1
|
Sims CM, Killgore JP, Mansfield E, Downing JR, de Moraes ACM, Hersam MC, Fagan JA. Analytical Ultracentrifugation Characterization of Differential Sedimentation Size-Separated Graphene Dispersions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410459. [PMID: 40214718 DOI: 10.1002/smll.202410459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/14/2025] [Indexed: 05/20/2025]
Abstract
Analytical ultracentrifugation (AUC) is applied to the characterization of as-dispersed graphene nanoplatelet dispersions and differential sedimentation separated daughter dispersions. The liquid-phase characterization of AUC is demonstrated to resolve both the broad sedimentation coefficient distributions of as-dispersed samples and changes in daughter dispersions determined by a protocol of applied differential sedimentation process steps. Comparison is made to measurements on deposited samples by scanning electron microscopy and atomic force microscopy. The value of AUC to rapidly monitor changes in the sedimentation distribution of each particle population is demonstrated to allow tailoring of the differential sedimentation protocol to produce significantly narrower population distributions. This rapid characterization is particularly important for technologies in which dispersed nanoparticles cannot be removed from a solvent solution for microscopy analysis.
Collapse
Affiliation(s)
- Christopher M Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jason P Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ana C M de Moraes
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
2
|
Wang Y, Zhao W, Wang B, Song Z, Yang H, Wang F, Xu X, Liu Y. Structural diversity dependent cation incorporation into magnetic Cr-Se nanocrystals. NANOSCALE 2025; 17:9222-9231. [PMID: 40130620 DOI: 10.1039/d4nr05035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Chromium selenide (Cr-Se)-based low-dimensional materials have attracted significant attention in spintronics because of their diverse structure- and composition-dependent magnetic properties. While significant progress has been made in fabricating the Cr-Se family of nanomaterials through techniques like chemical vapor deposition, the synthesis of Cr-Se nanocrystals (NCs) via colloidal methods remains underexplored. In this work, we demonstrate the robust colloidal synthesis approach for producing Cr2Se3 and Cr3Se4 NCs with distinct morphologies by varying the Cr precursors and ligands. Cr-Se NCs can serve as templates for cation exchange (CE) reactions involving monovalent Cu+ and Ag+, divalent Zn2+ and Cd2+, and trivalent In3+, facilitating the creation of a diverse library of metal selenide NCs and nanoheterostructures. Our findings highlight how the outcomes of CE reactions are influenced by the structure of various Cr-Se phases. Furthermore, the magnetic properties of the as-synthesized Cr-Se NCs and their derivative CuCrSe2 were investigated. Our work provides a robust synthesis route for the Cr-Se class of magnetic nanomaterials and a platform for creating a diverse range of functional metal selenide NCs via CE reactions.
Collapse
Affiliation(s)
- Yifen Wang
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Wei Zhao
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Bin Wang
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Zhendong Song
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Huan Yang
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Fang Wang
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Xiaohong Xu
- Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
| | - Yang Liu
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Nuriyeva S, Karimova A, Shirinova H, Jafarova S, Abbas G, Zamchiy A, Aguas H. Novel Structures for PV Solar Cells: Fabrication of Cu/Cu 2S-MWCNTs 1D-Hybrid Nanocomposite. MICROMACHINES 2024; 15:1318. [PMID: 39597130 PMCID: PMC11596463 DOI: 10.3390/mi15111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/Cu2S-MWCNTs nanocomposites were produced and analyzed in the framework of potential applications for PV solar cells. Firstly, the surface of the produced one-dimensional Cu was covered by Cu2S nanoflake. XRD data prove the formation of both Cu and Cu2S structures. The length and diameter of the one-dimensional Cu wire were 5-15 µm and 80-200 nm, respectively. The thickness of the Cu2S nanoflake layer on the surface of the Cu was up to 100 nm. In addition, the Cu/Cu2S system was enriched with MWCNTs. MWCNs with a diameter of 50 nm interact by forming a conductive network around the Cu/Cu2S system and facilitate quick electron transport. Raman spectra also prove good interfacial coupling between the Cu/Cu2S system and MWCNTs, which is crucial for charge separation and electron transfer in PV solar cells. Furthermore, UV studies show that Cu/Cu2S-MWCNTs nanocomposites have a wide absorption band. Thus, MWCNTs, Cu, and Cu2S exhibit an intense absorption spectrum at 260 nm, 590 nm, and 972 nm, respectively. With a broad absorption band spanning the visible-infrared spectrum, the Cu/Cu2S-MWCNTs combination can significantly boost PV solar cells' power conversion efficiency. Furthermore, UV research demonstrates that the plasmonic character of the material is altered fundamentally when CuS covers the Cu surface. Additionally, MWCN-Cu/Cu2S nanocomposite exhibits hybrid plasmonic phenomena. The bandgap of Cu/Cu2S NWs was found to be approximately 1.3 eV. Regarding electron transfer and electromagnetic radiation absorption, the collective oscillations in plasmonic metal-p-type semiconductor-conductor MWCNT contacts can thus greatly increase energy conversion efficiency. The Cu/Cu2S-MWCNTs nanocomposite is therefore a promising new material for PV solar cell application.
Collapse
Affiliation(s)
- Sevinj Nuriyeva
- Nano Research Laboratory, Center of Excellence in Research, Development and Innovation, Baku State University, Baku 1148, Azerbaijan
| | - Aynura Karimova
- Nano Research Laboratory, Center of Excellence in Research, Development and Innovation, Baku State University, Baku 1148, Azerbaijan
| | - Habiba Shirinova
- Nano Research Laboratory, Center of Excellence in Research, Development and Innovation, Baku State University, Baku 1148, Azerbaijan
| | - Sevinj Jafarova
- Nano Research Laboratory, Center of Excellence in Research, Development and Innovation, Baku State University, Baku 1148, Azerbaijan
| | - Ghulam Abbas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal; (G.A.)
| | - Alexandr Zamchiy
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal; (G.A.)
| | - Hugo Aguas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal; (G.A.)
