 34842273 PMCID: PMC8807572 DOI: 10.1242/dmm.049147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified as possessing anti-TB activity in vitro. To aid solubilization, compounds were formulated in biocompatible polymeric micelles (PMs). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating the in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited for pinpointing promising compounds for further development.
Collapse
Affiliation(s)
- Nils-Jørgen Knudsen Dal
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 Leiden, The Netherlands
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France
| | - Jens Wohlmann
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Dep Génomes and Génétique, Institute Pasteur, 75015 Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, 518054 Shenzhen, China
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Noelia Alonso-Rodriguez
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
13
|
Porges E, Jenner D, Taylor AW, Harrison JS, De Grazia A, Hailes AR, Wright KM, Whelan AO, Norville IH, Prior JL, Mahajan S, Rowland CA, Newman TA, Evans ND. Antibiotic-Loaded Polymersomes for Clearance of Intracellular Burkholderia thailandensis. ACS NANO 2021; 15:19284-19297. [PMID: 34739227 PMCID: PMC7612142 DOI: 10.1021/acsnano.1c05309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melioidosis caused by the facultative intracellular pathogen Burkholderia pseudomallei is difficult to treat due to poor intracellular bioavailability of antibiotics and antibiotic resistance. In the absence of novel compounds, polymersome (PM) encapsulation may increase the efficacy of existing antibiotics and reduce antibiotic resistance by promoting targeted, infection-specific intracellular uptake. In this study, we developed PMs composed of widely available poly(ethylene oxide)-polycaprolactone block copolymers and demonstrated their delivery to intracellular B. thailandensis infection using multispectral imaging flow cytometry (IFC) and coherent anti-Stokes Raman scattering microscopy. Antibiotics were tightly sequestered in PMs and did not inhibit the growth of free-living B. thailandensis. However, on uptake of antibiotic-loaded PMs by infected macrophages, IFC demonstrated PM colocalization with intracellular B. thailandensis and a significant inhibition of their growth. We conclude that PMs are a viable approach for the targeted antibiotic treatment of persistent intracellular Burkholderia infection.
Collapse
Affiliation(s)
- Eleanor Porges
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Dominic Jenner
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Adam W. Taylor
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - James S.P. Harrison
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Antonio De Grazia
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Alethia R. Hailes
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Kimberley M. Wright
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Adam O. Whelan
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Isobel H. Norville
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Joann L. Prior
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Caroline A. Rowland
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Nicholas D. Evans
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
14
|
da Silva Leite JM, Patriota YBG, de La Roca MF, Soares-Sobrinho JL. New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Curr Med Chem 2021; 29:1936-1958. [PMID: 34212827 DOI: 10.2174/0929867328666210629154908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis is a chronic respiratory disease caused by Mycobacterium tuberculosis. The common treatment regimens of tuberculosis are lengthy with adverse side effects, low patient compliance, and antimicrobial resistance. Drug delivery systems (DDSs) can overcome these limitations. OBJECTIVE This review aims to summarize the latest DDSs for the treatment of tuberculosis. In the first section, the main pharmacokinetic and pharmacodynamic challenges, due to the innate properties of the drugs, are put forth. The second section elaborates on the use of DDS to overcome the disadvantages of the current treatment of tuberculosis. CONCLUSION We reviewed research articles published in the last 10 years. DDSs can improve the physicochemical properties of anti-tuberculosis drugs, improving solubility, stability, and bioavailability, with better control of drug release and can target alveolar macrophages. However, more preclinical studies and robust bio-relevant analyses are needed for DDSs to become a feasible option to treat patients and attract investors.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Yuri Basilio Gomes Patriota
