1
|
Liu Y, Lv J, Guo C, Jin X, Zuo D, Xu J. Environmental behavior, risks, and management of antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40293178 DOI: 10.1039/d4em00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Antidepressants are increasingly detected in aquatic environments due to their incomplete removal in wastewater treatment, raising significant concerns about their ecological impacts. This review focuses on the three most widely used classes of antidepressants-tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). It systematically explores their physicochemical properties and how these properties influence their environmental fate, including sorption, mobility, and bioaccumulation in aquatic ecosystems. The sublethal effects of these antidepressants on aquatic organisms, particularly their impacts on behavior, reproduction, and development, are critically analyzed, highlighting potential threats to biodiversity and ecological stability. Key knowledge gaps are identified, including the long-term impacts of chronic low-dose exposure, the role of bioactive metabolites, and the combined toxicity of antidepressants with other contaminants. The review underscores the importance of advanced wastewater treatment technologies, environmentally mindful prescribing practices, and public awareness campaigns as essential measures to mitigate these risks. By addressing these challenges, this study aims to inform future research and guide sustainable environmental management strategies.
Collapse
Affiliation(s)
- Yingying Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiapei Lv
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Depeng Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Meppelink SM, Kolpin DW, LeFevre GH, Cwiertny DM, Givens CE, Green LA, Hubbard LE, Iwanowicz LR, Lane RF, Mianecki AL, O'Shea PS, Raines CD, Scott JW, Thompson DA, Wilson MC, Gray JL. Assessing microplastics, per- and polyfluoroalkyl substances (PFAS), and other contaminants of global concern in wadable agricultural streams in Iowa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40227795 DOI: 10.1039/d4em00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Microplastics, per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), pharmaceuticals and personal care products (PPCPs), and pesticides may lead to unintended environmental contamination through many pathways in multiple matrices. This statewide, multi-matrix study of contaminants of global concern (CGCs) in agricultural streams across Iowa (United States) is the first to examine multiple CGCs in water, bed sediment, and fish to understand their occurrence in small streams located in regions of intense agriculture activity. Iowa plays a pivotal role in agriculture, with more than 85% of Iowa's landscape devoted to agriculture, making it an ideal location for determining the prevalence of CGCs to provide critical baseline exposure data. Fifteen sites were sampled across a range of predominant land uses (e.g., poultry, swine); all sites had detections of microplastics in all matrices. Concentrations of PFAS varied but were detected in water and sediment; all fish had detections of perfluorooctanesulfonate (PFOS), a type of PFAS. More than 50% of water and bed sediment samples had detections of ARGs. The most frequently detected PPCP was metformin. No sites had a cumulative exposure activity ratio greater than 1.0 for chemical exposures; 13 sites were above the 0.001 precautionary threshold. Toxicity quotients calculated using Aquatic Life Benchmarks were below the 0.1 moderate risk threshold for chemical exposures for all but one site. For fish, all sites exceeded the moderate and high-risk thresholds proposed for microplastic particles for food dilution (both chronic and acute exposures) and all sites exceeded the microplastic moderate threshold proposed for chronic tissue translocation, and two sites exceeded the threshold for acute tissue translocation.
Collapse
Affiliation(s)
- Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Gregory H LeFevre
- Civil & Environmental Engineering, University of Iowa, Iowa City, Iowa 52240, USA.
| | - David M Cwiertny
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa 52240, USA
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, Lansing, Michigan 48911, USA
| | - Lee Ann Green
- Illinois Sustainable Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| | - Laura E Hubbard
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, USA
| | - Luke R Iwanowicz
- U.S. Department of Agriculture, Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - Rachael F Lane
- U.S. Geological Survey, Central Plains Water Science Center, Organic Geochemistry Research Laboratory, Lawrence, Kansas 66049, USA
| | - Alyssa L Mianecki
- Civil & Environmental Engineering, University of Iowa, Iowa City, Iowa 52240, USA.
