1
|
Freeman B, Xing C. An LC-MS/MS method for the quantification of tobacco-specific carcinogen protein adducts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646861. [PMID: 40236120 PMCID: PMC11996467 DOI: 10.1101/2025.04.02.646861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
4-(Methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its major metabolite 4-(methylnitrosamino)-l-(3-pyri-dine)-l-butanol (NNAL) are tobacco-specific lung carcinogens. Methods have been developed to quantify NNK- and NNAL-specific DNA adducts in pre-clinical samples but are less feasible to translation due to limited access to target tissues for sufficient DNA. NNAL-specific DNA or protein adducts have never been detected in clinical samples, which are critical to support the physiological relevance of NNAL bioactivation and carcinogenesis. We reported a sensitive and specific LC-MS/MS method to quantify hydrolyzed NNAL adduct, 1-(3-pyridinyl)-1,4-butanediol (PBD). The method was applicable to variety of biological samples, to assess tobacco exposure and estimate NNAL bioactivation.
Collapse
|
2
|
Millam E, Deligkaris C, Wade EO. 5-(Pyridin-3-yl)-3,4-dihydro-2 H-furan-1-ium (NNKFI): a computational study of its physico-chemical properties. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230975. [PMID: 39263456 PMCID: PMC11387976 DOI: 10.1098/rsos.230975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/01/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Recent work on the diazonium ion metabolite of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKDI) suggests that 5-(pyridin-3-yl)-3,4-dihydro-2H-furan-1-ium (NNKFI) may form from NNKDI via an intramolecular reaction. NNKDI is an important carcinogen whose role as an alkylating agent has received significant attention. While there is some experimental evidence supporting NNKFI's production in vitro, it has not yet been directly observed. Little is known about NNKFI's structure and reactivity. We report the first in silico examination of this ion. Our study utilized Kohn-Sham density functional theory (B3LYP/6-311G**) and coupled cluster theory (CCSD/6-31G*) to produce energy-optimized structures, vibrational normal modes and molecular orbitals for NNKFI. To gain insight into the chemical properties of this species, we calculated electrostatic potential surfaces, natural population analysis charges and local Fukui indices. We report data and results for NNKFI's cis and trans conformers. Our work confirms C5 as the preferred site for nucleophilic attack in NNKFI. Stretching motions and predicted bond lengths near O1 are consistent with a somewhat weakened carbonyl structure in this ion. Partial charges, electrostatic potential surfaces and local Fukui indices reveal delocalization of cationic charge on the furanium moiety and notable carbocation character at C5.
Collapse
Affiliation(s)
- Evan Millam
- Department of Chemistry and Biochemistry, University of Southern Indiana, Evansville, IN 47712, USA
| | - Christos Deligkaris
- Department of Geology and Physics, University of Southern Indiana, Evansville, IN 47712, USA
| | - Edmir O Wade
- Department of Chemistry and Biochemistry, University of Southern Indiana, Evansville, IN 47712, USA
| |
Collapse
|
3
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Guo J, Ikuemonisan J, Hatsukami DK, Hecht SS. Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry Analysis of Apurinic/Apyrimidinic Sites in Oral Cell DNA of Cigarette Smokers, e-Cigarette Users, and Nonsmokers. Chem Res Toxicol 2021; 34:2540-2548. [PMID: 34846846 DOI: 10.1021/acs.chemrestox.1c00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cigarette smoking is an established risk factor for oral cancer. The health effects of e-cigarettes are still under investigation but may disturb oral cavity homeostasis and cause lung and cardiovascular diseases. Carcinogens and toxicants in tobacco products and e-cigarettes may damage DNA, resulting in the formation of apurinic/apyrimidinic (AP) sites and initiation of the carcinogenic process. In this study, we optimized a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method to analyze AP sites in buccal cell DNA of 35 nonsmokers, 30 smokers, and 30 e-cigarette users. AP sites in e-cigarette users (median 3.3 per 107 nts) were significantly lower than in smokers (median 5.7 per 107 nts) and nonsmokers (median 6.0 per 107 nts). AP sites in smokers were not significantly different from nonsmokers (p > 0.05). The e-cigarette vaporizing solvents propylene glycol and glycerin were tested and did not protect against AP site formation in in vitro control and carcinogen exposed rat liver homogenates. However, propylene glycol may inhibit bacteria in oral cells, resulting in reduced inflammation and related effects, and reduced AP site levels in e-cigarette user DNA. This is the first study to examine AP site formation in e-cigarette users and to evaluate AP sites in human oral cell DNA.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Joshua Ikuemonisan
