1
|
Ashrin A, Anna E, Peyret E, Barbier G, Floreani M, Pointart C, Medus D, Fayet G, Rotureau P, Loret T, Lacroix G. Evaluation of the toxicity of combustion smokes at the air-liquid interface: a comparison between two lung cell models and two exposure methods. Arch Toxicol 2025; 99:1471-1484. [PMID: 39930060 DOI: 10.1007/s00204-025-03964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/15/2025] [Indexed: 04/04/2025]
Abstract
In vitro tests at the air-liquid interface (ALI) represent valuable alternatives to animal experiments to assess the acute toxicity of inhalable compounds. However, these methods still need to be characterized for the toxicity evaluation of complex mixtures such as combustion smokes. In this study, Alveolar type I or Alveolar type 2 cells in co-culture with macrophages were investigated as models for evaluating the acute toxicity of complex mixtures at the air-liquid interface. In that purpose, smokes/obscurants were generated from pyrotechnic devices of known toxic potentials in a 1.3 m3 chamber and the co-cultures were exposed to smokes in static (directly in the chamber) or in dynamic using Vitrocell® modules. After exposure to smokes, static exposure induced higher cell mortality compared to dynamic, likely due to an increased dose. Nevertheless, we could still discriminate between a high-toxic (TA) and a low-toxic (RP) smoke using both exposure methods. Due to important cell mortality in static, oxidative and inflammatory potentials were only evaluated in dynamic mode. Reactive oxygen species were generated in response to smokes in hAELVI-THP-1 but not in A549-THP-1. After exposure to TA, increased levels of IL-1β, IL-6, and TNF-α were released by A549-THP-1 compared to the control while hAELVI-THP-1 released significant amount of IL-8. No inflammation was reported following exposure to RP, likely due to important cell mortality. Although discrepancies exist between the two cell models and exposure modes, these results suggest that both co-cultures and exposure methods remain promising for evaluating the toxicity of inhalable mixtures such as smokes.
Collapse
Affiliation(s)
- A Ashrin
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - E Anna
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - E Peyret
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - G Barbier
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - Maxime Floreani
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - C Pointart
- Etienne LACROIX Group, Route de Gaudies, 09270, Mazeres, France
| | - D Medus
- Etienne LACROIX Group, Route de Gaudies, 09270, Mazeres, France
| | - G Fayet
- Chemical and Electrochemical Reactions Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - P Rotureau
- Department of Strategy, Scientific Policy and Communication, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France
| | - T Loret
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France.
| | - G Lacroix
- Experimental Toxicology and Modelling Unit, French National Institute for Industrial Environment and Risks (Ineris), Parc Alata, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
2
|
Sharma M, Huber E, Arnesdotter E, Behrsing HP, Bettmann A, Brandwein D, Constant S, Date R, Deshpande A, Fabian E, Gupta A, Gutierrez R, Gutleb AC, Hargrove MM, Hollings M, Hutter V, Jarabek AM, Kaluzhny Y, Landsiedel R, Milchak L, Moyer RA, Murray JR, Page K, Patel M, Pearson SN, Petersen EJ, Reinke E, Roldan N, Roper C, Scaglione JB, Settivari RS, Stucki AO, Verstraelen S, Wallace JL, McCullough S, Clippinger AJ. Minimum information for reporting on the TEER (trans-epithelial/endothelial electrical resistance) assay (MIRTA). Arch Toxicol 2025; 99:57-66. [PMID: 39365315 PMCID: PMC11742365 DOI: 10.1007/s00204-024-03879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Standard information reporting helps to ensure that assay conditions and data are consistently reported and to facilitate inter-laboratory comparisons. Here, we present recommendations on minimum information for reporting on the TEER (trans-epithelial/endothelial electrical resistance) assay (MIRTA). The TEER assay is extensively used to evaluate the health of an epithelial/endothelial cell culture model and as an indicator of the potential toxicity of a test substance. This publication is the result of an international collaboration─called the RespTox (Respiratory Toxicity) Collaborative─through which twelve laboratories shared their protocols for assessing the barrier function of respiratory epithelial cells using the TEER assay following exposure to substances. The protocols from each laboratory were reviewed to identify general steps for performing the TEER assay, interlaboratory differences between steps, the rationale for differences, whether these differences impact results or cross-laboratory comparisons between TEER measurements. While the MIRTA recommendations are focused on respiratory epithelial cell systems, these recommendations can be adapted for other cell systems that form barriers. The use of these recommendations will support data transparency and reproducibility, reduce challenges in data interpretation, enable cross-laboratory comparisons, help assess study quality, and facilitate the incorporation of the TEER assay into national and international testing guidance.