| | - Padraic S O'Shea
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Clayton D Raines
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, West Virginia 25430, USA
| | - John W Scott
- Illinois Sustainable Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| | - Darrin A Thompson
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa 52240, USA
| | - Michaelah C Wilson
- U.S. Geological Survey, Central Plains Water Science Center, Organic Geochemistry Research Laboratory, Lawrence, Kansas 66049, USA
| | - James L Gray
- U.S. Geological Survey, Laboratory and Analytical Services Division, Lakewood, Colorado 80225, USA
| |
Collapse
|
3
|
Ehalt Macedo H, Lehner B, Nicell JA, Khan U, Klein EY. Antibiotics in the global river system arising from human consumption. PNAS NEXUS 2025; 4:pgaf096. [PMID: 40264851 PMCID: PMC12012769 DOI: 10.1093/pnasnexus/pgaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/26/2025] [Indexed: 04/24/2025]
Abstract
The presence of antibiotics in surface waters poses risks to aquatic ecosystems and human health due to their toxicity and influence on antimicrobial resistance. After human consumption and partial metabolism, antibiotic residues are excreted and undergo complex accumulation and decay processes along their pathway from wastewater to natural river systems. Here, we use a global contaminant fate model to estimate that of the annual human consumption of the 40 most used antibiotics (29,200 tonnes), 8,500 tonnes (29%) are released into the river system and 3,300 tonnes (11%) reach the world's oceans or inland sinks. Even when only domestic sources are considered (i.e. not including veterinary or industrial sources), we estimate that 6 million km of rivers worldwide are subject to total antibiotic concentrations in excess of thresholds that are protective of ecosystems and resistance promotion during low streamflow conditions, with the dominant contributors being amoxicillin, ceftriaxone, and cefixime. Therefore, it is of concern that human consumption alone represents a significant risk for rivers across all continents, with the largest extents found in Southeast Asia. Global antibiotic consumption has grown rapidly over the last 15 years and continues to increase, particularly in low- and middle-income countries, requiring new strategies to safeguard water quality and protect human and ecosystem health.
Collapse
Affiliation(s)
| | - Bernhard Lehner
- Department of Geography, McGill University, Montreal, QC, Canada H3A 0B9
| | - Jim A Nicell
- Department of Civil Engineering, McGill University, Montreal, QC, Canada H3A 0C3
| | - Usman Khan
- Department of Civil Engineering, McGill University, Montreal, QC, Canada H3A 0C3
| | - Eili Y Klein
- One Health Trust, Washington, DC 20015, USA
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Wada OZ, Olawade DB. Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review. CHEMOSPHERE 2025; 374:144153. [PMID: 39946938 DOI: 10.1016/j.chemosphere.2025.144153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 03/03/2025]
Abstract
Pharmaceuticals represent an emerging class of pollutants raising significant environmental health concerns, with their presence in freshwater systems linked to adverse aquatic ecosystem impacts and acceleration of antibiotic resistance development. This narrative review examines recent (2019-2024) pharmaceutical occurrences in freshwater globally, analyzes contamination pathways, evaluates compound-specific degradability, and assesses treatment technologies. Analysis revealed significant pharmaceutical contamination in freshwater sources across the six major continents, primarily entering through wastewater treatment plant effluents, groundwater recharge processes, and inadequate sanitation infrastructure/septic systems. Stark geographical disparities were observed, with regions lacking centralized treatment infrastructure showing multiple-fold higher concentrations, particularly in Africa and Latin America (exemplified by amoxicillin levels reaching 272,156 ng/L in Lagos, Nigeria). Pharmaceutical profiles reflected local healthcare patterns, with antimalarials and antiretrovirals prevalent in endemic regions. Globally prevalent compounds included caffeine, acetaminophen, ibuprofen, carbamazepine, sulfamethoxazole, amoxicillin, and diclofenac. While some compounds like caffeine showed relatively good removal in conventional treatment systems, their high usage rates overwhelmed treatment capacity. Others, particularly carbamazepine, demonstrated high recalcitrance to conventional treatment methods. Advanced oxidation processes and membrane technologies showed high removal efficiencies, while biochar-based systems emerged as promising, cost-effective alternatives using locally available resources. The findings underscore the need for both centralized and decentralized treatment approaches. Point-of-use technologies emerge as crucial immediate interventions for regions with inadequate infrastructure, while advanced technologies show promise for large-scale applications. The review emphasizes that municipalities should conduct systematic screening to identify locally prevalent pharmaceuticals, as treatment requirements vary significantly with local usage patterns, making a one-size-fits-all approach ineffective.