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Peterson LA, Balbo S, Fujioka N, Hatsukami DK, Hecht SS, Murphy SE, Stepanov I, Tretyakova NY, Turesky RJ, Villalta PW. Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiol Biomarkers Prev 2020; 29:1904-1919. [PMID: 32051197 PMCID: PMC7423750 DOI: 10.1158/1055-9965.epi-19-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
Many human cancers are caused by environmental and lifestyle factors. Biomarkers of exposure and risk developed by our team have provided critical data on internal exposure to toxic and genotoxic chemicals and their connection to cancer in humans. This review highlights our research using biomarkers to identify key factors influencing cancer risk as well as their application to assess the effectiveness of exposure intervention and chemoprevention protocols. The use of these biomarkers to understand individual susceptibility to the harmful effects of tobacco products is a powerful example of the value of this type of research and has provided key data confirming the link between tobacco smoke exposure and cancer risk. Furthermore, this information has led to policy changes that have reduced tobacco use and consequently, the tobacco-related cancer burden. Recent technological advances in mass spectrometry led to the ability to detect DNA damage in human tissues as well as the development of adductomic approaches. These new methods allowed for the detection of DNA adducts in tissues from patients with cancer, providing key evidence that exposure to carcinogens leads to DNA damage in the target tissue. These advances will provide valuable insights into the etiologic causes of cancer that are not tobacco-related.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalia Y Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Guo J, Chen H, Upadhyaya P, Zhao Y, Turesky RJ, Hecht SS. Mass Spectrometric Quantitation of Apurinic/Apyrimidinic Sites in Tissue DNA of Rats Exposed to Tobacco-Specific Nitrosamines and in Lung and Leukocyte DNA of Cigarette Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:2475-2486. [PMID: 32833447 PMCID: PMC7574376 DOI: 10.1021/acs.chemrestox.0c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) results in formation of reactive electrophiles that modify DNA to produce a variety of products including methyl, 4-(3-pyridyl)-4-oxobutyl (POB)-, and 4-(3-pyridyl)-4-hydroxybutyl adducts. Among these are adducts such as 7-POB-deoxyguanosine (N7POBdG) which can lead to apurinic/apyrimidinic (AP) sites by facile hydrolysis of the base-deoxyribonucleoside bond. In this study, we used a recently developed highly sensitive mass spectrometric method to quantitate AP sites by derivatization with O-(pyridin-3-yl-methyl)hydroxylamine (PMOA) (detection limit, 2 AP sites per 108 nucleotides). AP sites were quantified in DNA isolated from tissues of rats treated with NNN and NNK and from human lung tissue and leukocytes of cigarette smokers and nonsmokers. Rats treated with 5 or 21 mg/kg bw NNK for 4 days by s.c. injection had 2-6 and 2-17 times more AP sites than controls in liver and lung DNA (p < 0.05). Increases in AP sites were also found in liver DNA of rats exposed for 10 and 30 weeks (p < 0.05) but not for 50 and 70 weeks to 5 ppm of NNK in their drinking water. Levels of N7POBG were significantly correlated with AP sites in rats treated with NNK. In rats treated with 14 ppm (S)-NNN in their drinking water for 10 weeks, increased AP site formation compared to controls was observed in oral and nasal respiratory mucosa DNA (p < 0.05). No significant increase in AP sites was found in human lung and leukocyte DNA of cigarette smokers compared to nonsmokers, although AP sites in leukocyte DNA were significantly correlated with urinary levels of the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). This is the first study to use mass spectrometry based methods to examine AP site formation by carcinogenic tobacco-specific nitrosamines in laboratory animals and to evaluate AP sites in DNA of smokers and nonsmokers.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haoqing Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Vargas Medina DA, Maciel EVS, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
9
|
Sharma AK, DeBusk WT, Stepanov I, Gomez A, Khariwala SS. Oral Microbiome Profiling in Smokers with and without Head and Neck Cancer Reveals Variations Between Health and Disease. Cancer Prev Res (Phila) 2020; 13:463-474. [PMID: 32071121 DOI: 10.1158/1940-6207.capr-19-0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
