1
|
Demirbağ B, Yıldırım M, Çimentepe M, Necip A, Ünver H, Tiftik EN. Salicylaldehyde-derived Hydrazones: Synthesis, characterization, antibacterial activity, antioxidant and anti-inflammatory effects on LPS-induced RAW264.7 macrophage cells, drug-likeness properties, and molecular docking analysis. Biochem Biophys Res Commun 2025; 766:151872. [PMID: 40288265 DOI: 10.1016/j.bbrc.2025.151872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The rising incidence of pathogenic microorganisms underscores the urgent need to develop innovative anti-inflammatory agents. This study aims to investigate the anti-inflammatory and antibacterial mechanisms of Schiff base (SB) derived from salicylaldehyde (SA) compounds in stimulated and unstimulated macrophage cell line (RAW264.7) cells. We synthesized and characterized SB derived from SA using 1H NMR and 13C NMR spectroscopy. Anti-bacterial and computational insights of compounds were carried out. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was conducted to evaluate the toxicity profile of compounds on both lipopolysaccharide (LPS)-stimulated and unstimulated RAW264.7 cells. Additionally, the levels of nuclear factor kappa B (NFκB), interleukin (IL-6), tumor necrosis factor alpha (TNF-α), and reactive oxygen species (ROS) in the cells were measured using a microplate reader. The compound SA-SB-1 (the half maximal inhibitory concentration (IC50: 39.58 μM) demonstrated strong inhibitory activity compared to SA-SB-2 (IC50: 55.64 μM). SA-SB-1 exhibited greater inhibitory effects on the expression of NFκB, IL-6, TNF-α, and ROS in LPS-stimulated RAW264.7 cells than SA-SB-2. SA-SB-1 and SA-SB-2 exhibited a minimum inhibitory concentration (MIC) value of 12 μg/mL against E. faecalis and 250 μg/mL against S. aureus, P. aeruginosa, and E. coli. The binding affinities of SA-SB-1 and SA-SB-2 were studied against various proteins, including those with PDB IDs: 2AZ5, 4ZS7, 2RAM, 3G7B, 6QXS, and 2UV0. The highest binding affinity of SA-SB-2 was found to be -9.329 kcal/mol for 2UV0. These findings are promising for the potential development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Burcu Demirbağ
- Department of Stem Cell and Regenerative Medical, Institute of Health Sciences, Mersin University, Mersin, Türkiye.
| | - Metin Yıldırım
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Türkiye
| | - Mehmet Çimentepe
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Harran University, Sanliurfa, Türkiye
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Sanliurfa, Türkiye
| | - Hakan Ünver
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskisehir, Türkiye
| | - Eyüp Naci Tiftik
- Department of Hematology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| |
Collapse
|
2
|
Ceroni L, Feng T, Calvillo L, Casalini S, Van Rijn P, Menna E. Quaternary ammonium-functionalized carbon nanotubes/alginate nanocomposite hydrogels support myoblast growth and differentiation. J Mater Chem B 2025. [PMID: 40492743 DOI: 10.1039/d5tb00601e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Carbon nanotube (CNT) composite hydrogels are promising materials for tissue engineering due to the biocompatibility of the matrix and the electrical conductivity of the filler, which is crucial for promoting the growth and functions in electroactive tissues. While pristine CNTs are insoluble, we synthesized and fully characterized a water-soluble CNT derivative (fCNT) bearing quaternary ammonium groups, and we homogeneously dispersed it within alginate-based hydrogels. Through external and internal gelation we obtained two plain and two fCNT-filled hydrogels (HG1 and HG2 and HG1-fCNT and HG2-fCNT, respectively), and we compared the physical properties of the four different materials. A measurement setup and an approach were specifically designed for the electrical characterization of our hydrogel samples, showing that the addition of a low amount (0.1 mg mL-1) of fCNT enhanced the conductivity of the hydrogel from internal gelation (HG2-fCNT) by more than one order of magnitude, from 5.7 × 10-10 to 2.8 × 10-8 S cm-1. Even more interestingly, HG2-fCNT featured a faster transmission of low frequency signals (with time scales from 1 ms to 100 ms, typical of electroactive biological tissues) than the other samples. Finally, the behavior of the four hydrogels as scaffolds for muscle tissue engineering was compared through studies of myoblast viability, proliferation, and differentiation. A relevant improvement in differentiation (more than doubling the number and area of myotubes and the fusion index) was obtained by adding the fCNT in the case of HG2-fCNT, in line of its superior electrical properties. These outcomes hint at the feasibility of using the fCNT combined with the alginate hydrogel in order to support the myoblast growth and proliferation.
Collapse
Affiliation(s)
- Ludovica Ceroni
- Department of Chemical Sciences, University of Padova & INSTM, Via Marzolo 1, 35131, Padova, Italy.
| | - Tianqi Feng
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova & INSTM, Via Marzolo 1, 35131, Padova, Italy.
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padova & INSTM, Via Marzolo 1, 35131, Padova, Italy.
