1
|
Sun Z, Shao C, Hao S, Zhang J, Ren W, Wang B, Xiao L, Lei H, Liu TX, Yuan Z, Sun RC. Lignin-Based Photothermal Materials: Bridging Sustainability and High-Efficiency Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501259. [PMID: 40279516 DOI: 10.1002/advs.202501259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Indexed: 04/27/2025]
Abstract
Photothermal materials can effectively absorb light and convert it into heat, providing sustainable solutions to mitigate environmental pollution and energy shortages. Compared to traditional photothermal materials, lignin has garnered significant attention due to its wide availability, low cost, biocompatibility, renewability, and sustainability. Consequently, lignin-based materials are considered ideal candidates for the development of eco-friendly photothermal systems, aligning well with the increasing demand for sustainable energy solutions. This review discusses the potential of lignin-based photothermal materials, highlighting their unique molecular structure and the photothermal properties imparted by their aromatic rings, which facilitate effective energy conversion through non-radiative vibrational relaxation. Discussed the latest advances in the applications of lignin photothermal materials in photothermal drive, solar desalination, and biomedicine. Despite the significant potential of lignin, challenges such as structural variability, long-term stability, and scalability remain critical. This paper integrates recent progress and proposes strategies to optimize the photothermal performance of lignin-based materials, while emphasizing important directions for sustainable development, thereby providing a roadmap to fully realize the potential of lignin in next-generation green technologies.
Collapse
Affiliation(s)
- Zhiwen Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sanwei Hao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jifei Zhang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Wenfeng Ren
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Bing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Lingping Xiao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Hanhui Lei
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Terence X Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
2
|
Kaur N, Singh M. Self-assembled monolayer functionalized metal oxides: a path toward highly selective and low-power consuming gas sensors. NANOSCALE 2025; 17:9686-9704. [PMID: 40171597 DOI: 10.1039/d4nr05307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The emerging functionalization strategy of self-assembled monolayers (SAMs) offers transformative potential for enhancing the performance of nanostructured metal oxides (MOXs)-based gas sensors. Being a 2D-molecular arrangement with a unique structure, polar SAMs tend to modulate the surface charge density and offer distinct surface-specific interactions that lead to enhancement of the sensor performance. This review is focused on highlighting their potential and explores the advancements in SAM-functionalized MOXs, with a particular emphasis on 1D nanostructures such as nanowires and nanotubes. By tailoring the surface chemistry through SAM functionalization, these sensors achieve remarkable improvements in sensitivity, selectivity, and operational temperature, overcoming the persistent challenges of MOX sensors. In addition to the fundamental aspect of SAMs, recent progress in tuning the sensing performance of different 1D-nanostructured MOXs, including SnO2, ZnO, WO3, and NiO via SAM functionalization, is systematically reviewed. This review also discusses in detail the underlying sensing mechanism and key findings that underscore the ability of SAMs to offer selective interactions with gas analytes, helping to improve their response dynamics and enable low-temperature operation. Finally, the major challenges are addressed, providing a roadmap for future research. This review presents SAMs as a versatile platform for nanoscale functionalization, advancing the design of energy-efficient and high-performance gas sensors for environmental monitoring and healthcare.
Collapse
Affiliation(s)
- Navpreet Kaur
- SENSOR Laboratory, Department of Information Engineering (DII), University of Brescia, Via D. Valotti 9, Brescia 25133, Italy.
| | - Mandeep Singh
- IMEM-CNR Institute, Via alla Cascata 56/C, Povo-38123-Trento, Italy.
| |
Collapse
|
3
|
Do HTB, Ngirmang GK, Wu L, Bosman M. Nonlinear Optical Resonances from Ballistic Electron Funnelling. ACS NANO 2025; 19:14150-14160. [PMID: 40162829 DOI: 10.1021/acsnano.5c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
We introduce a new mechanism for second-harmonic generation through geometrically rectifying─funnelling─ballistic electrons in THz optical resonators. Our resonant rectifiers inherently act as second-order harmonic generators, rectifying currents without the presence of a potential barrier. Particle-in-cell simulations reveal that femtosecond electron-surface scattering plays a critical role in this process. We differentiate electron funnelling from nonlocal plasmonic drag and bulk Dirac anharmonicity, showing that funnelling can reduce the required field intensity for second-harmonic generation by 3-4 orders of magnitude. We provide design guidelines for generating funnelling-induced second-harmonic generation, including resonance mode matching and materials selection. This approach offers a practical pathway for low-field, geometrically tunable THz upconversion and rectification, operating from sub-10 THz to multiple tens of THz in graphene.
Collapse
Affiliation(s)
- Hue T B Do
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- NUS Graduate School─Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Gregory K Ngirmang
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Lin Wu
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), Singapore 138632, Singapore
| | - Michel Bosman
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| |
Collapse
|
4
|
Huang T, Han J, Li Z, Hong Y, Gu X, Wu Y, Zhang Y, Liu S. Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO 2 Reduction when Using Au Nanorods in a MOF. Angew Chem Int Ed Engl 2025; 64:e202500269. [PMID: 39921268 DOI: 10.1002/anie.202500269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/10/2025]
Abstract
The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal-organic framework (MOF). Interestingly, 2.4-fold increase in CH4/CO selectivity and 12-fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au-O-Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Tianyi Huang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jianyu Han
- School of Energy and Environment, Southeast University, Nanjing, 211189, China
| | - Zhongqiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixin Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaofei Gu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
5
|
Kendall O, Melendez LV, Guven Bicer MN, Wilms M, van Embden J, Gómez DE, Calzolari A, Prezzi D, Della Gaspera E. Tungsten oxide nanocrystals doped with interstitial methylammonium cations. NANOSCALE 2025; 17:7030-7034. [PMID: 39996524 DOI: 10.1039/d4nr04655b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Doping of semiconductor nanocrystals is a well-established process to impart new or enhanced functionalities to the host material. In this work we present the synthesis of colloidal WO3 nanocrystals doped with interstitial methylammonium cations. The organic cations are located within the voids of the WO3 cage and increase the charge carrier concentration. As a result, the nanocrystals exhibit intense surface plasmon resonances in the near infrared, comparable to those obtained for WO3 "bronzes" doped with alkali metals. We confirm the successful incorporation of these novel organic dopants through a combined experimental and theoretical study. Furthermore, we demonstrate the ability to dope the nanocrystals with even larger cations including formamidinium, providing a pathway to obtaining WO3 doped with bespoke organic cations that offer additional functionalities for use in optics, electronics and catalysis.
Collapse
Affiliation(s)
- Owen Kendall
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Lesly V Melendez
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | | | - Michael Wilms
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Joel van Embden
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Arrigo Calzolari
- CNR-NANO Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy.
| | - Deborah Prezzi
- CNR-NANO Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy.
| | | |
Collapse
|
6
|
Ma S, Jiang L, Yang W, Liu F, Wang D, Wang F, Huang J. Advances of Nanomaterials in Cancer Photocatalysis Therapy. MATERIALS TODAY SUSTAINABILITY 2025; 29:101023. [DOI: 10.1016/j.mtsust.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Wang B, Peng T, Jiang Z, Shen L, Dong J, Song Z, Qu J, Dai X. An integrated magnetic/photothermal capillary immunochromatographic assay based on rambutan-like Fe 3O 4@Cu 2-xS@PDA-Au nanoparticles. Talanta 2025; 284:127189. [PMID: 39566152 DOI: 10.1016/j.talanta.2024.127189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Highly sensitive and quantitative detection of tumor markers is critically important for the early diagnosis and treatment of cancers. In this study, we propose a novel magnetic/photothermal dual-sensing capillary immunochromatographic assay (CICA) strategy for the sensitive detection of carcinoembryonic antigen (CEA). To achieve this, we developed a rambutan-like Fe3O4@Cu2-xS@PDA-Au core-shell heterostructure with a high photothermal conversion efficiency of 59.1 % and stable magnetic characteristics through a shell-by-shell method. Under optimal conditions, the dual-mode CICA platform exhibited good linearity within the ranges of 0.5-10 ng mL-1 and 0.005-2.5 ng mL-1 for photothermal and magnetic modes, respectively. Notably, leveraging the biosensing system based on the atomic spin-exchange relaxation-free (SERF) effect, the magnetic mode achieved an enhanced sensitivity with a limit of detection as low as 0.0021 ng mL-1, two orders of magnitude higher than that of the photothermal mode. The complementary detection of dual signals effectively overcomes the limitations of the single-signal mode. These findings provide new insights into the sensitive and quantitative detection of low-abundance CEA analytes, exhibiting enormous potential for the detection of other biomarkers.
