1
|
Zou S, Cui Q, Liu J, Wu Q, Zhu L, Chen D, Du Y, Wu T. Local Asymmetric Gaussian Fitting Algorithm for Enhanced Peak Detection of Liquid Chromatography-High Resolution Mass Spectrometry Data. Anal Chem 2025; 97:10603-10610. [PMID: 40325991 DOI: 10.1021/acs.analchem.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Feature detection is a crucial step in the data preprocessing workflow of liquid chromatography-mass spectrometry (LC-MS). However, many existing methods are hindered by intricate parameter adjustments and high false positive rates during extracted ion chromatogram (EIC) construction and peak detection, which challenges the identification of spurious and missing compounds. This study introduces a novel algorithm, local asymmetric Gaussian fitting (LAGF), for peak detection. LAGF integrates with the "data points bins" EIC extraction algorithm to enhance the feature detection efficiency. By using a 1 Da data points bin for EIC extraction, computational time is significantly reduced, making the method well-suited for batch metabolomics analysis. LAGF minimizes parameter numbers of generalized two-sided asymmetric Gaussian fitting by automatically determining the peak center (μ) and height (α) while accommodating two-sided standard deviations (σ1 and σ2) to self-adaptively model peak patterns. Features are filtered based on a goodness-of-fit threshold of 0.5. The performance of LAGF was validated using standard mixtures and serum samples at different concentrations in reversed-phase or hydrophilic interaction LC mode. In most cases, LAGF outperformed conventional tools in terms of determination coefficient (R2) and relative standard deviation for automatically detected peak areas. The LAGF algorithm is available as open-source Python code alongside an interactive interface, facilitating implementation in both nontargeted and targeted LC-MS analysis to enhance peak detection and compound identification.
Collapse
Affiliation(s)
- Shengsi Zou
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Qingxiao Cui
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Jinyue Liu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Qiong Wu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Lijia Zhu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yiping Du
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Wu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Cao S, Tian Y, Zhao R, Gu W, Tang S, Xu L, Cai Y. Effective prediction of organosilicon molecular structures and risks in aquatic environment with machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178320. [PMID: 39754948 DOI: 10.1016/j.scitotenv.2024.178320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Until now, mass spectrometry databases lack molecular information of most organosilicon oligomers, and risk models needing accurate molecular descriptors are unavailable for these emerging contaminants with thousands of monomers. To address this issue, based on molecular/fragment ions and relative abundance from GC-Orbitrap-MS, this study developed appropriate classification (accuracies = 0.750-0.804) and regression (MSE = 0.008-0.014) models through neural network and support vector framework for organosilicon main/branch chain structures, which were subsequently used for speculating their persistent, bio-accumulative and toxic (PBT) potentials with neural networks (MSE = 0.002-0.017). By these methods, 116 oligomers [with 1-7 Si atoms, SiO (68.6 %) or CC (31.4 %) backbones, cyclic (14.7 %) or linear (85.3 %) structure, and six kinds of branch groups] were identified in waters from 21 Chinese cities, where hazard indices of total organosilicons were larger than 1 in 17 cities, with 5-43 oligomers first found in rivers showing persistent, bio-accumulative or toxic potential. Characteristic oligomers indicated dyeing, textile, and petrochemical industries making major contribution (13.1-34.8 %) to local organosilicon emission, and petrochemical industry was first found as ubiquitous source of nationwide organosilicon distribution. This study provided valuable methodology for risk assessment of organosilicons and also other chemicals lacking MS database.
Collapse
Affiliation(s)
- Shengyu Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Youliang Tian
- Guizhou Environmental Scientific Research and Design Institute, Guiyang, Guizhou 550081, China
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lin Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| |
Collapse
|
3
|
Feng X, Xu W, Ji X, Liang J, Liu X, Liu X, Liu C, Qu G, Liu R. First Evidence of Novel Organothiophosphate Esters as Prevalent New Pollutants in Dust from Automotive Repair Shops Discovered by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22790-22798. [PMID: 39582259 DOI: 10.1021/acs.est.4c09683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The occurrence of organophosphorus compounds has garnered global concern due to their widespread production and potential environmental risks. Limited structural information has hindered a comprehensive understanding of their composition. By characteristic fragmentation-based nontarget analysis, the occurrence and composition of organothiophosphate esters (OTPEs), which are antiwear additives in lubricant oils that have received little attention previously, were investigated in dust from automotive repair shops and surrounding buildings. Fourteen OTPEs were tentatively identified, including four triarylphosphorothionates, six O,O-dialkyl phosphorothioates, and four O-alkyl O-alkyl sulfone phosphorothioates, among which four OTPEs were further confirmed by authentic standards or an industrial product. Triphenyl phosphorothioate (TPhPt) and tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168=S) were prevalently detected in automotive repair shops with median concentrations of 230 and 246 ng/g, respectively, closely comparable to triphenyl phosphate (TPhP, median concentration: 302 ng/g). O,O-Dihexyl phosphorothioate (DHPt), O,O-dioctyl phosphorothioate (DOPt), O-hexyl O-hexyl sulfone phosphorothioate (DHSPt), and O-octyl O-octyl sulfone phosphorothioate (DOSPt) were the abundant analogues in automotive repair shops with semiquantitative median concentrations in the range of 119-1.05 × 103 ng/g. Hierarchical cluster analysis showed that OTPEs exhibited similar distribution patterns across automotive repair shops, indicating that these chemicals had similar sources. Moreover, the concentrations of OTPEs were usually higher in automotive repair shops than that in surrounding buildings, suggesting a motor vehicle related emission source. To our knowledge, 12 out of the 14 detected OPTEs were reported in the environment for the first time. The discovery of these OTPEs expanded the scope of known organophosphorus pollutants, highlighting the potential contaminants of OTPEs from lubricant oils for automotive and industrial applications.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Chunguang Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Liu J, Gao F, Fu M, Wang L, Shen H, Hu J. Occurrence of legacy and emerging organophosphate flame retardants (OPFRs) on silicone wristbands: Comparison within couples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177154. [PMID: 39447892 DOI: 10.1016/j.scitotenv.2024.177154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Novel organophosphate flame retardants (OPFRs) are recently identified and highly detected in indoor dusts, but their personal exposure was not clear. Here, wristband was used to estimate non-dietary exposure to emerging OPFRs in comparison with legacy OPFRs in 93 adults in Beijing, China. Comparison of studies in wristband monitoring data showed a clear difference in profiles of legacy OPFRs between China and United States, where tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was usually the dominant OPFR in the United States, but triphenyl phosphate has the highest contribution to total OPFRs in China. Five emerging OPFRs, including diethylene glycol bis(bis(2-chloroisopropyl) phosphate) (DEGBBCPP) and bis(2-ethylhexyl) phenyl phosphate (BEHPP), were detected in above 45 % of wristbands. The median concentration of DEGBBCPP (2.2 ng/g) was about three times higher than TDCIPP (0.76 ng/g), a legacy chloro-OPFR. Both emerging and legacy OPFRs were significantly correlated within 40 pairs of couples, suggesting major exposure in their homes. Wristbands from husbands had significantly higher tris(2-butoxyethyl) phosphate (TBOEP) and DEGBBCPP, while 2-ethylhexyl diphenyl phosphate (EHDPP) was significantly higher in wives' bands, suggesting gender-related exposure sources for these OPFRs.
Collapse
Affiliation(s)
- Jiaying Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Min Fu
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Shi H, Li M, Li Y, Chen J, Wang C, Jin Y, Zhang K, Dai J, Zhao Y. Developmental toxicity of an emerging organophosphate ester Bis-(2-ethylhexyl)-phenyl phosphate on embryonic zebrafish: Comparison to 2-ethylhexyl diphenyl phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175645. [PMID: 39173757 DOI: 10.1016/j.scitotenv.2024.175645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Bis-(2-ethylhexyl)-phenyl phosphate (BEHPP) and its structural analog, 2-ethylhexyl diphenyl phosphate (EHDPP), are widely present in the environment. However, their toxic effects, particularly developmental toxicity, remain poorly understood. In this study, we evaluated the impacts of BEHPP and EHDPP on multiple developmental endpoints in zebrafish. BEHPP did not lead to mortality and malformations of embryos within the test concentration range (0.5-4.0 μM). In contrast, EHDPP had significant lethal effects, with an LC50 of 2.44 μM, and induced malformations, notably pericardial edema (PE), with an EC50 of 1.77 μM. In addition, BEHPP induced cardiac dysfunctions in embryos to a similar degree as EHDPP. Both stroke volume and cardiac output were significantly increased at BEHPP concentrations of 1.8 nM and above and at EHDPP concentrations of 4.3 nM and above. Transcriptomic analysis further corroborated the similar disturbance at the molecular level for both substances and revealed the Key Events (KEs) in the cardiac toxic regulation, including the focal adhesions, ECM-receptor interaction, cardiac muscle contraction, and the adrenergic signaling in cardiomyocytes. Taken together, the present study provided novel insights into the adverse effects of these emerging organophosphate esters and highlighted their potential risks to embryonic development in both ecosystems and humans.