| | - Patrick Van Rijn
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Enzo Menna
- Department of Chemical Sciences, University of Padova & INSTM, Via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
3
|
Saadh MJ, Makasana J, Ballal S, R R, Verma L, Pathak PK, Saud HR, Saini S, Bhakuni PN, Sead FF. Advanced functionalized chitosan nanocomposites for hyperthermia-based cancer therapy. Med Oncol 2025; 42:208. [PMID: 40353916 DOI: 10.1007/s12032-025-02768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Chitosan-based nanocomposites have emerged as promising platforms in hyperthermia-mediated cancer therapy due to their unique physicochemical properties, biocompatibility, and functional versatility. This review highlights recent advances in the design and application of chitosan-functionalized nanoparticles (NPs), focusing on their role in enhancing targeted hyperthermic treatment. The integration of chitosan with various nanomaterials-including magnetic nanoparticles, carbon-based structures such as graphene and carbon nanotubes, and gold nanoparticles-offers distinct advantages in thermal conversion efficiency, tumor specificity, and drug delivery potential. Magnetic nanoparticles allow precise thermal ablation of cancer cells under an external magnetic field, while carbon-based materials provide superior thermal conductivity for efficient heat generation. Gold nanoparticles, when conjugated with chitosan, improve biocompatibility and enable surface modification for targeted therapy. Despite promising preclinical outcomes, challenges remain in terms of toxicity, long-term stability, regulatory approval, and scalable synthesis. This review critically examines these aspects and outlines future directions for optimizing chitosan-based nanocomposites toward clinical translation and commercial viability in cancer hyperthermia therapy.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Jayanti Makasana
- Department of Chemistry, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Lokesh Verma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Haider Radhi Saud
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Suman Saini
- Department of Allied Science, Graphic Era Hill University, Bhimtal, India
| | | | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Peña B, Bosi S, Knight WE, Cavasin M, Ferrari I, Musani SA, Cobb TM, Kumar M, Montelongo E, Abdel-Hafiz M, Zanetti M, Farahzad N, Alegret N, McKinsey TA, Graw SL, Sbaizero O, Chi C, Vagnozzi RJ, Song K, Taylor MRG, Prato M, Park D, Mestroni L. Biocompatibility Assessment of an Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel for Cardiac Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2025. [PMID: 40343469 DOI: 10.1021/acsabm.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Heart failure (HF) is a major contributor to the global burden of cardiovascular disease. Current treatments for HF do not regenerate or restore cardiac muscle function, leaving cardiac transplantation as the only definitive treatment for end-stage HF. Subsequently, there is a tremendous need for alternative HF treatments as well as methods to effectively and selectively deliver those therapies to the heart. We have engineered an injectable reverse thermal gel (RTG) functionalized with carbon nanotubes (CNTs) to create a thermoresponsive conductive hydrogel or RTG-CNT. The RTG-CNT transitions from a liquid solution to a gel-based matrix upon reaching body temperature, a unique quality that allows for rapid injection of the liquid polymeric solution followed by gel localization in situ. Previously, we demonstrated the potential use of the RTG-CNT hydrogel for cardiac tissue engineering applications using three-dimensional (3D) cocultures of primary cardiac cells. Here, we performed a preclinical study to assess the biocompatibility of our RTG-CNT hydrogel in vivo by using hydrogel intracardial injection in a mouse model and in vitro by using 3D cultures of human-induced pluripotent stem cell-derived cardiomyocytes. In this report, we present compelling results that demonstrate the RTG-CNT hydrogel biocompatibility and its potential for use in cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Brisa Peña
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Walter E Knight
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Maria Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Ilaria Ferrari
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Sara A Musani
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Tristan M Cobb
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Maydha Kumar
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Efren Montelongo
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Mostafa Abdel-Hafiz
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Michele Zanetti
- Department of Biomedical Engineering, Yale University, 55 Prospect St., New Haven, Connecticut 06511, United States
| | - Nasim Farahzad
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Sharon L Graw
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, at Via Valerio 2, Trieste 34127, Italy
| | - Congwu Chi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Kunhua Song
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Matthew R G Taylor
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Daewon Park
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, at Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Luisa Mestroni
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, at 12700 E.19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| |
Collapse
|
5
|
Alfei S, Schito GC. Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:633. [PMID: 40278498 PMCID: PMC12029864 DOI: 10.3390/nano15080633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy;
| |
Collapse
|
6
|
Merugu S, Jagiello K, Gajewicz-Skretna A, Halappanavar S, Willliams A, Vogel U, Puzyn T. The Impact of Carbon Nanotube Properties on Lung Pathologies and Atherosclerosis Through Acute Inflammation: a New AOP-Anchored in Silico NAM. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501185. [PMID: 40025979 DOI: 10.1002/smll.202501185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/04/2025]
Abstract
In this study, a previously developed approach for creating a quantitative structure-activity relationship model anchored in an Adverse Outcome Pathway framework (AOP-anchored Nano-QSAR) is employed to develop a novel model capable of predicting transcriptomic responses triggered by the inhalation of multiwalled carbon nanotubes (MWCNTs). The acute phase response (AR) signaling pathway, which plays a crucial role in neutrophil influx and initiates the acute immune response is focused. This process involves recruiting pro-inflammatory cells into the lungs and can lead to lung fibrosis, as outlined in AOP33, or atherosclerosis, as per AOP237. To establish the relationship between the structural properties of a set of MWCNTs and the transcriptional benchmark dose level (BMDLAR) response of genes associated with the acute phase response signaling pathway, the locally weighted kernel linear regression algorithm is used. These findings emphasize the critical role of the aspect ratio and specific surface area of MWCNTs in initiating acute inflammation and, subsequently, lung pathologies and atherosclerosis through the inflammatory and acute phase response signaling pathways. This newly developed data-driven model extends the repertoire of transcriptomic-based, AOP-informed Nano-QSAR models, potentially serving as an in silico new approach methodology (NAM) to support the MWCNTs' safety assessment based on the weight of evidence.
Collapse
Affiliation(s)
- Sattibabu Merugu
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Karolina Jagiello
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, Gdansk, 80-308, Poland
- QSAR Lab Ltd., Trzy lipy 3, Gdansk, 80-172, Poland
| | | | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Andrew Willliams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Tomasz Puzyn
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, Gdansk, 80-308, Poland
- QSAR Lab Ltd., Trzy lipy 3, Gdansk, 80-172, Poland
| |
Collapse
|
7
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
8
|
Milenkovska R, Geskovski N, Shalabalija D, Mihailova L, Makreski P, Lukarski D, Stojkovski I, Simonoska Crcarevska M, Mladenovska K. Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:229-251. [PMID: 39995757 PMCID: PMC11849551 DOI: 10.3762/bjnano.16.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
In the present study, temozolomide (TMZ), a drug used for the treatment of anaplastic astrocytoma and glioblastoma multiforme (GBM), was incorporated into multiwalled carbon nanotubes (MWCNTs) and a MWCNTs-graphene (MWCNTs-G) hybrid compound, covalently functionalized with polyethylene glycol (PEG) 6000 and folic acid (FA), with an aim to prepare nanocarriers with the potential to prolong the drug circulation time, cross the blood-brain-tumor barrier (BBTB), and provide targeted and controlled drug release in the brain tumor cells. Cytotoxicity and effects on cell membrane integrity of the blank and TMZ-loaded dual-functionalized carbon nanostructures (CNs) were evaluated in vitro on a GBM cell line (U87MG), as well as their radiosensitizing properties after exposure of the pre-treated GBM cells to gamma radiation with a standard clinical dose for patients with GBM. All prepared formulations underwent biopharmaceutical and physicochemical characterization, including the formulations exposed to irradiation under the same conditions. For physicochemical characterization of the formulations, different techniques were used by which successful functionalization of the CNs and TMZ loading were confirmed and visualized; no significant changes in the structure of the CNs and TMZ after irradiation were observed. With single and dual functionalization, formulations with relatively high TMZ loading efficiency and drug content were prepared. They exhibited homogeneous particle size distributions and mean particle sizes and surface charges suitable for crossing the BBTB and targeting brain cancer cells. A biphasic drug release profile was observed for all functionalized TMZ-loaded formulations in simulated in vivo conditions, with a sustained release pointing to the potential for controlled release of TMZ in brain tumor cells. The formulations of the hybrid CN MWCNTs-G compared to the corresponding MWCNTs were characterized by a similar or slightly higher TMZ content, larger particle size, similar surface charge, and slightly faster TMZ release, which can be attributed to the planar structure of graphene that promotes TMZ binding to the surface on a larger scale. For the irradiated CNs, lower values for particle size, more positive values for surface charge, and accelerated TMZ release were observed, which could be explained by changes in the physicochemical characteristics of the prepared formulations upon irradiation. Significant concentration-dependent toxicity was observed for blank dual-functionalized CNs, being higher for MWCNTs-G-PEG6000-FA compared to MWCNTs-PEG6000-FA at the same formulation concentrations. With incorporation of TMZ into the functionalized CNs, the cell viability additionally decreased, maintaining the trend for higher cytotoxicity of the hybrid CN. Additional decrease in the viability of cells was observed when GBM cells pre-treated with the corresponding CNs were exposed to irradiation, which could be ascribed to changes in size, surface charge, and release kinetics of TMZ and to irradiation-induced changes in the microenvironment and cell membranes that promote uptake of a larger volume of carriers in the GBM cells. The higher cytotoxicity observed in the hybrid carrier formulations could most likely be attributed to the length of the hybrid carrier and the higher proportion of planar surface, which promotes more intense contact with the cells and rupture of cell membranes. Overall, the findings demonstrate the radiosensitizing properties of not only TMZ but also of CNs and point to a clinical benefit from combined treatment with carbon nanocarriers of TMZ and radiotherapy in GBM.