Collapse
Affiliation(s)
- Boyu Wang
- National Institute of Metrology, Beijing, 100029, China
| | - Tao Peng
- National Institute of Metrology, Beijing, 100029, China
| | - Zhiyuan Jiang
- National Institute of Metrology, Beijing, 100029, China.
| | - Liyue Shen
- National Institute of Metrology, Beijing, 100029, China; China Jiliang University, Hangzhou, 310018, China
| | - Jiahui Dong
- National Institute of Metrology, Beijing, 100029, China; China Jiliang University, Hangzhou, 310018, China
| | - Zhenfei Song
- National Institute of Metrology, Beijing, 100029, China; Shenzhen Insititute for Technology Innovation, NIM, Shenzhen, 518107, China
| | - Jifeng Qu
- National Institute of Metrology, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
8
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Plasmonic Graphene-Gold Nanostar Heterojunction for Red-Light Photoelectrochemical Immunosensing of C-Reactive Protein. ACS Sens 2025; 10:1493-1504. [PMID: 39907069 DOI: 10.1021/acssensors.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The development of red-light photoelectrochemical (PEC) nanoimmunosensors offers new avenues for detecting clinically relevant biomarkers with high sensitivity and specificity. Herein, the first PEC nanoimmunosensor based on a plasmonic graphene and gold nanostar (AuNS) heterojunction excited with 765 nm red light is presented for label-free detection of C-reactive protein (CRP), a key biomarker of inflammation. This platform leverages the unique localized surface plasmon resonance effect of AuNSs in combination with in situ generated graphene to enhance photoelectrical conversion efficiency under 765 nm monochromatic light. This wavelength minimizes photodamage and interference from biological samples. By optimizing the nanoarchitecture and utilizing a bifunctional photoactive transduction platform, a linear detection range of 25-800 pg/mL is achieved, with a limit of detection as low as 13.3 pg/mL. The low-energy red-light activation, effective electron-hole pair separation, and signal amplification allow CRP's rapid, selective, and sensitive detection in real clinical samples from patients with low-grade chronic inflammation. The nanoimmunosensor demonstrated consistent analytical performance across multiple samples, showing potential for accurate biomarker monitoring in inflammatory disorders. This work highlights plasmonic nanomaterials to develop robust PEC immunosensors that provide scalable, noninvasive, automated, low-background noise as a highly sensitive alternative for clinical diagnostics.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia
| |
Collapse
|
9
|
Simas MV, Davis GA, Hati S, Pu J, Goodpaster JV, Sardar R. Anisotropically Shaped Plasmonic WO 3-x Nanostructure-Driven Ultrasensitive SERS Detection and Machine Learning-Based Differentiation of Nitro-Explosives. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11309-11324. [PMID: 39927890 DOI: 10.1021/acsami.4c19673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Discovery of new surface-enhanced Raman spectroscopy (SERS) substrates consisting of inexpensive and earth-abundant elements is an unmet need for the advancement of future analysis techniques for the ultrasensitive detection and quantification of chemical and biological analytes. Nanostructures (NSs) of noble metals such as Au, Ag, and Cu are the benchmarks for the preparation of highly efficient SERS substrates because of their unique localized surface plasmon resonance (LSPR) properties. Non-noble-metal SERS substrates, e.g., metal chalcogenide semiconductors and transition metal oxides, have been prepared to mitigate the cost; however, their low sensitivity restricts widespread applications. In this article, we report for the first time that the structure of oxygen-deficient, LSPR-active, nonstoichiometric tungsten oxide (i.e., WO3-x) NSs can control the SERS enhancement factor (EF). SERS substrates prepared with colloidally synthesized WO3-x nanowires, nanorods, and nanoplatelets display SERS EF of 2.5 × 106, 3.1 × 107, and 5.5 × 107, respectively, using rhodamine 6G (R6G) molecules as Raman probes. Our experimentally acquired SERS data and spectroscopically determined electronic band structure of LSPR-active WO3-x NSs, and time-domain density functional theory (TDDFT)-based calculations support a dual enhancement scheme involving a strong plasmonic effect controlled electromagnetic field and their oxygen vacancy-induced chemical enhancement mechanisms, respectively. To demonstrate the practical utility of our WO3-x NCs, we are able to detect aromatic nitro-explosives (tetryl, TNT, and DNT) with a very low limit of detection (LOD, 10-9 M). Importantly, machine learning-driven chemometric analysis for SERS-based detection shows excellent classification between these three explosives. Finally, three nonaromatic, nitro-explosives, HMX, RDX, and PETN are also successfully detected utilizing our LSPR-active, WO3-x-based SERS substrates. To the best of our knowledge, this is the first example where LSPR-active, non-noble-metal NSs are used for the detection of both aromatic and aliphatic nitro-explosives. Taken together, our work represents the advancement of the fabrication of non-noble-metal-based SERS substrates, which can be widely employed for the low-cost detection of analytes across forensic science, chemistry, and biomedical fields.
Collapse
Affiliation(s)
- M Vitoria Simas
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gregory A Davis
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - John V Goodpaster
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Karmakar S, Ash S, Haque S, Murugasenapathi NK, Sridevi M, Mandal I, Ghorai G, Muhammed Ali AV, Gosvami NN, Krishnan NMA, Kanungo S, Chirumamilla M, Palanisamy T, Singh RK, Allu AR, Rao KDM. On-Chip Full-UV-Band Photodetectors Enabled by Hot Hole Extraction. ACS NANO 2025; 19:6309-6319. [PMID: 39913663 DOI: 10.1021/acsnano.4c16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Achieving on-chip, full-UV-band photodetection across UV-A (315-400 nm), UV-B (280-315 nm), and UV-C (100-280 nm) bands remains challenging due to the limitations in traditional materials, which often have narrow detection ranges and require high operating voltages. In this study, we introduce a self-driven, on-chip photodetector based on a heterostructure of hybrid gold nanoislands (Au NIs) embedded in H-glass and cesium bismuth iodide (Cs3Bi2I9). The Au NIs act as catalytic nucleation sites, enhancing crystallinity and facilitating the vertical alignment of the interconnected Cs3Bi2I9 petal-like thin film. A built-in electric field developed at the heterojunction efficiently separates hot holes generated in the Au NIs under UV illumination, transferring them to the valence band of Cs3Bi2I9 and minimizing recombination losses. The device demonstrates an ultrahigh open-circuit voltage of 0.6 V, exceptional responsivity of 0.88 A/W, and a detection threshold of 90 nW/cm2, outperforming the existing thin film-based UV photodetectors under self-driven mode. Long-term stability tests confirmed robust operational reliability under ambient conditions for up to eight months. This architecture, driven by efficient hot hole dynamics, represents a significant advancement for full-UV-band optoelectronics with promising applications in environmental monitoring, flame detection, biomedical diagnostics, and secure communication systems.
Collapse
Affiliation(s)
- Sougata Karmakar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Soham Ash
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sinorul Haque
- CSIR-Central Glass and Ceramic Research Institute 196 Raja S C Mullick Road, Kolkata 700032, India
| | - N K Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute(CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Sridevi
- Photovoltaic Metrology Section, Advanced Materials & Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Indrajeet Mandal
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gurupada Ghorai
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - A V Muhammed Ali
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Nitya Nand Gosvami
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sayan Kanungo
- Department of Electrical & Electronics Engineering, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University Skjernvej 4A, Aalborg 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg 21073, Germany
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute(CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajiv K Singh
- Photovoltaic Metrology Section, Advanced Materials & Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute 196 Raja S C Mullick Road, Kolkata 700032, India
| | - K D M Rao
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
11
|
Zhuang J, Jia L, Li C, Yang R, Wang J, Wang WA, Zhou H, Luo X. Recent advances in photothermal nanomaterials for ophthalmic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:195-215. [PMID: 39995756 PMCID: PMC11849557 DOI: 10.3762/bjnano.16.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The human eye, with its remarkable resolution of up to 576 million pixels, grants us the ability to perceive the world with astonishing accuracy. Despite this, over 2 billion people globally suffer from visual impairments or blindness, primarily because of the limitations of current ophthalmic treatment technologies. This underscores an urgent need for more advanced therapeutic approaches to effectively halt or even reverse the progression of eye diseases. The rapid advancement of nanotechnology offers promising pathways for the development of novel ophthalmic therapies. Notably, photothermal nanomaterials, particularly well-suited for the transparent tissues of the eye, have emerged as a potential game changer. These materials enable precise and controllable photothermal therapy by effectively manipulating the distribution of the thermal field. Moreover, they extend beyond the conventional boundaries of thermal therapy, achieving unparalleled therapeutic effects through their diverse composite structures and demonstrating enormous potential in promoting retinal drug delivery and photoacoustic imaging. This paper provides a comprehensive summary of the structure-activity relationship between the photothermal properties of these nanomaterials and their innovative therapeutic mechanisms. We review the latest research on photothermal nanomaterial-based treatments for various eye diseases. Additionally, we discuss the current challenges and future perspectives in this field, with a focus on enhancing global visual health.
Collapse
Affiliation(s)
- Jiayuan Zhuang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Linhui Jia
- School of Marine Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Rui Yang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jiapeng Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-an Wang
- The first school of clinical medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiangxia Luo
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Gansu Provincial Hospital of TCM, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Xiao Y, Fu J, Pihosh Y, Karmakar K, Zhang B, Domen K, Li Y. Interface engineering for photoelectrochemical oxygen evolution reaction. Chem Soc Rev 2025; 54:1268-1317. [PMID: 39679444 DOI: 10.1039/d4cs00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a promising approach for solving sustainable energy challenges and achieving carbon neutrality goals. The oxygen evolution reaction (OER), a key bottleneck in the PEC water-splitting system occurring at the photoanode/electrolyte interface, plays a fundamental role in sustainable solar fuel production. Proper surface or interface engineering strategies have been proven to be necessary to achieve efficient and stable PEC water oxidation. This review summarizes the recent advances in interface engineering, including junction formation, surface doping, surface passivation or protection, surface sensitization, and OER cocatalyst modification, while highlighting the remarkable research achievements in the field of PEC water splitting. The benefits of each interface engineering strategy and how it enhances the device performance are critically analyzed and compared. Finally, the outlook for the development of interface engineering for efficient PEC water splitting is briefly discussed. This review illustrates the importance of employing rational interface engineering in realizing efficient and stable PEC water splitting devices.