Collapse
Affiliation(s)
- Monita Sharma
- PETA Science Consortium International e.V., 70499, Stuttgart, Germany.
| | - Erin Huber
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA
| | - Emma Arnesdotter
- Environmental Research and Innovation (ERIN) Department, Luxemburg Institute of Science and Technology, 5 Avenue Des Hauts-Fourneaux, 4362, Esch-Sur-Alzette, Grand Duchy of Luxembourg
| | | | - Adam Bettmann
- PETA Science Consortium International e.V., 70499, Stuttgart, Germany
- , 3M Company, St. Paul, MN, 55144, USA
| | | | - Samuel Constant
- Epithelix Sàrl, Chemin Des Aulx 18, 1228, Plan-Les-Ouates, Switzerland
| | - Rahul Date
- Jai Research Foundation, N. H. 48, Near Daman-Ganga Bridge, Valvada, Gujarat, 396105, India
| | - Abhay Deshpande
- Jai Research Foundation, N. H. 48, Near Daman-Ganga Bridge, Valvada, Gujarat, 396105, India
| | - Eric Fabian
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Amit Gupta
- Life Science Research, Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Robert Gutierrez
- Materials Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxemburg Institute of Science and Technology, 5 Avenue Des Hauts-Fourneaux, 4362, Esch-Sur-Alzette, Grand Duchy of Luxembourg
| | - Marie M Hargrove
- Syngenta Crop Protection, 410 Swing Rd, Greensboro, NC, 27409, USA
| | - Michael Hollings
- Labcorp Early Development Laboratories Ltd., North Yorkshire, HG3 1PY, UK
| | - Victoria Hutter
- ImmuONE Ltd, Sycamore House, 16 Leyden Road, Stevenage, Herts, SG1 2BP, UK
- Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, College Lane Campus, Hatfield, Herts, AL10 9AB, UK
| | - Annie M Jarabek
- Center for Public Health and Environmental Assessment (CPHEA), Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, Washington, NC, 27711, USA
| | - Yulia Kaluzhny
- MatTek Life Sciences, Ashland, MA, 01721, USA
- InVitroTox Solutions Consulting, Newton, USA
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany
| | - Lawrence Milchak
- , 3M Company, St. Paul, MN, 55144, USA
- Kimberly-Clark Corporation, Irving, USA
| | - Robert A Moyer
- Life Science Research, Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Jessica R Murray
- Center for Public Health and Environmental Assessment (CPHEA), Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, Washington, NC, 27711, USA
| | - Kathryn Page
- The Clorox Company, 4900 Johnson Dr, Pleasanton, CA, 94588, USA
| | - Manish Patel
- Jai Research Foundation, N. H. 48, Near Daman-Ganga Bridge, Valvada, Gujarat, 396105, India
| | - Stephanie N Pearson
- Life Science Research, Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Elijah J Petersen
- Materials Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | | | - Nuria Roldan
- PETA Science Consortium International e.V., 70499, Stuttgart, Germany
| | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, EH3 6AD, UK
| | | | | | - Andreas O Stucki
- PETA Science Consortium International e.V., 70499, Stuttgart, Germany
| | - Sandra Verstraelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Joanne L Wallace
- Charles River Laboratories Edinburgh Ltd, Elphinstone Research Centre, Tranent, East Lothian, EH33 2NE, UK
| | - Shaun McCullough
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA
| | - Amy J Clippinger
- PETA Science Consortium International e.V., 70499, Stuttgart, Germany
| |
Collapse
|
3
|