Collapse
Affiliation(s)
- Radmila Milenkovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 45, 1000 Skopje, Republic of North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 45, 1000 Skopje, Republic of North Macedonia
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 45, 1000 Skopje, Republic of North Macedonia
| | - Ljubica Mihailova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 45, 1000 Skopje, Republic of North Macedonia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Str. Arhimedova No. 5, 1000 Skopje, Republic of North Macedonia
| | - Dushko Lukarski
- University Clinic of Radiotherapy and Oncology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 17, 1000 Skopje, Republic of North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Str. 50th Division No. 6, 1000 Skopje, Republic of North Macedonia
| | - Igor Stojkovski
- University Clinic of Radiotherapy and Oncology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 17, 1000 Skopje, Republic of North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Str. 50th Division No. 6, 1000 Skopje, Republic of North Macedonia
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 45, 1000 Skopje, Republic of North Macedonia
| | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Blv. Mother Theresa No. 45, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
9
|
Tan YF, Hii LW, Lim WM, Cheong SK, Leong CO, Yee MSL, Mai CW. Polyethylene glycol-phospholipid functionalized single-walled carbon nanotubes for enhanced siRNA systemic delivery. Sci Rep 2024; 14:30098. [PMID: 39627280 PMCID: PMC11615393 DOI: 10.1038/s41598-024-80646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Small interfering RNAs (siRNA) technology has emerged as a promising therapeutic tool for human health conditions like cancer due to its ability to regulate gene silencing. Despite FDA-approved, their delivery remains localized and limiting their systemic use. This study used single-walled carbon nanotubes (SWNTs) functionalized with polyethylene glycolated (PEGylated) phospholipids (PL-PEG) derivatives for systemic siRNA delivery. We developed an siRNA systemic delivery vehicle (SWNT-siRNA) by conjugating SWNT functionalized with PL-PEG containing either amine (PA) or maleimide (MA). The functionalized SWNT with a lower molecular weight of PA produced the SWNT-siRNA conjugate system with the highest stability and high siRNA loading quantity. The system delivered siRNA to a panel of tumour cell lines of different organs (i.e. HeLa, H1299 and MCF-7) and a non-cancerous human embryonic kidney 293 cells (HEK293T) with high biocompatibility and low toxicity. The cellular uptake of SWNT-siRNA conjugates by epithelial cells was found to be energy dependent. Importantly, the presence of P-glycoprotein, a marker for drug resistance, did not inhibit SWNT-mediated siRNA delivery. Mouse xenograft model further confirmed the potential of SWNT-siRNA conjugates with a significant gene knock-down without signs of acute toxicity. These findings pave the way for potential gene therapy applications using SWNTs as delivery vehicles.
Collapse
Affiliation(s)
- Yuen-Fen Tan
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Postgraduate Studies, IMU University, Kuala Lumpur, 57000, Malaysia
- Cytovision Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
| | - Wei-Meng Lim
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Shah Alam, 47500, Selangor, Malaysia
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Shah Alam, 43000, Selangor, Malaysia
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, IMU University, Kuala Lumpur, 57000, Malaysia
- AGTC Genomics Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Maxine Swee-Li Yee
- Nanotechnology Research Group, Center for Nanotechnology and Advanced Materials, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia.
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
10
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Kim J, Johnson DH, Bharucha TS, Yoo JM, Zeno WF. Graphene Quantum Dots Inhibit Lipid Peroxidation in Biological Membranes. ACS APPLIED BIO MATERIALS 2024; 7:5597-5608. [PMID: 39032174 DOI: 10.1021/acsabm.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Excessive reactive oxygen species (ROS) in cellular environments leads to oxidative stress, which underlies numerous diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Oxidative stress can be particularly damaging to biological membranes such as those found in mitochondria, which are abundant with polyunsaturated fatty acids (PUFAs). Oxidation of these biological membranes results in concomitant disruption of membrane structure and function, which ultimately leads to cellular dysfunction. Graphene quantum dots (GQDs) have garnered significant interest as a therapeutic agent for numerous diseases that are linked to oxidative stress. Specifically, GQDs have demonstrated an ability to protect mitochondrial structure and function under oxidative stress conditions. However, the fundamental mechanisms by which GQDs interact with membranes in oxidative environments are poorly understood. Here, we used C11-BODIPY, a fluorescent lipid oxidation probe, to develop quantitative fluorescence assays that determine both the extent and rate of oxidation that occurs to PUFAs in biological membranes. Based on kinetics principles, we have developed a generalizable model that can be used to assess the potency of antioxidants that scavenge ROS in the presence of biological membranes. By augmenting our fluorescence assays with 1H NMR spectroscopy, the results demonstrate that GQDs scavenge nascent hydroxyl and peroxyl ROS that interact with membranes and that GQDs are potent inhibitors of ROS-induced lipid oxidation in PUFA-containing biological membranes. The antioxidant potency of GQDs is comparable to or even greater than established antioxidant molecules, such as ascorbic acid and Trolox. This work provides mechanistic insights into the mitoprotective properties of GQDs under oxidative stress conditions, as well as a quantitative framework for assessing antioxidant interactions in biological membrane systems.