Collapse
Affiliation(s)
- Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiheng Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Wang Y, Li X, Chen S, Yang J, Fang B, Chen H, Yao Y, Sun H. Structure-Dependent Distribution, Metabolism, and Toxicity Effects of Alkyl Organophosphate Esters in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17441-17453. [PMID: 39298521 DOI: 10.1021/acs.est.4c05523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
This study provides a comprehensive investigation into the structure-dependent uptake, distribution, biotransformation, and potential toxicity effects of alkyl organophosphate esters (OPEs) in hydroponic lettuce (Lactuca sativa L.). Trimethyl, triethyl, and tripropyl phosphates were readily absorbed and acropetally translocated, while tributyl, tripentyl, and trihexyl phosphates accumulated mainly in lateral roots. The acropetal translocation potential was negatively associated with log Kow values. Trimethyl and triethyl phosphates are less prone to biotransformation, while a total of 14 novel hydrolysis, hydroxylated, and conjugated metabolites were identified for other OPEs using nontarget analysis. The extent of hydroxylation decreases from tripropyl phosphate to trihexyl phosphate, but multiple hydroxylations occurred more frequently on longer chain OPEs. Further comparative toxicity test revealed that hydrolyzed and hydroxylated metabolites have stronger toxic effects on Ca2+-dependent protein kinases (CDPK) than their parent OPEs. Dibutyl 3-hydroxybutyl phosphate particularly induces upregulation of CDPK in lateral roots of lettuce, probably associated with adenine reduction that may play an important role in the self-defense and detoxification processes. This study contributes to understanding the uptake and transformation behaviors of alkyl OPEs as well as their associations with a toxic effect on lettuce. This emphasizes the necessary evaluation of the environmental risk of the use of OPEs, particularly focusing on their hydroxylated metabolites.
Collapse
Affiliation(s)
- Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Shen X, Li Q, Huang C, Xu C, Hu J. Diisodecyl phenyl phosphate promotes foam cell formation by antagonizing Liver X receptor alpha. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135048. [PMID: 38964041 DOI: 10.1016/j.jhazmat.2024.135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
While the cardiovascular system is a primary target of organophosphorus flame retardants (OPFRs), particularly aryl-OPFRs, it is still exclusive whether the diisodecyl phenyl phosphate (DIDPP), widely used and broadly present in the environment at high concentrations, elicits atherosclerosis effects. Liver X receptors (LXRs) play a direct role in regulating the formation of atherosclerotic lesions. This study was the first to demonstrate that DIDPP acts as an LXRα ligand and functions as an LXRα antagonist with a half-maximal inhibitory concentration of 16.2 μM. We showed that treatment of an in vitro macrophage model with 1 to 10 μM of DIDPP resulted in the downregulation of direct targets of LXRα, namely ABCA1, ABCG1 and SR-B1, thereby leading to a 7.9-13.2 % reduction in cholesterol efflux. This caused dose-dependent, 24.1-43.1 % increases in the staining intensity of foam cells in the macrophage model. This atherosclerotic effect of DIDPP was proposed to be due to its antagonism of LXRα activity, as DIDPP treatment did not alter cholesterol influx. In conclusion, the findings of this study demonstrate that exposure to DIDPP may be a risk factor for atherosclerosis due to the LXRα-antagonistic activity of DIDPP and its ubiquity in the environment.
Collapse
Affiliation(s)
- Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Cheng Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Li L, Gao F, Huang C, Hu J. Exposure levels and maternal transfer of emerging organophosphate flame retardants (OPFRs) in pregnant women: Comparison with traditional OPFRs. ENVIRONMENT INTERNATIONAL 2024; 191:108996. [PMID: 39241335 DOI: 10.1016/j.envint.2024.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Prenatal exposure to organophosphorus flame retardants (OPFRs) has been linked with adverse effects on reproductive health, and new OPFRs are continually emerging. In this study, emerging OPFRs, such as bis(2-ethylhexyl) phenyl phosphate (BEHPP), triamyl phosphate (TAP), tris(4-tert-butylphenyl) phosphate (T4tBPPP), oxydi-2,1-ethanediyl phosphoric acid tetrakis(2 chloro-1-methylethyl) ester (RDT905), cresyl diphenyl phosphate (CDP), and 2-isopropylphenyl diphenyl phosphate (2IPPDPP), were detected in 84 %, 100 %, 100 %, 52 %, 40 %, and 40 % of 25 decidua samples with average concentrations of 2.36, 6.21, 1.5, 2.6, 1.07, and 0.09 ng/g of dry weight (dw), respectively. Six of the aforementioned emerging OPFRs (BEHPP, T4tBPPP, RDT905, 2IPPDPP, CDP, and TAP) were simultaneously detected in paired chorionic villus samples, and their average concentrations were 11.3, 1.77, 3.64, 0.11, 0.58, and 3.34 ng/g, which were significantly higher than and positively correlated with those in decidua samples. The geometric mean concentration ratios between chorionic villus and decidua samples for BEHPP, T4tBPPP, RDT905, 2IPPDPP, CDP, and TAP were 4.02, 1.61, 1.73, 1.48, 0.82, and 0.69, respectively, consistent with transthyretin binding-dependent behavior. Prenatal exposure to such emerging OPFRs, especially for BEHPP with relatively high concentration and maternal transfer, is of high concern from the view of women's reproductive health.
Collapse
Affiliation(s)
- Linwan Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Gong S, Huang J, Wang J, Lv M, Deng Y, Su G. Seasonal variations of organophosphate esters (OPEs) in atmospheric deposition, and their contribution to soil loading. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134845. [PMID: 38876016 DOI: 10.1016/j.jhazmat.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate esters (OPEs) are ubiquitous in surface soil, and atmospheric deposition is considered to be the major pollution source. However, the research on the environmental transport behaviors of OPEs between atmospheric deposition and soil is very limited. In this study, we investigated the contamination levels and seasonal variations of OPEs in atmospheric deposition samples (n = 33) collected from an area of South China every month between February 2021 and January 2022, and evaluated the contribution of OPEs in atmospheric deposition to soil. The concentrations of ∑21target-OPEs ranged from 3670 to 18,600 ng/g dry weight (dw), with a mean of 8200 ng/g dw (median: 7600 ng/g dw). ∑21target-OPEs concentrations in all atmospheric deposition samples exhibited significant seasonal differences (p < 0.05) with higher concentrations observed in winter and lower concentrations in summer. Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was the most dominant target OPE in atmospheric deposition (4870 ng/g dw), and its seasonal variation trend was consistent with ∑21OPEs (p < 0.05). Simultaneously, in order to further explore the effect of atmospheric deposition on the levels of OPEs in soil of the study region, input fluxes and accumulation increments were estimated. Ten OPEs (including seven target OPEs and three suspect OPEs) exhibited high input flux means and accumulation increments, indicating that these compounds are prone to accumulate in soil via atmospheric deposition. It is noteworthy that the non-target phosphonate analyte bis(2,4-di-tert-butylphenyl) dibutyl ethane-1,2-diylbis(phosphonate) (BDTBPDEDBP) was detected at highest median concentration (8960 ng/g dw) in atmospheric deposition. Correspondingly, the average input flux and accumulation increment of BDTBPDEDBP were higher than those of all target and suspect OPEs. Collectively, this study quantifies the environmental transport behavior of OPEs between atmospheric deposition and soil, and provides new evidences for the fact that atmospheric deposition is the important pollution source of OPEs in soil.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Mingchao Lv
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Zhang Y, Lv Z, Yu XY, Zhang Y, Zhu L. Integration of Nontarget Screening and QSPR Models to Identify Novel Organophosphate Esters of High Priority in Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39087809 DOI: 10.1021/acs.est.4c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
With the development of large numbers of novel organophosphate esters (OPEs) alternatives, it is imperative to screen and identify those with high priority. In this study, surface water, biofilms, and freshwater snails were collected from the flow-in rivers of Taihu Lake Basin, China. Screened by target, suspect, and nontarget analysis, 11 traditional and 14 novel OPEs were identified, of which 5 OPEs were first discovered in Taihu Lake Basin. The OPE concentrations in surface water ranged from 196 to 2568 ng/L, with the primary homologue tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) being newly identified, which was likely derived from the transformation of tris(2,4-ditert-butylphenyl) phosphite. The majority of the newly identified OPEs displayed substantially higher bioaccumulation and biomagnification potentials in the biofilm-snail food chain than the traditional ones. Quantitative structure-property relationship models revealed both hydrophobicity and polarity influenced the bioaccumulation and biomagnification of the OPEs, while electrostatic attraction also had a contribution to the bioaccumulation in the biofilm. TDtBPP was determined as the utmost priority by toxicological priority index scheme, which integrated concentration, bioaccumulation, biomagnification, acute toxicity, and endocrine disrupting potential of the identified OPEs. These findings provide novel insights into the behaviors of OPEs and scientific bases for better management of high-risk pollutants in aquatic ecosystem.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiao-Yong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
11
|
Zhou R, Geng J, Jiang J, Shao B, Lin L, Mu T, Wang B, Liu T. Contamination of dairy products with tris(2,4-di-tert-butylphenyl) phosphite and implications for human exposure. Food Chem 2024; 448:139144. [PMID: 38579559 DOI: 10.1016/j.foodchem.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Tris(2,4-di-tert-butylphenyl) phosphite (AO168), an organophosphite antioxidant, can be oxidized to tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) during the production, processing, and application of plastics. AO168 = O can be further transformed to bis(2,4-di-tert-butylphenyl) phosphate and 2,4-di-tert-butylphenol. Here, we discovered the contamination of AO168 and its transformation products in dairy products for the first time. More samples contained AO168 (mean concentration: 8.78 ng/g wet weight [ww]), bis(2,4-di-tert-butylphenyl) phosphate (mean:11.1 ng/g ww) and 2,4-di-tert-butylphenol (mean: 46.8 ng/g ww) than AO168 = O (mean: 40.2 ng/g ww). The concentrations of AO168 and its transformation products were significantly correlated, and differed with the packaging material and storage conditions of the product. Estimated daily intakes (EDIs) of AO168 and its transformation products were calculated. Although the overall dietary risks were below one, transformation products accounted for 96.7% of the total hazard quotients. The high-exposure EDIs of total AO168 were above the threshold of toxicological concern (300 ng/kg bw/day), and deserve continual monitoring.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Li Lin
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Tongna Mu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ting Liu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
12
|