Collapse
Affiliation(s)
- Yequan Xiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jie Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keshab Karmakar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Beibei Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
13
|
Nafari NB, Zamani M, Mosayyebi B. Recent advances in lateral flow assays for MicroRNA detection. Clin Chim Acta 2025; 567:120096. [PMID: 39681230 DOI: 10.1016/j.cca.2024.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Lateral flow assays (LFAs) have emerged as pivotal tools for the rapid and reliable detection of microRNAs (miRNAs). It is believed that these biomarkers are crucial for the diagnosis and prognosis of various diseases, particularly cancer. Traditional miRNA detection techniques, such as quantitative PCR, are highly sensitive but have limited efficacy due to their complexity, high cost, and technical requirements. LFAs are valuable due to their simplicity, affordability, and portability, making them ideal for point-of-care testing in low-resource environments. However, challenges remain in developing highly sensitive and accurate LFA devices for miRNA detection. This review explores recent advancements in LFAs to improve miRNA detection sensitivity and specificity. Key innovations include signal amplification using isothermal methods, the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas systems for direct targeting of miRNAs, and the incorporation of nanomaterials, such as gold nanoparticles and nanorods, to enhance signal intensity. Using artificial intelligence (AI) algorithms enables precise, automated, and rapid quantification of miRNAs. Moreover, this review examines the ability of LFA-based devices to detect multiple miRNAs simultaneously. One of the most significant advancements is the detection of miR-21 levels as low as 20 pM and let-7a levels as low as 40 pM within ten minutes. This highlights the potential of these devices for clinical diagnostics.
Collapse
Affiliation(s)
- Nasim Barzegar Nafari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Krupka J. Materials with Negative Permittivity or Negative Permeability-Review, Electrodynamic Modelling, and Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:423. [PMID: 39859894 PMCID: PMC11766643 DOI: 10.3390/ma18020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators for certain values of permittivity, permeability, and dimensions. The electric and the magnetic plasmon resonances in spherical samples made of such materials are analyzed using rigorous electrodynamic methods, and the results of the analysis are compared to experimental data and to results obtained with other methods. The results of free oscillation and Mie scattering theories are compared. Similarities and differences between permittivity and permeability tensors for magnetized plasma and magnetized ferromagnetic materials are underlined. Several physical phenomena are explained on the grounds of rigorous electrodynamic analysis and experiments. These phenomena include unequal electric and magnetic energies stored in plasmonic resonators, the small influence of dielectric losses on the Q-factors of magnetic plasmon resonances, the role of radiation and dissipation losses on the properties of plasmonic resonators, and the theoretical possibility of the existence of lightning plasma balls.
Collapse
Affiliation(s)
- Jerzy Krupka
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| |
Collapse
|
15
|
Yao C, Feng H, Weng S, Li J, Huo YF, Yan W, Dong R, Yang L. Cu 2O 1-x-Superlattices Induced Oxygen Vacancy for Localized Surface Plasmon Resonance. NANO LETTERS 2025; 25:922-930. [PMID: 39748672 DOI: 10.1021/acs.nanolett.4c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled Cu2O1-x-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum. Combining this technique with theoretical models, we have elucidated the mechanism behind the origin of LSPR. We also provide evidence of strong and uniform LSPR exhibited by this structure under visible light. This significantly enhances the electromagnetic field in semiconductor-based surface-enhanced Raman scattering (SERS), with a detection limit concentration reaching 10-9 M compared to conventional gold nanoparticles (55 nm). Our strategy provides a new perspective and potential for controlling carrier concentration and generating LSPR in metal oxide nanoparticles.
Collapse
Affiliation(s)
- Chang Yao
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haochuan Feng
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Junxiang Li
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ying-Fei Huo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wuwen Yan
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Liangbao Yang
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| |
Collapse
|
16
|
Yang Z, Ghorai N, Wu S, He S, Lian T. Direct and Indirect Interfacial Electron Transfer at a Plasmonic p-Cu 7S 4/CdS Heterojunction. ACS NANO 2025; 19:1547-1556. [PMID: 39743773 PMCID: PMC11752524 DOI: 10.1021/acsnano.4c14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Plasmonic semiconductors exhibit significant potential for harvesting near-IR solar energy, although their mechanisms of plasmon-induced hot electron transfer (HET) are poorly understood. We report a transient absorption study of plasmon-induced HET in p-Cu7S4/CdS type II heterojunctions. Near-IR excitation of the p-Cu7S4 plasmon band at ∼1400 nm leads to ultrafast HET into the CdS conduction band with a time constant of <150 fs and a quantum efficiency of ∼0.054%. The injected hot electrons remain in CdS with an amplitude-weighted average lifetime of 1.9 ± 0.5 ns, significantly longer than that in Au/CdS heterostructures, suggesting that plasmonic semiconductors can slow down charge recombination due to the presence of a bandgap. The excited near-IR plasmon does not decay by coupling to the interfacial charge transfer transition, likely due to its energy mismatch. This study provides a detailed mechanistic understanding and possible directions for improving plasmonic HET in plasmonic semiconductor heterojunctions.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nandan Ghorai
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Shengxiang Wu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sheng He
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Wu Z, Shen J, Li Z, Liu S, Zhou Y, Feng K, Zhang B, Zhao S, Xue D, He J, Yu K, Zhang J, Dawson G, Zhang Q, Huang L, Li C, An X, Chi L, Zhang X, He L. Anisotropic Plasmon Resonance in Ti 3C 2T x MXene Enables Site-Selective Plasmonic Catalysis. ACS NANO 2025; 19:1832-1844. [PMID: 39754595 DOI: 10.1021/acsnano.4c17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in Ti3C2Tx MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy. Both experimental and theoretical studies provide direct evidence of the occurrence of transverse and longitudinal dipolar plasmon resonance modes, respectively, driven by in-plane and out-of-plane vibrations of the two-dimensional (2D) MXene nanoflakes. Wavelength-controlled excitation of the two LSPR modes is demonstrated to activate either the on-edge or the in-plane active sites for plasmonic charge carrier-induced site-selective catalysis. Our findings uncover the presence as well as the mechanism of the anisotropic plasmon resonance in nonmetallic 2D nanomaterials and provide intriguing design principles for next-generation plasmonic nanocatalysts.
Collapse
Affiliation(s)
- Zhiyi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiahui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Zimu Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Shuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Yuxuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shiqi Zhao
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, PR China
| | - Di Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Jiari He
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, PR China
| | - Kewei Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Jinpan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Graham Dawson
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, PR China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
18
|
Pandey S, Joseph S, Majumdar S, Ahuja J, Devinder S, Siddiqui SA, Ghosh K, Joseph J. Engineering plasmonic charge kinetics and broadband photoelectrochemical spectral responses using a multi-resonant Au-TiO 2 plasmonic particle grating-based optical resonator. NANOSCALE 2025; 17:1105-1118. [PMID: 39611229 DOI: 10.1039/d4nr03987d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The plasmonic integrated semiconductor has widened the operational spectral region of semiconductors for light-matter interaction-driven solar energy harvesting applications. However, a specific plasmonic resonance has moderate light absorption and is only active in a specific width of the visible spectrum. We present a tailored plasmonic particle grating-based Au-TiO2 Schottky photoelectrode-based broadband absorber that operates in the extended spectral region of 400-800 nm due to the synergistic interaction of multi-resonant photonic and plasmonic modes of the plasmonic particle grating structure. In the visible spectrum, the proposed photoelectrode increased the incoming photon to electron conversion efficiency (IPCE%) by seven and five times more than TiO2 for TM (along the grating vector) and TE (perpendicular to the grating vector) incidence, respectively. The plasmonic response of the gold nanoparticle and the grating-coupled surface plasmon polariton (SPP)-guided mode resonance (GMR) are responsible for such increments. Ultrafast pump-probe spectroscopy verifies that the plasmon-GMR interaction causes extended plasmonic charge generation and lifetime. The kinetics of plasmonic-generated charges in grating-coupled SPP and LSPR was investigated through TM and TE polarized pump and probe excitation. Such findings are consistent with the observed PEC spectral responses under their respective polarization illumination. Therefore, our research provides a simple method for integrating photonic and plasmonic materials for innovative broadband spectrum responses in photovoltaic and energy harvesting applications.
Collapse
Affiliation(s)
- Saurabh Pandey
- Photonics Research Lab, Physics Department, Indian Institute of Technology, Delhi, New Delhi, Delhi, 110016, India.
| | - Shereena Joseph
- Photonics Research Lab, Physics Department, Indian Institute of Technology, Delhi, New Delhi, Delhi, 110016, India.
| | - Shubhangi Majumdar
- Physical & Biophysical Chemistry Research Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, Delhi, 110016, India
| | - Jagriti Ahuja
- Photonics Research Lab, Physics Department, Indian Institute of Technology, Delhi, New Delhi, Delhi, 110016, India.
| | - Shital Devinder
- Centre for Sensors, Instrumentation, and Cyber Physical System Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Shumile Ahmed Siddiqui
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Manauli, 140306, Punjab, India
| | - Kaushik Ghosh
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Manauli, 140306, Punjab, India
| | - Joby Joseph
- Photonics Research Lab, Physics Department, Indian Institute of Technology, Delhi, New Delhi, Delhi, 110016, India.
- Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
- Indian Institute of Technology Delhi - Abu Dhabi, Zayed City, Abu Dhabi, UAE
| |
Collapse
|
19
|
Yu M, Li P, Li J, Chen X, Hu Z, Wang Y, Zeng J, Han F, Gong X, Li B, Xing X. Unusual Antibacterial Property and Selectivity Enabled by Tuning Nanozyme Activities of L-Arginine Derived Carbon Dots. Adv Healthc Mater 2025; 14:e2403201. [PMID: 39539008 DOI: 10.1002/adhm.202403201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Functional integration of antimicrobial activity and cell proliferation promotion at low concentrations is important for the clinical application of carbon dots (CDs). In this study, the precursor, L-arginine, and dopant, copper salt, are used to prepare copper-doped CDs (Cu-CDs). Owing to their excellent synergistic enzyme-like activities, Cu-CDs can rapidly increase reactive oxygen species (ROS) to lethal levels, preferentially in bacteria, and exhibit potent antibacterial ability, which can mainly be attributed to the membrane disruption effect. Concurrently, the cell proliferation-promoting activity of arginine-derived CDs is inherited. The Cu-CDs achieve perfect integration of dual functions at low concentrations, especially advantageous for applications. With as little as 100 µg mL-1 of Cu-CDs, the infected wound heals obviously faster than 2 mg mL-1 of antibiotic, although the traditional antibiotic group shows slightly better antibacterial efficiency, suggesting its effect in simultaneously scavenging bacteria and promoting tissue repair effect in vivo. The super selective mechanism probably originates from the endocytosis of Cu-CDs by mammalian cells, while superoxide dismutase down-regulates ROS levels in cells to act as a mitotic signaling agent for promoting cell growth. This strategy provides an efficient, convenient, and safe solution to combat bacterial infections, and suggests a novel approach for modifying antimicrobial biomaterials.
Collapse
Affiliation(s)
- Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xueli Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhimin Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Zeng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xuedong Gong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
20
|
Yan S, Xue P, Sun Y, Bai T, Shao S, Zeng X. Cupric Doping Hollow Prussian Blue Nanoplatform for Enhanced Cholesterol Depletion: a Promising Strategy for Breast Cancer Therapy and Metastasis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409967. [PMID: 39606805 PMCID: PMC11744725 DOI: 10.1002/advs.202409967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The dysregulated cholesterol metabolism in breast cancer cells drives malignancy, invasion, and metastasis, emphasizing the significance of reducing abnormal cholesterol accumulation for effective cancer treatment and metastasis inhibition. Despite its promise, cholesterol oxidase (ChOx) encounters challenge due to limited catalytic efficiency and susceptibility to harsh conditions. To overcome these hurdles, biocompatible nanoplatforms (Cu-HPB/C) tailored for efficient cholesterol depletion are introduced. Cu2+-doped hollow Prussian blue (Cu-HPB) acts as a carrier, shelter, and enhancer for ChOx, bolstering tumor-targeting ability, stability, and enzymatic activity. Tumor-responsive released Cu2+ notably augments ChOx activity, facilitating cholesterol depletion and disrupting lipid rafts, thereby impeding cell invasion and migration. Additionally, H2O2 generated from the oxidase reaction enhances Cu-HPB's chemo dynamic therapeutic efficacy. Transcriptomic analysis validates Cu-HPB/C's impact on cholesterol homeostasis and reveals cell death mechanisms including oxidative stress, ferroptosis, cuproptosis, and apoptosis. Demonstrating therapeutic efficacy in both 4T1 tumor subcutaneous and metastasis mouse models, the study presents a direct and effective strategy for tumor therapy and metastasis inhibition through enhanced cholesterol depletion.
Collapse
Affiliation(s)
- Shuangqian Yan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Panpan Xue
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Ying Sun
- Department of GastroenterologyFuzhou No. 1 Hospital Affiliated with Fujian Medical UniversityFuzhouFujian350009P. R. China
| | - Tingjie Bai
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
| | - Sijie Shao
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
| |
Collapse
|
21
|
Bao Z, Jiang M, Sun Z, Zhang M, Dong J, Lv T, Sun C, Chen X, Huang Z, Yin P. Manipulating Oxygen Vacancies in γ-Ga 2O 3 Nanocrystals: Correlation between Defect Location, Charge State, and Photophysical Properties. J Phys Chem Lett 2024; 15:12477-12484. [PMID: 39668359 DOI: 10.1021/acs.jpclett.4c03000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Recent advancements in colloidal synthesis have enabled precise control of extrinsic dopants in semiconductor nanocrystals (NCs), enriching our understanding of dopant-exciton interactions and opening new avenues for controlling NC properties. However, the manipulation of intrinsic defects in colloidal NCs remains challenging. Here, we demonstrate regulation of oxygen vacancy concentration and location in γ-Ga2O3 NCs, significantly altering their photoluminescent properties. Spectroscopic analysis and density functional theory calculations reveal that bulk oxygen vacancies are mostly neutral and lead to the formation of a deep donor band that contributes to the UV emission. Conversely, surface-proximate oxygen vacancies, influenced by the band bending effect, exhibit a tendency toward double ionization, giving rise to the characteristic donor-acceptor pair emission. This work highlights the correlation between the oxygen vacancy location and charge states, leading to diverse defective states and distinct photophysical processes. Precise defect manipulation offers new insights into structure-property relationships and the design of functional nanomaterials.
Collapse
Affiliation(s)
- Zhongyao Bao
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ming Jiang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhaofei Sun
- Center of Free Electron Laser and High Magnetic Field, and Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Mengxuan Zhang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Junjie Dong
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Tianxiang Lv
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Chenzhe Sun
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Xuegang Chen
- Center of Free Electron Laser and High Magnetic Field, and Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Zhen Huang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Penghui Yin
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
22
|
Li Y, Li S, Chen D, Kocoj CA, Yang A, Diroll BT, Guo P. Mid-infrared photodetection with 2D metal halide perovskites at ambient temperature. SCIENCE ADVANCES 2024; 10:eadk2778. [PMID: 39671492 PMCID: PMC11641002 DOI: 10.1126/sciadv.adk2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
The detection of mid-infrared (MIR) light is technologically important for applications such as night vision, imaging, sensing, and thermal metrology. Traditional MIR photodetectors either require cryogenic cooling or have sophisticated device structures involving complex nanofabrication. Here, we conceive spectrally tunable MIR detection by using two-dimensional metal halide perovskites (2D-MHPs) as the critical building block. Leveraging the ultralow cross-plane thermal conductivity and strong temperature-dependent excitonic resonances of 2D-MHPs, we demonstrate ambient-temperature, all-optical detection of MIR light with sensitivity down to 1 nanowatt per square micrometer, using plastic substrates. Through the adoption of membrane-based structures and a photonic enhancement strategy unique to our all-optical detection modality, we further improved the sensitivity to sub-10 picowatt-per-square-micrometer levels. The detection covers the mid-wave infrared regime from 2 to 4.5 micrometers and extends to the long-wave infrared wavelength at 10.6 micrometers, with wavelength-independent sensitivity response. Our work opens a pathway to alternative types of solution-processable, long-wavelength thermal detectors for molecular sensing, environmental monitoring, and thermal imaging.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Conrad A. Kocoj
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Ankun Yang
- Department of Mechanical Engineering, Oakland University, Rochester, MI 48309, USA
| | - Benjamin T. Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| |
Collapse
|
23
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
24
|
Vincely VD, Zhong X, Huda K, Katakam SP, Kays JC, Dennis AM, Bayer CL. Bornite (Cu 5FeS 4) nanocrystals as an ultrasmall biocompatible NIR-II contrast agent for photoacoustic imaging. PHOTOACOUSTICS 2024; 40:100649. [PMID: 39347465 PMCID: PMC11439559 DOI: 10.1016/j.pacs.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
In this study, we demonstrate the potential of the bornite crystal structure (Cu5FeS4) of copper iron sulfide as a second near infrared (NIR-II) photoacoustic (PA) contrast agent. Bornite exhibits comparable dose-dependent biocompatibility to copper sulfide nanoparticles in a cell viability study with HepG2 cells, while exhibiting a 10-fold increase in PA amplitude. In comparison to other benchmark contrast agents at similar mass concentrations, bornite demonstrated a 10× increase in PA amplitude compared to indocyanine green (ICG) and a 5× increase compared to gold nanorods (AuNRs). PA signal was detectable with a light pathlength greater than 5 cm in porcine tissue phantoms at bornite concentrations where in vitro cell viability was maintained. In vivo imaging of mice vasculature resulted in a 2× increase in PA amplitude compared to AuNRs. In summary, bornite is a promising NIR-II contrast agent for deep tissue PA imaging.
Collapse
Affiliation(s)
- Vinoin Devpaul Vincely
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Xingjian Zhong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Kristie Huda
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Swathi P. Katakam
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Allison M. Dennis
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| |
Collapse
|
25
|
Mu S, He Y, Wang Y, Chen W, Lv C, Liang X, Xiang W, Chen Z. AuBr 3 Induces CsPb(Br/I) 3 QDs to Self-Assemble into Nanowires. SMALL METHODS 2024; 8:e2400143. [PMID: 39011732 DOI: 10.1002/smtd.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Indexed: 07/17/2024]
Abstract
Perovskite quantum dots can form various forms such as nanowires, nanorods, and nanosheets through self-assembly. Nanoscale self-assembly can be used to fabricate materials with excellent device properties. This study introduces AuBr3 into CsPb(Br/I)3 quantum dots, causing them to assemble into nanowires. The nanowires form because part of Au3+ is surface-doped to replace Pb2+, and the [PbX6]4- octahedral structure is distorted. The symmetry of the structural surface is broken, and a dipole-moment-induced field is generated, thus promoting self-assembly. Moreover, the presence of Au nanoparticles (NPs) causes a localized surface plasmon resonance and generates strong van der Waals forces that promote self-assembly. Finally, to test other applications of perovskite nanowires, the solution method is used to prepare films by compounding the sample solution and polystyrene (PS) for backlighted displays.