| |
Collapse
|
4
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
5
|
Li X, Feng G, Zhou L, Zhao T, Jiang F, Li H, Liu Y, Yu Q, Ding H, Zou T, Zhao S, Cao J, Zhu Y, Cao H. Reduced graphene oxide-wrapped ZnS-SnS 2 heterojunction bimetallic hollow cubic boxes as high-magnification and long lifespan supercapacitor anode materials. NANOSCALE 2024; 16:12021-12036. [PMID: 38808549 DOI: 10.1039/d4nr01131g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Metal sulfides have attracted extensive attention due to their excellent electrochemical performance. However, issues such as poor conductivity and severe volume expansion during charge and discharge processes affect the applications of sulfides as electrode materials. Here, a combination of coprecipitation and high-temperature sulfidation methods are employed to synthesize a ZnS-SnS2 composite with a hollow cubic structure, which is further composited with reduced graphene oxide (RGO) to form ZnS-SnS2 hollow cubic boxes encapsulated in a conductive framework of reduced graphene oxide (RGO) (denoted as ZnS-SnS2@RGO) for electrode materials. The hollow structure effectively alleviates the pulverization of ZnS-SnS2@RGO caused by volume expansion during charge and discharge processes. The heterogeneous structure formed by ZnS and SnS2 effectively reduces the electron transfer resistance of the material. The use of RGO wrapping enhances the conductivity of the ZnS-SnS2 hollow cubic boxes, and RGO's dispersion effect on the ZnS-SnS2 cubes improves particle agglomeration, further mitigating volume expansion of the material. These results indicate the outstanding electrochemical performance of heterostructural ZnS-SnS2 hollow cubic electrodes encapsulated with reduced graphene oxide as a conductive framework. The fabrication process provides a novel approach for addressing volume expansion and poor conductivity issues in other pseudocapacitive materials.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Guoqing Feng
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Lingling Zhou
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Tiewei Zhao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Feng Jiang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Yongsheng Liu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Qing Yu
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Hao Ding
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Tian Zou
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Shanhai Zhao
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Jun Cao
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Haijing Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
6
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Buravets V, Hosek F, Burtsev V, Miliutina E, Maixner J, Lapcak L, Bajtosova L, Cieslar M, Procházka M, Minar J, Kolska Z, Svorcik V, Lyutakov O. Rapid and Universal Synthesis of 2D Transition Metal (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Sulfides through Oxide Sulfurization in CS 2 Vapor. Inorg Chem 2024; 63:8215-8221. [PMID: 38655681 PMCID: PMC11080058 DOI: 10.1021/acs.inorgchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Frantisek Hosek
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vasilii Burtsev
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Elena Miliutina
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Maixner
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Ladislav Lapcak
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Lucia Bajtosova
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Miroslav Cieslar
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Michal Procházka
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Jan Minar
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Zdenka Kolska
- CENAB,
Faculty of Science, J. E. Purkyne University, Usti nad Labem 40096, Czech Republic
| | - Vaclav Svorcik
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
8
|
Lin H, Del Rio Castillo AE, González VJ, Bonaccorso F, Vázquez E, Fadeel B, Bianco A. Cytotoxicity assessment of exfoliated MoS 2 using primary human mast cells and the progenitor cell-derived mast cell line LAD2. NANOSCALE ADVANCES 2024; 6:2419-2430. [PMID: 38694463 PMCID: PMC11059565 DOI: 10.1039/d3na00863k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Molybdenum disulfide is an emerging 2D material with several potential applications in medicine. Therefore, it is crucial to ascertain its biocompatibility. Mast cells are immune cells that are found in many organs and tissues in contact with the extracellular environment, and can be cultured from progenitor cells present in the bone marrow. Given the long period required for differentiation and proliferation of primary mast cells, human mast cell lines have emerged as a tractable model for biological and toxicological studies. Here, we compare two types of industrial MoS2 using CD34+-derived primary human mast cells and the LAD2 cell line. Minimal effects were observed on early-stage activation endpoints such as β-hexosaminidase release and expression of surface markers of mast cell activation. Transmission electron microscopy revealed limited uptake of the tested materials. Overall, MoS2 was found to be biocompatible, and the LAD2 cell line was validated as a useful in vitro model of mast cells.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS 67000 Strasbourg France
| | | | - Viviana Jehová González
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha Ciudad Real 13071 Spain
| | | | - Ester Vázquez
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha Ciudad Real 13071 Spain
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet 177 77 Stockholm Sweden
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS 67000 Strasbourg France
| |
Collapse
|
9
|
Zhai W, Li Z, Wang Y, Zhai L, Yao Y, Li S, Wang L, Yang H, Chi B, Liang J, Shi Z, Ge Y, Lai Z, Yun Q, Zhang A, Wu Z, He Q, Chen B, Huang Z, Zhang H. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem Rev 2024; 124:4479-4539. [PMID: 38552165 DOI: 10.1021/acs.chemrev.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lixin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhiying Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Karmakar S, Datta S, Saha-Dasgupta T. First principles predictions of structural, electronic and topological properties of two-dimensional Janus Ti 2N 2XI (X = Br, Cl) structures. Phys Chem Chem Phys 2024; 26:10557-10567. [PMID: 38530661 DOI: 10.1039/d4cp00176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Motivated by the report of the giant Rashba effect in ternary layered compounds BiTeX, we consider two Janus structured compounds Ti2N2XI (X = Br, Cl) of the same ternary family exhibiting a 1 : 1 : 1 stoichiometric ratio. Broken inversion symmetry in the Janus structure, together with its unique electronic structure exhibiting anti-crossing states formed between Ti-d states and strong spin-orbit coupled I-p states, generates large Rashba cofficients of 2-3 eV Å for these compounds, classifying them as strong Rashba compounds. The anti-crossing features of the first-principles calculated electronic structure also result in non-trivial topology, combining two quantum phenomena - Rashba effect and non-trivial topology - in the same materials. This makes Janus TiNI compounds candidate materials for two-dimensional composite quantum materials. The situation becomes further promising by the fact that the properties are found to exhibit extreme sensitivity and tunability upon application of uniaxial strain.
Collapse
Affiliation(s)
- Shiladitya Karmakar
- S.N. Bose National Centre for Basic Sciences. JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| | - Soumendu Datta
- S.N. Bose National Centre for Basic Sciences. JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| | - Tanusri Saha-Dasgupta
- S.N. Bose National Centre for Basic Sciences. JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
11
|
Wang P, Misra RP, Zhang C, Blankschtein D, Wang Y. Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:159-169. [PMID: 38095654 DOI: 10.1021/acs.langmuir.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.08 wt/v%, near the critical micelle concentration. This unexpected observation is achieved by introducing "bare" nanotubes into water containing the anionic surfactant sodium deoxycholate (DOC) through a superacid-surfactant exchange process that eliminates the need for ultrasonication. Among the diverse ionic surfactants and charged biopolymers explored, DOC exhibits the highest dispersion efficiency, outperforming sodium cholate, a structurally similar bile salt surfactant containing just one additional oxygen atom compared to DOC. Employing all-atomistic molecular dynamics simulations, we unravel that the greater stabilization by DOC arises from its higher binding affinity to nanotubes and a substantially larger free energy barrier that resists nanotube rebundling. Further, we find that this barrier is nonelectrostatic in nature and does not obey the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, underscoring the important role of nonelectrostatic dispersion and hydration interactions at the nanoscale, even in the case of ionic surfactants like DOC. These molecular insights advance our understanding of surfactant chemistry at the bare nanotube limit and suggest low-energy, surfactant-efficient solution processing of SWCNTs and potentially other nanomaterials.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Maduraiveeran G. Enzyme-free electrochemical sensor platforms based on transition metal nanostructures for clinical diagnostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6620-6630. [PMID: 38047319 DOI: 10.1039/d3ay01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The detection of emergent biomarkers is of key significance in numerous clinical, biological, and biomedical fields. Specifically, the design and development of potent electrochemical lactic acid and glucose sensing platforms are especially in great demand in a variety of industries, including those involved in clinical analysis, biomedicine, biological, food, cosmetics, pharmaceuticals, leather, sports, and chemical industries. Nanostructured transition metal-derived materials have opened the door to electrochemical sensors and biosensors due to their advantages of high surface-to-volume ratio, surface reaction activity, catalytic activity, and strong adsorption capability. The primary aim of the present minireview is to highlight the advancement of enzyme-free electrochemical sensor platforms based on transition metal-derived nanostructures with high electrocatalytic activity and sensing performance towards lactic acid and glucose in practical samples. The preparation approaches, structural and composition monitoring, fabrication of sensing electrodes, catalytic activity, sensing performance in real samples, and the exploration of sensing mechanisms are majorly concentrated on in most of our recent research studies. Moreover, state-of-the-art transition metal-derived nanostructure-derived electrochemical sensor platforms, critical comparison of the analytical performance of the sensor platforms, and the future perspectives of the enzyme-free electrochemical sensor for clinical diagnostics are described.