Liu Y, Li H, Yin Y, Zhao L, Zhou R, Cui Y, Wang Y, Wang P, Li X. Organophosphate esters in milk across thirteen countries from 2020 to 2023: Concentrations, sources, temporal trends and ToxPi priority to humans. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134632. [PMID: 38781852 DOI: 10.1016/j.jhazmat.2024.134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Recent increases in organophosphate ester (OPE) application have led to their widespread presence, yet little is known about their temporal trends in food. This study collected milk samples from 13 countries across three continents during 2020-2023, finding detectable OPEs in all samples (range: 2.25-19.7; median: 7.06 ng/g ww). Although no statistical temporal differences were found for the total OPEs during the 4-year sampling campaign, it was interesting to observe significant variations in the decreasing trend for Cl-OPEs and concentration variations for aryl-OPEs and alkyl-OPEs (p < 0.05), indicating changing OPE use patterns. Packaged milk exhibited significant higher OPE levels than those found in directly collected raw unpackaged milk, and milk with longer shelf-life showed higher OPE levels, revealing packaging material as a contamination source. No significant geographical differences were observed in milk across countries (p > 0.05), but Shandong Province, a major OPE production site in China, showed relatively higher OPE concentrations. The Monte Carlo simulation of estimated daily intakes indicated no exposure risk from OPEs through milk consumption. The molecular docking method was used to assess human hormone binding affinity with OPEs, amongst which aryl-OPEs had the highest binding energies. The Toxicological-Priority-Index method which integrated chemical property, detection frequency, risk quotients, hazardous quotients and endocrine-disrupting effects was employed to prioritize OPEs. Aryl-OPEs showed the highest scores, deserving attention in the future.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hongting Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Liang Zhao
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ruoxian Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yajing Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yongjun Wang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
13
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Hu J, Lyu Y, Li M, Wang L, Jiang Y, Sun W. Discovering Novel Organophosphorus Compounds in Wastewater Treatment Plant Effluents through Suspect Screening and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6402-6414. [PMID: 38546437 DOI: 10.1021/acs.est.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Limited knowledge on the structure of emerging organophosphorus compounds (OPCs) hampers our comprehensive understanding of their environmental occurrence and potential risks. Through suspect and nontarget screening, combining data-dependent acquisition, data-independent acquisition, and parallel reaction monitoring modes, we identified 60 OPCs (17 traditional and 43 emerging compounds) in effluents of 14 wastewater treatment plants (WWTPs) in Beijing and Qinghai, China. These OPCs comprise 26 organophosphate triesters, 17 organophosphate diesters, 6 organophosphonates, 7 organothiophosphate esters, and 4 other OPCs. Notably, 14 suspect OPCs were newly identified in WWTP effluents, and 16 nontarget OPCs were newly discovered in environmental matrices. Specifically, the cyclic phosphonate, (5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl dimethyl phosphonate P-oxide (PMMMPn), consistently appeared in all WWTP effluents, with semiquantitative concentrations ranging from 44.4 to 282 ng/L. Its analogue, di-PMMMPn, presented in 93% of wastewater samples. Compositional differences between the WWTP effluents of two cities were mainly attributed to emerging OPCs. Hazard and ecological risk assessment underscored the substantial contribution of chlorinated organophosphate esters and organothiophosphate esters to overall risks of OPCs in WWTP effluents. This study provides the most comprehensive OPC profiles in WWTP effluents to date, highlighting the need for further research on their occurrence, fate, and risks, particularly for chlorinated OPCs.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
15
|
Su H, Li J, Ye L, Su G. Establishment of compound database of emerging antioxidants and high-resolution mass spectrometry screening in lake sediment from Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28341-28352. [PMID: 38532220 DOI: 10.1007/s11356-024-32855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.
Collapse
Affiliation(s)
- Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
16
|
Belova L, Roggeman M, Ouden FD, Cleys P, Ait Bamai Y, Yin S, Zhao L, Bombeke J, Peters J, Berghmans P, Gys C, van Nuijs ALN, Poma G, Covaci A. Identification, semi-quantification and risk assessment of contaminants of emerging concern in Flemish indoor dust through high-resolution mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123475. [PMID: 38331241 DOI: 10.1016/j.envpol.2024.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Indoor dust can contribute substantially to human exposure to known and contaminants of emerging concern (CECs). Novel compounds with high structural variability and different homologues are frequently discovered through screening of the indoor environment, implying that constant monitoring is required. The present study aimed at the identification and semi-quantification of CECs in 46 indoor dust samples collected in Belgium by liquid chromatography high-resolution mass spectrometry. Samples were analyzed applying a targeted and suspect screening approach; the latter based on a suspect list containing >4000 CECs. This allowed the detection of a total of 55 CECs, 34 and 21 of which were identified with confidence level (CL) 1/2 or CL 3, respectively. Besides numerous known contaminants such as di(2-ethylhexyl) phthalate (DEHP), di(2-ethylhexyl) adipate (DEHA) or tris(2-butoxyethyl) phosphate (TBOEP) which were reported with detection frequencies (DFs) > 90%, several novel CECs were annotated. These included phthalates with differing side chains, such as decyl nonyl and decyl undecyl phthalate detected with DFs >80% and identified through the observation of characteristic neutral losses. Additionally, two novel organophosphate flame retardants not previously described in indoor dust, i.e. didecyl butoxyethoxyethyl phosphate (DDeBEEP) and bis(butoxyethyl) butyl phosphate (BBEBP), were identified. The implementation of a dedicated workflow provided semi-quantitative concentrations for a set of suspects. Such data obtained for novel phthalates were in the same order of magnitude as the concentrations observed for legacy phthalates indicating their high relevance for human exposure. From the semi-quantitative data, estimated daily intakes and resulting hazard quotients (HQs) were calculated to estimate the exposure and potential health effects. Neither of the obtained HQ values exceeded the risk threshold, indicating no expected adverse health effects.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| | | | | | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences (CEHS), Hokkaido University, Sapporo, Japan
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Zhao
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Jan Peters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Patrick Berghmans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Celine Gys
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Xiong Y, Liu J, Yu J, Chen D, Li T, Zhou F, Wu T, Liu X, Du Y. OPEs-ID: A software for non-targeted screening of organophosphate esters based on liquid chromatography-high-resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133275. [PMID: 38157816 DOI: 10.1016/j.jhazmat.2023.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers, presenting a potential threat to the environment and human health. To date, no automatic software exists for the nontargeted screening of OPEs. In this study, OPEs-ID, a user-friendly software, was developed for the identification of OPEs using liquid chromatography-high-resolution mass spectrometry. The main workflow of OPEs-ID included fragments-dependent precursor ion screening, elemental composition determination, extracted ion chromatograms (EIC) comparison, and molecular structure identification via MetFrag strategy. A mixture of 17 OPE standards was identified with an identification rate of 100% by OPEs-ID. OPEs-ID demonstrated a rate of 94.1% for correctly ranking within the top 1 candidate in a local database (41.2% in PubChem) for the 17 OPE standards, which remarkably improved the identification when compared to conventional in silico fragmentation algorithms. Using a pooled airborne fine particle sample (PM2.5), OPEs-ID could automatically retrieve 22 valid molecules with structure candidates. The detection frequencies of 9 newly identified OPEs were between 13% and 100% in the 32 PM2.5 samples. Their semi-quantification concentrations were comparable to those of some traditional OPEs. Overall, OPEs-ID offers a powerful tool to significantly enrich our understanding of the OPEs present in the environment.
Collapse
Affiliation(s)
- Yinran Xiong
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China; Chongqing Municipal Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060, China
| | - Jinyue Liu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Yu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengli Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ting Wu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yiping Du
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Cheng Y, Liu C, Lv Z, Liang Y, Xie Y, Wang C, Wan S, Leng X, Hu M, Zheng G. High-Resolution Mass Spectrometry Screening of Quaternary Ammonium Compounds (QACs) in Dust from Homes and Various Microenvironments in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38276914 DOI: 10.1021/acs.est.3c09942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 μg/g with a median concentration of 42.2 μg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 μg/g vs 58.3 μg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 μg/g vs 32.6 μg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China.
Collapse
Affiliation(s)
- Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Yang M, Ye L, Li J, Xing L, Zhao Y, Yang C, Su G. Uncovering the distribution patterns and origins of organophosphate esters (OPEs) in the Yellow River Estuary via high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167288. [PMID: 37742975 DOI: 10.1016/j.scitotenv.2023.167288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Limited information is available regarding the pollution status of organophosphate esters (OPEs) in the environment of the Yellow River estuary. Here, n = 51 sediment samples were collected from the Yellow River estuary in 2021, and further analyzed by using the integrated target, suspect, and feature fragment-dependent nontarget OPE screening strategy developed in our laboratory. Among the 30 target OPEs, 19 were detectable in at least one of the analyzed samples, with total concentrations (Σ19OPEs) ranging from of 41.4 to 1930 ng/g dry weight (dw). On the basis of an in-house suspect compound database, we further tentatively identified 11 suspect OPEs, and they were semi-quantified. Furthermore, four other interesting findings were observed and described as follows: 1) a statistically significant difference existed in the concentrations of OPEs in sediment samples between the lower reaches of the Yellow River (n = 5 samples), and the Yellow River estuary (n = 46 samples) (unpaired t-test, p < 0.001); 2) tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP) exhibited the greatest concentrations (ranging from 30.7 to 1920 ng/g dw) among all OPEs detected in the sediment samples; 3) samples from the north of the Yellow River estuary had higher OPE concentrations than those from the south; and 4) a suspect screening strategy allowed us to identify a novel OPE structure (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP) that exhibited a highly positive correlation relationship with TDTBPP (r = 0.749; p < 0.001). Overall, this study provided evidence that OPEs (especially TDTBPP) were ubiquitous in the sediment environment of the Yellow River estuary; thus, we emphasize that continuous monitoring of OPE pollution should be conducted in this region.