While smoking is inextricably linked to oral/head and neck cancer (HNSCC), only a small fraction of smokers develop HNSCC. Thus, we have sought to identify other factors, which may influence the development of HNSCC in smokers including microbiology. To determine microbial associations with HNSCC among tobacco users, we characterized oral microbiome composition in smokers with and without HNSCC. 16S rRNA MiSeq sequencing was used to examine the oral mucosa microbiome of 27 smokers with (cases) and 24 without HNSCC (controls). In addition, we correlated previously reported levels of DNA damage with the microbiome data. Smokers with HNSCC showed lower microbiome richness compared with controls (q = 0.012). Beta-diversity analyses, assessed as UniFrac (weighted and unweighted) and Bray-Curtis distances, showed significant differences in oral mucosal microbiome signatures between cases and controls (r 2 = 0.03; P = 0.03) and higher interindividual microbiome heterogeneity in the former (q ≤ 0.01). Higher relative abundance of Stenotrophomonas and Comamonadaceae and predicted bacterial pathways mainly involved in xenobiotic and amine degradation were found in cases compared with controls. The latter, in contrast, exhibited higher abundance of common oral commensals and predicted sugar degradation pathways. Finally, levels of DNA damage in the oral cavity were correlated with the microbiome profiles above. Oral microbiome traits differ in smokers with and without HNSCC, potentially informing the risk of eventual HNSCC and shedding light into possible microbially mediated mechanisms of disease. These findings present data that may be useful in screening efforts for HNSCC among smokers who are unable to quit.
Collapse
Affiliation(s)
- Ashok Kumar Sharma
- Department of Animal Science and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, Minnesota
| | - William T DeBusk
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Andres Gomez
- Department of Animal Science and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, Minnesota.
| | - Samir S Khariwala
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
10
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
11
|
Guttenplan JB, Chen KM, Sun YW, Shalaby NAE, Kosinska W, Desai D, Gowda K, Amin S, El-Bayoumy K. Effects of the Tobacco Carcinogens N'-Nitrosonornicotine and Dibenzo[ a, l]pyrene Individually and in Combination on DNA Damage in Human Oral Leukoplakia and on Mutagenicity and Mutation Profiles in lacI Mouse Tongue. Chem Res Toxicol 2019; 32:1893-1899. [PMID: 31433626 DOI: 10.1021/acs.chemrestox.9b00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In previous studies, we showed that the topical application of dibenzo[a,l]pyrene (DB[a,l]P), also known as dibenzo[def,p]chrysene, to the oral cavity of mice induced oral squamous cell carcinoma. We also showed that dA and dG adducts likely account for most of the mutagenic activity of DB[a,l]P in the oral tissues in vivo. Here we report for the first time that the oral treatment of lacI mice with a combination of tobacco smoke carcinogens, DB[a,l]P and N'-nitrosonornicotine (NNN), induces a higher fraction of mutations than expected from a simple sum of their induced individual mutation fractions, and a change in the mutational profile compared with that expected from the sum of the individual agents. The mutational profile of the combination of agents resembled that of the P53 gene in human head and neck cancers more than that of either of the individual agents, in that the percentage of the major class of mutations (GC > AT transitions) is similar to that seen in the P53 gene. A preliminary study was performed to understand the origin of the unexpected mutagenesis observations by measuring specific DNA adducts produced by both NNN and DB[a,l]P in human oral leukoplakia cells. No significant differences in the expected and observed major adduct levels from either agent were observed between individual or combined treatments, suggesting that additional adducts are important in mutagenesis induced by the mixture. Taken together, the above observations support the use of this animal model not only to investigate tobacco smoke-induced oral cancer but also to study chemoprevention.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States.,Department of Environmental Medicine, School of Medicine , New York University , New York , New York 10019 , United States
| | | | | | - Nora A E Shalaby
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States
| | - Wieslawa Kosinska
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States
| | | | | | | | | |
Collapse
|
12
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Singhavi H, Ahluwalia JS, Stepanov I, Gupta PC, Gota V, Chaturvedi P, Khariwala SS. Tobacco carcinogen research to aid understanding of cancer risk and influence policy. Laryngoscope Investig Otolaryngol 2018; 3:372-376. [PMID: 30450409 PMCID: PMC6209619 DOI: 10.1002/lio2.204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Education regarding the health effects associated with tobacco use has made important progress worldwide over the last few decades. Still, tobacco remains a significant cause of cancer and other diseases. As a result, significant worldwide morbidity and mortality is still attributable to tobacco use in modern times. Research into tobacco products, the carcinogens they contain, and how users metabolize them is an important benefit to the advancement of research aimed at reducing harm associated with tobacco use. This review summarizes the use of this type of research to study tobacco users’ risk of developing cancer, especially head and neck cancer. In addition, we discuss the use of tobacco research to provide support for increasing levels of federal regulation of tobacco products. Level of Evidence 4.