Buckley A, Guo C, Laycock A, Cui X, Belinga-Desaunay-Nault MF, Valsami-Jones E, Leonard M, Smith R. Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses. Toxicol In Vitro 2024; 100:105889. [PMID: 38971396 DOI: 10.1016/j.tiv.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Experimental systems allowing aerosol exposure (AE) of cell cultures at the air-liquid-interface (ALI) are increasingly being used to assess the toxicity of inhaled contaminants as they are more biomimetic than standard methods using submerged cultures, however, they require detailed characterisation before use. An AE-ALI system combining aerosol generation with a CULTEX® exposure chamber was characterised with respect to particle deposition and the cellular effects of filtered air (typical control) exposures. The effect of system parameters (electrostatic precipitator voltage, air flowrate to cells and insert size) on deposition efficiency and spatial distribution were investigated using ICP-MS and laser ablation ICP-MS, for an aerosol of CeO2 nanoparticles. Deposition varied with conditions, but appropriate choice of operating parameters produced broadly uniform deposition at suitable levels. The impact of air exposure duration on alveolar cells (A549) and primary small airway epithelial cells (SAECs) was explored with respect to LDH release and expression of selected genes. Results indicated that air exposures could have a significant impact on cells (e.g., cytotoxicity and expression of genes, including CXCL1, HMOX1, and SPP1) at relatively short durations (from 10 mins) and that SAECs were more sensitive. These findings indicate that detailed system characterisation is essential to ensure meaningful results.
Collapse
Affiliation(s)
- Alison Buckley
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Chang Guo
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Adam Laycock
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Xianjin Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Nanodot Limited, Loughborough LE11 4NT, UK
| | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| | - Rachel Smith
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate (RCE), UK Health Security Agency (UKHSA), Harwell Campus, Oxfordshire OX11 0RQ, UK; The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health (EEH) at Imperial College London in Partnership with UKHSA, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 OBZ, UK
| |
Collapse
|
4
|
Daniel J, Schönberger Alvarez AA, te Heesen P, Lehrheuer B, Pischinger S, Hollert H, Roß-Nickoll M, Du M. Air-liquid interface exposure of A549 human lung cells to characterize the hazard potential of a gaseous bio-hybrid fuel blend. PLoS One 2024; 19:e0300772. [PMID: 38913629 PMCID: PMC11195957 DOI: 10.1371/journal.pone.0300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Gaseous and semi-volatile organic compounds emitted by the transport sector contribute to air pollution and have adverse effects on human health. To reduce harmful effects to the environment as well as to humans, renewable and sustainable bio-hybrid fuels are explored and investigated in the cluster of excellence "The Fuel Science Center" at RWTH Aachen University. However, data on the effects of bio-hybrid fuels on human health is scarce, leaving a data gap regarding their hazard potential. To help close this data gap, this study investigates potential toxic effects of a Ketone-Ester-Alcohol-Alkane (KEAA) fuel blend on A549 human lung cells. Experiments were performed using a commercially available air-liquid interface exposure system which was optimized beforehand. Then, cells were exposed at the air-liquid interface to 50-2000 ppm C3.7 of gaseous KEAA for 1 h. After a 24 h recovery period in the incubator, cells treated with 500 ppm C3.7 KEAA showed significant lower metabolic activity and cells treated with 50, 250, 500 and 1000 ppm C3.7 KEAA showed significant higher cytotoxicity compared to controls. Our data support the international occupational exposure limits of the single KEAA constituents. This finding applies only to the exposure scenario tested in this study and is difficult to extrapolate to the complex in vivo situation.