Collapse
Affiliation(s)
- Mengkai Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Liqun Xing
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
| | - Yanmin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenchen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
20
|
Chen Y, Xiao Q, Su Z, Yuan G, Ma H, Lu S, Wang L. Discovery and occurrence of organophosphorothioate esters in food contact plastics and foodstuffs from South China: Dietary intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167447. [PMID: 37788781 DOI: 10.1016/j.scitotenv.2023.167447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A recent study revealed the presence of non-pesticide organothiophosphate esters (OTPEs) - precursors to organophosphate esters (OPEs) contaminants - in river water. Since OPEs have demonstrated adverse reproductive outcomes in humans, this accentuates the urgency to explore the prevalence of non-pesticide OTPEs in other potential human exposure matrices. In this study, a nontarget screening method based on high-resolution mass spectrometry was used to identify OTPEs in food contact plastic (FCP) samples collected from South China. O,O,O-triphenyl phosphorothioate (TPhPt) and O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168 = S) were unequivocally identified (Level 1), while O,O-di(di-butylphenyl) O-methyl phosphorothioate (BDBPMPt) was tentatively identified (Level 2b, indicating probable structure based on diagnostic evidence). Among n = 70 FCP samples, AO168 = S emerged with the highest detection frequency and median concentration of 74 % and 111 ng/g, respectively. Significant Pearson correlations were observed in log-transformed peak areas of AO168 = S and TPhPt in FCPs with their respective oxons, respectively. Occurrences of AO168 = S and TPhPt were further investigated in n = 100 foodstuff samples using a market basket method. AO168 = S and TPhPt exhibited detection frequencies of 43 % and 44 % in all food items with mean concentrations of 2.17 ng/g wet weight (ww) (range: <0.53-67.8 ng/g ww) and 0.112 ng/g ww (range: <0.006-2.39 ng/g ww), respectively. The highest mean concentrations for AO168 = S and TPhPt were found in vegetables (4.62 ng/g ww) and oil (3.00 ng/g ww), respectively. The median estimated daily intakes (EDIs) of AO168 = S and TPhPt via diet were calculated as 10.4 and 1.51 ng/kg body weight/day, respectively. For AO168 = S, only meat and vegetables contributed to the median EDI, whereas for TPhPt, oil was identified as the principal contributor to the median EDI. This study for the first time evaluated human exposure to OTPEs via diet, providing new insights to overall human exposure to OPEs.
Collapse
Affiliation(s)
- Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
21
|
Ji X, Liang J, Wang Y, Liu X, Li Y, Liu Q, Liu R. Synthetic Antioxidants as Contaminants of Emerging Concern in Indoor Environments: Knowns and Unknowns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21550-21557. [PMID: 38085701 DOI: 10.1021/acs.est.3c06487] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Synthetic antioxidants, including synthetic phenolic antioxidants (SPAs), amine antioxidants (AAs), and organophosphite antioxidants (OPAs), are essential additives for preventing oxidative aging in various industrial and consumer products. Increasing attention has been paid to the environmental contamination caused by these chemicals, but our understanding of synthetic antioxidants is generally limited compared to other emerging contaminants such as plasticizers and flame retardants. Many people spend a significant portion (normally greater than 80%) of their time indoors, meaning that they experience widespread and persistent exposure to indoor contaminants. Thus, this Perspective focuses on the problem of synthetic antioxidants as indoor environmental contaminants. The wide application of antioxidants in commercial products and their demonstrated toxicity make them an important family of indoor contaminants of emerging concern. However, significant knowledge gaps still need to be bridged: novel synthetic antioxidants and their related transformation products need to be identified in indoor environments, different dust sampling strategies should be employed to evaluate human exposure to these contaminants, geographic scope and sampling scope of research on indoor contamination should be broadened, and the partition coefficients of synthetic antioxidants among different media need to be investigated.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qifan Liu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
22
|
Kutarna S, Chen W, Xiong Y, Liu R, Gong Y, Peng H. Screening of Indoor Transformation Products of Organophosphates and Organophosphites with an in Silico Spectral Database. ACS MEASUREMENT SCIENCE AU 2023; 3:469-478. [PMID: 38145028 PMCID: PMC10740125 DOI: 10.1021/acsmeasuresciau.3c00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Numerous transformation products are formed indoors, but they are outside the scope of current chemical databases. In this study, an in silico spectral database was established to screen previously unknown indoor transformation products of organophosphorus compounds (OPCs). An R package was developed that incorporated four indoor reactions to predict the transformation products of 712 seed OPCs. By further predicting MS2 fragments, an in silico spectral database was established consisting of 3509 OPCs and 28,812 MS2 fragments. With this database, 40 OPCs were tentatively detected in 23 indoor dust samples. This is the greatest number of OPCs reported to date indoors, among which two novel phosphonates were validated using standards. Twenty-four of the detected OPCs were predicted transformation products in which oxidation from organophosphites plays a major role. To confirm this, the in silico spectral database was expanded to include organophosphites for suspect screening in five types of preproduction plastics. A broad spectrum of 14 organophosphites was detected, with a particularly high abundance in polyvinyl chloride plastics and indoor end-user goods. This demonstrated the significant contribution of organophosphites to indoor organophosphates via oxidation, highlighting the strength of in silico spectral databases for the screening of unknown indoor transformation products.
Collapse
Affiliation(s)
- Steven Kutarna
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Wanzhen Chen
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ying Xiong
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Runzeng Liu
- Shandong
Key Laboratory of Environmental Processes and Health, School of Environmental
Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yufeng Gong
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
23
|
Xiao Q, Su Z, Wang L, Yuan G, Ma H, Lu S. Establishment of an Integrated Nontarget and Suspect Screening Workflow for Organophosphate Diesters (Di-OPEs) and Identification of Seven Previously Unknown Di-OPEs in Food Contact Plastics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20348-20358. [PMID: 38051668 DOI: 10.1021/acs.jafc.3c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, an innovative, integrated nontarget and suspect screening workflow was developed for identifying organophosphate diesters (di-OPEs) using high-resolution mass spectrometry. The workflow featured the utilization of 0.02% acetic acid as a mobile-phase additive, differentiated screening methods for alkyl and aryl di-OPEs, and a combination of electrospray negative ionization and positive ionization. Using this workflow, 18 di-OPEs were identified in the extracts of 75 food contact plastic (FCP) samples sourced from South China. Among these, six alkyl and one aryl di-OPEs were previously unknown (one unequivocal identification and six probable structures based on diagnostic evidence). (Semi)quantification revealed that bis(2,4-di-tert-butylphenyl) phosphate was the major di-OPE in FCPs, with a median concentration of 1079 ng/g (range: 23.4-158,414 ng/g). The migration efficiencies of di-OPEs from an FCP sample to four kinds of food simulants were between 2.58 and 54.3%. This study offered a useful workflow for the comprehensive profiling of di-OPEs in FCPs.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
24
|
Chen X, Liang X, Yang J, Yuan Y, Xiao Q, Su Z, Chen Y, Lu S, Wang L. High-resolution mass spectrometry-based screening and dietary intake assessment of organophosphate esters in foodstuffs from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167169. [PMID: 37730029 DOI: 10.1016/j.scitotenv.2023.167169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Organophosphate esters (OPEs) are a group of emerging contaminants with widespread environmental occurrence, yet research on their occurrence in foodstuffs is limited. We collected 100 foodstuff samples in South China using a market basket method, and analyzed food extracts for the presence of OPEs and organophosphite antioxidants (OPAs) by suspect and nontarget screening through high-resolution mass spectrometry. Our analysis resulted in the identification of 30 OPEs, comprised of 25 OPEs with a confidence level (CL) of 1 (unequivocal identification using standards) and five OPEs with CL = 2b (probable structure based on diagnostic evidence). Interestingly, 11 of these identified OPEs had not been previously reported in food. No OPA was identified. The occurrence of identified OPEs within the food samples was further investigated. The highest median concentration of OPEs in all food samples was reached by tris(2-chloroisopropyl) phosphate (TCPP) (1.55 ng/g ww, range < 0.74-12.0 ng/g wet weight (ww)). Cereals demonstrated the highest median concentration of the cumulative 30 OPEs. Tris(2-chloroethyl) phosphate (TCEP), TCPP, and triethyl phosphate (TEP) predominantly contributed to OPEs contamination in most food categories. Eight OPEs, namely TEP, tris(2-ethylhexyl) phosphate (TEHP), TCEP, triphenyl phosphate (TPhP), 2-ethylhexyl diphenyl phosphate (EHDPP), bis(2-ethylhexyl) phenyl phosphate (BEHPP), resorcinol bis(diphenyl phosphate) (RDP), and methyl diphenyl phosphate (MDPP) exhibited significantly higher concentrations in the processed group as compared to non-processed group, suggesting that food processing may result in contamination of these OPEs. The median sum of estimated dietary intake (ΣEDI) of all OPEs was determined to be 161 ng/kg body weight/day. Cereals (38.5 %) and vegetables (23.5 %) were the predominant food categories contributing to ΣEDI, and TEP (29.0 %), TCEP (20.2 %), and TCPP (18.3 %) were three major OPEs contributing to ΣEDI. This study for the first time offered a comprehensive overview of OPE species and revealed their occurrence in foodstuffs from South China.