Collapse
Affiliation(s)
- Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
13
|
Liu W, Xiong Y, Liu Q, Chang X, Tian J. The construction of S-scheme heterostructure in ultrathin WS 2/Zn 3In 2S 6 nanosheets for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 651:633-644. [PMID: 37562305 DOI: 10.1016/j.jcis.2023.07.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Metal sulfide based photocatalysts are considered to be economic, environmentally benign and renewable. The rapid recombination of photogenerated electrons and holes and low solar energy utilization efficiency, however, remain a huge bottleneck. Herein, two-dimensional/two-dimensional (2D/2D) S-scheme WS2/Zn3In2S6 heterostructure with ultrathin nanosheets intervening between neighboring component has been designed. The large and intimate S-scheme heterojunctions facilitate interfacial charge separation/transfer and optimize the available redox potential. Besides, the ultrathin 2D/2D heterostructure ensures large specific surface area, maximized interface synergistic interaction, and effective exposure of surface active sites. As a result, 2 wt% WS2/Zn3In2S6 exhibits a high photocatalytic hydrogen production rate of 30.21 mmol·g-1·h-1 under simulated solar light illumination with an apparent quantum efficiency of 56.1% at 370 nm monochromatic light, far exceeding pristine Zn3In2S6 (6.65 mmol·g-1·h-1). Our work underscores the significance of integrating morphology engineering and S-scheme heterojunctions design for high-efficient and low-cost photocatalysts.
Collapse
Affiliation(s)
- Wendi Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Ya Xiong
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| | - Qian Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Xiao Chang
- College of Physics, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| |
Collapse
|
14
|
Bian Z, Nakano Y, Miyata K, Oya I, Nobuoka M, Tsutsui Y, Seki S, Suda M. Chiral Van Der Waals Superlattices for Enhanced Spin-Selective Transport and Spin-Dependent Electrocatalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306061. [PMID: 37695880 DOI: 10.1002/adma.202306061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Indexed: 09/13/2023]
Abstract
The emergence of the chiral-induced spin-selectivity (CISS) effect offers a new avenue for chiral organic molecules to autonomously manipulate spin configurations, thereby opening up possibilities in spintronics and spin-dependent electrochemical applications. Despite extensive exploration of various chiral systems as spin filters, one often encounters challenges in achieving simultaneously high conductivity and high spin polarization (SP). In this study, a promising chiral van der Waals superlattice, specifically the chiral TiS2 crystal, is synthesized via electrochemical intercalation of chiral molecules into a metallic TiS2 single crystal. Multiple tunneling processes within the highly ordered chiral layered structure of chiral TiS2 superlattices result in an exceptionally high SP exceeding 90%. This remarkable observation of significantly high SP within the linear transport regime is unprecedented. Furthermore, the chiral TiS2 electrode exhibits enhanced catalytic activity for oxygen evolution reaction (OER) due to its remarkable spin-selectivity for triplet oxygen evolution. The OER performance of chiral TiS2 superlattice crystals presented here exhibits superior characteristics to previously reported chiral MoS2 catalysts, with an approximately tenfold increase in current density. The combination of metallic conductivity and high SP sets the stage for the development of a new generation of CISS materials, enabling a wide range of electron spin-based applications.
Collapse
Affiliation(s)
- Zhiyun Bian
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuki Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Keisuke Miyata
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ichiro Oya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masayuki Suda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
- JST-FOREST, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
15
|
Qu J, Elgendy A, Cai R, Buckingham MA, Papaderakis AA, de Latour H, Hazeldine K, Whitehead GFS, Alam F, Smith CT, Binks DJ, Walton A, Skelton JM, Dryfe RAW, Haigh SJ, Lewis DJ. A Low-Temperature Synthetic Route Toward a High-Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204488. [PMID: 36951493 PMCID: PMC10190663 DOI: 10.1002/advs.202204488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/09/2023] [Indexed: 05/18/2023]
Abstract
High-entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition-metal dichalcogenides (TMDCs) are a sub-class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy-intensive, or hazardous synthetic steps. To address this, a low-temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high-entropy metal disulfide (MoWReMnCr)S2 . (MoWReMnCr)S2 powders are characterized by powder X-ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X-ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy-dispersive X-ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra-thin, several-layer 2D nanosheets by liquid-phase exfoliation (LPE). The resulting few-layer HE (MoWReMnCr)S2 nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) with EDX mapping. Finally, (MoWReMnCr)S2 is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H-MoS2 synthesized using the molecular precursor approach. (MoWReMnCr)S2 with 20% w/w of high-conductivity carbon black displays a low overpotential of 229 mV in 0.5 M H2 SO4 to reach a current density of 10 mA cm-2 , which is much lower than the overpotential of 362 mV for MoS2 . From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H-MoS2 structure, in particular, the first row TMs Cr and Mn.
Collapse
Affiliation(s)
- Jie Qu
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Amr Elgendy
- Department of Chemistry and Sir Henry Royce InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Rongsheng Cai
- Department of MaterialsNational Graphene Institute and Sir Henry Royce InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mark A. Buckingham
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Athanasios A. Papaderakis
- Department of Chemistry and Sir Henry Royce InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Hugo de Latour
- Department of MaterialsNational Graphene Institute and Sir Henry Royce InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Kerry Hazeldine
- Department of Chemistry and the Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Firoz Alam
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Charles T. Smith
- Department of Physics and Astronomy and the Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Binks
- Department of Physics and Astronomy and the Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alex Walton
- Department of Chemistry and the Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jonathan M. Skelton
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Robert A. W. Dryfe
- Department of Chemistry and Sir Henry Royce InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sarah J. Haigh
- Department of MaterialsNational Graphene Institute and Sir Henry Royce InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Lewis
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
16
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
17
|
Zou T, Kim HJ, Kim S, Liu A, Choi MY, Jung H, Zhu H, You I, Reo Y, Lee WJ, Kim YS, Kim CJ, Noh YY. High-Performance Solution-Processed 2D P-Type WSe 2 Transistors and Circuits through Molecular Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208934. [PMID: 36418776 DOI: 10.1002/adma.202208934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Semiconducting ink based on 2D single-crystal flakes with dangling-bond-free surfaces enables the implementation of high-performance devices on form-free substrates by cost-effective and scalable printing processes. However, the lack of solution-processed p-type 2D semiconducting inks with high mobility is an obstacle to the development of complementary integrated circuits. Here, a versatile strategy of doping with Br2 is reported to enhance the hole mobility by orders of magnitude for p-type transistors with 2D layered materials. Br2 -doped WSe2 transistors show a field-effect hole mobility of more than 27 cm2 V-1 s-1 , and a high on/off current ratio of ≈107 , and exhibits excellent operational stability during the on-off switching, cycling, and bias stressing testing. Moreover, complementary inverters composed of patterned p-type WSe2 and n-type MoS2 layered films are demonstrated with an ultra-high gain of 1280 under a driving voltage (VDD ) of 7 V. This work unveils the high potential of solution-processed 2D semiconductors with low-temperature processability for flexible devices and monolithic circuitry.
Collapse
Affiliation(s)
- Taoyu Zou
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Hyun-Jun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Soonhyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
- Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Ao Liu
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Min-Yeong Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Haksoon Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Huihui Zhu
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Insang You
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Youjin Reo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Woo-Ju Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yong-Sung Kim
- Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Cheol-Joo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
18
|
Peng J, Chen ZJ, Ding B, Cheng HM. Recent Advances for the Synthesis and Applications of 2-Dimensional Ternary Layered Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0040. [PMID: 37040520 PMCID: PMC10076031 DOI: 10.34133/research.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Layered materials with unique structures and symmetries have attracted tremendous interest for constructing 2-dimensional (2D) structures. The weak interlayer interaction renders them to be readily isolated into various ultrathin nanosheets with exotic properties and diverse applications. In order to enrich the library of 2D materials, extensive progress has been made in the field of ternary layered materials. Consequently, many brand-new materials are derived, which greatly extend the members of 2D realm. In this review, we emphasize the recent progress made in synthesis and exploration of ternary layered materials. We first classify them in terms of stoichiometric ratio and summarize their difference in interlayer interaction, which is of great importance to produce corresponding 2D materials. The compositional and structural characteristics of resultant 2D ternary materials are then discussed so as to realize desired structures and properties. As a new family of 2D materials, we overview the layer-dependent properties and related applications in the fields of electronics, optoelectronics, and energy storage and conversion. The review finally provides a perspective for this rapidly developing field.
Collapse
Affiliation(s)
- Jing Peng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng-jie Chen
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Baofu Ding
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
19
|
Lin H, Del Rio Castillo AE, González VJ, Jacquemin L, Panda JK, Bonaccorso F, Vázquez E, Bianco A. Effects of industrially produced 2-dimensional molybdenum disulfide materials in primary human basophils. NANOIMPACT 2023; 29:100451. [PMID: 36626980 DOI: 10.1016/j.impact.2023.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
MoS2 has been increasingly used in place of graphene as a flexible and multifunctional 2D material in many biomedical applications such as cancer detection and drug delivery, which makes it crucial to evaluate downstream compatibility in human immune cells. Molybdenum is a component of stainless-steel stent implants and has previously been implicated in stent hypersensitivity. In view of this, it is important to ascertain the effect of MoS2 on allergy-relevant cells. Basophils are a less commonly used immune cell type. Unlike mast cells, basophils can be easily derived from primary human blood and can act as a sentinel for allergy. However, merely testing any one type of MoS2 in basophils could result in different biological results. We thus decided to compare 2D MoS2 from the two companies BeDimensional© (BD) and Biograph Solutions (BS), manufactured with two different but commonly exploited methods (BD, deoxycholate surfactant in a high-pressure liquid exfoliation, and BS using glycine in ball-milling exfoliation) to elucidate immunological end-points common to both MoS2 and to demonstrate the need for biological verification for end-users who may require a change of supplier. We report higher histamine production in human basophils with MoS2. No effects on either surface basophil activation markers CD63 and CD203c or reactive oxygen species (ROS) production and cell viability were observed. However, different cytokine production patterns were evidenced. IL-6 and IL-1β but not TNF and GM-CSF were increased for both MoS2. BS-MoS2 increased IL-4, while BD-MoS2 decreased IL-4 and increased IL-13. Molybdate ion itself only increased IL-1β and IL-4. Deoxycholate surfactant decreased viability at 18 h and increased ROS upon basophil activation. Therefore, these results demonstrate the safety of MoS2 in human basophils in general and highlight the importance of considering manufacturer additives and variability when selecting and investigating 2D materials such as MoS2.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | | | - Viviana Jehová González
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | | | | | - Ester Vázquez
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France.
| |
Collapse
|
20
|
Efficient Preparation of Small-Sized Transition Metal Dichalcogenide Nanosheets by Polymer-Assisted Ball Milling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227810. [PMID: 36431911 PMCID: PMC9694012 DOI: 10.3390/molecules27227810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Two-dimensional (2D) transition metal dichalcogenide nanosheets (TMDC NSs) have attracted growing interest due to their unique structure and properties. Although various methods have been developed to prepare TMDC NSs, there is still a great need for a novel strategy combining simplicity, generality, and high efficiency. In this study, we developed a novel polymer-assisted ball milling method for the efficient preparation of TMDC NSs with small sizes. The use of polymers can enhance the interaction of milling balls and TMDC materials, facilitate the exfoliation process, and prevent the exfoliated nanosheets from aggregating. The WSe2 NSs prepared by carboxymethyl cellulose sodium (CMC)-assisted ball milling have small lateral sizes (8~40 nm) with a high yield (~60%). The influence of the experimental conditions (polymer, milling time, and rotation speed) on the size and yield of the nanosheets was studied. Moreover, the present approach is also effective in producing other TMDC NSs, such as MoS2, WS2, and MoSe2. This study demonstrates that polymer-assisted ball milling is a simple, general, and effective method for the preparation of small-sized TMDC NSs.
Collapse
|
21
|
Gautam A, Sk S, Pal U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys Chem Chem Phys 2022; 24:20638-20673. [PMID: 36047908 DOI: 10.1039/d2cp02089k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Amit Gautam
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
22
|
Wang H, Shi J, Zhang J, Tao Z, Wang H, Yang Q, van Aken PA, Chen R. Pectin-assisted one-pot synthesis of MoS 2 nanocomposites for resistive switching memory application. NANOSCALE 2022; 14:12129-12135. [PMID: 35960001 DOI: 10.1039/d2nr02558b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing simple, large-scale, and environmentally-friendly ways to prepare two-dimensional (2D) semiconductive hexagonal phase MoS2 (2H-MoS2) nanocomposites remains a significant challenge. Herein, we propose a facile and green method for preparing few-layer MoS2 nanosheets via a pectin-assisted one-pot synthesis (PAOS), where pectin serves as the surfactant and stabilizer to assist the direct exfoliation of bulk MoS2 into few-layered semiconductive 2H-MoS2 nanosheets in water, as well as a second functional part to produce the 2H-MoS2/pectin nanocomposites simultaneously. Based on the facilely prepared 2H-MoS2/pectin nanocomposites, extraordinary flash memory devices with a typical bistable electrical switching and nonvolatile rewritable memory effect were realized, achieving a low threshold voltage below 2.0 V, a high ON/OFF ratio as high as 5 × 102, and a retention time longer than 104 s. Systematic investigations reveal that the electrical transition is due to the charge trapping and detrapping behaviors of the 2D 2H-MoS2/pectin nanocomposites. These findings through PAOS not only offer a general route for efficiently preparing 2H-MoS2 nanosheets and nanocomposites, but also reveal the great potential of 2D MoS2-based materials in rectifying the electronic properties for high-performance memory devices.
Collapse
Affiliation(s)
- Honglei Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jun Shi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Zhehao Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
| | - Qingqing Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
23
|
Wu J, Peng J, Sun H, Guo Y, Liu H, Wu C, Xie Y. Host-Guest Intercalation Chemistry for the Synthesis and Modification of Two-Dimensional Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200425. [PMID: 35233868 DOI: 10.1002/adma.202200425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Intercalation chemistry is of great importance in solid-state physics and chemistry for the ability to modulate electronic structures for constructing new materials with exotic properties. This ancient and versatile discipline has recently become prevailing in the synthesis and regulation of 2D transition metal dichalcogenides (TMDs) with atomic thickness due to diverse host-guest configurations and their impact on layered frameworks, which bring in extensive applications in electronics, optoelectronics, and other energy-based devices. In order to prepare 2D TMD materials with desired structure and properties, it is essential to gain in-depth understanding of the key role the intercalation chemistry plays in the preparation process. A focused review on recent advances regarding 2D TMD materials through intercalation exfoliation from the view of host, guest, and solvent interactions is provided. The effect of intercalation chemistry on TMD nanosheets synthesis and modification is comprehensively reviewed. The interactions between host and guest from the aspects of lattice strain, interlayer distance, and carrier density are considered. Finally, a prospectus of the future research opportunities for the intercalation chemistry of 2D materials is provided.