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
15
|
Tavares MR, Hrabánková K, Konefał R, Kaňa M, Říhová B, Etrych T, Šírová M, Chytil P. HPMA-Based Copolymers Carrying STAT3 Inhibitor Cucurbitacin-D as Stimulus-Sensitive Nanomedicines for Oncotherapy. Pharmaceutics 2021; 13:pharmaceutics13020179. [PMID: 33525658 PMCID: PMC7911143 DOI: 10.3390/pharmaceutics13020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
The study describes the synthesis, physicochemical properties, and biological evaluation of polymer therapeutics based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers intended for a tumor-targeted immuno-oncotherapy. Water-soluble linear and cholesterol-containing HPMA precursors were synthesized using controlled reversible addition–fragmentation chain transfer polymerization to reach molecular weight Mn about 2 × 104 g·mol−1 and low dispersity. These linear or self-assembled micellar conjugates, containing immunomodulatory agent cucurbitacin-D (CuD) or the anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond, showed a hydrodynamic size of 10–30 nm in aqueous solutions. The CuD-containing conjugates were stable in conditions mimicking blood. Importantly, a massive release of active CuD in buffer mimicking the acidic tumor environment was observed. In vitro, both the linear (LP-CuD) and the micellar (MP-CuD) conjugates carrying CuD showed cytostatic/cytotoxic activity against several cancer cell lines. In a murine metastatic and difficult-to-treat 4T1 mammary carcinoma, only LP-CuD showed an anticancer effect. Indeed, the co-treatment with Dox-containing micellar polymer conjugate and LP-CuD showed potentiation of the anticancer effect. The results indicate that the binding of CuD, characterized by prominent hydrophobic nature and low bioavailability, to the polymer carrier allows a safe and effective delivery. Therefore, the conjugate could serve as a potential component of immuno-oncotherapy schemes within the next preclinical evaluation.
Collapse
Affiliation(s)
- Marina R. Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
| | - Klára Hrabánková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
| | - Martin Kaňa
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Blanka Říhová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
- Correspondence: ; Tel.: +420-296-809-230
| |
Collapse
|
16
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
17
|
Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020; 25:E3760. [PMID: 32824757 PMCID: PMC7464666 DOI: 10.3390/molecules25163760] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.
Collapse
Affiliation(s)
- Arturo Sánchez
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| | - Susana P. Mejía
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), Carrera, 72A Nº 78B–141 Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| |
Collapse
|
18
|
Rampacci E, Stefanetti V, Passamonti F, Henao-Tamayo M. Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research. Pathogens 2020; 9:E641. [PMID: 32781698 PMCID: PMC7459799 DOI: 10.3390/pathogens9080641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent an increasingly prevalent etiology of soft tissue infections in animals and humans. NTM are widely distributed in the environment and while, for the most part, they behave as saprophytic organisms, in certain situations, they can be pathogenic, so much so that the incidence of NTM infections has surpassed that of Mycobacterium tuberculosis in developed countries. As a result, a growing body of the literature has focused attention on the critical role that drug susceptibility tests and infection models play in the design of appropriate therapeutic strategies against NTM diseases. This paper is an overview of the in vitro and in vivo models of NTM infection employed in the preclinical phase for early drug discovery and vaccine development. It summarizes alternative methods, not fully explored, for the characterization of anti-mycobacterial compounds.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (E.R.); (V.S.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (E.R.); (V.S.)
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (E.R.); (V.S.)