Collapse
Affiliation(s)
- Juhee Kim
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - David H Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Trushita S Bharucha
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Je Min Yoo
- Chaperone Ventures LLC., Los Angeles, California 90005, United States
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
13
|
Abdel Halim AS, Ali MAM, Inam F, Alhalwan AM, Daoush WM. Fe 3O 4-Coated CNTs-Gum Arabic Nano-Hybrid Composites Exhibit Enhanced Anti-Leukemia Potency Against AML Cells via ROS-Mediated Signaling. Int J Nanomedicine 2024; 19:7323-7352. [PMID: 39055376 PMCID: PMC11269411 DOI: 10.2147/ijn.s467733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prior studies on magnetite (Fe3O4) NPs and carbon nanotubes (CNTs) cytotoxic effects against acute myeloid leukemia (AML) are inconclusive rather than definitive. Purpose Investigation of the effects of Gum Arabic (GA)-stabilized/destabilized Fe3O4 NPs and CNTs, alone or in combination, on AML cell proliferation. Methods Hybrid NPs were synthesized, characterized, and assessed for their cytotoxicity against Kasumi-1, HL-60, and THP-1 in comparison to normal primary bone marrow CD34+ cells. The molecular pathways of nanostructures' cytotoxicity were also investigated. Results The Fe3O4 NPs were effectively synthesized and attached to the surface of the CNTs, resulting in the formation of a novel hybrid through their interaction with the GA colloidal solution in an aqueous media. Although the evaluated nanostructured nanoparticles had significant growth suppression ability against the leukemia cell lines, with IC50 values ranging from 42.437 to 189.842 μg/mL, they exhibited comparatively modest toxicity towards normal hematopoietic cells (IC50: 113.529‒162.656 μg/mL). The incorporation of Fe3O4 NPs with CNTs in a hybrid nanocomposite significantly improved their effectiveness against leukemia cells, with the extent of improvement varying depending on the specific cell type. The nanostructured particles were stabilized by GA, which enhances their ability to inhibit cell proliferation in a manner that depends on the specific cell type. Also, nanoparticles exhibit cytotoxicity due to their capacity to stimulate the production of intracellular ROS, halt the cell cycle at the G1 phase, and induce apoptosis. This is supported by the activation of p53, BAX, cytochrome C, and caspase-3, which are triggered by ROS. The nanostructures lead to an increase in the expression of genes encoding proteins related to oxidative stress (SIRT1, FOXO3, NFE2L2, and MAP3K5) and cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in response to ROS. Conclusion We provide an effective Fe3O4 NPs/CNTs nano-hybrid composite that induces apoptosis and has strong anti-leukemic capabilities. This hybrid nanocomposite is promising for in vivo testing and validation.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Kingdom of Saudi Arabia
| | - Fawad Inam
- Department of Engineering and Computing, School of Architecture, Computing and Engineering, University of East London, London, UK
- Executive Principal Office, Oxford Business College, Oxford, OX1 2EP, UK
| | - Abdulrahman M Alhalwan
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Walid M Daoush
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
- Department of Production Technology, Faculty of Technology and Education, Helwan University, Cairo, 11281, Egypt
| |
Collapse
|
14
|
Rezaei A, Izadi R, Fantuzzi N. A Hierarchical Nano to Micro Scale Modelling of 3D Printed Nano-Reinforced Polylactic Acid: Micropolar Modelling and Molecular Dynamics Simulation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1113. [PMID: 38998718 PMCID: PMC11243012 DOI: 10.3390/nano14131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Fused deposition modelling (FDM) is an additive manufacturing technique widely used for rapid prototyping. This method facilitates the creation of parts with intricate geometries, making it suitable for advanced applications in fields such as tissue engineering, aerospace, and electronics. Despite its advantages, FDM often results in the formation of voids between the deposited filaments, which can compromise mechanical properties. However, in some cases, such as the design of scaffolds for bone regeneration, increased porosity can be advantageous as it allows for better permeability. On the other hand, the introduction of nano-additives into the FDM material enhances design flexibility and can significantly improve the mechanical properties. Therefore, modelling FDM-produced components involves complexities at two different scales: nanoscales and microscales. Material deformation is primarily influenced by atomic-scale phenomena, especially with nanoscopic constituents, whereas the distribution of nano-reinforcements and FDM-induced heterogeneities lies at the microscale. This work presents multiscale modelling that bridges the nano and microscales to predict the mechanical properties of FDM-manufactured components. At the nanoscale, molecular dynamic simulations unravel the atomistic intricacies that dictate the behaviour of the base material containing nanoscopic reinforcements. Simulations are conducted on polylactic acid (PLA) and PLA reinforced with silver nanoparticles, with the properties derived from MD simulations transferred to the microscale model. At the microscale, non-classical micropolar theory is utilised, which can account for materials' heterogeneity through internal scale parameters while avoiding direct discretization. The developed mechanical model offers a comprehensive framework for designing 3D-printed PLA nanocomposites with tailored mechanical properties.
Collapse
Affiliation(s)
- AbdolMajid Rezaei
- Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Razie Izadi
- Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Nicholas Fantuzzi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
15
|
Roy A, Healey CP, Larm NE, Ishtaweera P, Roca M, Baker GA. The Huge Role of Tiny Impurities in Nanoscale Synthesis. ACS NANOSCIENCE AU 2024; 4:176-193. [PMID: 38912288 PMCID: PMC11191736 DOI: 10.1021/acsnanoscienceau.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Nanotechnology is vital to many current industries, including electronics, energy, textiles, agriculture, and theranostics. Understanding the chemical mechanisms of nanomaterial synthesis has contributed to the tunability of their unique properties, although studies frequently overlook the potential impact of impurities. Impurities can show adverse effects, clouding the interpretation of results or limiting the practical utility of the nanomaterial. On the other hand, as successful doping has demonstrated, the intentional introduction of impurities can be a powerful tool for enhancing the properties of a nanomaterial. This Review examines the complex role of impurities, unintentionally or intentionally added, during nanoscale synthesis and their effects on the performance and usefulness of the most common classes of nanomaterials: nanocarbons, noble metal and metal oxide nanoparticles, semiconductor quantum dots, thermoelectrics, and perovskites.
Collapse
Affiliation(s)
- Angira Roy
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ciaran P. Healey
- Chemistry
Department, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Nathaniel E. Larm
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Piyuni Ishtaweera
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Maryuri Roca
- Chemistry
Department, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
16
|
Rele S, Thakur CK, Khan F, Baral B, Saini V, Karthikeyan C, Moorthy NSHN, Jha HC. Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:24. [PMID: 38526738 PMCID: PMC10963536 DOI: 10.1007/s10856-024-06789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Fatima Khan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - N S Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
17
|
Romo-Ávila SL, Márquez-Ruíz D, Guirado-López RA. ClO-driven degradation of graphene oxide: new insights from DFT calculations. Phys Chem Chem Phys 2024; 26:830-841. [PMID: 38099823 DOI: 10.1039/d3cp04015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We present an extensive investigation using density functional theory (DFT) calculations on various model graphene oxide (GO) nanostructures interacting with chlorine monoxide ClO, aiming to understand the role of this highly oxidizing species in C-C bond breakage and the formation of significant holes on GO sheets. During its function, the myeloperoxidase (MPO) enzyme abundantly generates chlorine-oxygen-containing species and their presence has been identified as the cause of degradation in carbon nanotubes of diverse sizes, morphologies, and chemical compositions, both in in vivo and in vitro samples. Notably, Kurapati et al. (Small, 2015, 11, 3985-3994) demonstrated efficient degradation of single GO monolayers through MPO catalysis, though the exact degradation mechanism remains unclear. In our study, we discover that breaking C-C bonds in a single graphene oxide sheet is achievable through a simple mechanism involving the dissociation of two ClO molecules that are chemically attached as nearest neighbor species but bonded to opposite sides of the GO layer (up/down configuration). Two new carbonyl oxygens appear on the surface and the Cl atoms can be transferred to the carbon layer or as physisorbed species near the GO surface. Relatively small energy barriers are associated with these molecular events. Continuing this process on neighboring sites leads to the presence of larger holes on the GO surface, accompanied by an increase in carbonyl species on the carbon network, consistent with X-ray photoelectron spectroscopy measurements. Indeed, the distribution of oxygen functionalities is found to be crucial in defining the damage pattern induced in the carbon layer. We emphasize the important role played by the local charge distribution in the stability or instability of chemical bonds, as well as in the energy barriers and reaction pathways. Finally, we explore the possibility of achieving chlorination of GO following MPO exposure. The here-reported predictions could be the root cause of the experimentally observed low stability of individual GO sheets during the MPO catalytic cycle.