Collapse
Affiliation(s)
| | - Jasjit S Ahluwalia
- The School of Public Health Brown University Providence Rhode Island U.S.A
| | | | - Prakash C Gupta
- Healis-Sekhsaria Institute for Public Health Minneapolis Minnesota U.S.A
| | | | | | - Samir S Khariwala
- Department of Otolaryngology-Head and Neck Surgery University of Minnesota Minneapolis Minnesota U.S.A
| |
Collapse
|
14
|
Affiliation(s)
- Yang Yu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yuxiang Cui
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
15
|
Abstract
Head and neck cancer (head and neck squamous cell carcinoma (HNSCC)) is a devastating disease. Patients require intensive treatment that is often disfiguring and debilitating. Those who survive are often left with poor speech articulation, difficulties in chewing and swallowing, and cosmetic disfigurement, as well as loss of taste. Furthermore, given that HNSCC survivors are frequently disabled and unable to return to work, the economic and societal costs associated with HNSCC are massive. HNSCC is one of many cancers that are strongly associated with tobacco use. The risk for HNSCC in smokers is approximately ten times higher than that of never smokers, and 70-80% of new HNSCC diagnoses are associated with tobacco and alcohol use. Tobacco products have been used for centuries; however, it is just within the last 60-70 years that we have developed an understanding of their damaging effects. This relatively recent understanding has created a pathway towards educational and regulatory efforts aimed at reducing tobacco use. Understanding the carcinogenic components of tobacco products and how they lead to HNSCC is critical to regulatory and harm reduction measures. To date, nitrosamines and other carcinogenic agents present in tobacco products have been associated with cancer development. The disruption of DNA structure through DNA adduct formation is felt to be a common mutagenic pathway of many carcinogens. Intense work pertaining to tobacco product constituents, tobacco use, and tobacco regulation has resulted in decreased use in some parts of the world. Still, much work remains as tobacco continues to impart significant harm and contribute to HNSCC development worldwide.