Collapse
Affiliation(s)
- Ojima Zechariah Wada
- College of Science and Engineering, Division of Sustainable Development, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar; Global Eco-Oasis Sustainable Initiative, Ibadan, Nigeria
| | - David Bamidele Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham, ME7 5NY, United Kingdom; Department of Public Health, York St John University, London, United Kingdom
| |
Collapse
|
5
|
Hu J, Lyu Y, Liu Y, You X, Helbling DE, Sun W. Incorporating Transformation Products for an Integrated Assessment of Antibiotic Pollution and Risks in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2815-2826. [PMID: 39884857 DOI: 10.1021/acs.est.4c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides. Notably, target quantification and machine-learning-assisted semiquantification revealed that the cumulative concentrations of TPs were higher than the cumulative concentrations of parent compounds, with average contributions of TPs ranging between 50.7 and 63.7%. Most downstream water samples were largely influenced by domestic sewage, as indicated by the significantly higher concentrations and proportions of TPs, as well as the greater diversity in their composition profiles compared to upstream and reservoir samples. Moreover, of the 78 TPs, 26.9, 67.9, and 6.4% exhibited greater persistence, mobility, or toxicity than their parent antibiotics, respectively. Sixteen macrolide TPs presented both greater ecological risks to aquatic organisms and higher resistance selection risks than their parent antibiotics. TPs contributed substantially to the overall antibiotic-related risks by an average of between 31.2 and 54.1%. This study highlights the occurrence of antibiotic TPs in river water, underscoring the need to consider TPs in comprehensive risk assessments of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yi Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xiuqi You
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
6
|
Zhang L, Du P, Zheng Q, Zhao M, Zhang R, Wang Z, Xu Z, Li X, Thai PK. Exposure to smoking and greenspace are associated with allergy medicine use - A study of wastewaterin 28 cities of China. ENVIRONMENT INTERNATIONAL 2025; 196:109291. [PMID: 39864136 DOI: 10.1016/j.envint.2025.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Allergies have become an important public health issue as their occurrence is reportedly on the rise around the world. Exposure to environmental factors is considered as trigger for allergic diseases. However, there was limited data on the importance of each factor, particularly in China. In this study, we aimed to investigate the association between occurrence of allergic diseases with exposure to multiple environmental factors via wastewater surveillance across 28 cities in China. The surveillance was conducted by measuring biomarkers of proxies of allergic diseases, i.e. antihistamines, asthma drug, and of smoking, i.e. cotinine in wastewater. Data of green space and air quality were also collected. We observed the level of antihistamine use were significantly associated with smoking, green space and pollen but not significant with air pollution. People in Northern China used more antihistamines than their compatriots in Southern China, an observation aligning with previous reporting of more allergy prevalence in the North than the South of China. Our study affirmed that in China smoking is responsible for a rise in allergy and asthma in the population. Meanwhile, selected sensitizing pollens (occurring during summer) could have stronger impact to trigger allergies than other pollens (occurring in winter).
Collapse
Affiliation(s)
- Lingrong Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China.
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Menglin Zhao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China
| | - Ruyue Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zeqiong Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
7
|
Govaert L, Klauschies T. Eco-phenotypic feedback loops differ in multistressor environments. Ecology 2025; 106:e4480. [PMID: 39592230 PMCID: PMC11733661 DOI: 10.1002/ecy.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024]
Abstract
Natural communities are exposed to multiple environmental stressors, which simultaneously impact the population and trait dynamics of the species embedded within these communities. Given that certain traits, such as body size, are known to rapidly respond to environmental change, and given that they can strongly influence the density of populations, this raises the question of whether the strength of the eco-phenotypic feedback loop depends on the environment, and whether stressful environments would enhance or disrupt this feedback or causal linkage. We use two competing freshwater ciliates-Colpidium striatum and Paramecium aurelia-and expose their populations to a full-factorial design of increasing salinity and temperature conditions as well as interspecific competition. We found that salinity, temperature, and competition significantly affected the density and cell size dynamics of both species. Cell size dynamics strongly influenced density dynamics; however, the strength of this eco-phenotypic feedback loop weakened in stressful conditions and with interspecific competition. Our study highlights the importance of studying eco-phenotypic dynamics in different environments comprising stressful abiotic conditions and species interactions.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary and Integrative EcologyLeibniz‐Institut für Gewässerökologie und Binnenfischerei (IGB)BerlinGermany
| | - Toni Klauschies
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and Biology, University of PotsdamPotsdamGermany