Collapse
Affiliation(s)
- S L Romo-Ávila
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - D Márquez-Ruíz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - R A Guirado-López
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| |
Collapse
|
18
|
Muñiz-García A, Pichardo AH, Littlewood J, Tasker S, Sharkey J, Wilm B, Peace H, O'Callaghan D, Green M, Taylor A, Murray P. Near infrared conjugated polymer nanoparticles (CPN™) for tracking cells using fluorescence and optoacoustic imaging. NANOSCALE ADVANCES 2023; 5:5520-5528. [PMID: 37822909 PMCID: PMC10563848 DOI: 10.1039/d3na00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Tracking the biodistribution of cell therapies is crucial for understanding their safety and efficacy. Optical imaging techniques are particularly useful for tracking cells due to their clinical translatability and potential for intra-operative use to validate cell delivery. However, there is a lack of appropriate optical probes for cell tracking. The only FDA-approved material for clinical use is indocyanine green (ICG). ICG can be used for both fluorescence and photoacoustic imaging, but is prone to photodegradation, and at higher concentrations, undergoes quenching and can adversely affect cell health. We have developed novel near-infrared imaging probes comprising conjugated polymer nanoparticles (CPNs™) that can be fine-tuned to absorb and emit light at specific wavelengths. To compare the performance of the CPNs™ with ICG for in vivo cell tracking, labelled mesenchymal stromal cells (MSCs) were injected subcutaneously in mice and detected using fluorescence imaging (FI) and a form of photoacoustic imaging called multispectral optoacoustic tomography (MSOT). MSCs labelled with either ICG or CPN™ 770 could be detected with FI, but only CPN™ 770-labelled MSCs could be detected with MSOT. These results show that CPNs™ show great promise for tracking cells in vivo using optical imaging techniques, and for some applications, out-perform ICG.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London London UK
| | - Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - James Littlewood
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
- iThera Medical GmbH Munich Germany
| | - Suzannah Tasker
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
| | | | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | | | | | | | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| |
Collapse
|
19
|
Kim SD, Kim K, Shin M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. NANO CONVERGENCE 2023; 10:41. [PMID: 37679589 PMCID: PMC10484881 DOI: 10.1186/s40580-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Recently, the 3D printing of conductive hydrogels has undergone remarkable advances in the fabrication of complex and functional structures. In the field of neural engineering, an increasing number of reports have been published on tissue engineering and bioelectronic approaches over the last few years. The convergence of 3D printing methods and electrically conducting hydrogels may create new clinical and therapeutic possibilities for precision regenerative medicine and implants. In this review, we summarize (i) advancements in preparation strategies for conductive materials, (ii) various printing techniques enabling the fabrication of electroconductive hydrogels, (iii) the required physicochemical properties of the printed constructs, (iv) their applications in bioelectronics and tissue regeneration for neural engineering, and (v) unconventional approaches and outlooks for the 3D printing of conductive hydrogels. This review provides technical insights into 3D printable conductive hydrogels and encompasses recent developments, specifically over the last few years of research in the neural engineering field.
Collapse
Affiliation(s)
- Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
22
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023; 20:411-433. [PMID: 37060487 PMCID: PMC10219911 DOI: 10.1007/s13770-023-00530-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 04/16/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
23
|
Luo Z, Xu D, Xu Y, Zhao J, Hu G, Yue T. Dual role of pulmonary surfactant corona in modulating carbon nanotube toxicity and benzo[a]pyrene bioaccessibility. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131753. [PMID: 37279644 DOI: 10.1016/j.jhazmat.2023.131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Inhaled carbon nanotubes (CNTs) can deposit in the deep lung, where they interact with pulmonary surfactant (PS) to form coronas, potentially altering the fate and toxicity profile of CNTs. However, the presence of other contaminants in combination with CNTs may affect these interactions. Here, we used passive dosing and fluorescence-based techniques confirm the partial solubilization of BaPs adsorbed on CNTs by PS in simulated alveolar fluid. MD simulations were performed to elucidate the competition of interactions between BaPs, CNTs, and PS. We found that PS play two opposing roles in altering the toxicity profile of the CNTs. First, the formation of PS coronas reduce CNTs' toxicity by decreasing the hydrophobicity of the CNTs and decreasing their aspect ratio. Second, the interaction with PS increases the bioaccessibility of BaP through interactions with PS, which may exacerbate the inhalation toxicity of CNTs. These findings suggest that the inhalation toxicity of PS-modified CNTs should consider the bioaccessibility of coexisting contaminants, with the CNT size and aggregation state playing an important role.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Dongfang Xu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yan Xu
- College of Electronic Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
24
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
25
|
Caffo M, Curcio A, Rajiv K, Caruso G, Venza M, Germanò A. Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers (Basel) 2023; 15:2575. [PMID: 37174040 PMCID: PMC10177363 DOI: 10.3390/cancers15092575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant gliomas are the most common primary brain tumors in adults up to an extent of 78% of all primary malignant brain tumors. However, total surgical resection is almost unachievable due to the considerable infiltrative ability of glial cells. The efficacy of current multimodal therapeutic strategies is, furthermore, limited by the lack of specific therapies against malignant cells, and, therefore, the prognosis of these in patients is still very unfavorable. The limitations of conventional therapies, which may result from inefficient delivery of the therapeutic or contrast agent to brain tumors, are major reasons for this unsolved clinical problem. The major problem in brain drug delivery is the presence of the blood-brain barrier, which limits the delivery of many chemotherapeutic agents. Nanoparticles, thanks to their chemical configuration, are able to go through the blood-brain barrier carrying drugs or genes targeted against gliomas. Carbon nanomaterials show distinct properties including electronic properties, a penetrating capability on the cell membrane, high drug-loading and pH-dependent therapeutic unloading capacities, thermal properties, a large surface area, and easy modification with molecules, which render them as suitable candidates for deliver drugs. In this review, we will focus on the potential effectiveness of the use of carbon nanomaterials in the treatment of malignant gliomas and discuss the current progress of in vitro and in vivo researches of carbon nanomaterials-based drug delivery to brain.
Collapse
Affiliation(s)
- Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Antonello Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Kumar Rajiv
- NIET, National Institute of Medical Science, New Delhi 110007, India
- University of Delhi, New Delhi 110007, India
| | - Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Mario Venza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| | - Antonino Germanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy (A.C.)
| |
Collapse
|
26
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
27
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023. [PMID: 37060487 DOI: 10.1007/s13770-023-0054*-*] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
28
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
29
|
Bubols GB, Arbo MD, Peruzzi CP, Cestonaro LV, Altknecht LF, Fão N, Göethel G, Nascimento SN, Paese K, Amaral MG, Bergmann CP, Pohlmann AR, Guterres SS, Garcia SC. Characterization and in vivo toxicological evaluation of multi-walled carbon nanotubes: a low-dose repeated intratracheal administration study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36405-36421. [PMID: 36547826 DOI: 10.1007/s11356-022-24653-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study characterized and investigated the toxicity of two multi-walled carbon nanotubes (MWCNT) NM-401 and NM-403 at 60 and 180 µg after four repeated intratracheal instillations; follow-up times were 3, 7, 30, and 90 days after the last instillation. NM-401 was needle-like, long, and thick, while NM-403 was entangled, short, and thin. Both MWCNT types induced transient pulmonary and systemic alterations in renal function and oxidative lipid damage markers in recent times. Animals showed general toxicity in the immediate times after exposures, in addition to increased pulmonary LDH release at day 3. In further times, decreased liver and kidney relative weights were noted at higher MWCNT doses. Lung histological damages included pulmonary fibrosis, for both MWCNT types, similarly to asbestos; single liver and kidney histological alterations were present. Repeated instillations led to persistent pulmonary damage at low doses, and possibly the extrapulmonary effects may be associated with the consecutive exposures.
Collapse
Affiliation(s)
- Guilherme Borges Bubols
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Portela Peruzzi
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Louise Figueiredo Altknecht
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
| | - Nuryan Fão
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Nunes Nascimento
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Karina Paese
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório 405 de Nanotecnologia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Marta Gonçalves Amaral
- Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Carlos Pérez Bergmann
- Laboratório de Materiais Cerâmicos (LACER), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório 405 de Nanotecnologia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Zygouri P, Athinodorou AM, Spyrou K, Simos YV, Subrati M, Asimakopoulos G, Vasilopoulos KC, Vezyraki P, Peschos D, Tsamis K, Gournis DP. Oxidized-Multiwalled Carbon Nanotubes as Non-Toxic Nanocarriers for Hydroxytyrosol Delivery in Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:714. [PMID: 36839082 PMCID: PMC9965370 DOI: 10.3390/nano13040714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.
Collapse
Affiliation(s)
- Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Antrea M. Athinodorou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V. Simos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Asimakopoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsamis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios P. Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
31
|
Serafin A, Rubio MC, Carsi M, Ortiz-Serna P, Sanchis MJ, Garg AK, Oliveira JM, Koffler J, Collins MN. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res 2022; 26:63. [DOI: 10.1186/s40824-022-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Hostile environment around the lesion site following spinal cord injury (SCI) prevents the re-establishment of neuronal tracks, thus significantly limiting the regenerative capability. Electroconductive scaffolds are emerging as a promising option for SCI repair, though currently available conductive polymers such as polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) present poor biofunctionality and biocompatibility, thus limiting their effective use in SCI tissue engineering (TE) treatment strategies.
Methods
PEDOT NPs were synthesized via chemical oxidation polymerization in miniemulsion. The conductive PEDOT NPs were incorporated with gelatin and hyaluronic acid (HA) to create gel:HA:PEDOT-NPs scaffolds. Morphological analysis of both PEDOT NPs and scaffolds was conducted via SEM. Further characterisation included dielectric constant and permittivity variances mapped against morphological changes after crosslinking, Young’s modulus, FTIR, DLS, swelling studies, rheology, in-vitro, and in-vivo biocompatibility studies were also conducted.
Results
Incorporation of PEDOT NPs increased the conductivity of scaffolds to 8.3 × 10–4 ± 8.1 × 10–5 S/cm. The compressive modulus of the scaffold was tailored to match the native spinal cord at 1.2 ± 0.2 MPa, along with controlled porosity. Rheological studies of the hydrogel showed excellent 3D shear-thinning printing capabilities and shape fidelity post-printing. In-vitro studies showed the scaffolds are cytocompatible and an in-vivo assessment in a rat SCI lesion model shows glial fibrillary acidic protein (GFAP) upregulation not directly in contact with the lesion/implantation site, with diminished astrocyte reactivity. Decreased levels of macrophage and microglia reactivity at the implant site is also observed. This positively influences the re-establishment of signals and initiation of healing mechanisms. Observation of axon migration towards the scaffold can be attributed to immunomodulatory properties of HA in the scaffold caused by a controlled inflammatory response. HA limits astrocyte activation through its CD44 receptors and therefore limits scar formation. This allows for a superior axonal migration and growth towards the targeted implantation site through the provision of a stimulating microenvironment for regeneration.
Conclusions
Based on these results, the incorporation of PEDOT NPs into Gel:HA biomaterial scaffolds enhances not only the conductive capabilities of the material, but also the provision of a healing environment around lesions in SCI. Hence, gel:HA:PEDOT-NPs scaffolds are a promising TE option for stimulating regeneration for SCI.
Collapse
|
32
|
Luo Y, Li J, Huang C, Wang X, Long D, Cao Y. Graphene oxide links alterations of anti-viral signaling pathways with lipid metabolism via suppressing TLR3 in vascular smooth muscle cells. Mol Omics 2022; 18:779-790. [PMID: 35912640 DOI: 10.1039/d2mo00086e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Vascular smooth muscle cells (VSMCs), the main cells constructing blood vessels, are important in the regulation of the pathophysiology of vascular systems; however, relatively few studies have investigated the influence of nanomaterials (NMs) on VSMCs. In this study, we found that the interaction between graphene oxide and human VSMCs led to the cytotoxicity and morphological changes of cells. Because transcriptomic data suggested that graphene oxide decreased anti-viral signaling pathways via decreasing Toll-like receptor 3 (TLR3), we further verified that graphene oxide decreased interferon induced protein with tetratricopeptide repeats 1 (IFIT1) and the radical S-adenosyl methionine domain containing 2 (RSAD2), and TLR3-downstream genes involved in anti-viral responses. Due to the involvement of RSAD2 in lipid dysfunction, we also verified that graphene oxide disrupted lipid homeostasis and increased adipose triglyceride lipase (ATGL). Adding TLR3 agonist polyinosinic:polycytidylic acid (Poly IC) partially increased TLR3-downstream protein interleukin-8 (IL-8) and some lipid classes, particularly lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), in graphene oxide-exposed VSMCs. In mice receiving repeated intravenous injection of graphene oxide, significantly decreased TLR3, IFIT1 and RSAD2 but increased ATGL proteins were observed in aortas. We conclude that graphene oxide altered anti-viral signaling pathways and lipid metabolism via decreasing TLR3 in VSMCs.
Collapse
Affiliation(s)
- Yingmei Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510632, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
33
|
Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, Shao L, Xue W, Zhang H, Zhu P, Guo R. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med 2022; 7:e10315. [PMID: 36176618 PMCID: PMC9471997 DOI: 10.1002/btm2.10315] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials' unique structures at the nanometer level determine their incredible functions, and based on this, they can be widely used in the field of nanomedicine. However, nanomaterials do possess disadvantages that cannot be ignored, such as burst release, rapid elimination, and poor bioadhesion. Hydrogels are scaffolds with three-dimensional structures, and they exhibit good biocompatibility and drug release capacity. Hydrogels are also associated with disadvantages for biomedical applications such as poor anti-tumor capability, weak bioimaging capability, limited responsiveness, and so on. Incorporating nanomaterials into the 3D hydrogel network through physical or chemical covalent action may be an effective method to avoid their disadvantages. In nanocomposite hydrogel systems, multifunctional nanomaterials often work as the function core, giving the hydrogels a variety of properties (such as photo-thermal conversion, magnetothermal conversion, conductivity, targeting tumor, etc.). While, hydrogels can effectively improve the retention effect of nanomaterials and make the nanoparticles have good plasticity to adapt to various biomedical applications (such as various biosensors). Nanocomposite hydrogel systems have broad application prospects in biomedicine. In this review, we comprehensively summarize and discuss the most recent advances of nanomaterials composite hydrogels in biomedicine, including drug and cell delivery, cancer treatment, tissue regeneration, biosensing, and bioimaging, and we also briefly discussed the current situation of their commoditization in biomedicine.
Collapse
Affiliation(s)
- Shanghui Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Xiangqian Hong
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jun Zhao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
- Department of OphthalmologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Longquan Shao
- Stomatological Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| |
Collapse
|
34
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
35
|
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for Clinical Applications of Nanocarbons Focusing on Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201214. [PMID: 35754236 PMCID: PMC9404397 DOI: 10.1002/advs.202201214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past 15 years, numerous studies have been conducted on the use of nanocarbons as biomaterials towards such applications as drug delivery systems, cancer therapy, and regenerative medicine. However, the clinical use of nanocarbons remains elusive, primarily due to short- and long-term safety concerns. It is essential that the biosafety of each therapeutic modality be demonstrated in logical and well-conducted experiments. Accordingly, the fundamental techniques for assessing nanocarbon biomaterial safety have become more advanced. Optimal controls are being established, nanocarbon dispersal techniques are being refined, the array of biokinetic evaluation methods has increased, and carcinogenicity examinations under strict conditions have been developed. The medical implementation of nanocarbons as a biomaterial is in sight. With a particular focus on carbon nanotubes, these perspectives aim to summarize the contributions to date on nanocarbon applications and biosafety, introduce the recent achievements in evaluation techniques, and clarify the future prospects and systematic introduction of carbon nanomaterials for clinical use through practical yet sophisticated assessment methods.
Collapse
Affiliation(s)
- Naoto Saito
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Hisao Haniu
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Kaoru Aoki
- Department of Applied Physical TherapyShinshu University School of Health Sciences3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Naoyuki Nishimura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Takeshi Uemura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
- Division of Gene ResearchResearch Center for Supports to Advanced ScienceShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| |
Collapse
|
36
|
Multiwalled Carbon Nanotubes Induce Fibrosis and Telomere Length Alterations. Int J Mol Sci 2022; 23:ijms23116005. [PMID: 35682685 PMCID: PMC9181372 DOI: 10.3390/ijms23116005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.
Collapse
|
37
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
38
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
39
|
Liu Z, Liu Y, Yushan M, Yusufu A. Enhanced Nerve Regeneration by Bionic Conductive Nerve Scaffold Under Electrical Stimulation. Front Neurosci 2022; 16:810676. [PMID: 35573307 PMCID: PMC9091912 DOI: 10.3389/fnins.2022.810676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Repair of peripheral nerve defect (PND) with a poor prognosis is hard to deal with. Neural conduit applied to nerve defect at present could not achieve the effect of autologous nerve transplantation. We prepared bionic conductive neural scaffolds to provide a new strategy for the treatment of PNDs. The highly aligned poly (L-lactic acid) (PLLA) fiber mats and the multi-microchannel conductive scaffolds were combined into bionic conductive nerve scaffolds, which were implanted into rats with sciatic nerve defects. The experimental animals were divided into the scaffold group (S), scaffold with electrical stimulation (ES) group (S&E), and autologous nerve transplantation group (AT). The regenerative effect of bionic conductive nerve scaffolds was analyzed. Compared with aligned PLLA fiber mats (APFMs), highly aligned fiber mats had a higher fiber orientation and did not change the tensile strength, Young’s modulus, degradation rate, elongation at break of the fiber membrane, and biocompatibility. The bionic conductive nerve scaffolds were well matched with the rat sciatic nerve. The evaluations of the sciatic nerve in Group S&E were close to those in Group AT and better than those in Group S. Immunohistochemical results showed that the expression levels of neurofilament heavy polypeptide (NF-H) and protein S100-B (S100-β) in Group S&E were higher than those in Group S, and the expression levels of low-density lipoprotein receptor-related protein 4 (LRP4), mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (ERK), and mitogen-activated protein kinase kinase (MEK) in Group AT were higher than those in Group S. Bionic conductive nerve scaffolds combined with ES could enhance peripheral nerve regeneration and achieve satisfactory nerve regeneration close to autologous nerve grafts. ERK, p38 MAPK, MEK, and LRP4 may be involved in peripheral nerve regeneration under ES.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Orthopedics, Henan Provincial People’s Hospital, Zhengzhou, China
- People’s Hospital of Zhengzhou University, Zhengzhou, China
- People’s Hospital of Henan University, Zhengzhou, China
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanshi Liu
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaiaili Yushan
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aihemaitijiang Yusufu
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Aihemaitijiang Yusufu,
| |
Collapse
|
40
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
41
|
Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503463. [PMID: 35483786 DOI: 10.1016/j.mrgentox.2022.503463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The genotoxicity of pyrene-polyethylene glycol-modified multi-walled carbon nanotubes (MWCNT-PyPEG), engineered as a nanoplatform for bioapplication, was evaluated. Toxicity was assessed in hamster lung fibroblast cells (V79-4). MTT and Cell Titer Blue methods were used to evaluate cell viability. Genotoxicity was measured by the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, and fluorescence in situ hybridization (FISH) was used to test induction of structural chromosome aberrations (clastogenic activity) and/or numerical chromosome changes (aneuploidogenic activity). Exogenous metabolic activation enzymes were used in the CBMN-Cyt and FISH tests. Only with metabolic activation, the hybrids caused chromosomal damage, by both clastogenic and aneugenic processes.