Collapse
Affiliation(s)
- Jonas Daniel
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | - Pia te Heesen
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Bastian Lehrheuer
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Stefan Pischinger
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Faculty Biological Sciences (FB15), Goethe University Frankfurt, Frankfurt, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Miaomiao Du
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Muthumalage T, Noel A, Thanavala Y, Alcheva A, Rahman I. Challenges in current inhalable tobacco toxicity assessment models: A narrative review. Tob Induc Dis 2024; 22:TID-22-102. [PMID: 38860150 PMCID: PMC11163881 DOI: 10.18332/tid/188197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in vivo experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products. In this review, we discuss current state-of-the-art in vitro and in vivo models and their challenges, as well as insights into risk estimation of novel products and recommendations for toxicological parameters for reporting, allowing comparability of the research studies between laboratories, resulting in usable data for regulation of these products before approval by regulatory authorities.
Collapse
Affiliation(s)
| | - Alexandra Noel
- School of Veterinary Medicine Louisiana State University, Baton Rouge, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | - Aleksandra Alcheva
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
6
|
Ciura K, Moschini E, Stępnik M, Serchi T, Gutleb A, Jarzyńska K, Jagiello K, Puzyn T. Toward Nano-Specific In Silico NAMs: How to Adjust Nano-QSAR to the Recent Advancements of Nanotoxicology? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305581. [PMID: 37775952 DOI: 10.1002/smll.202305581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Indexed: 10/01/2023]
Abstract
The rapid development of engineered nanomaterials (ENMs) causes humans to become increasingly exposed to them. Therefore, a better understanding of the health impact of ENMs is highly demanded. Considering the 3Rs (Replacement, Reduction, and Refinement) principle, in vitro and computational methods are excellent alternatives for testing on animals. Among computational methods, nano-quantitative structure-activity relationship (nano-QSAR), which links the physicochemical and structural properties of EMNs with biological activities, is one of the leading method. The nature of toxicological experiments has evolved over the last decades; currently, one experiment can provide thousands of measurements of the organism's functioning at the molecular level. At the same time, the capacity of the in vitro systems to mimic the human organism is also improving significantly. Hence, the authors would like to discuss whether the nano-QSAR approach follows modern toxicological studies and takes full advantage of the opportunities offered by modern toxicological platforms. Challenges and possibilities for improving data integration are underlined narratively, including the need for a consensus built between the in vitro and the QSAR domains.
Collapse
Affiliation(s)
- Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
- QSAR Lab Ltd., Trzy Lipy 3 St., Gdańsk, 80-172, Poland
| | - Elisa Moschini
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, des Hauts-Fourneaux, Esch/Alzette, 4362, Luxembourg
| | | | - Tommaso Serchi
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, des Hauts-Fourneaux, Esch/Alzette, 4362, Luxembourg
| | - Arno Gutleb
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, des Hauts-Fourneaux, Esch/Alzette, 4362, Luxembourg
| | - Kamila Jarzyńska
- Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Karolina Jagiello
- QSAR Lab Ltd., Trzy Lipy 3 St., Gdańsk, 80-172, Poland
- Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd., Trzy Lipy 3 St., Gdańsk, 80-172, Poland
- Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| |
Collapse
|
7
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
9
|
Petersen EJ, Barrios AC, Henry TB, Johnson ME, Koelmans AA, Montoro Bustos AR, Matheson J, Roesslein M, Zhao J, Xing B. Potential Artifacts and Control Experiments in Toxicity Tests of Nanoplastic and Microplastic Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15192-15206. [PMID: 36240263 PMCID: PMC10476161 DOI: 10.1021/acs.est.2c04929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
To fully understand the potential ecological and human health risks from nanoplastics and microplastics (NMPs) in the environment, it is critical to make accurate measurements. Similar to past research on the toxicology of engineered nanomaterials, a broad range of measurement artifacts and biases are possible when testing their potential toxicity. For example, antimicrobials and surfactants may be present in commercially available NMP dispersions, and these compounds may account for toxicity observed instead of being caused by exposure to the NMP particles. Therefore, control measurements are needed to assess potential artifacts, and revisions to the protocol may be needed to eliminate or reduce the artifacts. In this paper, we comprehensively review and suggest a next generation of control experiments to identify measurement artifacts and biases that can occur while performing NMP toxicity experiments. This review covers the broad range of potential NMP toxicological experiments, such as in vitro studies with a single cell type or complex 3-D tissue constructs, in vivo mammalian studies, and ecotoxicity experiments testing pelagic, sediment, and soil organisms. Incorporation of these control experiments can reduce the likelihood of false positive and false negative results and more accurately elucidate the potential ecological and human health risks of NMPs.