| |
Collapse
|
8
|
Chrapkiewicz K, Lipp AG, Barron LP, Barnes R, Roberts GG. Apportioning sources of chemicals of emerging concern along an urban river with inverse modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172827. [PMID: 38701930 DOI: 10.1016/j.scitotenv.2024.172827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Concentrations of chemicals in river water provide crucial information for assessing environmental exposure and risks from fertilisers, pesticides, heavy metals, illicit drugs, pathogens, pharmaceuticals, plastics and perfluorinated substances, among others. However, using concentrations measured along waterways (e.g., from grab samples) to identify sources of contaminants and understand their fate is complicated by mixing of chemicals downstream from diverse diffuse and point sources (e.g., agricultural runoff, wastewater treatment plants). To address this challenge, a novel inverse modelling approach is presented. Using waterway network topology, it quantifies locations and concentrations of contaminant sources upstream by inverting concentrations measured in water samples. It is computationally efficient and quantifies uncertainty. The approach is demonstrated for 13 contaminants of emerging concern (CECs) in an urban stream, the R. Wandle (London, UK). Mixing (the forward problem) was assumed to be conservative, and the location of sources and their concentrations were treated as unknowns to be identified. Calculated CEC source concentrations, which ranged from below detection limit (a few ng/L) up to 1μg/L, were used to predict concentrations of chemicals downstream. Using this approach, >90% of data were predicted within observational uncertainty. Principal component analysis of calculated source concentrations revealed signatures of two distinct chemical sources. First, pharmaceuticals and insecticides were associated with a subcatchment containing a known point source of treated effluent from a wastewater treatment plant. Second, illicit drugs and salicylic acid were associated with multiple sources, interpreted as input from untreated sewage including Combined Sewer Overflows (CSOs), misconnections, runoff and direct disposal throughout the catchment. Finally, a simple algorithmic approach that incorporates network topology was developed to design sampling campaigns to improve resolution of source apportionment. Inverse modelling of contaminant measurements can provide objective means to apportion sources in waterways from spot samples in catchments on a large scale.
Collapse
Affiliation(s)
- Kajetan Chrapkiewicz
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Alex G Lipp
- Merton College, University of Oxford, Merton Street, Oxford OX1 4JD, Oxfordshire, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environment Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Richard Barnes
- Lawrence Berkeley National Laboratory, Wang Hall, Berkeley, CA 94720, USA
| | - Gareth G Roberts
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
9
|
Biales AD, Bencic DC, Flick RW, Toth GP. Effects of Age and Exposure Duration on the Sensitivity of Early Life Stage Fathead Minnow (Pimephales promelas) to Waterborne Propranolol Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:807-820. [PMID: 38146914 PMCID: PMC11683668 DOI: 10.1002/etc.5814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Adam D. Biales
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - David C. Bencic
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert W. Flick
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Gregory P. Toth
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
10
|
Iturburu FG, Bertrand L, Soursou V, Scheibler EE, Calderon G, Altamirano JC, Amé MV, Menone ML, Picó Y. Pesticides and PPCPs in aquatic ecosystems of the andean central region: Occurrence and ecological risk assessment in the Uco valley. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133274. [PMID: 38128229 DOI: 10.1016/j.jhazmat.2023.133274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Uco valley (Mendoza, Argentina) suffers the concomitant effect of climate change, anthropic pressure and water scarcity. Moreover chemical pollution to aquatic ecosystems could be another pressuring factor, but it was not studied enough to the present. In this sense, the aim of this study was to assess the occurrence of pesticides, pharmaceuticals and personal care products (PPCPs) in aquatic ecosystems of the Uco Valley and to perform an ecological risk assessment (ERA). The presence of several insecticides (mainly neonicotinoids), herbicides (atrazine, diuron, metolachlor, terbutryn) and fungicides (strobilurins, triazolic and benzimidazolic compounds) in water samples in two seasons, related to crops like vineyards, garlic or fruit trees was associated to medium and high-risk probabilities for aquatic biota. Moreover, PPCPs of the group of non-steroidal anti-inflammatory drugs, parabens and bisphenol A were detected in all the samples and their calculated risk quotients also indicated a high risk. This is the first record of pesticides and PPCPs with an ERA in this growing agricultural oasis. Despite the importance of these findings in Uco Valley for decision makers in the region, this multilevel approach could bring a wide variety of tools for similar regions in with similar productive and environmental conditions, in order to afford actions to reach Sustainable Development Goals. SYNOPSIS: Aquatic ecosystems in arid mountain regions are threatened worldwide. This study reports relevant data about chemical pollution in Central Andes, which could be a useful tool to enhance SDGs' accomplishment.