Collapse
Affiliation(s)
- Shouying Mu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ye He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - YueLi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wei Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Weidong Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhaopin Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| |
Collapse
|
26
|
Yu J, Chen Z, Zhang H, Hutchison JA, Mulvaney P, Ashokan A. Surface Plasmon Modulation in Cu 3-xP Nanocrystals. NANO LETTERS 2024; 24:14695-14701. [PMID: 39503611 DOI: 10.1021/acs.nanolett.4c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We demonstrate modulation of the surface plasmon resonance in nonstoichiometric copper phosphide nanocrystals using spectroelectrochemical methods. Application of an anodic potential resulted in a blue-shift of the surface plasmon resonance and an incremental increase in its extinction coefficient. Conversely, upon application of a cathodic potential, the surface plasmon band red-shifted and reduced in intensity. These changes were found to be reversible over multiple cycles of anodic and cathodic potential steps. We also discuss how the postsynthetic ligand treatment impacts the surface plasmon peak and the structure of Cu3-xP nanocrystals. For example, the addition of alkylthiols resulted in the chemical decomposition of the nanocrystals. This work demonstrates how the surface plasmon peak in Cu3-xP can be used to probe changes in the structure and carrier density in these nanocrystals.
Collapse
Affiliation(s)
- Jiyuan Yu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - James A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Arun Ashokan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Liu X, Huang B, Li J, Li B, Lou Z. Full-spectrum plasmonic semiconductors for photocatalysis. MATERIALS HORIZONS 2024; 11:5470-5498. [PMID: 39139133 DOI: 10.1039/d4mh00515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
28
|
Zhang X, Wang C, Zhang M, Luo D, Ye S, Weng B. Surface Plasmon Resonance-Mediated Photocatalytic H 2 Generation. CHEMSUSCHEM 2024; 17:e202400513. [PMID: 38772862 DOI: 10.1002/cssc.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
The limited yield of H2 production has posed a significant challenge in contemporary research. To address this issue, researchers have turned to the application of surface plasmon resonance (SPR) materials in photocatalytic H2 generation. SPR, arising from collective electron oscillations, enhances light absorption and facilitates efficient separation and transfer of electron-hole pairs in semiconductor systems, thereby boosting photocatalytic H2 production efficiency. However, existing reviews predominantly focus on SPR noble metals, neglecting non-noble metals and SPR semiconductors. In this review, we begin by elucidating five different SPR mechanisms, covering hot electron injection, electric field enhancement, light scattering, plasmon-induced resonant energy transfer, and photo-thermionic effect, by which SPR enhances photocatalytic activity. Subsequently, a comprehensive overview follows, detailing the application of SPR materials-metals, non-noble metals, and SPR semiconductors-in photocatalytic H2 production. Additionally, a personal perspective is offered on developing highly efficient SPR-based photocatalysis systems for solar-to-H2 conversion in the future. This review aims to guide the development of next-gen SPR-based materials for advancing solar-to-fuel conversion.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Huangpu H2 Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Cong Wang
- Bingtuan Energy Development Institute, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832000, P. R. China
| | - Menglong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong 528225, P. R. China
| | - Dongxiang Luo
- Huangpu H2 Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Siyu Ye
- Huangpu H2 Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Bo Weng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Lv M, Zhang X, Li B, Huang B, Zheng Z. Single-Particle Fluorescence Spectroscopy for Elucidating Charge Transfer and Catalytic Mechanisms on Nanophotocatalysts. ACS NANO 2024; 18:30247-30268. [PMID: 39444203 DOI: 10.1021/acsnano.4c10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Photocatalysis is a cost-effective approach to producing renewable energy. A thorough comprehension of carrier separation at the micronano level is crucial for enhancing the photochemical conversion capabilities of photocatalysts. However, the heterogeneity of photocatalyst nanoparticles and complex charge migration processes limit the profound understanding of photocatalytic reaction mechanisms. By establishing the precise interrelationship between microscopic properties and photophysical behaviors of photocatalysts, single-particle fluorescence spectroscopy can elucidate the carrier separation and catalytic mechanism of the photocatalysts in situ, which provides perspectives for improving the photocatalytic efficiency. This Review primarily focuses on the basic principles and advantages of single-particle fluorescence spectroscopy and its progress in the study of plasmonic and semiconductor photocatalysis, especially emphasizing its importance in understanding the charge separation and photocatalytic reaction mechanism, which offers scientific guidance for designing efficient photocatalytic systems. Finally, we summarize and forecast the future development prospects of single-particle fluorescence spectroscopy technology, especially the insights into its technological upgrading.
Collapse
Affiliation(s)
- Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiangxiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Bei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
30
|
Wang J, Wang Z, Cui L, Zhang M, Huo X, Guo M. Visible-Near Infrared Independent Modulation of Hexagonal WO 3 Induced by Ionic Insertion Sequence and Cavity Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406939. [PMID: 39291877 DOI: 10.1002/adma.202406939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Dual-band electrochromic materials have attracted significant attention due to their ability to independently control sunlight and solar heat. However, these materials generally exhibit notable limitations, and the mechanisms for their dual-band independent regulation remain poorly understood. Here, the visible-NIR-independent regulation capabilities of hexagonal WO3 (h-WO3) are introduced for the first time. A structure-activity relationship that perfectly links the microscopic ion insertion sequence and cavity characteristics to the macroscopic dual-band electrochromic properties is established. The progressive ion intercalation process and the distinctive optical activity of the cavities are keys for enabling h-WO3 to independently modulate "bright," "cool," and "dark" modes. Notably, h-WO3 demonstrates superior dual-band electrochromic performance with a broadband full shielding effect from 550 to 2000 nm, achieving the widest full shielding band in dual-band electrochromic studies. Additionally, h-WO3 shows a high discharge capacity of 270.9 mAh m- 2 at 0.25 A m- 2, and requires only 49.1 and 209.7 mAh m- 2 to complete a full round-trip switch between "bright-cool" and "bright-dark" modes, respectively. The constructed device offers a dynamic temperature control range of up to 10.5 °C and supports a maximum voltage of 2.86 V, underscoring its considerable potential for practical applications and energy efficiency.
Collapse
Affiliation(s)
- Junkai Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Zhipeng Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Lixuan Cui
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Mei Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xiangtao Huo
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Min Guo
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| |
Collapse
|
31
|
Cheng Y, Zhong W, Chen Y, Tan BSN, Zhao Y, Guo J, Ma M, Zhao Y. Bimetal-Biligand Frameworks for Spatiotemporal Nitric Oxide-Enhanced Sono-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408242. [PMID: 39225414 DOI: 10.1002/adma.202408242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Sonodynamic therapy can trigger immunogenic cell death to augment immunotherapy, benefiting from its superior spatiotemporal selectivity and non-invasiveness. However, the practical applications of sonosensitizers are hindered by their low efficacy in killing cancer cells and activating immune responses. Here, two US Food and Drug Administration-approved drug ligands (ferricyanide and nitroprusside) and two types of metals (copper/iron) are selected to construct a bimetal-biligand framework (Cu[PBA-NO]). Through elaborate regulation of multiple metal/ligand coordination, the systemically administered Cu[PBA-NO] nanoagent shows sono-catalytic and NO release ability under ultrasound irradiation, which can be used for effective sono-immunotherapy. Moreover, Cu[PBA-NO] can downregulate intracellular glutathione levels that would destroy intracellular redox homeostasis and facilitate reactive oxygen species accumulation. The released tumor-associated antigens subsequently facilitate dendritic cell maturation within the tumor-draining lymph node, effectively initiating a T cell-mediated immune response and thereby bolstering the capacity to identify and combat cancer cells. This study paves a new avenue for the efficient cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
32
|
Singh M, Kaur N, Comini E. ZnO Nanowires/Self-Assembled Monolayer Mediated Selective Detection of Hydrogen. SENSORS (BASEL, SWITZERLAND) 2024; 24:7011. [PMID: 39517907 PMCID: PMC11548179 DOI: 10.3390/s24217011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
We are proposing a novel self-assembled monolayer (SAM) functionalized ZnO nanowires (NWs)-based conductometric sensor for the selective detection of hydrogen (H2). The modulation of the surface electron density of ZnO NWs due to the presence of negatively charged terminal amine groups (-NH2) of monolayers leads to an enhanced electron donation from H2 to ZnO NWs. This, in turn, increases the relative change in the conductance (response) of functionalized ZnO NWs as compared to bare ones. In contrast, the sensing mechanism of bare ZnO NWs is determined by the chemisorbed oxygen ions. The functionalized ZnO NWs exhibit an eight times higher response compared to bare ZnO NWs at an optimal working temperature of 200 °C. Finally, in comparison to studies in the literature involving strategies to enhance the sensing performance of metal oxides toward H2, like decoration with metal nanoparticles, heterostructures, and functionalization with a metal-organic framework, etc., SAM functionalization showed superior sensing results.
Collapse
Affiliation(s)
- Mandeep Singh
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Navpreet Kaur
- SENSOR Laboratory, University of Brescia, Via D. Valotti 9, 25133 Brescia, Italy
| | - Elisabetta Comini
- SENSOR Laboratory, University of Brescia, Via D. Valotti 9, 25133 Brescia, Italy
| |
Collapse
|
33
|
Athanasiou S, Martin OJF. Alternative Plasmonic Materials for Fluorescence Enhancement. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18574-18581. [PMID: 39502803 PMCID: PMC11533197 DOI: 10.1021/acs.jpcc.4c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Noble metals such as gold and silver have been used extensively for a range of plasmonic applications, including enhancing the fluorescence rate of a dye molecule, as evidenced by numerous experiments over the past two decades. Recently, a variety of doped semiconductors have been proposed as alternative plasmonic materials, exhibiting plasmonic resonances from ultraviolet to far-infrared. In this work, we investigate the suitability of these alternative materials for enhancing the fluorescence of a molecule. Considering nanosized spheres, we study their response under plane wave illumination and the resulting enhancement factors when coupled to a quantum emitter. Comparisons with standard plasmonic metals reveal that semiconductor materials lead to a significantly reduced, and often strongly quenched, emission of light caused by their dominant absorption, which hinders fluorescence enhancement. However, we show that enhancement may be obtained when considering poor emitting dyes and high refractive index environments. Our findings demonstrate that these alternative materials result in weaker fluorescence enhancement compared to their plasmonic counterparts. Nonetheless, there are means to compensate for this, and a reasonable enhancement can be achieved for dyes in the infrared spectrum.
Collapse
Affiliation(s)
- Stavros Athanasiou
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
34
|
Tian K, Fan X, Cheng S, Zhu Q, Zheng S, Sun Q, Zhao L, Li Y, Zhang M, Xu H, Qu C, Wang D, Wang C, Liu C, Qi D. Graphene Microflower by Photothermal Marangoni-Induced Fluid Instability for Omnidirectional Broadband Photothermal Conversion. ACS NANO 2024; 18:29760-29770. [PMID: 39425741 DOI: 10.1021/acsnano.4c09360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
2-D carbon-based materials are well-known for their broadband absorption properties for efficient solar energy conversion. However, their high reflectivity poses a challenge for achieving efficient omnidirectional light absorption. Inspired by the multilevel structures of the flower, a Graphene Microflower (GM) material with gradient refractive index surface was fabricated on polymer substrates using the UV-intense laser-induced phase explosion technique under the synergistic design of the photothermal Marangoni effect and the fluid instability principle. The refractive index gradient reduces light reflection and absorbs at least 96% of light at incident angles of 0-60° across the entire solar wavelength range (200-2500 nm). Over 90% absorption even at 75° angle of incidence. The light absorption is enhanced by the multiple interferometric phase cancelation and localized surface plasmon resonance, resulting in a steady-state temperature 60 °C higher than ambient conditions under one solar irradiation. The max rate of temperature rise can reach up to 62 °C s-1. The device is then integrated at the hot end of the temperature difference generator at high altitude to ensure continuous and efficient power generation, producing a steady-state power of 196 mW.
Collapse
Affiliation(s)
- Kun Tian
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Xupeng Fan
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Si Cheng
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Qing Zhu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Shuai Zheng
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Qi Sun
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Liwei Zhao
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Ye Li
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Miaomiao Zhang
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Huikang Xu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chunyan Qu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Dezhi Wang
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chengyang Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150000, China
| | - Changwei Liu
- Institute of Petro Chemistry, Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
35
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
36
|
Huang J, Yuan L, Liao J, Liu Y, Li D, Wang Y, Lin H, Ji C, Ma X, Huang C, Luo X. A Janus Spectrally Selective Glazing Toward All-Season Energy-Efficient Windows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407204. [PMID: 39434480 DOI: 10.1002/smll.202407204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Windows offer the most promising avenue for mitigating energy consumption and reducing greenhouse gas emissions. However, the balance between comfortable natural lighting and all-season energy savings is often neglected in extensive explorations of energy-efficient windows. Herein, a Janus glazing is proposed that enables the switch of passive radiative cooling and heating under the precondition of conveying sufficient natural light. Measurement results indicate that the Janus window maintains a visible transmittance of 0.47, while possesses a near-infrared (NIR) reflectivity/absorptivity of 0.75/0.71 and a mid-infrared (MIR) emissivity of 0.94/0.13 for the cooling and heating modes, respectively. As demonstrated by the outdoor test, the Janus window realizes a reduction of 7.1 °C for room cooling and an increase of 0.4 °C for room heating compared with commercial low-e window, potentially conserving 13%-53% of the total building energy consumption across China. Meanwhile, attributed to the photothermal effect, the Janus window can elevate the surface temperature by 6.1 °C compared with the low-e window, which can effectively reduce fogging occurrences on the window surface for ensuring sunlight entrance in the cold-weather conditions. This strategy offers novel prospects for enhancing energy efficiency in diverse applications, including architectural windows, greenhouse cultivation, photovoltaic generation, etc.
Collapse
Affiliation(s)
- Jingkai Huang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Yuan
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Jianming Liao
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Yang Liu
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Dongxian Li
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuetang Wang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - He Lin
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ji
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Xiaoliang Ma
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Huang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangang Luo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Xu J, Liu Y, Wang H, Hao J, Cao Y, Liu Z. Titanium boride nanosheets with photo-enhanced sonodynamic efficiency for glioblastoma treatment. Acta Biomater 2024; 188:344-357. [PMID: 39307260 DOI: 10.1016/j.actbio.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Sonodynamic therapy (SDT) has garnered significant attention in cancer treatment, however, the low-yield reactive oxygen species (ROS) generation from sonosensitizers remains a major challenge. In this study, titanium boride nanosheets (TiB2 NSs) with photo-enhanced sonodynamic efficiency was fabricated for SDT of glioblastoma (GBM). Compared with commonly-used TiO2 nanoparticles, the obtained TiB2 NSs exhibited much higher ROS generation efficiency under ultrasound (US) irradiation due to their narrower band gap (2.50 eV). Importantly, TiB2 NSs displayed strong localized surface plasmon resonance (LSPR) effect in the second near-infrared (NIR II) window, which facilitated charge transfer rate and improved the separation efficiency of US-triggered electron-hole pairs, leading to photo-enhanced ROS generation efficiency. Furthermore, TiB2 NSs were encapsulated with macrophage cell membranes (CM) and then modified with RGD peptide to construct biomimetic nanoagents (TiB2@CM-RGD) for efficient blood-brain barrier (BBB) penetrating and GBM targeting. After intravenous injection into the tumor-bearing mouse, TiB2@CM-RGD can efficiently cross BBB and accumulate in the tumor sites. The tumor growth was significantly inhibited under simultaneous NIR II laser and US irradiation without causing appreciable long-term toxicity. Our work highlighted a new type of multifunctional titanium-based sonosensitizer with photo-enhanced sonodynamic efficiency for GBM treatment. STATEMENT OF SIGNIFICANCE: Titanium boride nanosheets (TiB2 NSs) with photo-enhanced sonodynamic efficiency was fabricated for SDT of glioblastoma (GBM). The obtained TiB2 NSs displayed strong localized surface plasmon resonance (LSPR) effect in the second near-infrared (NIR II) window, which facilitated charge transfer rate and improved the separation efficiency of US-triggered electron-hole pairs, leading to photo-enhanced ROS generation efficiency. Furthermore, TiB2 NSs were encapsulated with macrophage cell membranes (CM) and then modified with RGD peptide to construct biomimetic nanoagents (TiB2@CM-RGD) for efficient blood-brain barrier (BBB) penetrating and GBM targeting. After intravenous injection into the tumor-bearing mouse, TiB2@CM-RGD can efficiently cross BBB and accumulate in the tumor sites. The tumor growth was significantly inhibited under simultaneous NIR II laser and US irradiation without causing appreciable long-term toxicity.
Collapse
Affiliation(s)
- Jiaqing Xu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Ying Liu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Han Wang
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Junxing Hao
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Yu Cao
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| | - Zhihong Liu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
38
|
Gu X, Guo XB, Li WH, Jiang YP, Liu QX, Tang XG. High-Entropy Materials for Application: Electricity, Magnetism, and Optics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53372-53392. [PMID: 39324826 DOI: 10.1021/acsami.4c11898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
High-entropy materials (HEMs) have recently emerged as a prominent research focus in materials science, gaining considerable attention because of their complex composition and exceptional properties. These materials typically comprise five or more elements mixed approximately in equal atomic ratios. The resultant high-entropy effects, lattice distortions, slow diffusion, and cocktail effects contribute to their unique physical, chemical, and optical properties. This study reviews the electrical, magnetic, and optical properties of HEMs and explores their potential applications. Additionally, it discusses the theoretical calculation methods and preparation techniques for HEMs, thereby offering insights and prospects for their future development.
Collapse
Affiliation(s)
- Xuan Gu
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Bin Guo
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen-Hua Li
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Ping Jiang
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiu-Xiang Liu
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin-Gui Tang
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
39
|
Chaperman L, Chaguetmi S, Deng B, Gam-Derrouich S, Nowak S, Mammeri F, Ammar S. Novel Synthesis Route of Plasmonic CuS Quantum Dots as Efficient Co-Catalysts to TiO 2/Ti for Light-Assisted Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1581. [PMID: 39404308 PMCID: PMC11478289 DOI: 10.3390/nano14191581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Self-doped CuS nanoparticles (NPs) were successfully synthesized via microwave-assisted polyol process to act as co-catalysts to TiO2 nanofiber (NF)-based photoanodes to achieve higher photocurrents on visible light-assisted water electrolysis. The strategy adopted to perform the copper cation sulfidation in polyol allowed us to overcome the challenges associated with the copper cation reactivity and particle size control. The impregnation of the CuS NPs on TiO2 NFs synthesized via hydrothermal corrosion of a metallic Ti support resulted in composites with increased visible and near-infrared light absorption compared to the pristine support. This allows an improved overall efficiency of water oxidation (and consequently hydrogen generation at the Pt counter electrode) in passive electrolyte (pH = 7) even at 0 V bias. These low-cost and easy-to-achieve composite materials represent a promising alternative to those involving highly toxic co-catalysts.