Collapse
Affiliation(s)
- Xiwei Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinhan Liang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Junyu Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yinqian Yuan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
25
|
Wu F, Chen R, Li Y, Wan Y, Hu J. Unregistered Hexaphenoxycyclotriphosphazene and Its Metabolite Antagonize Retinoic Acid and Retinoic X Receptors and Cause Early Developmental Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20551-20558. [PMID: 38037888 DOI: 10.1021/acs.est.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hexaphenoxycyclotriphosphazene (HPCTP), an unregistered chemical, has been used as a substitute for triphenyl phosphate in flame retardants and plasticizers. Here, we identified its metabolite, pentaphenoxycyclotriphosphazene (PPCTP) in the liver of Japanese medaka exposed to HPCTP. When sexually mature female medaka were exposed to HPCTP at 37.0, 90.4, and 465.4 ng/L for 35 days, the HPCTP concentration (642.1-2531.9 ng/g lipid weight [lw]) in the embryos considerably exceeded that (34.7-298.1 ng/g lw) in the maternal muscle, indicating remarkable maternal transfer. During 0-9 days postfertilization, the HPCTP concentration in the embryos decreased continuously, while the PPCTP concentration increased. HPCTP and PPCTP antagonized the retinoic X receptor with 50% inhibitory concentrations (IC50) of 34.8 and 21.2 μM, respectively, and PPCTP also antagonized the retinoic acid receptor with IC50 of 2.79 μM. Such antagonistic activities may contribute to eye deformity (4.7% at 465.4 ng/L), body malformation (2.1% at 90.4 ng/L and 6.8% at 465.4 ng/L), and early developmental mortality (11.6-21.7% in all exposure groups) of the embryos. HPCTP was detected in a main tributary of the Yangtze River Basin. Thus, HPCTP poses a risk to wild fish populations, given the developmental toxicities associated with this chemical and its metabolite.
Collapse
Affiliation(s)
- Feifan Wu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Fuentes-Ferragud E, Miralles P, López A, Ibáñez M, Coscollà C. Non-target screening and human risk assessment for adult and child populations of semi-volatile organic compounds in residential indoor dust in Spain. CHEMOSPHERE 2023; 340:139879. [PMID: 37598947 DOI: 10.1016/j.chemosphere.2023.139879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
In this work, an analytical strategy based on non-target screening of semi-volatile organic compounds and subsequent risk assessment for adult and child populations has been conducted for the first time in household indoor dust samples in Spain. The methodology was based on a microwave-assisted extraction followed by gas chromatography coupled to high resolution mass spectrometry determination, using a hybrid quadrupole-orbitrap analyzer. The procedure was applied to 19 residential indoor dust samples, collected in different Spanish regions (namely Galicia, La Rioja, Catalunya, the Balearic Islands, and the Valencian Region). From the generated data, 4067 features were obtained, of which 474 compounds were tentatively identified with a high level of identification confidence (probable structure by library spectrum match or confirmed by reference standard), using a restrictive set of identification criteria. Most of the identified chemicals were natural products, metabolites, additives, and substances with industrial applications in the field of foods, cosmetics, pharmaceuticals, pesticides, and plastics. Finally, risk assessment was carried out by applying the threshold of toxicological concern approach, showing that risk to adult and child populations associated with the presence of the identified substances in the indoor dust was not expected, although the existence of indoor environments with conditions of potential risk cannot be discarded under a worst-case scenario approach.
Collapse
Affiliation(s)
- Esther Fuentes-Ferragud
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Av. Sos Baynat S/N, 12071, Castelló de la Plana, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain.
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Av. Sos Baynat S/N, 12071, Castelló de la Plana, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain
| |
Collapse
|
27
|
Ye L, Li J, Gong S, Herczegh SM, Zhang Q, Letcher RJ, Su G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132095. [PMID: 37523961 DOI: 10.1016/j.jhazmat.2023.132095] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The list of organophosphate esters (OPEs) reported in the environment continues to expand as evidenced by the increasing number of OPE studies in the literature. However, there remains a general dearth of information on more recently produced and used OPEs that are proving to be emerging environmental contaminants. The present review summarizes the available studies in a systematic framework of the current state of knowledge on the analysis, environmental fate, and behavior of emerging OPEs. This review also details future directions to better understand emerging OPEs in the environment. Firstly, we make recommendations that the current structural/practical abbreviations and naming of OPEs be revised and updated. A chemical database (CDB) containing 114 OPEs is presently established based on the suspect list from the current scientific literature. There are 12 established OPEs and a total of 83 emerging OPEs that have been reported in human and/or biota samples. Of the emerging OPEs more than 80% have nearly 100% detection frequencies in samples of certain environmental media including indoor air, wastewater treatment plants, sediment, and fish. In contrast to OPEs considered established contaminants, most emerging OPEs have been identified more recently due to the more pervasive use of high-resolution mass spectrometry (HRMS) based approaches and especially gas or liquid chromatography coupled with HRMS-based non-target analysis (NTA) of environmental sample fractions. Intentional/unintentional industrial use and non-industrial formation are sources of emerging OPEs in the environment. Predicted physical-chemical properties in silico of newer, molecularly larger and more oligomeric OPEs strongly suggest that some compounds such as bisphenol A diphenyl phosphate (BPA-DPP) are highly persistent, bioaccumulative and/or toxic. Limited information on laboratory-based toxicity data has shown that some emerging OPEs elicit harmful effects such as cytotoxicity, development toxicity, hepatotoxicity, and endocrine disruption in exposed humans and mammals. Established, and to a much lesser degree emerging OPEs, have also been shown to transform and degrade in biota and possibly alter their toxicological effects. Research on emerging OPE contaminants is presently limited and more study is warranted on sample analysis methods, source apportionment, transformation processes, environmental behavior, biomarkers of exposure and toxicity.
Collapse
Affiliation(s)
- Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
28
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Manz KE, Feerick A, Braun JM, Feng YL, Hall A, Koelmel J, Manzano C, Newton SR, Pennell KD, Place BJ, Godri Pollitt KJ, Prasse C, Young JA. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:524-536. [PMID: 37380877 PMCID: PMC10403360 DOI: 10.1038/s41370-023-00574-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).
Collapse
Affiliation(s)
- Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Anna Feerick
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amber Hall
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Carlos Manzano
- Department of Chemistry, Faculty of Science, University of Chile, Santiago, RM, Chile
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Seth R Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Place
- National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, 20899, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Carsten Prasse
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Risk Sciences and Public Policy Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joshua A Young
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
30
|
Li L, Chen R, Wang L, Jia Y, Shen X, Hu J. Discovery of Three Organothiophosphate Esters in River Water Using High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7254-7262. [PMID: 37092689 DOI: 10.1021/acs.est.2c09416] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Records of the environmental occurrence of organothiophosphate esters (OTPEs), which are used as flame retardants and food and industrial additives, are unavailable. In this study, we discovered three OTPEs, namely O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168═S), O-butyl O-(butyl-methylphenyl) O-(di-butylphenyl) phosphorothioate (BBMDBPt)/O,O-bis(dibutylphenyl) O-methyl phosphorothioate (BDBPMPt), and O-butyl O-ethyl O-hydrogen phosphorothioate (BEHPt), in the surface water of the Yangtze River Basin by applying a characteristic phosphorothioate fragment-directed high-resolution mass spectrometry method. Among the 17 water samples tested, the detection frequencies of AO168═S and BEHPt were 100% and that of BBMDBPt/BDBPMPt was 29%. The mean concentration of AO168═S was 56.9 ng/L (30.5-148 ng/L), and semi-quantitative analysis revealed that the mean concentrations of BEHPt and BBMDBPt/BDBPMPt were 17.2 ng/L (5.5-65.4 ng/L) and 0.8 ng/L (<the limit of quantification, LOQ, to 6.3 ng/L), respectively. Twelve organophosphate esters were also detected, of which the highest mean concentration was found for tris(2,4-di-tert-butylphenyl) phosphate (AO168═O, 366 ng/L), followed by triphenyl phosphate (84.3 ng/L), triethyl phosphate (19.3 ng/L), and tributyl phosphate (15.7 ng/L). The Spearman's correlation coefficient between AO168═S and AO168═O was 0.547 (p < 0.05), suggesting that AO168═S commonly transforms into AO168═O or that these chemicals have a similar source and behavior in the environment. Future studies are warranted to assess the potential toxicity, environmental behavior, and health risks posed by OTPEs.