Collapse
Affiliation(s)
- Fernando G Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 2550, 7600 Mar del Plata, Argentina.
| | - Lidwina Bertrand
- Laboratorio de Investigaciones en Contaminación Acuática y Ecotoxicología (LICAE), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Vasiliki Soursou
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV) University of Valencia, Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Erica E Scheibler
- Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CONICET-Universidad Nacional de Cuyo (UNCuyo)-Government of Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Gabriela Calderon
- Instituto del Hábitat y del Ambiente (IHAM), Facultad de Arquitectura, Urbanismo y Diseño (FAUD, UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorgelina C Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5500 (P.O. Box 331), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales (FCEN), UNCuyo, Padre Jorge Contreras 1300, 5502 (P.O. Box 331), Mendoza, Argentina
| | - María V Amé
- Laboratorio de Investigaciones en Contaminación Acuática y Ecotoxicología (LICAE), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 2550, 7600 Mar del Plata, Argentina
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV) University of Valencia, Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
11
|
Kidd KA, Backhaus T, Brodin T, Inostroza PA, McCallum ES. Environmental Risks of Pharmaceutical Mixtures in Aquatic Ecosystems: Reflections on a Decade of Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:549-558. [PMID: 37530415 DOI: 10.1002/etc.5726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) occur as variable mixtures in surface waters receiving discharges of human and animal wastes. A key question identified a decade ago is how to assess the effects of long-term exposures of these PPCP mixtures on nontarget organisms. We review the recent progress made on assessing the aquatic ecotoxicity of PPCP mixtures-with a focus on active pharmaceutical ingredients-and the challenges and research needs that remain. New knowledge has arisen from the use of whole-mixture testing combined with component-based approaches, and these studies show that mixtures often result in responses that meet the concentration addition model. However, such studies have mainly been done on individual species over shorter time periods, and longer-term, multispecies assessments remain limited. The recent use of targeted and nontargeted gene analyses has improved our understanding of the diverse pathways that are impacted, and there are promising new "read-across" methods that use mammalian data to predict toxicity in wildlife. Risk assessments remain challenging given the paucity of ecotoxicological and exposure data on PPCP mixtures. As such, the assessment of PPCP mixtures in aquatic environments should remain a priority given the potential for additive-as well as nontarget-effects in nontarget organisms. In addition, we need to improve our understanding of which species, life stages, and relevant endpoints are most sensitive to which types of PPCP mixtures and to expand our knowledge of environmental PPCP levels in regions of the globe that have been poorly studied to date. We recommend an increased use of new approach methodologies, in particular "omics," to advance our understanding of the molecular mechanics of mixture effects. Finally, we call for systematic research on the role of PPCP mixtures in the development of antimicrobial resistance. Environ Toxicol Chem 2024;43:549-558. © 2023 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
12
|
Xiong Y, Shi Q, Li J, Sy ND, Schlenk D, Gan J. Methylation and Demethylation of Emerging Contaminants in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1998-2006. [PMID: 38240245 DOI: 10.1021/acs.est.3c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many contaminants of emerging concern (CECs) have reactive functional groups and may readily undergo biotransformations, such as methylation and demethylation. These transformations have been reported to occur during human metabolism and wastewater treatment, leading to the propagation of CECs. When treated wastewater and biosolids are used in agriculture, CECs and their transformation products (TPs) are introduced into soil-plant systems. However, little is known about whether transformation cycles, such as methylation and demethylation, take place in higher plants and hence affect the fate of CECs in terrestrial ecosystems. In this study, we explored the interconversion between four common CECs (acetaminophen, diazepam, methylparaben, and naproxen) and their methylated or demethylated TPs in Arabidopsis thaliana cells and whole wheat seedlings. The methylation-demethylation cycle occurred in both plant models with demethylation generally taking place at a greater degree than methylation. The transformation rate of demethylation or methylation was dependent on the bond strength of R-CH3, with demethylation of methylparaben or methylation of acetaminophen being more pronounced. Although not explored in this study, these interconversions may exert influences on the behavior and biological activity of CECs, particularly in terrestrial ecosystems. The study findings demonstrated the prevalence of transformation cycles between CECs and their methylated or demethylated TPs in higher plants, contributing to a more complete understanding of risks of CECs in the human-wastewater-soil-plant continuum.