Collapse
Affiliation(s)
- Larissa Chaperman
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Samiha Chaguetmi
- Faculté des Sciences, Université 20-Août-1955-Skikda, Skikda 21000, Algeria;
| | - Bingbing Deng
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Sarra Gam-Derrouich
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Sophie Nowak
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Fayna Mammeri
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| | - Souad Ammar
- Université Paris Cité, CNRS UMR-7086, ITODYS, 75205 Paris, France; (L.C.); (B.D.); (S.G.-D.); (S.N.); (F.M.)
| |
Collapse
|
40
|
Wang X, Liu W, Ma H, Li H, Wang J, Wang D. Glutathione-mediated copper sulfide nanoplatforms with morphological and vacancy-dependent photothermal catalytic activity for multi-model tannic acid assays. J Colloid Interface Sci 2024; 670:460-472. [PMID: 38772262 DOI: 10.1016/j.jcis.2024.05.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Interface engineering and vacancy engineering play an important role in the surface and electronic structure of nanomaterials. The combination of the two provides a feasible way for the development of efficient photocatalytic materials. Here, we use glutathione (GSH) as a coordination molecule to design a series of CuxS nanomaterials (CuxS-GSH) rich in sulfur vacancies using a simple ultrasonic-assisted method. Interface engineering can induce amorphous structure in the crystal while controlling the formation of porous surfaces of nanomaterials, and the formation of a large number of random orientation bonds further increases the concentration of sulfur vacancies in the crystal structure. This study shows that interface engineering and vacancy engineering can enhance the light absorption ability of CuxS-GSH nanomaterials from the visible to the near-infrared region, improve the efficiency of charge transfer between CuxS groups, and promote the separation and transfer of optoelectronic electron-hole pairs. In addition, a higher specific surface area can produce a large number of active sites, and the synergistic and efficient photothermal conversion efficiency (58.01%) can jointly promote the better photocatalytic performance of CuxS-GSH nanomaterials. Based on the excellent hot carrier generation and photothermal conversion performance of CuxS-GSH under illumination, it exhibits an excellent ability to mediate the production of reactive oxygen species (ROS) through peroxide cleavage and has excellent peroxidase activity. Therefore, CuxS-GSH has been successfully developed as a nanoenzyme platform for detecting tannic acid (TA) content in tea, and convenient and rapid detection of tannic acid is achieved through the construction of a multi-model strategy. This work not only provides a new way to enhance the enzyme-like activity of nanomaterials but also provides a new prospect for the application of interface engineering and vacancy engineering in the field of photochemistry.
Collapse
Affiliation(s)
- Xinhao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wenliang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hongyang Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiqian Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
41
|
Jia Y, Liu D, Chen D, Jin Y, Ge Y, Zhang W, Chen C, Cheng B, Wang X, Liu T, Li M, Zu M, Wang Z, Cheng H. Realizing Sunlight-Induced Efficiently Dynamic Infrared Emissivity Modulation Based on Aluminum-Doped zinc Oxide Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405962. [PMID: 39073318 PMCID: PMC11423185 DOI: 10.1002/advs.202405962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Dynamic manipulation of an object's infrared radiation characteristics is a burgeoning technology with significant implications for energy and information fields. However, exploring efficient stimulus-spectral response mechanism and realizing simple device structures remains a formidable challenge. Here, a novel dynamic infrared emissivity regulation mechanism is proposed by controlling the localized surface plasmon resonance absorption of aluminum-doped zinc oxide (AZO) nanocrystals through ultraviolet photocharging/oxidative discharging. A straightforward device architecture that integrates an AZO nanocrystal film with an infrared reflective layer and a substrate, functioning as a photo-induced dynamic infrared emissivity modulator, which can be triggered by weak ultraviolet light in sunlight, is engineered. The modulator exhibits emissivity regulation amount of 0.72 and 0.61 in the 3-5 and 8-13 µm ranges, respectively. Furthermore, the modulator demonstrates efficient light triggering characteristic, broad spectral range, angular-independent emissivity, and long cyclic lifespan. The modulator allows for self-adaptive daytime radiative cooling and nighttime heating depending on the ultraviolet light in sunlight and O2 in air, thereby achieving smart thermal management for buildings with zero-energy expenditure. Moreover, the potential applications of this modulator can extend to rewritable infrared displays and deceptive infrared camouflage.
Collapse
Affiliation(s)
- Yan Jia
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Dongqing Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Desui Chen
- Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yizheng Jin
- Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yufei Ge
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Wenxia Zhang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Baizhang Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Xinfei Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Tianwen Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Mingyang Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Mei Zu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Zi Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Haifeng Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| |
Collapse
|
42
|
Wang X, Ding Y, Yu X, Dai P, Bai Z, Wu M, Jiang T. Photo-Stimulated Zn-based Batteries: Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402310. [PMID: 38726774 DOI: 10.1002/smll.202402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Solar energy, as a renewable energy source, dominates the vast majority of human energy, which can be harvested and converted by photovoltaic solar cells. However, the intermittent availability of solar energy restricts the actual utilization circumstances of solar cells. Integrating photo-responsive electrodes into an energy storage device emerges as a dependable and executable strategy, fostering the creation of photo-stimulated batteries that seamlessly amalgamate the process of solar energy collection, conversion, and storage in one system. Endowed by virtues such as cost-effectiveness, facile manufacturing, safety, and environmental friendliness, photo-stimulated Zn-based batteries have attracted considerable attention. The progress report furnishes a brief overview, summarizing various photo-stimulated Zn-based batteries. Their configurations, operational principles, advancements, and the intricate engineering of photoelectrode designs are introduced, respectively. Through rigorous architectural design, photo-stimulated Zn-based batteries exhibit the ability to initiate charging by saving electricity usage, and in certain instances, even without the need for external electrical grids under illumination. Furthermore, the compensation of solar energy can be explored to improve the output electric energy. At last, opportunities and challenges toward photo-stimulated Zn-based batteries in the process of development are proposed and discussed in the hope of expanding their application scenarios and accelerating the commercialization progress.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Yi Ding
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China
| | - Xinxin Yu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Peng Dai
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Zhiman Bai
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
43
|
Singh M, Scotognella F, Paternò GM. Degenerately doped metal oxide nanocrystals for infrared light harvesting: insight into their plasmonic properties and future perspectives. MATERIALS ADVANCES 2024; 5:6796-6812. [PMID: 39130726 PMCID: PMC11307255 DOI: 10.1039/d4ma00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The tuneability of the localized surface plasmon resonance (LSPR) of degenerately doped metal oxide (MOX) nanocrystals (NCs) over a wide range of the infrared (IR) region by controlling NC size and doping content offers a unique opportunity to develop a future generation of optoelectronic and photonic devices like IR photodetectors and sensors. The central aim of this review article is to highlight the distinctive and remarkable plasmonic properties of degenerately or heavily doped MOX nanocrystals by reviewing the comprehensive literature reported so far. In particular, the literature of each MOX NC, i.e. ZnO, CdO, In2O3, and WO3 doped with different dopants, is discussed separately. In addition to discussion of the most commonly used colloidal synthesis approaches, the ultrafast dynamics of charge carriers in NCs and the extraction of LSPR-assisted hot-carriers are also discussed in detail. Finally, future prospective applications of MOX NCs in IR photodetectors and photovoltaic (PV) self-powered chemical sensors are also presented.
Collapse
Affiliation(s)
- Mandeep Singh
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
| | - Francesco Scotognella
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | | |
Collapse
|
44
|
Ouyang T, Chen YC, Kundu K, Zhong X, Mei Y, Nalluri A, Dennis AM, Reinhard BM. Direct Excitation Transfer in Plasmonic Metal-Chalcopyrite-Hybrids: Insights from Single Particle Line Shape Analysis. ACS NANO 2024; 18:21565-21575. [PMID: 39078293 DOI: 10.1021/acsnano.4c07442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Hybrid nanomaterials containing both noble metal and semiconductor building blocks provide an engineerable platform for realizing direct or indirect charge and energy transfer for enhanced plasmonic photoconversion and photocatalysis. In this work, silver nanoparticles (AgNPs) and chalcopyrite (CuFeS2) nanocrystals (NCs) are combined into a AgNP@CuFeS2 hybrid structure comprising NCs embedded in a self-assembled lipid coating around the AgNP core. In AgNP@CuFeS2 hybrid structures, both metallic and semiconductor NCs support quasistatic resonances. To characterize the interactions between these resonances and their effect on potential charge and energy transfer, direct interfacial excitation transfer between the AgNP core and surrounding CuFeS2 NCs is probed through single particle line shape analysis and supporting electromagnetic simulations. These studies reveal that CuFeS2 NCs localized in the evanescent field of the central AgNP induce a broadening of the metal NP line shape that peaks when an energetic match between the AgNP and CuFeS2 NC resonances maximizes direct energy transfer. Dimers of AgNPs whose resonances exhibit poor energetic overlap with the CuFeS2 NC quasistatic resonance yield much weaker line shape broadening in a control experiment, corroborating the existence of resonant energy transfer in the AgNP@CuFeS2 hybrid. Resonant coupling between the metallic and semiconductor building blocks in the investigated hybrid architecture provides a mechanism for utilizing the large optical cross-section of the central AgNP to enhance the generation of reactive charge carriers in the surrounding semiconductor NCs for potential applications in photocatalysis.
Collapse
Affiliation(s)
- Tianhong Ouyang
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Yi-Chen Chen
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Koustav Kundu
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Xingjian Zhong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yixin Mei
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Akilesh Nalluri
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Allison M Dennis
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
45
|
Sherman ZM, Milliron DJ, Truskett TM. Distribution of Single-Particle Resonances Determines the Plasmonic Response of Disordered Nanoparticle Ensembles. ACS NANO 2024; 18:21347-21363. [PMID: 39092933 PMCID: PMC11328183 DOI: 10.1021/acsnano.4c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Understanding how colloidal soft materials interact with light is crucial to the rational design of optical metamaterials. Electromagnetic simulations are computationally expensive and have primarily been limited to model systems described by a small number of particles-dimers, small clusters, and small periodic unit cells of superlattices. In this work we study the optical properties of bulk, disordered materials comprising a large number of plasmonic colloidal nanoparticles using Brownian dynamics simulations and the mutual polarization method. We investigate the far-field and near-field optical properties of both colloidal fluids and gels, which require thousands of nanoparticles to describe statistically. We show that these disordered materials exhibit a distribution of particle-level plasmonic resonance frequencies that determines their ensemble optical response. Nanoparticles with similar resonant frequencies form anisotropic and oriented clusters embedded within the otherwise isotropic and disordered microstructures. These collectively resonating morphologies can be tuned with the frequency and polarization of incident light. Knowledge of particle resonant distributions may help to interpret and compare the optical responses of different colloidal structures, correlate and predict optical properties, and rationally design soft materials for applications harnessing light.