Collapse
Affiliation(s)
- Linwan Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Xu C, Zhang C, Liu Y, Ma H, Wu F, Jia Y, Hu J. Amniogenesis in Human Amniotic Sac Embryoids after Exposures to Organophosphate Flame Retardants. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47007. [PMID: 37027338 PMCID: PMC10081692 DOI: 10.1289/ehp11958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Amniogenesis is a key event in biochemical pregnancy, and its failure may result in human embryonic death. However, whether and how environmental chemicals affect amniogenesis remain largely unknown. OBJECTIVES The objective of the present study was to screen chemicals that may disrupt amniogenesis in an amniotic sac embryoid model and to investigate the potential mechanism of amniogenesis failure, with a focus on organophosphate flame retardants (OPFRs). METHODS This study developed a high-throughput toxicity screening assay based on transcriptional activity of octamer-binding transcription factor 4 (Oct4). For the two positive OPFR hits with the strongest inhibitory activity, we used time-lapse and phase-contrast imaging to assess their effects on amniogenesis. Associated pathways were explored by RNA-sequencing and western blotting, and potential binding target protein was identified through a competitive binding experiment. RESULTS Eight positive hits exhibiting Oct4 expression were identified, with 2-ethylhexyl-diphenyl phosphate (EHDPP) and isodecyl diphenyl phosphate (IDDPP) showing the strongest inhibitory activity. EHDPP and IDDPP were found to disrupt the rosette-like structure of the amniotic sac or inhibit its development. Functional markers of squamous amniotic ectoderm and inner cell mass were also found disrupted in the EHDPP- and IDDPP-exposed embryoids. Mechanistically, embryoids exposed to each chemical exhibited abnormal accumulation of phosphorylated nonmuscle myosin (p-MLC-II) and were able to bind to integrin β1 (ITGβ1). CONCLUSION The amniotic sac embryoid models suggested that OPFRs disrupted amniogenesis likely by inhibiting the ITGβ1 pathway, thus providing direct in vitro evidence associating OPFRs with biochemical miscarriage. https://doi.org/10.1289/EHP11958.
Collapse
Affiliation(s)
- Chenke Xu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Chenhao Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yanan Liu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Feifan Wu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
Zhao A, Wei C, Xin Y, Wang X, Zhu Q, Xie J, Ma H, Xu J, Wang M. Pollution profiles, influencing factors, and source apportionment of target and suspect organophosphate esters in ambient air: A case study in a typical city of Northern China. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130373. [PMID: 36427485 DOI: 10.1016/j.jhazmat.2022.130373] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are attracting attention because they pose risks to biota, including humans. Little research has been performed into the environmental fates of OPEs in the atmosphere. Here, target/suspect OPEs were determined in 122 atmosphere samples (gas phase (n = 31), PM2.5 (n = 30), PM10 (n = 30), and total suspended particles (n = 31)) from a city in Northern China. Pollution profiles were established, influencing factors identified, and sources apportioned. We found 12 target OPEs and 29 suspect OPEs. The target and suspect OPE concentrations in the ambient air samples were 2.2-172.5 and 0.7-53.9 ng/m3, respectively. Tris(chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, and tris(2,4-di-t-butylphenyl) phosphate were the dominant OPEs in all samples. The OPEs were not in equilibrium, indicated by a multi-parameter linear free energy relationship model. The air quality index and OPE concentrations significantly correlated, indicating that OPE pollution is often more serious during weather with worse air quality. The target and suspect screening strategy and a positive matrix factorization model allowed OPE sources to be apportioned, improving our understanding of OPE sources. The four dominant sources were (1) construction, (2) indoor emissions, (3) the plastic industry and industrial activities, and (4) traffic emissions, textiles, and foam products.
Collapse
Affiliation(s)
- Ang Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chao Wei
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Yue Xin
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoli Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Qingqing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jixing Xie
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Mei Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China.
| |
Collapse
|
33
|
Wang L, Xiao Q, Yuan M, Lu S. Discovery of 18 Organophosphate Esters and 3 Organophosphite Antioxidants in Food Contact Materials Using Suspect and Nontarget Screening: Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17870-17879. [PMID: 36459588 DOI: 10.1021/acs.est.2c05888] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study of extracts of 100 food contact material (FCM) samples collected from South China, we identified 21 organophosphate esters (OPEs) by suspect screening and seven novel OPEs by characteristic fragments-based nontarget screening. Six organophosphite antioxidants (OPAs) were further identified using a suspect list derived from these identified OPEs. Of these compounds, 18 OPEs and 3 OPAs were found for the first time in the extracts of FCMs. (Semi-)quantification revealed that seven of the OPEs [triphenyl phosphate, tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), bis(2,4-di-tert-butylphenyl) methyl phosphate, (2,4-di-tert-butylphenyl)pentaerythritol phosphate, triethyl phosphate, 2-ethylhexyl-diphenyl phosphate, and trimethyl phosphate] and two of the OPAs [tris(2,4-di-tert-butylphenyl) phosphite (TDtBPPi) and pentabutylated triphenyl phosphite] were present in more than 50 FCM samples and that TDtBPP and TDtBPPi were the dominant OPE and OPA in FCMs, respectively [with median concentrations of 7260 ng/g (range: <8.50-103,879 ng/g) and 31,920 ng/g (range: <9.80-657,399 ng/g), respectively]. A migration test revealed that the migration efficiencies of compounds from a plastic coffee cup to food simulants in the cup increased as the ethanol/water ratio in the food simulants increased. This study significantly enhanced our understanding on the diversity and occurrences of OPEs and OPAs in FCMs used in China and their FCM-to-food migration risk.
Collapse
Affiliation(s)
- Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Mingdeng Yuan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
34
|
Wu Y, Gao S, Cui J, Zhang B, Zhu Z, Song Q, Zeng X, Liang Y, Yu Z. QuEChERS-based extraction and two-dimensional liquid chromatography-high resolution mass spectrometry for the determination of long chain chlorinated paraffins in sediments. J Chromatogr A 2022; 1684:463585. [DOI: 10.1016/j.chroma.2022.463585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
35
|
Gong S, Ren K, Ye L, Deng Y, Su G. Suspect and nontarget screening of known and unknown organophosphate esters (OPEs) in soil samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129273. [PMID: 35739788 DOI: 10.1016/j.jhazmat.2022.129273] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ninety-five soil samples (n = 95) were analyzed using an integrated suspect and non-target organophosphate ester (OPE) screening strategy. This suspect and non-target screening strategy allowed us to fully or tentatively identify 26 OPEs or OPE-like substances. Among these 26 newly identified contaminants, bisphenol A bis(diphenylphosphate) (BPABDP) exhibited the highest detection frequency of 83.2 %, with a concentration range of ND - 385 ng/g dry weight (dw). We also observed that BPABDP was significantly correlated with all other OPEs (p < 0.001 in all pairs), suggesting that BPABDP is widely used as a plasticizer and flame retardant in various commercial products. Another interesting finding was the discovery of four novel OPE structures with tentatively proposed chemical structures. Among these four non-target OPEs, (tert-butyl) phenyl bis(2,4-di-tert-butylphenyl) phosphate (TBPBDTBPP) shared a backbone structure very similar to that of the well-known OPE, tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP). Detection frequency of this newly discovered OPE was high, up to 69.5 %, and it was significantly correlated with isodecyl diphenyl phosphate (IDDP), BPABDP, diphenyl 2-isopropylphenyl phosphate (2IPPDPP), and tricresyl phosphate (TCrP, p < 0.05 in all pairs), respectively. This study reported the most comprehensive suite of OPEs in soil samples, and 16 out of them were recognized in soil for the first time.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Yirong Deng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China; Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Wang L, Jia Y, Hu J. Nine alkyl organophosphate triesters newly identified in house dust. ENVIRONMENT INTERNATIONAL 2022; 165:107333. [PMID: 35687946 DOI: 10.1016/j.envint.2022.107333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Owing to increasing concerns about the toxicity of alkyl organophosphate triesters (OPTEs), it is necessary to comprehensively profile alkyl OPTEs in the environment. In this study, we conducted a nontarget analysis using high-resolution mass spectrometry to newly identify alkyl OPTEs in house dust samples collected in North China. Data-independent acquisition mode directed by the characteristic phosphate fragment was used. Nine alkyl OPTEs were newly identified, namely tridecyl phosphate (TDeP), dioctyl tetradecyl phosphate, tridodecyl phosphate (TDoP), dioctyl butoxyethoxyethyl phosphate (DOBEEP), dioctyl (oxo)butoxypropyl phosphate (DOOBPP), dioctyl hydroxyethoxyethoxyethyl phosphate (DOHEEEP), didodecyl hydroxyethoxyethyl phosphate (DDoHEEP), tetradecyl dodecyl hydroxyethoxyethyl phosphate (TDoHEEP), and bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP). BBOEHEP was fully identified by comparison to an authentic standard, and the others were tentative structures (level 3). Eight of them (not DOHEEEP) exhibited detection frequencies between 89% and 100% in the 45 samples, and (semi-)quantitation revealed that their median concentrations and ranges were: TDoP (35.1 ng/g, 8.21-111 ng/g), DOBEEP (29.3 ng/g, 2.56-5191 ng/g), DOOBPP (13.6 ng/g, 1.38-2128 ng/g), BBOEHEP (5.79 ng/g, not detected (ND)-861 ng/g), TDeP (4.10 ng/g, 1.34-39.2 ng/g), DDoHEEP (3.26 ng/g, ND-41.5 ng/g), TDoHEEP (2.09 ng/g, ND-29.5 ng/g), and DOTP (0.93 ng/g, ND-169 ng/g). Moreover, TDeP, TDoP, DOBEEP, DOOBPP, and BBOEHEP were found in SRM2585 (standard house dust). These data revealed the widespread occurrence of alkyl OPTEs with high concentrations in the indoor environment.