Collapse
Affiliation(s)
- Elijah. J. Petersen
- Material
Measurement Laboratory, National Institute
of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Ana C. Barrios
- Material
Measurement Laboratory, National Institute
of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Theodore B. Henry
- School
of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
- Department
of Forestry, Wildlife and Fisheries, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Monique E. Johnson
- Material
Measurement Laboratory, National Institute
of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Albert A. Koelmans
- Aquatic
Ecology and Water Quality Management group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Antonio R. Montoro Bustos
- Material
Measurement Laboratory, National Institute
of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Joanna Matheson
- US
Consumer Product Safety Commission, 5 Research Place, Rockville, Maryland 20850, United States
| | - Matthias Roesslein
- Empa, Swiss
Federal Laboratories for Material Testing and Research, Particles-Biology
Interactions Laboratory, CH-9014 St. Gallen, Switzerland
| | - Jian Zhao
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, and Frontiers Science
Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
van der Zalm AJ, Barroso J, Browne P, Casey W, Gordon J, Henry TR, Kleinstreuer NC, Lowit AB, Perron M, Clippinger AJ. A framework for establishing scientific confidence in new approach methodologies. Arch Toxicol 2022; 96:2865-2879. [PMID: 35987941 PMCID: PMC9525335 DOI: 10.1007/s00204-022-03365-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 12/28/2022]
Abstract
Robust and efficient processes are needed to establish scientific confidence in new approach methodologies (NAMs) if they are to be considered for regulatory applications. NAMs need to be fit for purpose, reliable and, for the assessment of human health effects, provide information relevant to human biology. They must also be independently reviewed and transparently communicated. Ideally, NAM developers should communicate with stakeholders such as regulators and industry to identify the question(s), and specified purpose that the NAM is intended to address, and the context in which it will be used. Assessment of the biological relevance of the NAM should focus on its alignment with human biology, mechanistic understanding, and ability to provide information that leads to health protective decisions, rather than solely comparing NAM-based chemical testing results with those from traditional animal test methods. However, when NAM results are compared to historical animal test results, the variability observed within animal test method results should be used to inform performance benchmarks. Building on previous efforts, this paper proposes a framework comprising five essential elements to establish scientific confidence in NAMs for regulatory use: fitness for purpose, human biological relevance, technical characterization, data integrity and transparency, and independent review. Universal uptake of this framework would facilitate the timely development and use of NAMs by the international community. While this paper focuses on NAMs for assessing human health effects of pesticides and industrial chemicals, many of the suggested elements are expected to apply to other types of chemicals and to ecotoxicological effect assessments.