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
19
|
Świętek M, Panchuk R, Skorokhyd N, Černoch P, Finiuk N, Klyuchivska O, Hrubý M, Molčan M, Berger W, Trousil J, Stoika R, Horák D. Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Front Chem 2020; 8:205. [PMID: 32328477 PMCID: PMC7161697 DOI: 10.3389/fchem.2020.00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic and temperature-sensitive solid lipid particles (mag. SLPs) were prepared in the presence of oleic acid-coated iron oxide (IO-OA) nanoparticles with 1-tetradecanol and poly(ethylene oxide)-block-poly(ε-caprolactone) as lipid and stabilizing surfactant-like agents, respectively. The particles, typically ~850 nm in hydrodynamic size, showed heat dissipation under the applied alternating magnetic field. Cytotoxic activity of the mag.SLPs, non-magnetic SLPs, and iron oxide nanoparticles was compared concerning the mammalian cancer cell lines and their drug-resistant counterparts using trypan blue exclusion test and MTT assay. The mag.SLPs exhibited dose-dependent cytotoxicity against human leukemia cell lines growing in suspension (Jurkat and HL-60/wt), as well as the doxorubicin (Dox)- and vincristine-resistant HL-60 sublines. The mag.SLPs showed higher cytotoxicity toward drug-resistant sublines as compared to Dox. The human glioblastoma cell line U251 growing in a monolayer culture was also sensitive to mag.SLPs cytotoxicity. Staining of U251 cells with the fluorescent dyes Hoechst 33342 and propidium iodide (PI) revealed that mag.SLPs treatment resulted in an increased number of cells with condensed chromatin and/or fragmented nuclei as well as with blebbing of the plasma membranes. While the Hoechst 33342 staining of cell suggested the pro-apoptotic activity of the particles, the PI staining indicated the pro-necrotic changes in the target cells. These conclusions were confirmed by Western blot analysis of apoptosis-related proteins, study of DNA fragmentation (DNA laddering due to the inter-nucleosomal cleavage and DNA comets due to single strand breaks), as well as by FACS analysis of the patterns of cell cycle distribution (pre-G1 phase) and Annexin V/PI staining of the treated Jurkat cells. The induction of apoptosis or necrosis by the particles used to treat Jurkat cells depended on the dose of the particles. Production of the reactive oxygen species (ROS) was proposed as a potential mechanism of mag.SLPs-induced cytotoxicity. Accordingly, hydrogen peroxide and superoxide radical levels in mag.SLPs-treated Jurkat leukemic cells were increased by ~20–40 and ~70%, respectively. In contrast, the non-magnetic SLPs and neat iron oxides did not influence ROS levels significantly. Thus, the developed mag.SLPs can be used for effective killing of human tumor cells, including drug-resistant ones.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Panchuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Nadia Skorokhyd
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Peter Černoch
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Olha Klyuchivska
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Martin Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Matúš Molčan
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Walter Berger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Jirí Trousil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
20
|
Urbánek T, Trousil J, Rak D, Gunár K, Konefał R, Šlouf M, Sedlák M, Šebestová Janoušková O, Hrubý M. γ-Butyrolactone Copolymerization with the Well-Documented Polymer Drug Carrier Poly(ethylene oxide)-block-poly(ε-caprolactone) to Fine-Tune Its Biorelevant Properties. Macromol Biosci 2020; 20:e1900408. [PMID: 32174005 DOI: 10.1002/mabi.201900408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Indexed: 02/01/2023]
Abstract
Polymeric drug carriers exhibit excellent properties that advance drug delivery systems. In particular, carriers based on poly(ethylene oxide)-block-poly(ε-caprolactone) are very useful in pharmacokinetics. In addition to their proven biocompatibility, there are several requirements for the efficacy of the polymeric drug carriers after internalization, e.g., nanoparticle behavior, cellular uptake, the rate of degradation, and cellular localization. The introduction of γ-butyrolactone units into the hydrophobic block enables the tuning of the abovementioned properties over a wide range. In this study, a relatively high content of γ-butyrolactone units with a reasonable yield of ≈60% is achieved by anionic ring-opening copolymerization using 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a very efficient catalyst in the nonpolar environment of toluene with an incorporated γ-butyrolactone content of ≈30%. The content of γ-butyrolactone units can be easily modulated according to the feed ratio of the monomers. This method enables control over the rate of degradation so that when the content of γ-butyrolactone increases, the rate of degradation increases. These findings broaden the application possibilities of polyester-polyether-based nanoparticles for biomedical applications, such as drug delivery systems.
Collapse
Affiliation(s)
- Tomáš Urbánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia.,Department of Analytical Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43, Prague 2, Czechia
| | - Dmytro Rak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovakia
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia
| | - Marián Sedlák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovakia
| | - Olga Šebestová Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00, Prague 6, Czechia
| |
Collapse
|
21
|
Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. J Control Release 2020; 321:312-323. [PMID: 32067995 DOI: 10.1016/j.jconrel.2020.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Tuberculosis represents a major global health problem for which improved approaches are needed to shorten the course of treatment and to combat the emergence of resistant strains. The development of effective and safe nanobead-based interventions can be particularly relevant for increasing the concentrations of antitubercular agents within the infected site and reducing the concentrations in the general circulation, thereby avoiding off-target toxic effects. In this work, rifampicin, a first-line antitubercular agent, was encapsulated into biocompatible and biodegradable polyester-based nanoparticles. In a well-established BALB/c mouse model of pulmonary tuberculosis, the nanoparticles provided improved pharmacokinetics and pharmacodynamics. The nanoparticles were well tolerated and much more efficient than an equivalent amount of free rifampicin.