Collapse
Affiliation(s)
- Jiajing Wu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Peng
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Haofeng Sun
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuqiao Guo
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongfei Liu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yi Xie
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
24
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
25
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
26
|
Bian Z, Kato K, Ogoshi T, Cui Z, Sa B, Tsutsui Y, Seki S, Suda M. Hybrid Chiral MoS 2 Layers for Spin-Polarized Charge Transport and Spin-Dependent Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201063. [PMID: 35481673 PMCID: PMC9189682 DOI: 10.1002/advs.202201063] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Indexed: 06/07/2023]
Abstract
The chiral-induced spin selectivity effect enables the application of chiral organic materials for spintronics and spin-dependent electrochemical applications. It is demonstrated on various chiral monolayers, in which their conversion efficiency is limited. On the other hand, relatively high spin polarization (SP) is observed on bulk chiral materials; however, their poor electronic conductivities limit their application. Here, the design of chiral MoS2 with a high SP and high conductivity is reported. Chirality is introduced to the MoS2 layers through the intercalation of methylbenzylamine molecules. This design approach activates multiple tunneling channels in the chiral layers, which results in an SP as high as 75%. Furthermore, the spin selectivity suppresses the production of H2 O2 by-product and promotes the formation of ground state O2 molecules during the oxygen evolution reaction. These potentially improve the catalytic activity of chiral MoS2 . The synergistic effect is demonstrated as an interplay of the high SP and the high catalytic activity of the MoS2 layer on the performance of the chiral MoS2 for spin-dependent electrocatalysis. This novel approach employed here paves way for the development of other novel chiral systems for spintronics and spin-dependent electrochemical applications.
Collapse
Affiliation(s)
- Zhiyun Bian
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Zhou Cui
- Key Laboratory of Ecomaterials Advanced TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Baisheng Sa
- Key Laboratory of Ecomaterials Advanced TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Yusuke Tsutsui
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
- JST‐PRESTOHoncho 4‐1‐8KawaguchiSaitama332‐0012Japan
| | - Shu Seki
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Masayuki Suda
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
- JST‐PRESTOHoncho 4‐1‐8KawaguchiSaitama332‐0012Japan
| |
Collapse
|
27
|
Fu Y, Liao Y, Li P, Li H, Jiang S, Huang H, Sun W, Li T, Yu H, Li K, Li H, Jia B, Ma T. Layer structured materials for ambient nitrogen fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Li Y, Xie X, Li B, Sun X, Yang Y, Liu J, Feng J, Zhou Y, Li Y, Liu W, Wang S, Wang W, Zeng H, Zhang Z, Shen D, Shen D. Directed exfoliating and ordered stacking of transition-metal-dichalcogenides. NANOSCALE 2022; 14:7484-7492. [PMID: 35471207 DOI: 10.1039/d1nr07688d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional van der Waals crystals provide a limitless scope for designing novel combinations of physical properties by controlling the stacking order or twist angle of individual layers. Lattice orientation between stacked monolayers is significant not only for breaking the engineering symmetry but also for the study of many-body quantum phases and band topology. Thus far the state-of-the-art exfoliation approaches focus on the achievements of quality, size, yield, and scalability, while lacking sufficient information on lattice orientation. Consequently, interlayer alignment is usually determined by later experiments, such as the second harmonic generation spectroscopy, which increase the number of trials and errors for a designed artificial ordering and hampered the efficiency of systematic study. Herein, we report a lattice orientation distinguishable exfoliation method via gold favor epitaxy along the specific atomic step edges, meanwhile, fulfilling the requirements of high-quality, large-size, and high-yield monolayers. Hexagonal- and rhombohedral-stacking configurations of bilayer transition metal dichalcogenides are built directly at once as a result of foreseeing the lattice orientation. Optical spectroscopy, electron diffraction, and angle-resolved photoemission spectroscopy are used to study crystal quality, symmetric breaking, and band tuning, which support the exfoliating mechanism we proposed. This strategy shows the ability to facilitate the development of ordering stacking especially for multilayers assembling in the future.
Collapse
Affiliation(s)
- Yanshuang Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiuhua Xie
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
| | - Binghui Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yichen Yang
- Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jishan Liu
- Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiying Feng
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Ying Zhou
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shuangpeng Wang
- MOE Joint Key Laboratory, Institute of Applied Physics and Materials Engineering and Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR 999078, P. R. China
| | - Wei Wang
- MOE Joint Key Laboratory, Institute of Applied Physics and Materials Engineering and Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR 999078, P. R. China
| | - Huan Zeng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhenzhong Zhang
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, China
| | - Dawei Shen
- Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dezhen Shen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
| |
Collapse
|
29
|
Abstract
Layered van der Waals (vdW) materials have attracted significant attention due to their materials properties that can enhance diverse applications including next-generation computing, biomedical devices, and energy conversion and storage technologies. This class of materials is typically studied in the two-dimensional (2D) limit by growing them directly on bulk substrates or exfoliating them from parent layered crystals to obtain single or few layers that preserve the original bonding. However, these vdW materials can also function as a platform for obtaining additional phases of matter at the nanoscale. Here, we introduce and review a synthesis paradigm, morphotaxy, where low-dimensional materials are realized by using the shape of an initial nanoscale precursor to template growth or chemical conversion. Using morphotaxy, diverse non-vdW materials such as HfO2 or InF3 can be synthesized in ultrathin form by changing the composition but preserving the shape of the original 2D layered material. Morphotaxy can also enable diverse atomically precise heterojunctions and other exotic structures such as Janus materials. Using this morphotaxial approach, the family of low-dimensional materials can be substantially expanded, thus creating vast possibilities for future fundamental studies and applied technologies.
Collapse
Affiliation(s)
- David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Batool S, Idrees M, Zhang SR, Han ST, Zhou Y. Novel charm of 2D materials engineering in memristor: when electronics encounter layered morphology. NANOSCALE HORIZONS 2022; 7:480-507. [PMID: 35343522 DOI: 10.1039/d2nh00031h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The family of two-dimensional (2D) materials composed of atomically thin layers connected via van der Waals interactions has attracted much curiosity due to a variety of intriguing physical, optical, and electrical characteristics. The significance of analyzing statistics on electrical devices and circuits based on 2D materials is seldom underestimated. Certain requirements must be met to deliver scientific knowledge that is beneficial in the field of 2D electronics: synthesis and fabrication must occur at the wafer level, variations in morphology and lattice alterations must be visible and statistically verified, and device dimensions must be appropriate. The authors discussed the most recent significant concerns of 2D materials in the provided prose and attempted to highlight the prerequisites for synthesis, yield, and mechanism behind device-to-device variability, reliability, and durability benchmarking under memristors characteristics; they also indexed some useful approaches that have already been reported to be advantageous in large-scale production. Commercial applications, on the other hand, will necessitate further effort.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Idrees
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shi-Rui Zhang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Su-Ting Han
- College of Electronics Science & Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
31
|
Lin H, Peng S, Guo S, Ma B, Lucherelli MA, Royer C, Ippolito S, Samorì P, Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107652. [PMID: 35451183 DOI: 10.1002/smll.202107652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Human health can be affected by materials indirectly through exposure to the environment or directly through close contact and uptake. With the ever-growing use of 2D materials in many applications such as electronics, medical therapeutics, molecular sensing, and energy storage, it has become more pertinent to investigate their impact on the immune system. Dendritic cells (DCs) are highly important, considering their role as the main link between the innate and the adaptive immune system. By using primary human DCs, it is shown that hexagonal boron nitride (hBN), graphene oxide (GO) and molybdenum disulphide have minimal effects on viability. In particular, it is evidenced that hBN and GO increase DC maturation, while GO leads to the release of reactive oxygen species and pro-inflammatory cytokines. hBN and MoS2 increase T cell proliferation with and without the presence of DCs. hBN in particular does not show any sign of downstream T cell polarization. The study allows ranking of the three materials in terms of inherent toxicity, providing the following trend: GO > hBN ≈ MoS2 , with GO the most cytotoxic.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro de l'ITI Neurostra, CNRS UAR 3156, University of Strasbourg, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, ISIS, Université de Strasbourg, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
32
|
Abstract
The quest for a clean, renewable and sustainable energy future has been highly sought for by the scientific community over the last four decades. Photocatalytic water splitting is a very promising technology to proffer a solution to present day environmental pollution and energy crises by generating hydrogen fuel through a “green route” without environmental pollution. Transition metal dichalcogenides (TMDCs) have outstanding properties which make them show great potential as effective co-catalysts with photocatalytic materials such as TiO2, ZnO and CdS for photocatalytic water splitting. Integration of TMDCs with a photocatalyst such as TiO2 provides novel nanohybrid composite materials with outstanding characteristics. In this review, we present the current state of research in the application of TMDCs in photocatalytic water splitting. Three main aspects which consider their properties, advances in the synthesis routes of layered TMDCs and their composites as well as their photocatalytic performances in the water splitting reaction are discussed. Finally, we raise some challenges and perspectives in their future application as materials for water-splitting photocatalysts.
Collapse
|
33
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
34
|
Hu Y, Liang J, Xia Y, Zhao C, Jiang M, Ma J, Tie Z, Jin Z. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104556. [PMID: 34846791 DOI: 10.1002/smll.202104556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
As emerging 2D materials, arsenene and arsenic materials have attracted rising interest in the past few years. The diverse crystalline phases, exotic electrical characteristics, and widespread applications of 2D arsenene and arsenic bring them great research value and utilization potential. Herein, the recent progress of 2D arsenene and arsenic is reviewed in terms of fundamental properties, preparation, and applications. The fundamental properties of 2D arsenene and arsenic, including the crystal phases, environmental stability, and electrical structure, from theoretical to experimental reports are first summarized. Then, the experimental processes for preparing 2D arsenene and arsenic, along with their respective advantages and disadvantages, are introduced including epitaxial growth, mechanical exfoliation, and liquid-phase exfoliation. Moreover, applications of 2D arsenene and arsenic are discussed, suggesting a wide range of applications of 2D arsenene and arsenic in field-effect transistors, sensors, catalysts, biological applications, and so on. Finally, some perspectives about the challenges and opportunities of promising 2D arsenene and arsenic are provided. This review provides a helpful guidance and stimulates more focus on future explorations and developments of 2D arsenene and arsenic.
Collapse
Affiliation(s)
- Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Junchuan Liang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Yuren Xia
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Cheng Zhao
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Jing Ma
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
35
|
Liu BJ, Liang H, Mo QL, Li S, Tang B, Zhu SC, Xiao FX. Unleashing non-conjugated polymers as charge relay mediators. Chem Sci 2022; 13:497-509. [PMID: 35126982 PMCID: PMC8730257 DOI: 10.1039/d1sc04877e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/05/2021] [Indexed: 01/19/2023] Open
Abstract
The core factors affecting the efficiency of photocatalysis are predominantly centered on controllable modulation of anisotropic spatial charge separation/transfer and regulating vectorial charge transport pathways in photoredox catalysis, yet it still meets with limited success. Herein, we first conceptually demonstrate the rational design of unidirectional cascade charge transfer channels over transition metal chalcogenide nanosheets (TMC NSs: ZnIn2S4, CdS, CdIn2S4, and In2S3), which is synergistically enabled by a solid-state non-conjugated polymer, i.e., poly(diallyldimethyl ammonium chloride) (PDDA), and MXene quantum dots (MQDs). In such elaborately designed photosystems, an ultrathin PDDA layer functions as an intermediate charge transport mediator to relay the directional electron transfer from TMC NSs to MQDs that serve as the ultimate electron traps, resulting in a considerably boosted charge separation/migration efficiency. The suitable energy level alignment between TMC NSs and MQDs, concurrent electron-withdrawing capabilities of the ultrathin PDDA interim layer and MQDs, and the charge transport cascade endow the self-assembled TMC/PDDA/MQD heterostructured photosystems with conspicuously improved photoactivities toward anaerobic selective reduction of nitroaromatics to amino derivatives and photocatalytic hydrogen evolution under visible light irradiation. Furthermore, we ascertain that this concept of constructing a charge transfer cascade in such TMC-insulating polymer-MQD photosystems is universal. Our work would afford novel insights into smart design of spatial vectorial charge transport pathways by precise interface modulation via non-conjugated polymers for solar energy conversion.
Collapse
Affiliation(s)
- Bi-Jian Liu
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
| | - Hao Liang
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
| | - Qiao-Ling Mo
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
| | - Shen Li
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
| | - Bo Tang
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
| | - Shi-Cheng Zhu
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University New Campus Minhou Fujian Province 350108 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
36
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
37
|
Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Ghosh HNATH, Goswami T, Bhatt H, Yadav DK. Atomically Thin 2D Photocatalysts for Boosted H2 Production from the perspective of Transient Absorption Spectroscopy. Phys Chem Chem Phys 2022; 24:19121-19143. [DOI: 10.1039/d2cp02148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited state photophysical processes play the most important role in deciding the efficiency of any photonic applications like solar light driven H2 evolution, which is considered to be the next...
Collapse
|
39
|
Moradi Z, Vaezzadeh M, Saeidi M. Thermoelectric, spin-dependent optical and quantum transport properties of 2D half-metallic Co2Se3. Phys Chem Chem Phys 2022; 24:22016-22027. [DOI: 10.1039/d2cp02541h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the thermoelectric, spin-dependent optical and quantum transport properties of two-dimensional(2D) Co2Se3 monolayer are investigated using first principle calculations. The stability of Co2Se3 monolayer is confirmed by energy-cohesive...
Collapse
|
40
|
Fang Y, Wang S, Zhang X, Lin G, Zhao W, Wang X, Wang W, Huang F. Realizing the Excellent HER Performance of Pt 3Pb 2S 2 by d-Orbital Electronic Modulation. Inorg Chem 2021; 60:16538-16543. [PMID: 34637295 DOI: 10.1021/acs.inorgchem.1c02422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring new excellent electrocatalysts for the hydrogen evolution reaction (HER) is of significance for the development of hydrogen energy. Herein, a ternary chalcogenide (Pt3Pb2S2) is successfully designed and synthesized using layered PtS2 as a matrix. The energy level of the Pt 5d orbital is upshifted to the Fermi surface after replacing S atoms by Pb atoms, which results in the high conductivity of Pt3Pb2S2. In addition, the low-coordinated Pt atoms inserted in the voids of [Pt2Pb2S2] layers have a lower free energy of H* adsorption than do metallic Pt atoms, which endows Pt3Pb2S2 with excellent HER performance. The overpotential and Tafel slope of Pt3Pb2S2 toward HER activity are measured to be 43 mV at 10 mA cm-2 and 43 mV dec-1, respectively. More importantly, Pt3Pb2S2 shows high intrinsic HER catalytic activity and long-term stability. This work provides a promising strategy for designing novel excellent transition-metal chalcogenide electrocatalysts.
Collapse
Affiliation(s)
- Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Sishun Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xilin Zhang
- College of Physics Department, Henan Normal University, Xinxiang 453007, P.R. China
| | - GaoXin Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Wei Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
41
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
42
|
Lee S, Kim MS, Patel KD, Choi H, Thangam R, Yoon J, Koo TM, Jung HJ, Min S, Bae G, Kim Y, Han SB, Kang N, Kim M, Li N, Fu HE, Jeon YS, Song JJ, Kim DH, Park S, Choi JW, Paulmurugan R, Kang YC, Lee H, Wei Q, Dravid VP, Lee KB, Kim YK, Kang H. Magnetic Control and Real-Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102892. [PMID: 34515417 DOI: 10.1002/smll.202102892] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3 O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3 O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myeong Soo Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Kapil D Patel
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minjin Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
43
|
Wang H, Niu J, Shi J, Lv W, Wang H, van Aken PA, Zhang Z, Chen R, Huang W. Facile Preparation of MoS 2 Nanocomposites for Efficient Potassium-Ion Batteries by Grinding-Promoted Intercalation Exfoliation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102263. [PMID: 34269515 DOI: 10.1002/smll.202102263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 06/13/2023]
Abstract
Efficient exfoliations of bulk molybdenum disulfide (MoS2 ) into few-layered nanosheets in pure phase are highly attractive because of the promising applications of the resulted 2D materials in diversified optoelectronic devices. Here, a new exfoliation method is presented to prepare semiconductive 2D hexagonal phase (2H phase) MoS2 -cellulose nanocrystal (CNC) nanocomposites using grinding-promoted intercalation exfoliation (GPIE). This method with facile grinding of the bulk MoS2 and CNC powder followed by conventional liquid-phase exfoliation in water can not only efficiently exfoliate 2H-MoS2 nanosheets, but also produce the 2H-MoS2 /CNC 2D nanocomposites simultaneously. Interestingly, the intercalated CNC sandwiched in MoS2 nanosheets increases the interlayer spacing of 2H-MoS2 , providing perfect conditions to accommodate the large-sized ions. Therefore, these nanocomposites are good anode materials of potassium-ion batteries (KIBs), showing a high reversible capacity of 203 mAh g-1 at 200 mA g-1 after 300 cycles, a good reversible capacity of 114 mAh g-1 at 500 mA g-1 , and a low decay of 0.02% per cycle over 1500 cycles. With these impressive KIB performances, this efficient GPIE method will open up a new avenue to prepare pure-phase MoS2 and promising 2D nanocomposites for high-performance device applications.
Collapse
Affiliation(s)
- Honglei Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, China
| | - Jiazheng Niu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China
| | - Jun Shi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, China
| | - Wenzhen Lv
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, China
| | - Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
44
|
Sahoo R, Singh M, Rao TN. A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Na‐ion Battery Anodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramkrishna Sahoo
- Centre for Nano Materials International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Hyderabad 500005 Telangana India
| | - Monika Singh
- Centre for Advanced Studies (CAS) Dr. APJ Abdul Kalam Technical University (AKTU) Lucknow 226031 India
| | - Tata Narasinga Rao
- Centre for Nano Materials International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Hyderabad 500005 Telangana India
| |
Collapse
|
45
|
Ippolito S, Kelly AG, Furlan de Oliveira R, Stoeckel MA, Iglesias D, Roy A, Downing C, Bian Z, Lombardi L, Samad YA, Nicolosi V, Ferrari AC, Coleman JN, Samorì P. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. NATURE NANOTECHNOLOGY 2021; 16:592-598. [PMID: 33633405 DOI: 10.1038/s41565-021-00857-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order of magnitude in field-effect mobility (µFE), current ratio (ION/IOFF) and switching time (τS) for liquid-gated transistors, reaching 10-2 cm2 V-1 s-1, 104 and 18 ms, respectively. Our functionalization strategy is a universal route to simultaneously enhance the electronic connectivity in transition metal disulfide networks and tailor on demand their physicochemical properties according to the envisioned applications.
Collapse
Affiliation(s)
- Stefano Ippolito
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - Adam G Kelly
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | | | | | - Daniel Iglesias
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - Ahin Roy
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Clive Downing
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Zan Bian
- Cambridge Graphene Centre, Cambridge University, Cambridge, United Kingdom
| | - Lucia Lombardi
- Cambridge Graphene Centre, Cambridge University, Cambridge, United Kingdom
| | - Yarjan Abdul Samad
- Cambridge Graphene Centre, Cambridge University, Cambridge, United Kingdom
| | - Valeria Nicolosi
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Andrea C Ferrari
- Cambridge Graphene Centre, Cambridge University, Cambridge, United Kingdom
| | - Jonathan N Coleman
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France.
| |
Collapse
|
46
|
Sun Y, Terrones M, Schaak RE. Colloidal Nanostructures of Transition-Metal Dichalcogenides. Acc Chem Res 2021; 54:1517-1527. [PMID: 33662209 DOI: 10.1021/acs.accounts.1c00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusLayered transition-metal dichalcogenides (TMDs) are intriguing two-dimensional (2D) compounds where metal and chalcogen atoms are covalently bonded in each monolayer, and the monolayers are held together by weak van der Waals forces. Distinct from graphene, which is chemically inert, layered TMDs exhibit a wide range of electronic, optical, catalytic, and magnetic properties dependent upon their compositions, crystal structures, and thicknesses, which make them fundamentally and technologically important. TMD nanostructures are traditionally synthesized using gas-phase chemical deposition methods, which are typically limited to small-scale samples of substrate-bound planar materials. Colloidal synthesis has emerged as an alternative synthesis approach to enable the scalable synthesis of free-standing TMDs. The judicious selection of precursors, solvents, and capping ligands together with the optimization of synthesis parameters such as concentrations and temperatures leads to the fabrication of colloidal TMD nanostructures exhibiting tunable properties. In addition, understanding the formation and transformation of TMD nanostructures in solution contributes to the discovery of important structure-function relationships, which may be extendable to other anisotropic systems.In this Account, we summarize recent progress in the colloidal synthesis, characterization, and applications of TMD nanostructures with tunable compositions, structures, and thicknesses. On the basis of the preparation of Mo- and W-based disulfide, diselenide, and ditelluride nanostructures, we discuss examples of phase engineering where various metastable TMD compounds can be directly accessed at low temperatures in solution. We also analyze the chemistry involved in broadly tuning the composition across the MoSe2-WSe2, WS2-WSe2, and MoTe2-WTe2 solid solutions as well as atomic-level microscopic characterization and the resulting composition-tunable properties. We then highlight how the high densities of defects in the colloidally synthesized TMD nanostructures enable unique catalytic properties, including their ability to facilitate the selective hydrogenation of substituted nitroarenes using molecular hydrogen. Finally, using this library of colloidal TMD nanostructures as substrates, we discuss the pathways by which noble metals deposit onto them in solution. We highlight the importance of the relative strengths of the interfacial metal-chalcogen bonds in determining the sizes and morphologies of the deposited noble metal components. These synthesis capabilities for colloidal TMD nanostructures, which have been generalized to a library of composition-tunable phases, enable new systematic studies of structure-property relationships and chemical reactivity in this important class of 2D materials.
Collapse
|
47
|
Islam SE, Hang DR, Chen CH, Chou MMC, Liang CT, Sharma KH. Rational design of hetero-dimensional C-ZnO/MoS 2 nanocomposite anchored on 3D mesoporous carbon framework towards synergistically enhanced stability and efficient visible-light-driven photocatalytic activity. CHEMOSPHERE 2021; 266:129148. [PMID: 33310520 DOI: 10.1016/j.chemosphere.2020.129148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
For efficient solar energy harvesting, various engineering strategies to strengthen visible-light responsivity of ZnO photocatalyst is under intensive investigation. In this work, a new ternary C-ZnO/MoS2/mesoporous carbon nanocomposite was successfully prepared by a two-step solution-processed synthesis protocol. The ternary composite exhibits a well-interconnected 3D mesoporous microstructure assembled by carbon nanosheets, which is loaded with quasi 0D ZnO nanoparticles and 2D MoS2 nanosheets. The carbonaceous nanocomposites show enhanced visible-light-driven photocatalytic performance and high photo-corrosion resistance. The incorporation of carbon in the hybrid design has manifold benefits that drastically promotes the photoactivity and photostability. The significant enhancement in photodegradation activity of the hybrid catalysts can be ascribed to a few positive synergistic effects, such as increased surface area and active reaction sites, boosted surface charge utilization efficiency, and band-gap lowering. The high porosity of the distinct microstructure raises the dye adsorption within the material. Tailored interface/surface properties enable more effective mass transport and higher separation efficiency of photo-generated carriers. The modulated electronic structure leads to the narrowing of the ZnO optical bandgap. Meanwhile, coupling with carbon prevents ZnO from photo-corrosion. Our approach highlights the roles of carbon as structure directing and stabilizing agents as well as heteroatom in defect engineering for wide band-gap oxide materials. The rational material design of multivariate mixed-dimensional architecture also provides guiding insight for the advancement of heterogeneous photocatalyst materials with superior performance and durability. The presented engineering strategy would be a promising method for the preparation of nanomaterials supported on 3D carbon network with high porosity and visible-light-driven photocatalytic performance.
Collapse
Affiliation(s)
- Sk Emdadul Islam
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Mitch M C Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| | - Krishna Hari Sharma
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
48
|
Ge R, Huo J, Sun M, Zhu M, Li Y, Chou S, Li W. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903380. [PMID: 31532899 DOI: 10.1002/smll.201903380] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Molybdenum carbide (Mox C)-based nanomaterials have shown competitive performances for energy conversion applications based on their unique physicochemical properties. A large surface area and proper surface atomic configuration are essential to explore potentiality of Mox C in electrochemical applications. Although considerable efforts are made on the development of advanced Mox C-based catalysts for energy conversion with high efficiency and stability, some urgent issues, such as low electronic conductivity, low catalytic efficiency, and structural instability, have to be resolved in accordance with their application environments. Surface and interface engineering have shown bright prospects to construct highly efficient Mox C-based electrocatalysts for energy conversion including the hydrogen evolution reaction, oxygen evolution reaction, nitrogen reduction reaction, and carbon dioxide reduction reaction. In this Review, the recent progresses in terms of surface and interface engineering of Mox C-based electrocatalytic materials are summarized, including the increased number of active sites by decreasing the particle size or introducing porous or hierarchical structures and surface modification by introducing heteroatom(s), defects, carbon materials, and others electronic conductive species. Finally, the challenges and prospects for energy conversion on Mox C-based nanomaterials are discussed in terms of key performance parameters for the catalytic performance.
Collapse
Affiliation(s)
- Riyue Ge
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Juanjuan Huo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingjie Sun
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Zhu
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Ying Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Wenxian Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444, China
| |
Collapse
|
49
|
Zhong W, Xiao B, Lin Z, Wang Z, Huang L, Shen S, Zhang Q, Gu L. RhSe 2 : A Superior 3D Electrocatalyst with Multiple Active Facets for Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007894. [PMID: 33511705 DOI: 10.1002/adma.202007894] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Indexed: 05/09/2023]
Abstract
Layered 2D materials are a vital class of electrocatalys for the hydrogen evolution reaction (HER), due to their large area, excellent activity, and facile fabrication. Theoretical caculations domenstrate, however, that only the edges of the 2D nanosheets act as active sites, while the much larger basal plane exhibits passive activity. Here, from a distinguishing perspective, RhSe2 is reported as a "3D" electrocatalyst for HER with top-class activity, synthesized by a facile solid-state method. Superior to 2D materials, multiple crystal facets of RhSe2 exhibit near-zero free energy change of hydrogen adsorption (ΔGH ), which guarantees high performance in most common morphologies. Density functional theory calculations reveal that the low-coordinated Rh atoms act as the active sites in acid, which enables the modified Kubas-mediated pathway, while the Se atoms act as the active sites in an alkaline medium. The overpotentials of HER activity of RhSe2 are measured to be 49.9 and 81.6 mV at 10 mA cm-2 in acid and alkaline solutions, respectively. This work paves the way to new transition metal chalcogenide catalysts.
Collapse
Affiliation(s)
- Wenwu Zhong
- School of Pharmaceutical and Materials Engineering, Taizhou University, No. 1139, Shifu Road, Taizhou, 318000, P. R. China
- School of Material Science and Hydrogen Energy, Foshan Institute of Technology, No. 18, Jiangwanyi Road, Foshan, 528000, P. R. China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, No. 2, Mengxi Road, Zhenjiang, 212003, P. R. China
| | - Zhiping Lin
- School of Pharmaceutical and Materials Engineering, Taizhou University, No. 1139, Shifu Road, Taizhou, 318000, P. R. China
| | - Zongpeng Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, No. 1139, Shifu Road, Taizhou, 318000, P. R. China
| | - Liangai Huang
- School of Pharmaceutical and Materials Engineering, Taizhou University, No. 1139, Shifu Road, Taizhou, 318000, P. R. China
| | - Shijie Shen
- School of Pharmaceutical and Materials Engineering, Taizhou University, No. 1139, Shifu Road, Taizhou, 318000, P. R. China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, No.8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Lin Gu
- Institution of Physics, Chinese Academic of Science, No.8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| |
Collapse
|
50
|
Li J, Song P, Zhao J, Vaklinova K, Zhao X, Li Z, Qiu Z, Wang Z, Lin L, Zhao M, Herng TS, Zuo Y, Jonhson W, Yu W, Hai X, Lyu P, Xu H, Yang H, Chen C, Pennycook SJ, Ding J, Teng J, Castro Neto AH, Novoselov KS, Lu J. Printable two-dimensional superconducting monolayers. NATURE MATERIALS 2021; 20:181-187. [PMID: 33106649 DOI: 10.1038/s41563-020-00831-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Two-dimensional superconductor (2DSC) monolayers with non-centrosymmetry exhibit unconventional Ising pair superconductivity and an enhanced upper critical field beyond the Pauli paramagnetic limit, driving intense research interest. However, they are often susceptible to structural disorder and environmental oxidation, which destroy electronic coherence and provide technical challenges in the creation of artificial van der Waals heterostructures (vdWHs) for devices. Herein, we report a general and scalable synthesis of highly crystalline 2DSC monolayers via a mild electrochemical exfoliation method using flexible organic ammonium cations solvated with neutral solvent molecules as co-intercalants. Using NbSe2 as a model system, we achieved a high yield (>75%) of large-sized single-crystal monolayers up to 300 µm. The as-fabricated, twisted NbSe2 vdWHs demonstrate high stability, good interfacial properties and a critical current that is modulated by magnetic field when one flux quantum fits to an integer number of moiré cells. Additionally, formulated 2DSC inks can be exploited to fabricate wafer-scale 2D superconducting wire arrays and three-dimensional superconducting composites with desirable morphologies.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
| | - Peng Song
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jinpei Zhao
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Kristina Vaklinova
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
| | - Xiaoxu Zhao
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Zejun Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zihao Wang
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Li Lin
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Meng Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tun Seng Herng
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Yuxin Zuo
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Win Jonhson
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Yu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiao Hai
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Haomin Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Huimin Yang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Cheng Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Stephen J Pennycook
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Jun Ding
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A H Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore
| | - Kostya S Novoselov
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore.
- National Graphene Institute, University of Manchester, Manchester, UK.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
| |
Collapse
|