Collapse
Affiliation(s)
- Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jun Li
- School of the Earth Sciences and Resources, Chinese University of Geosciences, Beijing 100083, China
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
13
|
Barbieri MV, Chiron S. Relevance of photocatalytic redox transformations of selected pharmaceuticals in a copper- and iron-rich Mediterranean intermittent river. CHEMOSPHERE 2023; 339:139762. [PMID: 37557999 DOI: 10.1016/j.chemosphere.2023.139762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
This work aimed at investigating specific attenuation pathways of pharmaceuticals in copper- and iron-rich Mediterranean intermittent and sunlit rivers by combining lab- and field-scale studies. Poorly photodegradable and biodegradable compounds such as fluconazole, oxazepam and venlafaxine attenuated in two river stretches with short hydraulic residence times (<3 h). This result was assumed to be related to their capacity to interact with photoreactive free Cu2+ and Fe3+ or their associated oxides. Lab-scale photodegradation experiments under simulated solar irradiation revealed the beneficial impact of a mixture Cu2+ and colloidal iron hydroxides at environmental concentrations and at neutral pH on the pharmaceuticals photodegradation kinetic rate constants. These latter were consistent with the in-stream attenuation rate constants of targeted contaminants which ranged from 0.104 to 0.154 h-1. Further identification of phototransformation products by LC-HRMS highlighted reductive transformation pathways including reductive dehalogenation and hydrogenation reactions. Several TPs were found to be stable under irradiation and were detected in field monitoring, accordingly. This was ascribed to the formation of a Cu/Fe composite material under solar irradiation with photocatalytic properties. The role of Cu was to trap the electron in the conduction band of the iron-based photocatalyst, which promoted separation efficiency of electron-hole pairs as well as enhanced photoreduction processes at the expense of oxidation ones. Even though, these mechanisms have been reported in water treatment field for organic micropollutants removal, their significance was demonstrated for the first time in natural settings.
Collapse
Affiliation(s)
- Maria Vittoria Barbieri
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier cedex 5, France.
| | - Serge Chiron
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier cedex 5, France
| |
Collapse
|
14
|
Esser M, Hoggarth C, Baulch H, Challis JK, Xie Y, Giesy JP, Hecker M, Brinkmann M. Wastewater discharges alter microbial community composition in surface waters of the canadian prairies. CHEMOSPHERE 2023; 334:138991. [PMID: 37209843 DOI: 10.1016/j.chemosphere.2023.138991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Microbial communities are an important component of freshwater biodiversity that is threatened by anthropogenic impacts. Wastewater discharges pose a particular concern by being major sources of anthropogenic contaminants and microorganisms that may influence the composition of natural microbial communities. Nevertheless, the effects of wastewater treatment plant (WWTP) effluents on microbial communities remain largely unexplored. In this study, the effects of wastewater discharges on microbial communities from five different WWTPs in Southern Saskatchewan were investigated using rRNA gene metabarcoding. In parallel, nutrient levels and the presence of environmentally relevant organic pollutants were analyzed. Higher nutrient loads and pollutant concentrations resulted in significant changes in microbial community composition. The greatest changes were observed in Wascana Creek (Regina), which was found to be heavily polluted by wastewater discharges. Several taxa occurred in greater relative abundance in the wastewater-influenced stream segments, indicating anthropogenic pollution and eutrophication, especially taxa belonging to Proteobacteria, Bacteroidota, and Chlorophyta. Strong decreases were measured within the taxa Ciliphora, Diatomea, Dinoflagellata, Nematozoa, Ochrophyta, Protalveolata, and Rotifera. Across all sample types, a significant decline in sulfur bacteria was measured, implying changes in functional biodiversity. In addition, downstream of the Regina WWTP, an increase in cyanotoxins was detected which was correlated with a significant change in cyanobacterial community composition. Overall, these data suggest a causal relationship between anthropogenic pollution and changes in microbial communities, possibly reflecting an impairment of ecosystem health.
Collapse
Affiliation(s)
- Milena Esser
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Cameron Hoggarth
- