1
|
Chin ML, Zhang H, Au CK, Luk WL, Cai Z, Chan W. Aristolochic Acids and Aristoloxazines Are Widespread in the Soil of Aristolochiaceae Herb Cultivation Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22563-22570. [PMID: 39663883 DOI: 10.1021/acs.est.4c09559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The cancer risk associated with aristolochic acid (AA) exposure through the consumption of AA-containing herbal medicine has received tremendous attention in the past decades. However, environmental exposure routes from the associated medicinal herb cultivation fields have received little attention. We reveal through liquid chromatography-tandem mass spectrometry analysis of over 400 soil samples collected from three different Aristolochiaceae herb cultivation fields that AAs, which are nephrotoxic and carcinogenic, and aristoloxazines (AXs), a family of recently identified neurotoxic and genotoxic AA analogues, are widespread pollutants in these areas. In particular, aristoloxazine C was detected for the first time in the environment and was found in 318 out of 320 soil samples, at concentrations as high as 2.8 mg/kg, from an Asarum heterotropoides cultivation field. We show that in fact AXs are ecotoxic, inhibiting plant growth and significantly reducing the soil microorganism population. With the extensive cultivation of Aristolochiaceae herbs in order to meet their market demand, we believe our study points to an important environmental hazard that may place food crops and non-AA/AX-producing medicinal herbs at risk of AA/AX contamination. While previous research focused primarily on the health risks associated with exposure to AAs, this study uncovers environmental exposure as a new human exposure pathway that warrants the attention of both the general public and regulatory agencies.
Collapse
Affiliation(s)
- Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Haoyu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wing-Laam Luk
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Hu Y, Chen L, Wu Y, Zhang J, Sheng Z, Zhou Z, Xie Y, Tian G, Wan J, Zhang X, Cai N, Zhou Y, Cao Y, Yang T, Chen X, Liao D, Ge Y, Cheng B, Zhong K, Tian E, Lu J, Lu H, Zhao Y, Yuan W. Palmatine reverse aristolochic acid-induced heart failure through activating EGFR pathway via upregulating IKBKB. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117100. [PMID: 39332194 DOI: 10.1016/j.ecoenv.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Aristolochic acid (AA) is renowned for engendering nephrotoxicity and teratogenicity. Previous literature has reported that AA treatment resulted in heart failure (HF) via inflammatory pathways. Yet, its implications in HF remain comparatively uncharted territory, particularly with respect to underlying mechanisms. In our study, the zebrafish model was employed to delineate the cardiotoxicity of AA exposure and the restorative capacity of a phytogenic alkaloid palmatine (PAL). PAL restored morphology and blood supply in AA-damaged hearts by o-dianisidine staining, fluorescence imaging, and Hematoxylin and Eosin staining. Furthermore, PAL attenuated the detrimental effects of AA on ATPase activity, implying myocardial energy metabolism recovery. PAL decreased the co-localization of neutrophils with cardiomyocytes, implying an attenuation of the inflammatory response induced by AA. A combination of network pharmacological analysis and qPCR validation shed light on the therapeutic mechanism of PAL against AA-induced heart failure via upregulation of the epidermal growth factor receptor (EGFR) signaling pathway. Subsequent evaluations using a transcriptological testing, inhibitor model, and molecular docking assay corroborated PAL as an IKBKB enzyme activator. The study underscores the possible exploitation of the EGFR pathway as a potential therapeutic target for PAL against AA-induced HF, thus furthering the continued investigation of the toxicology and advancement of protective pharmaceuticals for AA.
Collapse
Affiliation(s)
- Ying Hu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Lixin Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yulin Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, Jiangsu 210042, China
| | - Zhixia Sheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ziyi Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yufeng Xie
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Guiyou Tian
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jiaxing Wan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaorun Zhang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Na Cai
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yatong Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yi Cao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tengjiang Yang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaomei Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Dalong Liao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yurui Ge
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Bo Cheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jin Lu
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huiqiang Lu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China; The First Clinical College of Gannan Medical Uinversity, Ganzhou, Jiangxi 341000, China.
| | - Yan Zhao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| | - Wei Yuan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
3
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Qing-Yang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Hong-Xin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Ya-Hong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Xiao-Wen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Wen-Hui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Heilongjiang Key Laboratory for the Prevention and Control of Common Animal Diseases, Harbin, Heilongjiang Province, 150030, P. R. China
| |
Collapse
|
4
|
Zhou S, Luo Y, Wang J, Lu F, Cui J, Deng Q. Ratiometric luminescent simultaneous sensing of aristolochic acids (I-IV) by a novel metal-organic framework and its nanowire. Mikrochim Acta 2024; 191:366. [PMID: 38833071 DOI: 10.1007/s00604-024-06449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Aristolochic acids (AAs), which are a group of nitrophenanthrene carboxylic acids formed by Aristolochia plant, have become an increasing serious threat to humans due to their nephrotoxicity and carcinogenicity. Fast and accurate approaches capable of simultaneous sensing of aristolochic acids (I-IV) are vital to avoid intake of such compounds. In this research, the novel ratiometric fluorescence zinc metal-organic framework and its nanowire have been prepared. The two different coordination modes (tetrahedral configuration and twisted triangular bipyramidal configuration) within zinc metal-organic framework lead to the significant double emissions. The ratiometric fluorescence approach based on nanowire provides a broader concentration range (3.00 × 10-7~1.00 × 10-4 M) and lower limit of detection (3.70 × 10-8 M) than that based on zinc metal-organic framework (1.00 × 10-6~1.00 × 10-4 M, 5.91 × 10-7 M). The RSDs of the results are in the range 1.4-3.5% (nanowire). The density functional theory calculations and UV-Vis absorption verify that the sensing mechanism is due to charge transfer and energy transfer. Excellent spiked recoveries for AAs(I-IV) in soil and water support that nanowire is competent to simultaneously detect these targets in real samples, and the proposed approach has potential as a fluorescence sensing platform for the simultaneous detection of AAs (I-IV) in complex systems.
Collapse
Affiliation(s)
- Shufang Zhou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuchen Luo
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiayi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Futai Lu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jin Cui
- Tianjin Product Quality Inspection Technology Research Institute, Tianjin, 301721, China.
| | - Qiliang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
5
|
Au CK, Nagl S, Chan W. Effects of Heavy Metal Co-Exposure on the formation of DNA Adducts from Aristolochic Acid I: Implications for Balkan Endemic Nephropathy Development. Chem Res Toxicol 2024; 37:545-548. [PMID: 38551460 DOI: 10.1021/acs.chemrestox.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Accumulated evidence has shown that Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with exposure to aristolochic acids (AA), and the associated DNA adduct formation, as a key causative factor of BEN development. Here, we show that coexposure to arsenic, cadmium, and iron increases the DNA adduct formation of AA in cultured kidney cells, while exhibiting both an exposure concentration and duration dependence. In contrast, coexposure to calcium and copper showed a decreasing DNA adduct formation. Because DNA damage is responsible for both the nephrotoxicity and carcinogenicity of AA, these results shed greater light on the endemic nature of BEN.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
6
|
Huang W, Focker M, van Dongen KCW, van der Fels-Klerx HJ. Factors influencing the fate of chemical food safety hazards in the terrestrial circular primary food production system-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13324. [PMID: 38517020 DOI: 10.1111/1541-4337.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Food safety is recognized as a major hurdle in the transition toward circular food production systems due to the potential reintroduction and accumulation of chemical contaminants in these food systems. Effectively managing these hazardous contaminants in a risk-based manner requires quantitative insights into the factors influencing the presence and fate of contaminants in the entire circular food chain. A systematic literature review was performed to gain an up-to-date overview of the known factors and their influence on the transfer and accumulation of contaminants. This review focused on the terrestrial circular primary food production system, including the pathways between waste- or byproduct-based fertilizers, soil, crops, animal feed, and farmed animals. This review revealed an imbalance in research regarding the different pathways: studies on the soil-to-crop pathway were most abundant. The factors identified can be categorized as compound-related (intrinsic) factors, such as hydrophobicity, molecular weight, and chain length, and extrinsic factors, such as soil organic matter and carbon, pH, milk yield of cows, crop age, and biomass. Quantitative data on the influence of the identified factors were limited. Most studies quantified the influence of individual factors, whereas only a few studies quantified the combined effect of multiple factors. By providing a holistic insight into the influential factors and the quantification of their influence on the fate of contaminants, this review contributes to the improvement of food safety management for chemical hazards when transitioning to a circular food system.
Collapse
Affiliation(s)
- Weixin Huang
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marlous Focker
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Katja C W van Dongen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Chin ML, Au CK, Chan CK, Jin L, Živković Stošić MZ, Đorđević Zlatković MR, Zlatković D, Pavlović NM, Chan W. Fabrication of a Simple and Efficient HPLC Reduction Column for Online Conversion of Aristolochic Acids to Aristolactams Prior to Sensitive Fluorescence Detection. Anal Chem 2023; 95:12365-12372. [PMID: 37565718 DOI: 10.1021/acs.analchem.3c01874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aristolochic acids (AAs) are nephrotoxic and carcinogenic nitrophenanthrene carboxylic acids produced naturally by plants from the Aristolochia and Asarum genera, which have been used extensively as herbal medicines. In addition to consuming AA-containing herbal medicinal products, there is emerging evidence that humans are also exposed to AA through the environment. In 2022, the World Health Organization (WHO) called for global action to remove AA exposure sources and to implement preventative measures against the development of AA-associated cancers. Herein, we report the development of a simple and efficient iron powder-packed reduction column that allows online post-column conversion of the nonfluorescing AA to its corresponding strongly fluorescing aristolactam (AL), facilitating the sensitive and selective detection of AA in herbal medicinal products, food grain, arable soil, or groundwater samples by high-performance liquid chromatography with fluorescence detection. Moreover, AL, a group of naturally occurring derivatives of AA that have demonstrated toxicity to cultured bacteria, human cells, and rats, is monitored and quantified simultaneously with AA in one single run without sacrificing sensitivity. In comparison with existing analytical methods for AA measurement, the newly developed method is not only inexpensive and less laborious, but it also offers improved sensitivity. We believe this novel method will find wide application in identifying the presence of AA in food, herbal medicines, and environmental samples, thus assisting in the identification and removal of AA exposure sources.
Collapse
Affiliation(s)
- Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Long Jin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Milena Z Živković Stošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Miljana R Đorđević Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Dragan Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
8
|
Zhang J, Chan CK, Pavlović NM, Chan W. Effects of Diet on Aristolochic Acid-DNA Adduct Formation: Implications for Balkan Endemic Nephropathy Etiology. Chem Res Toxicol 2023; 36:438-445. [PMID: 36881864 DOI: 10.1021/acs.chemrestox.2c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicine or AA-contaminated food is associated with the development of aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), both public health risks to which the World Health Organization is calling for global action to remove exposure sources. The AA exposure-induced DNA damage is believed to be related to both the nephrotoxicity and carcinogenicity of AA observed in patients suffering from BEN. While the chemical toxicology of AA is well-studied, we investigated in this study the understated effect of different nutrients, food additives, or health supplements on DNA adduct formation by aristolochic acid I (AA-I). By culturing human embryonic kidney cells in an AAI-containing medium enriched with different nutrients, results showed that cells cultured in fatty acid-, acetic acid-, and amino acid-enriched media produced ALI-dA adducts at significantly higher frequencies than that cultured in the normal medium. ALI-dA adduct formation was most sensitive to amino acids, indicating that amino acid- or protein-rich diets might lead to a higher risk of mutation and even cancer. On the other hand, cells cultured in media supplemented with sodium bicarbonate, GSH, and NAC reduced ALI-dA adduct formation rates, which sheds light on their potential use as risk-mitigating strategies for people at risk of AA exposure. It is anticipated that the results of this study will help to better understand the effect of dietary habits on cancer and BEN development.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
9
|
Au CK, Jason Chan KK, Chan W, Zhang X. Occurrence and stability of PCMX in water environments and its removal by municipal wastewater treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130550. [PMID: 37055964 DOI: 10.1016/j.jhazmat.2022.130550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Para-chloro-meta-xylenol (PCMX) is a synthetic antiseptic used extensively to control the spread of germs and viruses, and as a result, enormous amount of PCMX could be discharged to water environments through drainage. To investigate the extent of PCMX contamination, water samples were collected from rivers and coastal waters in Hong Kong, and PCMX concentrations were determined by a newly developed method using liquid chromatography-tandem mass spectrometry combined with stable isotope-dilution. We discovered widespread PCMX pollution in the water environment. Then, we revealed for the first time that PCMX in wastewater is not effectively removed by chemically enhanced primary treatment (CEPT), one of the wastewater treatment processes used in Hong Kong (∼75% of wastewater) and other megacities around the world. This suggests that the CEPT effluent or the primary treatment effluent is an unintended continuous source of pollution for PCMX in water environments. Finally, we found that PCMX was relatively stable in the water environment and could pose a risk to aquatic organisms. These findings underscore the importance of raising public awareness of the environmental consequences from overuse of PCMX-based disinfectants and the need to reevaluate the various wastewater treatment processes in removing PCMX.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China
| | - K K Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, The Hong Kong Special Administrative Region of China
| |
Collapse
|
10
|
Au CK, Ham YH, Chan W. Bioaccumulation and DNA Adduct Formation of Aristolactam I: Unmasking a Toxicological Mechanism in the Pathophysiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2023; 36:322-329. [PMID: 36757010 DOI: 10.1021/acs.chemrestox.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Prolonged exposure to aristolochic acid (AA) through AA-containing herbal medicines or AA-tainted food is putting a large portion of the global population at risk of developing renal fibrosis and tumors of the upper urinary tract. In an effort to better understand the organotropic property of AA, we studied the cytotoxicity, absorption, oxidative-stress inducing potential, and DNA adduct formation capability of aristolactam I (ALI), one of the major urinary metabolites of aristolochic acid I (AAI) in human cells. Despite ALI having a slightly lower cytotoxicity than that of AAI, the analysis revealed, for the first time, that ALI is bioaccumulated 900 times more than that of AAI inside cultured kidney cells. Furthermore, ALI induced a significantly larger glutathione depletion than that of AAI in the exposed cells. Together with the formation of ALI-DNA adduct at a reasonably high abundance, results of this study unmasked a previously disregarded causative role of ALI in the organotropic tumor-targeting property of AA.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
11
|
Wang X, Lu Q, Dou L, Liu M, Li P, Yu W, Yu X, Wang Z, Wen K. Broad-specificity indirect competitive enzyme-linked immunosorbent assay for aristolochic acids: Computer-aided hapten design and molecular mechanism of antibody recognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159941. [PMID: 36347294 DOI: 10.1016/j.scitotenv.2022.159941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Long-term dietary exposure of aristolochic acids (AAs)-contaminated food proved to be one of the main culprits of Endemic Nephropathy, renal failure; and urothelial cancer. The antibodies utilized in immunoassays for AAs suffer from low affinity and failure of recognition to the family of AAs. This study, we prepared a broad-specificity monoclonal antibody (mAb) 5H5 with highly and uniform affinity for AAs by help of computational chemistry fully exposing the AAs common structures of methoxy and hydroxyl groups. The mAb 5H5 exhibited half inhibitory concentrations of AAA, AAB, AAC, AAD were 0.03, 0.06, 0.05, 0.03 ng/mL. To explain the broad-specificity profile of mAb 5H5, molecular docking was performed. Results shown that multiple conformations of AAs can be flexibly oriented in the spacious cavity of single-chain variable fragment antibody (scFv) 5H5 and the specific hydron bonds were formed by ASN62 and GLY64 of scFV 5H5 to the nitro group of AAs which gave an explanation of the high cross-reactivity of mAb 5H5. The ELISA based on the broad-specificity mAb 5H5with detection limits of 0.04-0.11 μg/kg and 0.02-0.06 μg/kg for four AAs in flour and soil samples, respectively. The study provided a promising method for the family of AAs in environmental and food samples.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Qingpeng Lu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
12
|
Lukinich-Gruia AT, Nortier J, Pavlović NM, Milovanović D, Popović M, Drăghia LP, Păunescu V, Tatu CA. Aristolochic acid I as an emerging biogenic contaminant involved in chronic kidney diseases: A comprehensive review on exposure pathways, environmental health issues and future challenges. CHEMOSPHERE 2022; 297:134111. [PMID: 35231474 DOI: 10.1016/j.chemosphere.2022.134111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Described in the 1950s, Balkan Endemic Nephropathy (BEN) has been recognized as a chronic kidney disease (CKD) with clinical peculiarities and multiple etiological factors. Environmental contaminants - aromatic compounds, mycotoxins and phytotoxins like aristolochic acids (AAs) - polluting food and drinking water sources, were incriminated in BEN, due to their nephrotoxic and carcinogenic properties. The implication of AAs in BEN etiology is currently a highly debated topic due to the fact that they are found within the Aristolochiaceae plants family, used around the globe as traditional medicine and they were also incriminated in Aristolochic Acid Nephropathy (AAN). Exposure pathways have been investigated, but it is unclear to what extent AAs are acting alone or in synergy with other cofactors (environmental, genetics) in triggering kidney damage. Experimental studies strengthen the hypothesis that AAI, the most studied compound in the AAs class, is a significant environmental contaminant and a most important causative factor of BEN. The aim of this review is to compile information about the natural exposure pathways to AAI, via traditional medicinal plants, soil, crop plants, water, food, air. Data that either supports or contradicts the AAI theory concerning BEN etiology was consolidated and available solutions to reduce human exposure were discussed. Because AAI is a phytotoxin with physicochemical properties that allow its transportation in environmental matrices from different types of areas (endemic, nonendemic), and induce CKDs (BEN, AAN) and urinary cancers through bioaccumulation, this review aims to shed a new light on this compound as a biogenic emerging pollutant.
Collapse
Affiliation(s)
- Alexandra T Lukinich-Gruia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Joëlle Nortier
- Nephrology Department, Brugmann Hospital & Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Belgium.
| | - Nikola M Pavlović
- Kidneya Therapeutics, Klare Cetkin 11, 11070, Belgrade, Serbia; University of Niš, Univerzitetski Trg 2, 18106, Niš, Serbia.
| | | | - Miloš Popović
- Department for Biology and Ecology, Faculty of Natural Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Lavinia Paula Drăghia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Virgil Păunescu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| | - Călin A Tatu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| |
Collapse
|
13
|
Zhang J, Chan KKJ, Chan W. Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy. Chem Res Toxicol 2022; 35:849-857. [PMID: 35471859 DOI: 10.1021/acs.chemrestox.2c00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with chronic exposure to aristolochic acids (AAs) through AA-contaminated food being one of the major etiological mechanisms. However, the bulk of previous research has only focused on investigating the possible roles of individual pollutants in disease development and the etiological mechanism of BEN remains controversial. In this study, we investigated the exposure concentration and duration dependence of coexposure to phthalate esters and lignite coal-derived phenol and polycyclic aromatic hydrocarbons (PAHs) on the metabolism and DNA adduct formation of aristolochic acid I (AAI). Results showed that both the metabolic activation and DNA adduct formation of AAI in cultured human kidney cells were affected by their coexposure to the above-mentioned environmental pollutants. Furthermore, our results suggest that chemicals leached from lignite coal likely played a role by triggering AA-activating enzymes to produce more of the promutagenic DNA adducts, thus further elevating the nephrotoxicity and carcinogenicity of AAs and increasing the risk of BEN. It is believed that the results of this study provide a better understanding of the etiological mechanism of BEN and offer insights into methods and policies to lower the risk of this devastating disease.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
14
|
Thangavelu M, Ismail A, Zakaria A, Elmansy H, Shahrour W, Prowse O, Kotb A. Aristolochic acid: What urologists should know. Arch Ital Urol Androl 2022; 94:123-125. [PMID: 35352538 DOI: 10.4081/aiua.2022.1.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
To the Editor, Aristolochic acid is one of major causes for upper tract urothelial carcinoma, especially in younger population. While it is mentioned as a cause in guidelines, little is actually known about the toxin by urologists. We are aiming in our letter to provide some direct and clear information to ourselves that would help us to know more about that toxin and how it can adversely affect our patients [...].
Collapse
Affiliation(s)
| | - Asmaa Ismail
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Ahmed Zakaria
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Hazem Elmansy
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Walid Shahrour
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Owen Prowse
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Ahmed Kotb
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| |
Collapse
|
15
|
Guo W, Shi Z, Zhang J, Zeng T, He Y, Cai Z. Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS. Talanta 2021; 235:122774. [PMID: 34517632 DOI: 10.1016/j.talanta.2021.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
A method combining magnetic solid-phase extraction (MSPE) and ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the analysis of aristolochic acids I (AAI) in mouse serum and tissues. The magnetic covalent organic frameworks (MNP@COF)-based MSPE exhibited high adsorption capacity towards AAI (93.1 mg/g) in optimal conditions. After MSPE extraction, AAI was separated with C18 column using gradient elution and quantified (m/z 342.21 → 298.13) by UHPLC-MS/MS with monitor reaction monitoring (MRM) mode. This MSPE-based UHPLC-MS/MS method was validated with respected to lower limit of quantification (LLOQ), linearity, recovery, precision and accuracy of intra- and inter-day, and matrix effect. Good calibration linearities at the range of 1-500 ng/L for AAI in biological matrices (serum, kidney, and liver) with high correlation coefficient (R2) > 0.9970, and high enrichment factors (mean values from 1038 to 1045) were obtained. This method was highly sensitive to determine AAI with LLOQ within the range of 4.62-5.24 ng/L in extracted serum, kidney, and liver samples. Recoveries at 5, 50, 100 and 300 ng/L in biological samples ranged from 93.2 to 104.0%, and intra- and inter day accuracy and precision (defined as bias and coefficient of variation, respectively) were below ± 15%. The method was successfully applied in the analysis of biological samples collected from mice exposed with AAI with concentrations range of 0.007-0.041 μg/L for consecutive four days. The established method might be applied for the investigation of risk assessment and toxicity induced by long-time use of AAI-containing herbs or dietary supplements.
Collapse
Affiliation(s)
- Wenjing Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhangsheng Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Ting Zeng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China.
| |
Collapse
|
16
|
Wang Y, Wang Z, Wu Z, Chen M, Dong D, Yu P, Lu D, Wu B. Involvement of REV-ERBα dysregulation and ferroptosis in aristolochic acid I-induced renal injury. Biochem Pharmacol 2021; 193:114807. [PMID: 34673015 DOI: 10.1016/j.bcp.2021.114807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The molecular events underlying aristolochic acid (AA) nephropathy are poorly understood, and specific therapies for treatment of AA nephropathy are still lacking. Here we aimed to investigate a potential role of REV-ERBα and ferroptosis in renal injury induced by aristolochic acid I (AAI), a typical AA. The regulatory effects of REV-ERBα on AAI-induced renal injury were determined using kidney-specific Rev-erbα knockout mice. Ferroptosis was assessed based on measurements of iron, GSH, and GPX4. Targeted antagonism of REV-ERBα to alleviate AAI-induced renal injury and ferroptosis was assessed using the small molecule antagonist SR8278. mRNAs and proteins were quantified by qPCR and Western blotting, respectively. We first showed that REV-ERBα was upregulated and its target BMAL1 was downregulated in the kidney of mice with AAI nephropathy. Upregulation of REV-ERBα protein was confirmed in aristolactam I (ALI, a nephrotoxic metabolite of AAI)-treated mRTECs. We also observed enhanced ferroptosis (known to be regulated by REV-ERBα) in mice with AAI nephropathy and in ALI-treated mRTECs. Kidney-specific knockout of Rev-erbα reduced the sensitivity of mice to AAI-induced ferroptosis and renal injury. Furthermore, knockdown of Rev-erbα by siRNA or SR8278 (a REV-ERBα antagonist) treatment attenuated ALI-induced ferroptosis in mRTECs. Moreover, REV-ERBα antagonism by SR8278 alleviated ferroptosis and renal injury caused by AAI in mice. In conclusion, we identify REV-ERBα as a regulator of AAI-induced renal injury via promoting ferroptosis. Targeting REV-ERBα may represent a promising approach for management of AAI nephropathy.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengping Wu
- School of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Menglin Chen
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Pei Yu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Drăghia LP, Lukinich-Gruia AT, Oprean C, Pavlović NM, Păunescu V, Tatu CA. Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4163-4178. [PMID: 33796971 DOI: 10.1007/s10653-021-00903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Aristolochic acid I (AAI) is a potent nephrotoxic and carcinogenic compound produced by plants of the Aristolochiaceae family and thoroughly investigated as a main culprit in the etiology of Balkan endemic nephropathy (BEN). So far, the AAI exposure was demonstrated to occur through the consumption of Aristolochia clematitis plants as traditional remedies, and through the contamination of the surrounding environment in endemic areas: soil, food and water contamination. Our study investigated for the first time the level of AAI contamination in 141 soil and vegetable samples from two cultivated gardens in non-endemic areas, A. clematitis being present in only one of the gardens. We developed and validated a simple and sensitive ultra-high-performance liquid chromatography-ion trap mass spectrometry method for qualitative and quantitative AAI analysis. The results confirmed the presence of AAI at nanogram levels in soil and vegetable samples collected from the non-endemic garden, where A. clematitis grows. These findings provide additional evidence that the presence of A. clematitis can cause food crops and soil contamination and unveil the pathway through which AAI could move from A. clematitis to other plant species via a common matrix: the soil. Another issue regarding the presence of AAI, in a non-endemic BEN area from Romania, could underlie a more widespread environmental exposure to AAI and explain certain BEN-like cases in areas where BEN has not been initially described.
Collapse
Affiliation(s)
- Lavinia Paula Drăghia
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania.
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Alexandra Teodora Lukinich-Gruia
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Camelia Oprean
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Environmental and Food Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | | | - Virgil Păunescu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Călin Adrian Tatu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| |
Collapse
|
18
|
Chan W, Ham YH. Probing the Hidden Role of Mitochondrial DNA Damage and Dysfunction in the Etiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2021; 34:1903-1909. [PMID: 34255491 DOI: 10.1021/acs.chemrestox.1c00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aristolochic acid nephropathy (AAN) is a unique type of progressive renal interstitial fibrotic disease caused by prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicines or AA-tainted food. Despite decades of research and affecting millions of people around the world, the pathophysiology of AAN remains incompletely understood. In this study, we tested the potential causative role of mitochondrial dysfunction in AAN development. Our findings revealed AA exposure induces an exposure concentration and duration dependent lowering of adenosine triphosphate in both cultured human kidney and liver cells, highlighting an AA exposure effect on mitochondrial energy production in the kidney and liver, which both are highly metabolically active and energy-demanding organs. Analysis with liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method detected high levels of mutagenic 8-oxo-2'-deoxyguanosine and 7-(deoxyadenosine-N6-yl)-aristolactam adduct on mitochondrial DNA isolated from AA-treated cells, unmasking a potentially important causative, but previously unknown role of mitochondrial DNA mutation in the pathophysiology of AAN development.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
19
|
Guo W, Zhang J, Sun Z, Orem WH, Tatu CA, Radulović NS, Milovanović D, Pavlović NM, Chan W. Analysis of Polycyclic Aromatic Hydrocarbons and Phthalate Esters in Soil and Food Grains from the Balkan Peninsula: Implication on DNA Adduct Formation by Aristolochic Acid I and Balkan Endemic Nephropathy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9024-9032. [PMID: 34125507 DOI: 10.1021/acs.est.1c00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial nephropathy affecting residents of rural farming areas in many Balkan countries. Although it is generally believed that BEN is an environmental disease caused by multiple geochemical factors with much attention on aristolochic acids (AAs), its etiology remains controversial. In this study, we tested the hypothesis that environmental contamination and subsequent food contamination by polycyclic aromatic hydrocarbons (PAHs) and phthalate esters are AA toxicity factors and important to BEN development. We identified significantly higher concentrations of phenanthrene, anthracene, diethyl phthalate (DEP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBP) in both maize and wheat grain samples collected from endemic villages than from nonendemic villages. Other PAHs and phthalate esters were also detected at higher concentrations in the soil samples from endemic villages. Subsequent genotoxicity testing of cultured human kidney cells showed an alarming phenomenon that phenanthrene, DEP, BBP, and DBP can interact synergistically with AAs to form elevated levels of AA-DNA adducts, which are associated with both the nephrotoxicity and carcinogenicity of AAs, further increasing their disease risks. This study provides direct evidence that prolonged coexposure to these environmental contaminants via dietary intake may lead to greater toxicity and accelerated development of BEN.
Collapse
Affiliation(s)
- Wanlin Guo
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - Zhihan Sun
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - William H Orem
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Calin A Tatu
- Department of Immunology, University of Medicine and Pharmacy ″Victor Babes″ Timisoara, Pta. E. Murgu No.2, 300041 Timisoara, Romania
| | - Niko S Radulović
- Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | | | | | - Wan Chan
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| |
Collapse
|