Collapse
Affiliation(s)
- Graziela de Paula Ferreira Dantas
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | | | - Lívia Santos Gomides
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Farah Maria Drumond Chequer
- Laboratório de Análises Toxicológicas, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, MG, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Clascídia Aparecida Furtado
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Adelina Pinheiro Santos
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Carlos Alberto Tagliati
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
42
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
43
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Marzana M, Morsada Z, Faruk MO, Ahmed A, Khan MMA, Jalil MA, Hossain MM, Rahman MM. Nanostructured Carbons: towards Soft-Bioelectronics, Biosensing and Theraputic Applications. CHEM REC 2022; 22:e202100319. [PMID: 35189015 DOI: 10.1002/tcr.202100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Recently, nanostructured carbon-based soft bioelectronics and biosensors have received tremendous attention due to their outstanding physical and chemical properties. The ultrahigh specific surface area, high flexibility, lightweight, high electrical conductivity, and biocompatibility of 1D and 2D nanocarbons, such as carbon nanotubes (CNT) and graphene, are advantageous for bioelectronics applications. These materials improve human life by delivering therapeutic advancements in gene, tumor, chemo, photothermal, immune, radio, and precision therapies. They are also utilized in biosensing platforms, including optical and electrochemical biosensors to detect cholesterol, glucose, pathogenic bacteria (e. g., coronavirus), and avian leucosis virus. This review summarizes the most recent advancements in bioelectronics and biosensors by exploiting the outstanding characteristics of nanocarbon materials. The synthesis and biocompatibility of nanocarbon materials are briefly discussed. In the following sections, applications of graphene and CNTs for different therapies and biosensing are elaborated. Finally, the key challenges and future perspectives of nanocarbon materials for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Maliha Marzana
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79403, USA
| | - Zinnat Morsada
- Department of Textile Engineering, University of South Asia, Dhaka, 1213, Bangladesh
| | - Md Omar Faruk
- Department of Materials Science and Engineering, Binghamton University, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Md Manirul Alam Khan
- Department of Electrical and Computer Engineering, University of Memphis, Tennessee, 38152, USA
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Md Milon Hossain
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, North Carolina, 27606, USA
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
45
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
46
|
Tavakoli Z, Sheikhi M, Shahab S, Kaviani S, Sheikhi B, Kumar R. Encapsulation of anticancer drug Ibrance into the CNT(8,8-7) nanotube: A study based on DFT method. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this research, a DFT calculation was performed for study to investigate the encapsulation of the anticancer drug Ibrance into CNT(8,8-7) by using M062X/6-311G * level of theory in the solvent water. TD-DFT method was used to compute the electronic spectra of the Ibrance drug, CNT(8,8-7) and complex CNT(8,8-7)/Ibrance in aqueous medium for the study of non-bonded interaction effect. The non-bonded interaction effects of Ibrance drug with CNT(8,8-7) on the electronic properties and natural charges have been also studied. The results display the change in title parameters after process adsorption. According to NBO results, the molecule Ibrance and CNT(8,8-7) play as both electron donor and acceptor at the complex CNT(8,8-7)/Ibrance. Charge transfer, on the other hand, occurs between the bonding, antibonding, or nonbonding orbitals of Ibrance drug and CNT (8,8-7). According to QTAIM analysis and the LOL and ELF values, all intermolecular bonds in the complex are non-covalent in nature. As a result, CNT(8,8-7) can be thought of as a drug delivery system for transporting Ibrance as an anticancer drug within biological systems.
Collapse
Affiliation(s)
- Ziba Tavakoli
- Department of Chemistry, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Masoome Sheikhi
- Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Siyamak Shahab
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk
| | - Sadegh Kaviani
- Research Center for Modeling and Computational Sciences, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Rakesh Kumar
- Department of Chemistry MCM DAV College Kangra (Himachal Pradesh)-176001 (India)
| |
Collapse
|
47
|
Parajuli S, Ureña-Benavides EE. Fundamental aspects of nanocellulose stabilized Pickering emulsions and foams. Adv Colloid Interface Sci 2022; 299:102530. [PMID: 34610863 DOI: 10.1016/j.cis.2021.102530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022]
Abstract
Nanocelluloses in recent years have garnered a lot of attention for their use as stabilizers of liquid-liquid and gas-liquid interfaces. Both cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) have been used extensively in multiple studies to prepare emulsions and foams. However, there is limited literature available that systematically discusses the mechanisms that affect the ability of nanocelluloses (modified and unmodified) to stabilize different types of interfaces. This review briefly discusses key factors that affect the stability of Pickering emulsions and foams and provides a detailed and systematic analysis of the current state knowledge on factors affecting the stabilization of liquid-liquid and gas-liquid interfaces by nanocelluloses. The review also discusses the effect of nanocellulose surface modifications on mechanisms driving the Pickering stabilization of these interfaces.
Collapse
|
48
|
High electrochemical stability of hyperthermophilic archaeal multicopper enzyme adsorbed on gold electrodes compared to fungal laccase. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Makgabutlane B, Maubane-Nkadimeng MS, Coville NJ, Mhlanga SD. Plastic-fly ash waste composites reinforced with carbon nanotubes for sustainable building and construction applications: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO 2NP and MWCNT. NANOMATERIALS 2021; 11:nano11123458. [PMID: 34947804 PMCID: PMC8707110 DOI: 10.3390/nano11123458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023]
Abstract
The presence of nanomaterials (NMs) in the environment may represent a serious risk to human health, especially in a scenario of chronic exposure. To evaluate the potential relationship between NM-induced epigenetic alterations and carcinogenesis, the present study analyzed a panel of 33 miRNAs related to the cell transformation process in BEAS-2B cells transformed by TiO2NP and long-term MWCNT exposure. Our battery revealed a large impact on miRNA expression profiling in cells exposed to both NMs. From this analysis, a small set of five miRNAs (miR-23a, miR-25, miR-96, miR-210, and miR-502) were identified as informative biomarkers of the transforming effects induced by NM exposures. The usefulness of this reduced miRNA battery was further validated in other previously generated transformed cell systems by long-term exposure to other NMs (CoNP, ZnONP, MSiNP, and CeO2NP). Interestingly, the five selected miRNAs were consistently overexpressed in all cell lines and NMs tested. These results confirm the suitability of the proposed set of mRNAs to identify the potential transforming ability of NMs. Particular attention should be paid to the epigenome and especially to miRNAs for hazard assessment of NMs, as wells as for the study of the underlying mechanisms of action.
Collapse
|