Collapse
Affiliation(s)
- Ashok R Jethwa
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, MMC 396, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Samir S Khariwala
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, MMC 396, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Khariwala SS, Ma B, Ruszczak C, Carmella SG, Lindgren B, Hatsukami DK, Hecht SS, Stepanov I. High Level of Tobacco Carcinogen-Derived DNA Damage in Oral Cells Is an Independent Predictor of Oral/Head and Neck Cancer Risk in Smokers. Cancer Prev Res (Phila) 2017; 10:507-513. [PMID: 28679497 PMCID: PMC5712492 DOI: 10.1158/1940-6207.capr-17-0140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/06/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
Exposure to tobacco-specific nitrosamines (TSNA) and polycyclic aromatic hydrocarbons (PAH) is recognized to play an important role in the development of oral/head and neck squamous cell cancer (HNSCC). We recently reported higher levels of TSNA-associated DNA adducts in the oral cells of smokers with HNSCC as compared with cancer-free smokers. In this study, we further investigated the tobacco constituent exposures in the same smokers to better understand the potential causes for the elevated oral DNA damage in smokers with HNSCC. Subjects included cigarette smokers with HNSCC (cases, n = 30) and cancer-free smokers (controls, n = 35). At recruitment, tobacco/alcohol use questionnaires were completed, and urine and oral cell samples were obtained. Analysis of urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and N'-Nitrosonornicotine (NNN; TSNA biomarkers), 1-hydroxypyrene (1-HOP, a PAH), cotinine, 3'-hydroxycotinine, and the nicotine metabolite ratio (NMR) were performed. Cases and controls differed in mean age, male preponderance, and frequency of alcohol consumption (but not total alcoholic drinks). Univariate analysis revealed similar levels of NNN, 1-HOP, and cotinine between groups but, as reported previously, significantly higher DNA adduct formation in the cases. Multiple regression adjusting for potential confounders showed persistent significant difference in DNA adduct levels between cases and controls [ratio of geometric means, 20.0; 95% CI, 2.7-148.6). Our cohort of smokers with HNSCC demonstrates higher levels of TSNA-derived oral DNA damage in the setting of similar exposure to nicotine and tobacco carcinogens. Among smokers, DNA adduct formation may act as a predictor of eventual development of HNSCC that is independent of carcinogen exposure indicators. Cancer Prev Res; 10(9); 507-13. ©2017 AACRSee related editorial by Johnson and Bauman, p. 489.
Collapse
Affiliation(s)
- Samir S Khariwala
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Chris Ruszczak
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Bruce Lindgren
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Environmental Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
Johnson DE, Bauman JE. When the Damage Is Done: Selecting Patients for Head and Neck Cancer Chemoprevention Trials. Cancer Prev Res (Phila) 2017; 10:489-490. [PMID: 28821544 PMCID: PMC5915371 DOI: 10.1158/1940-6207.capr-17-0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Daniel E Johnson
- Department of Otolaryngology, University of California San Francisco, San Francisco, California
| | - Julie E Bauman
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arizona, Tucson, Arizona.
| |
Collapse
|
18
|
Michel AK, Zarth AT, Upadhyaya P, Hecht SS. Identification of 4-(3-Pyridyl)-4-oxobutyl-2'-deoxycytidine Adducts Formed in the Reaction of DNA with 4-(Acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone: A Chemically Activated Form of Tobacco-Specific Carcinogens. ACS OMEGA 2017; 2:1180-1190. [PMID: 28393135 PMCID: PMC5377278 DOI: 10.1021/acsomega.7b00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) and N'-nitrosonornicotine (NNN, 2) results in the formation of 4-(3-pyridyl)-4-oxobutyl (POB)-DNA adducts, several of which have been previously identified both in vitro and in tissues of laboratory animals treated with NNK or NNN. However, 2'-deoxycytidine adducts formed in this process have been incompletely examined in previous studies. Therefore, in this study we prepared characterized standards for the identification of previously unknown 2'-deoxycytidine and 2'-deoxyuridine adducts that could be produced in these reactions. The formation of these products in reactions of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3), a model 4-(3-pyridyl)-4-oxobutylating agent, with DNA was investigated. The major 2'-deoxycytidine adduct, identified as its stable cytosine analogue O2-[4-(3-pyridyl)-4-oxobut-1-yl]-cytosine (12), was O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (13), whereas lesser amounts of 3-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (14) and N4-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (15) were also observed. The potential conversion of relatively unstable 2'-deoxycytidine adducts to stable 2'-deoxyuridine adducts by treatment of the adducted DNA with bisulfite was also investigated, but the harsh conditions associated with this approach prevented quantitation. The results of this study provide new validated standards for the study of 4-(3-pyridyl)-4-oxobutylation of DNA, a critical reaction in the carcinogenesis by 1 and 2, and demonstrate the presence of previously unidentified 2'-deoxycytidine adducts in this DNA.
Collapse
Affiliation(s)
- Anna K. Michel
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic
Cancer Center, University of Minnesota, 2231 6th Street SE, Room 2-148 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Peterson LA. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK. Chem Res Toxicol 2017; 30:420-433. [PMID: 28092943 PMCID: PMC5473167 DOI: 10.1021/acs.chemrestox.6b00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|