Collapse
Affiliation(s)
- Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| |
Collapse
|
37
|
Ye L, Su G. Elevated concentration and high Diversity of organophosphate esters (OPEs) were Discovered in Sediment from Industrial, and E-Waste Recycling Areas. WATER RESEARCH 2022; 217:118362. [PMID: 35398804 DOI: 10.1016/j.watres.2022.118362] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Aquatic environments in industrial, and e-waste recycling areas might undergo severe contamination; however, there are few studies comprehensively assessing the pollution status of organophosphate esters (OPEs) in these two areas. Here, we applied both atmospheric pressure chemical ionization (APCI) and electron spray ionization (ESI) sources in our target, suspect, and functional group-dependent screening strategy, which enhanced the confidence for confirmation on precursor ions of OPEs. Then, n=53 sediment samples (30 from the industrial area, and 23 from the e-waste recycling area) were analyzed. Twenty-three out of 30 target OPEs were quantifiable in these analyzed samples. Total OPE concentrations (Σ30OPEs) in samples from e-waste recycling area range from 12.8 to 9250 ng/g dry weight (dw), that are statistically significantly greater (t-test, p < 0.001) than those from industrial area (25.1-5520 ng/g dw). Σ30OPEs in the sediments from industrial, or e-waste recycling area are statistically significantly greater (one-way ANOVA, p < 0.001) as compared to those (32.0-369 ng/g dw) from Taihu Lake in our previous study. In sediment from three areas, suspect and non-target analysis fully or tentatively identified other 20 OPEs. Four of them have not been recorded or registered in any of online chemical databases, and they are tentatively named as ((methoxy(phenoxy)phosphoryl)oxy)phenyl diphenyl phosphate (mPPODP), (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP), bis(dichlorophenyl) propane-1,3-diyl bis(hexylated phosphate) (BDCBHP), and bis(2-hexadecoxyethyl) ethyl phosphate (BHEPP). Overall, this study provided new insights regarding both analytical methodology and pollution status of OPEs, and highlights that elevated concentrations and high diversity of OPEs exist in sediments from industrial, and e-waste recycling areas.
Collapse
Affiliation(s)
- Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
38
|
Wang K, Zhu X, Liu Z, Wang J, Chen B. Occurrence and transformation of unknown organochlorines in the wastewater treatment plant using specific Fragment-Based method with LC Q-TOF MS. WATER RESEARCH 2022; 216:118372. [PMID: 35378449 DOI: 10.1016/j.watres.2022.118372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) are important point sources of organochlorines in surface waters. However, comprehensive molecular-level understanding of the occurrence and transformation of organochlorines in WWTPs remains elusive. In this study, a specific fragment-based screening method with SWATH of LC Q-TOF MS was established to better understand the molecular composition of organochlorines. This method effectively excludes the non-chlorinated signals and provides multi-dimensional information (e.g., retention time, precursor ion mass, product ions, and molecular formula) with one injection to identify the possible structures of organochlorines. Eighty-seven organochlorines were successfully screened in practical wastewater samples, where 8 chlorinated sulfonic acids, 4 chlorophenols, 4 chlorinated benzenediols, and 6 chlorinated benzoic acids were further (tentatively) identified. Relative abundance of organochlorines showed that their occurrence was associated with the treatment units. In particular, anaerobic biological and NaClO treatment units contributed to the formation of chlorinated by-products. Most chlorinated by-products were substituted with more chlorine atoms than organochlorines from the influent. Furthermore, the relative abundance indicated that the fate of organochlorines were related to their structures. Chlorinated benzene sulfonic acids would be removed by adsorption on activated sludge. Most chlorinated benzoic acids were refractory, but some were likely to be chlorinated during the anaerobic process. Chlorophenols and chlorinated benzenediols might undergo chlorination, dealkylation/C-O bond breakage, and bromination. Our study offers a new tool to gain molecular information on organochlorines in complex environmental samples and highlights the importance of molecular structures when evaluating the fate of organochlorines and managing effluent discharge to surrounding waters.
Collapse
Affiliation(s)
- Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Li J, Zhang Y, Bi R, Ye L, Su G. High-Resolution Mass Spectrometry Screening of Emerging Organophosphate Esters (OPEs) in Wild Fish: Occurrence, Species-Specific Difference, and Tissue-Specific Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:302-312. [PMID: 34898183 DOI: 10.1021/acs.est.1c05726] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a dearth of information regarding the pollution status of emerging organophosphate esters (OPEs) in wild fish. Here, we optimized and validated a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method, which was further applied for target, suspect, and nontarget screening of OPEs in n = 48 samples of wild fishes from Taihu Lake (eastern China). This integrated technique allows us to fully identify 20 OPEs, and 9 out of them are emerging OPEs detected in wild fish for the first time. Importantly, some of the emerging OPEs, i.e., tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), 4-tert-butylphenyl diphenyl phosphate (BPDP), and 2-isopropylphenyl diphenyl phosphate (IPDP), exhibited greater or at least comparable contamination levels as compared to traditional ones. There were no statistically significant interspecies (n = 6) differences regarding OPE concentrations. However, we observed significant differences on OPE concentrations among different tissues of silver carp (Hypophthalmichthys molitrix), for which the intestine has the highest OPE mean concentration (46.5 ng/g wet weight (ww)), followed by the liver (20.1 ng/g ww) ≈ brain (20.0 ng/g ww) > gill (14.8 ng/g ww) > muscle (11.4 ng/g ww). An interesting exception is IPDP, which presents an unexpectedly high concentration in the brain (0.510 ng/g ww). Collectively, this study expands our understanding of OPE contamination in wild fish and clearly shows that emerging TDtBPP, IPDP, and BPDP could play an equally important role as traditional OPEs in contribution of OPE pollution in wild fish samples.
Collapse
Affiliation(s)
- Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ruifeng Bi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
40
|
Zhang Y, Li J, Su G. Identifying Citric Acid Esters, a Class of Phthalate Substitute Plasticizers, in Indoor Dust via an Integrated Target, Suspect, and Characteristic Fragment-Dependent Screening Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13961-13970. [PMID: 34598436 DOI: 10.1021/acs.est.1c04402] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Citrate acid esters (CAEs) have been proposed as a class of phthalate substitute plasticizers; however, information on their occurrence in indoor environments is rare. By using liquid chromatography coupled with a quadrupole-Orbitrap mass spectrometer, we developed an integrated strategy that can be applied for target, suspect, and characteristic fragment-dependent screening of CAEs. In n = 50 indoor dust samples collected from Nanjing City (China), three CAEs, namely, acetyl tributyl citrate (ATBC; mean: 412,000 ng/g), tributyl citrate (TBC, 11,600 ng/g), and triethyl citrate (TEC, 10,900 ng/g), exhibited the greatest contamination levels. Total concentrations of CAEs (∑8CAEs) were statistically significantly (p < 0.01) greater than those of common organophosphate triesters (OPTEs), a class of ubiquitous contaminants in dust. Suspect and characteristic fragment-dependent screening (m/z 111.0078 ([C5H3O3]+) and m/z 129.0181 ([C5H5O4]+)) of CAEs were further conducted for the same batch of samples. We tentatively identified six novel CAEs, and the most frequent and abundant CAE was fully identified as tributyl aconitate (TBA). Statistically significant correlation relationships were observed on dust levels between TBA vs ATBC (r = 0.650; p < 0.01) and TBA vs TBC (r = 0.384; p < 0.01), suggesting their similar sources in dust samples.
Collapse
Affiliation(s)
- Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
41
|
Zhao S, Tian L, Zou Z, Liu X, Zhong G, Mo Y, Wang Y, Tian Y, Li J, Guo H, Zhang G. Probing Legacy and Alternative Flame Retardants in the Air of Chinese Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9450-9459. [PMID: 33754718 DOI: 10.1021/acs.est.0c07367] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An increasing number of alternative flame retardants (FRs) are being introduced, following the international bans on the use of polybrominated diphenyl ether (PBDE) commercial mixtures. FRs' production capacity has shifted from developed countries to developing countries, with China being the world's largest producer and consumer of FRs. These chemicals are also imported with e-waste to China. Therefore, it is important to understand the current status of regulated brominated FRs, their phase-out in China, and their replacement by alternatives. In this study, a broad suite of legacy and alternative FRs, including eight PBDEs, six novel brominated FRs (NBFRs), two dechlorane plus variants (DPS), and 12 organophosphate FRs (OPFRs) were evaluated in the air of 10 large Chinese cities in 2018. OPFRs are the most prevalent FRs in China, exhibiting a wide range of 1-612 ng/m3, which is several orders of magnitude higher than PBDEs (1-1827 pg/m3) and NBFRs (1-1428 pg/m3). BDE 209 and DBDPE are the most abundant compounds in brominated FRs (>80%). The North China Plain (NCP, excluding Beijing), Guangzhou, and Lanzhou appear to be three hotspots, although with different FR patterns. From 2013/2014 to 2018, levels of PBDEs, NBFRs, and DPs have significantly decreased, while that of OPFRs has increased by 1 order of magnitude. Gas-particle partitioning analysis showed that FRs could have not reached equilibrium, and the steady-state model is better suited for FRs with a higher log KOA (>13). To facilitate a more accurate FR assessment in fine particles, we suggest that, in addition to the conventional volumetric concentration (pg/m3), the mass-normalized concentration (pg/g PM2.5) could also be used.