Collapse
Affiliation(s)
- Zachary M Sherman
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane, Seattle, Washington 98195, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
- Department of Physics, University of Texas at Austin, 2515 Speedway, Austin, Texas 78712, United States
| |
Collapse
|
46
|
Ji J, Wang J, Jiang T, Chen Z, Wang Z, Feng Y. Engineering the Blackbody Absorption of the Au-Branch-on-Au-Plate Heterostructures. Inorg Chem 2024; 63:14256-14265. [PMID: 39012859 DOI: 10.1021/acs.inorgchem.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Utilizing the strong ligand control effects of l-cysteine (l-Cys), the growth of Au on Au triangular nanoplate (AuTN) seeds was continuously tuned from layer-by-layer (the Frank-van der Merwe) to layer-plus-island (the Stranski-Krastanov), and island (the Volmer-Weber) growth modes, leading to the formation of a series of Au-on-AuTN heterostructures. Within the window of VW growth mode (featured by the growth of Au spikes and branches on AuTNs), the effective localized surface plasmon resonance (LSPR) coupling led to the selective strengthening of the "valley" absorptions, leading to smooth and flat absorption curves. Interestingly, through engineering the number/density, size, and branching degree of the Au branches, except for the black color, full spectrum absorption within 400-1300 nm wavelength was achieved on Au-branch-on-AuTN structures. Mechanistic studies revealed that the blackbody absorption property of the Au-branch-on-AuTN originates from the well-balanced intraparticle LSPR couplings among the neighboring Au branches. The tunable blackness and the full spectrum absorption property made the Au-branch-on-AuTN heterostructure a suitable candidate for various plasmonic-related applications, such as a wide spectrum light absorber, photoacoustic imaging contrast agent, and photothermal therapy medium. In addition, our strong ligand control in Au-branch-on-AuTN heterostructures could be extended to other hybrid systems with diverse material combinations, so long as to find the proper strong ligand.
Collapse
Affiliation(s)
- Jin Ji
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junsheng Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingting Jiang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zijie Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhiwei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhua Feng
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
47
|
Chang WJ, Roman BJ, Green AM, Truskett TM, Milliron DJ. Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals. ACS NANO 2024. [PMID: 39039957 DOI: 10.1021/acsnano.4c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Coupling between plasmonic resonances and molecular vibrations in nanocrystals (NCs) offers a promising approach for detecting molecules at low concentrations and discerning their chemical identities. Metallic NC superlattices can enhance vibrational signals under far-field detection by generating a myriad of intensified electric field hot spots between the NCs. Yet, their effectiveness is limited by the fixed electron concentration dictated by the metal composition and inefficient hot spot creation due to the large mode volume. Doped metal oxide NCs, such as tin-doped indium oxide (ITO), could overcome these limitations by enabling broad tunability of resonance frequencies in the mid-infrared range through independent variation of size and doping concentration. This study investigates the potential of close-packed ITO NC monolayers for surface-enhanced infrared absorption by quantifying trends in the coupling between their plasmon modes and various molecular vibrations. We show that maximum vibrational signal intensity occurs in monolayers composed of larger, more highly doped NCs, where the plasmon resonance peak lies at higher frequency than the molecular vibration. Using finite element and mutual polarization methods, we establish that near-field enhancement is stronger on the low-frequency side of the plasmon resonance and for more strongly coupled plasmonic NCs, thus rationalizing the design rules we experimentally uncovered. Our results can guide the development of optimal metal oxide NC-based superstructures for sensing target molecules or modifying their chemical properties through vibrational coupling.
Collapse
Affiliation(s)
- Woo Je Chang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Allison M Green
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
48
|
Wu K, Wang Z, Zhang X, Sun C, Li Q, Zhang H, Bai X, Khosla A, Zhao Z. Antimony-Doped Wide Bandgap Molybdenum Trioxide with Enhanced Localized Surface Plasmon Resonance for Nitrogen Photofixation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13603-13612. [PMID: 38875214 DOI: 10.1021/acs.langmuir.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Plasmonic metal oxides are promising photocatalysts for the artificial photosynthesis of green ammonia due to localized surface plasmon resonance (LSPR) enhanced photoconversion and rich surface oxygen vacancies improved chemisorption and activation of dinitrogen molecules. However, these oxygen vacancies are unstable during the photocatalytic process and could be oxidized by photogenerated holes, leading to the vanishing of the LSPR. Here, we fabricated antimony-doped molybdenum trioxide nanosheets with stable plasmonic absorption extending into the near-infrared (NIR) range, even after harsh treatment in oxidative atmospheric conditions at high temperatures. For undoped plasmonic MoO3-x nanosheets, the LSPR originates from the abundant oxygen vacancies that vanish after heat treatment at high temperatures in air, leading to the disappearance of the LSPR absorption. Sb doping does not significantly increase the concentration of oxygen vacancies while donating more free electrons because Sb can keep a lower oxidation state. Heat treatment diminished the oxygen vacancies while not affecting the low oxidation state of Sb. As a result, heat-treated Sb-doped MoO3-x nanosheets still show strong LSPR absorption in the NIR range. Both experimental results and theoretical calculations demonstrated that add-on states close to the Fermi level are formed due to the Sb doping and high concentration of oxygen vacancies. The prepared samples were used for photocatalytic nitrogen reduction and showed an LSPR-dependent photocatalytic performance. The present work has provided an effective strategy to stabilize the LSPR of plasmonic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Keming Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Zheng Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Xiaonan Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Congcong Sun
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Qiang Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Hui Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Xiaoxia Bai
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Zhenhuan Zhao
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Shubert-Zuleta SA, Segui Barragan V, Berry MW, Russum R, Milliron DJ. How Depletion Layers Govern the Dynamic Plasmonic Response of In-Doped CdO Nanocrystals. ACS NANO 2024; 18:16776-16789. [PMID: 38885184 DOI: 10.1021/acsnano.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Doped metal oxide nanocrystals exhibit a localized surface plasmon resonance that is widely tunable across the mid- to near-infrared region, making them useful for applications in optoelectronics, sensing, and photocatalysis. Surface states pin the Fermi level and induce a surface depletion layer that hinders conductivity and refractive index sensing but can be advantageous for optical modulation. Several strategies have been developed to both synthetically and postsynthetically tailor the depletion layer toward particular applications; however, this understanding has primarily been advanced in Sn-doped In2O3 (ITO) nanocrystals, leaving open questions about generalizing to other doped metal oxides. Here, we quantitatively analyze the depletion layer in In-doped CdO (ICO) nanocrystals, which is shown to have an intrinsically wide depletion layer that leads to broad plasmonic modulation via postsynthetic chemical reduction and ligand exchange. Leveraging these insights, we applied depletion layer tuning to enhance the inherently weak plasmonic coupling in ICO nanocrystal superlattices. Our results demonstrate how an electronic band structure dictates the radial distribution of electrons and governs the response to postsynthetic modulation, enabling the design of tunable and responsive plasmonic materials.
Collapse
Affiliation(s)
- Sofia A Shubert-Zuleta
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Victor Segui Barragan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - M Wren Berry
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert Russum
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
50
|
Novotný K, Krempl I, Pečinka L, Moráň L, Vaňhara P, Havel J. Pulsed laser ablation synthesis of fresh Te nanoparticles for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) applications. Talanta 2024; 274:126061. [PMID: 38583329 DOI: 10.1016/j.talanta.2024.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This work aims to demonstrate the potential of pulsed laser ablation synthesis (PLA) of tellurium nanoparticles (Te NPs) for use in matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) applications. An experimental laboratory setup for PLA synthesis of fresh Te NPs was designed to prevent unwanted aggregation of uncoated Te NPs and avoid the need to use additional modifiers. Performing pulsed laser ablation synthesis in liquid (PLAL) using acetone was found to be the optimal way of preparing Te NPs. Another possibility is to use commercially available laser ablation devices for laser ablation - inductively coupled plasma mass spectrometry (LA-ICP-MS) to perform PLA in a helium atmosphere, but this approach is less efficient and results in the formation of unwanted larger particles. The prepared Te NPs were studied using the transmission electron microscopy (TEM) and dynamic light scattering (DLS) methods. TEM images showed the formation of Te NP nanochains composed of many crystallized Te NPs with sizes ranging from 8 to 15 nm. The various size distributions of the synthesized Te NPs identified using the DLS method correspond to the size distributions of aggregations rather than individual Te NPs. The synthesized Te NPs were used for a pilot study of their possible use with the MALDI-MS technique. An important effect was observed when Te NPs were used to perform a MALDI-MS analysis of the α-cyclodextrin (α-CD) and cucurbit[7]uril (CB7) macrocycles, which consisted in a decline in the formation of matrix adducts. Furthermore, several changes in MALDI-MS mass spectra of intact cells and a positive effect of Te NPs on the crystallization of the MALDI-MS matrix were observed.
Collapse
Affiliation(s)
- Karel Novotný
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Ivo Krempl
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, 656 91, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic; Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
| | - Petr Vaňhara
- International Clinical Research Center, St. Anne's University Hospital Brno, 656 91, Brno, Czech Republic; Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, 656 91, Brno, Czech Republic
| |
Collapse
|