Collapse
Affiliation(s)
| | - João Barroso
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Patience Browne
- Organisation for Economic Co-Operation and Development, Hazard Assessment and Pesticides Programmes, Environmental Directorate, Paris, France
| | - Warren Casey
- National Institutes of Health, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John Gordon
- U.S. Consumer Product Safety Commission, Directorate for Health Sciences, Rockville, MD, USA
| | - Tala R Henry
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Anna B Lowit
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | | |
Collapse
|
11
|
Petersen EJ, Uhl R, Toman B, Elliott JT, Strickland J, Truax J, Gordon J. Development of a 96-Well Electrophilic Allergen Screening Assay for Skin Sensitization Using a Measurement Science Approach. TOXICS 2022; 10:257. [PMID: 35622670 PMCID: PMC9147637 DOI: 10.3390/toxics10050257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The Electrophilic Allergen Screening Assay (EASA) has emerged as a promising in chemico method to detect the first key event in the adverse outcome pathway (AOP) for skin sensitization. This assay functions by assessing the depletion of one of two probe molecules (4-nitrobenzenethiol (NBT) and pyridoxylamine (PDA)) in the presence of a test compound (TC). The initial development of EASA utilized a cuvette format resulting in multiple measurement challenges such as low throughput and the inability to include adequate control measurements. In this study, we describe the redesign of EASA into a 96-well plate format that incorporates in-process control measurements to quantify key sources of variability each time the assay is run. The data from the analysis of 67 TCs using the 96-well format had 77% concordance with animal data from the local lymph node assay (LLNA), a result consistent with that for the direct peptide reactivity assay (DPRA), an OECD test guideline (442C) protein binding assay. Overall, the measurement science approach described here provides steps during assay development that can be taken to increase confidence of in chemico assays by attempting to fully characterize the sources of variability and potential biases and incorporate in-process control measurements into the assay.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Richard Uhl
- Division of Laboratory Sciences, Chemistry, US Consumer Product Safety Commission (CPSC), 5 Research Place, Rockville, MD 20850, USA;
| | - Blaza Toman
- Statistical Engineering Division, Information Technology Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - John T. Elliott
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Judy Strickland
- Inotiv-RTP., 601 Keystone Park Drive, Suite 800, Morrisville, NC 27560, USA; (J.S.); (J.T.)
| | - James Truax
- Inotiv-RTP., 601 Keystone Park Drive, Suite 800, Morrisville, NC 27560, USA; (J.S.); (J.T.)
| | - John Gordon
- Division of Toxicology and Risk Assessment, US Consumer Product Safety Commission (CPSC), 5 Research Place, Rockville, MD 20850, USA;
| |
Collapse
|
12
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
13
|
Luettich K, Sharma M, Yepiskoposyan H, Breheny D, Lowe FJ. An Adverse Outcome Pathway for Decreased Lung Function Focusing on Mechanisms of Impaired Mucociliary Clearance Following Inhalation Exposure. FRONTIERS IN TOXICOLOGY 2022; 3:750254. [PMID: 35295103 PMCID: PMC8915806 DOI: 10.3389/ftox.2021.750254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
Adverse outcome pathways (AOPs) help to organize available mechanistic information related to an adverse outcome into key events (KEs) spanning all organizational levels of a biological system(s). AOPs, therefore, aid in the biological understanding of a particular pathogenesis and also help with linking exposures to eventual toxic effects. In the regulatory context, knowledge of disease mechanisms can help design testing strategies using in vitro methods that can measure or predict KEs relevant to the biological effect of interest. The AOP described here evaluates the major processes known to be involved in regulating efficient mucociliary clearance (MCC) following exposures causing oxidative stress. MCC is a key aspect of the innate immune defense against airborne pathogens and inhaled chemicals and is governed by the concerted action of its functional components, the cilia and airway surface liquid (ASL). The AOP network described here consists of sequences of KEs that culminate in the modulation of ciliary beat frequency and ASL height as well as mucus viscosity and hence, impairment of MCC, which in turn leads to decreased lung function.
Collapse
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Monita Sharma
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Damien Breheny
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Frazer J Lowe
- Broughton Nicotine Services, Earby, Lancashire, United Kingdom
| |
Collapse
|
14
|
Automation and Standardization-A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030985. [PMID: 35164246 PMCID: PMC8838799 DOI: 10.3390/molecules27030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by automation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been developed, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air-liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data.
Collapse
|