Collapse
|
22
|
Bláhová M, Randárová E, Konefał R, Nottelet B, Etrych T. Graft copolymers with tunable amphiphilicity tailored for efficient dual drug delivery via encapsulation and pH-sensitive drug conjugation. Polym Chem 2020. [DOI: 10.1039/d0py00609b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic poly(ε-caprolactone)-graft-(poly-N-(2-hydroxypropyl) methacrylamide) copolymers with tunable solution properties form stable micelles with high drug payload via simultaneous encapsulation and pH-sensitive covalent conjugation.
Collapse
Affiliation(s)
- Markéta Bláhová
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 162 06 Prague 6
- Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 162 06 Prague 6
- Czech Republic
| | - Rafal Konefał
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 162 06 Prague 6
- Czech Republic
| | - Benjamin Nottelet
- Institut des Biomolécules Max Mousseron
- Université Montpellier
- ENSCM
- Faculté de Pharmacie
- Montpellier Cedex 5
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 162 06 Prague 6
- Czech Republic
| |
Collapse
|
23
|
Micelle-Forming Block Copolymers Tailored for Inhibition of P-gp-Mediated Multidrug Resistance: Structure to Activity Relationship. Pharmaceutics 2019; 11:pharmaceutics11110579. [PMID: 31694350 PMCID: PMC6920990 DOI: 10.3390/pharmaceutics11110579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance (MDR) is often caused by the overexpression of efflux pumps, such as ABC transporters, in particular, P-glycoprotein (P-gp). Here, we investigate the di- and tri- block amphiphilic polymer systems based on polypropylene glycol (PPO) and copolymers of (N-(2-hydroxypropyl)methacrylamide) (PHPMA) as potential macromolecular inhibitors of P-gp, and concurrently, carriers of drugs, passively targeting solid tumors by the enhanced permeability and retention (EPR) effect. Interestingly, there were significant differences between the effects of di- and tri- block polymer-based micelles, with the former being significantly more thermodynamically stable and showing much higher P-gp inhibition ability. The presence of Boc-protected hydrazide groups or the Boc-deprotection method did not affect the physico-chemical or biological properties of the block copolymers. Moreover, diblock polymer micelles could be loaded with free PPO containing 5–40 wt % of free PPO, which showed increased P-gp inhibition in comparison to the unloaded micelles. Loaded polymer micelles containing more than 20 wt % free PPO showed a significant increase in toxicity; thus, loaded diblock polymer micelles containing 5–15 wt % free PPO are potential candidates for in vitro and in vivo application as potent MDR inhibitors and drug carriers.
Collapse
|
24
|
Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. J Colloid Interface Sci 2019; 553:512-523. [DOI: 10.1016/j.jcis.2019.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/08/2023]
|
25
|
Urbánek T, Jäger E, Jäger A, Hrubý M. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers (Basel) 2019; 11:E1061. [PMID: 31248100 PMCID: PMC6630685 DOI: 10.3390/polym11061061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
In the last half-century, the development of biodegradable polyesters for biomedical applications has advanced significantly. Biodegradable polyester materials containing external stimuli-sensitive linkages are favored in the development of therapeutic devices for pharmacological applications such as delivery vehicles for controlled/sustained drug release. These selectively biodegradable polyesters degrade after particular external stimulus (e.g., pH or redox potential change or the presence of certain enzymes). This review outlines the current development of biodegradable synthetic polyesters materials able to undergo hydrolytic or enzymatic degradation for various biomedical applications, including tissue engineering, temporary implants, wound healing and drug delivery.
Collapse
Affiliation(s)
- Tomáš Urbánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|