Collapse
Affiliation(s)
- Shizhen Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Lele Tian
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Zehao Zou
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xin Liu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
42
|
Gong X, Zhang W, Zhang S, Wang Y, Zhang X, Lu Y, Sun H, Wang L. Organophosphite Antioxidants in Mulch Films Are Important Sources of Organophosphate Pollutants in Farmlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7398-7406. [PMID: 33754709 DOI: 10.1021/acs.est.0c08741] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organophosphite antioxidants (OPAs) are important auxiliary antioxidants used in plastic polymers and can be oxidized to organophosphate esters (OPEs) during production and processing. In this work, the occurrence of OPAs and OPEs in farmlands with or without mulch film applications was investigated. Six OPAs and five OPEs were detected, with the median concentrations of 2.66 ng/g (∑6OPAs) and 100 ng/g (∑5OPEs) in the film-mulching soil and 1.16 ng/g (∑6OPAs) and 47.9 ng/g (∑5OPEs) in the nonfilm-mulching soil, respectively. The oxidative derivative of AO168 (tris (2,4-di-tert-butylphenyl) phosphite), a typical OPA, AO168═O (tris (2,4-di-tert-butylphenyl) phosphate) was frequently detected in farmlands at the concentrations of 0-731 ng/g, which is much higher than that of the commercial OPEs (0-12.1 ng/g). This suggests that the oxidation derivatives of OPAs (OPAs═O) might be important OPE contaminants in soils. Mulch films could be their important source. According to the simulation migration experiment, the emission risk ranges of AO168 and AO168═O from mulch films to soils in China were estimated to be 3.96-87.6 and 10.5-95.3 tons/year, respectively, which were much higher than those of OPEs from sewage sludge applications. Simulation experiments also demonstrated that oxidation was the major pathway for OPAs in soils. OPAs with small substituent groups could be potential sources for organophosphate diesters. For the first time, the serious pollution of OPAs and OPAs═O in soils has been reported, and mulch films have been identified as their potential source.
Collapse
Affiliation(s)
- Xinying Gong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjun Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
43
|
Gong S, Deng Y, Ren K, Meng W, Ye L, Han C, Su G. Newly discovered bis-(2-ethylhexyl)-phenyl phosphate (BEHPP) was a ubiquitous contaminant in surface soils from a typical region, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145350. [PMID: 33515888 DOI: 10.1016/j.scitotenv.2021.145350] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The organophosphate ester (OPE), bis-(2-ethylhexyl)-phenyl phosphate (BEHPP), was recently identified as an abundant contaminant in indoor dust samples; however, its pollution status in other matrices remains unknown. Here, n = 95 surface soil samples were collected from a prefecture-level city (hereafter referred to as D city) in South China during 2019, and further analyzed to accurately determine the concentrations of BEHPP and eight other OPEs, including tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-isopropyl) phosphate (TDCIPP), triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphatetris (TBOEP), 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-ethylhexyl) phosphate (TEHP), 4-biphenylol diphenyl phosphate (BPDPP), and tris(2-biphenyl) phosphate (TBPHP). BEHPP was detected in all six functional areas (agricultural, scenic, commercial, industrial, and residential areas) of this region, and exhibited a high detection frequency of 67.4%, with a median concentration of 0.455 ng/g dry weight (DW range: nd-7.05 ng/g dw), regardless of the functional area. Samples from commercial, industrial, and residential areas contained significantly greater BEHPP concentrations than those from agricultural and scenic areas. Furthermore, strong and statistically significant correlations were observed between BEHPP and other OPE congeners, particularly for TEHP (r = 0.764, p < 0.001), TBOEP (r = 0.687, p < 0.001), and TPHP (r = 0.709, p < 0.001), indicating that BEHPP may have similar commercial applications and sources to these compounds in surface soil. Collectively, this study provides the first evidence of the presence of BEHPP in soil samples, and indicates that this emerging contaminant is widely distributed across all five functional areas of a typical region (South China).
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, PR China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Cunliang Han
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
44
|
Ye L, Meng W, Huang J, Li J, Su G. Establishment of a Target, Suspect, and Functional Group-Dependent Screening Strategy for Organophosphate Esters (OPEs): "Into the Unknown" of OPEs in the Sediment of Taihu Lake, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5836-5847. [PMID: 33891400 DOI: 10.1021/acs.est.0c07825] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Current environmental monitoring studies are generally confined to several target organophosphate esters (OPEs), and there is a lack of strategies for comprehensively screening all potential OPEs in environmental samples. Here, an effective and accurate strategy was developed for the target, suspect, and functional group-dependent screening of OPEs by the use of ultrahigh-performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), and this strategy was applied for the analysis of n = 74 sediment samples (including 23 surface sediment samples and 51 sediment core samples) collected from Taihu Lake (eastern China) in 2019. In these analyzed samples, we successfully identified n = 35 OPEs, and 23 of them were reported in this region for the first time. In addition, this strategy also presented other interesting findings, i.e., (1) OPE concentrations decreased with increasing distance from the coast of the lake; (2) the newly identified 3-hydroxyphenyl diphenyl phosphate (meta-OH-TPHP) was not statistically significantly correlated with triphenyl phosphate (TPHP; r = 0.02494, p = 0.9101) but with resorcinol bis(diphenyl phosphate) (RDP) (r = 0.9271, p < 0.0001) and three other OPEs; and (3) the summed concentrations of aryl OPEs (∑arylOPEs) in sediment core samples exhibited significantly increasing trends as the depth decreased. Collectively, this study provided an effective strategy that was successfully applied for comprehensive screening of OPEs in the sediments of Taihu Lake, and this strategy could have promising potential to be extended to other environmental matrices or samples.
Collapse
Affiliation(s)
- Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
45
|
Liu Q, Huang C, Li W, Fang Z, Le XC. Discovery and Identification of Arsenolipids Using a Precursor-Finder Strategy and Data-Independent Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3836-3844. [PMID: 33667084 PMCID: PMC8009509 DOI: 10.1021/acs.est.0c07175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Arsenolipids are a class of lipid-soluble arsenic species. They are present in seafoods and show high potentials of cytotoxicity and neurotoxicity. Hindered by traditional low-throughput analytical techniques, the characterization of arsenolipids is far from complete. Here, we report on a sensitive and high-throughput screening method for arsenolipids in krill oil, tuna fillets, hairtail heads, and kelp. We demonstrate the detection and identification of 23 arsenolipids, including novel arsenic-containing fatty acids (AsFAs), hydroxylated AsFAs, arsenic-containing hydrocarbons (AsHCs), hydroxylated AsHCs, thiolated trimethylarsinic acids, and arsenic-containing lysophosphatidylcholines not previously reported. The new method incorporated precursor ion scan (PIS) into data-independent acquisition. High-performance liquid chromatography (HPLC) electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-qToF-MS) was used to perform the sequential window acquisition of all theoretical spectra (SWATH). Comprehensive HPLC-MS and MS/MS data were further processed using a fragment-guided chromatographic computational program Precursorfinder developed here. Precursorfinder achieved efficient peak-picking, retention time comparison, hierarchical clustering, and wavelet coherence calculations to assemble fragment features with their target precursors. The identification of arsenolipids was supported by coeluting the HPLC-MS peaks detected with the characteristic fragments of arsenolipids. Method validation using available arsenic standards and the successful identification of previously unknown arsenolipids in seafood samples demonstrated the applicability of the method for environmental research.
Collapse
Affiliation(s)
- Qingqing Liu
- College
of Resources and Environment, Southwest
University, Tiansheng Road No.2, Beibei, Chongqing 400716, China
- Key
Laboratory of Luminescent and Real-Time Analytical System (Southwest
University), Chongqing Science and Technology Bureau, College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Chengzhi Huang
- Key
Laboratory of Luminescent and Real-Time Analytical System (Southwest
University), Chongqing Science and Technology Bureau, College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Wenhui Li
- College
of Electronic and Information Engineering, Southwest University, Tiansheng Road No.2, Beibei, Chongqing 400715, China
| | - Zhenzheng Fang
- College
of Resources and Environment, Southwest
University, Tiansheng Road No.2, Beibei, Chongqing 400716, China
| | - X. Chris Le
- Department
of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
46
|
Wang L, Kang Q, Jia Y, Li X, Hu J. Identification of Three Novel Chloroalkyl Organophosphate Triesters in House Dust Using Halogenation-Guided Nontarget Screening Combined with Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2482-2490. [PMID: 33502167 DOI: 10.1021/acs.est.0c07278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several haloalkyl organophosphate triester (OPTE) flame retardants have been restricted in some countries due to their potential health risks, but the usage of alternative haloalkyl OPTEs is of concern. In this study, we comprehensively screened for haloalkyl OPTEs in house dust using high-resolution mass spectrometry. Through halogenation-guided nontarget screening, a rare chloroalkyl OPTE, diethylene glycol bis(bis(2-chloroisopropyl)phosphate) (DEGBBCPP), was unequivocally identified (Level 1) in house dust of Beijing, North China. In addition, by screening a suspect list of 61 haloalkyl OPTEs from the EPA's CompTox Chemicals Dashboard, we tentatively identified diethylene glycol bis(bis(2-chloroethyl)phosphate) (DEGBBCEP) and ethylene bis[bis(2-chloroethyl)phosphate] (EBBCEP) (Level 2). DEGBBCPP was detected in all 45 house dust samples, and the median concentration was 98.4 ng/g (13.6-6217 ng/g), that is, approximately one-half that of tris(1,3-dichloro-2-propyl) phosphate, a traditional high-production chloroalkyl OPTE. The detection frequencies of DEGBBCEP and EBBCEP were 96% and 98%, respectively, but at relatively low median concentrations of 10.6 ng/g (from not detected to 152 ng/g) and 3.79 ng/g (from not detected to 130 ng/g), respectively. In standard house dust SRM2585, DEGBBCEP and EBBCEP were detected at 160 ± 15.7 and 1897 ± 38.8 ng/g, respectively, but DEGBBCPP was not detected. Future studies should evaluate the potential adverse health effects of these emerging flame retardants.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qiyue Kang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinjian Li
- Shandong Province Marine Rehabilitation Drugs and Special New Materials Engineering Laboratory, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|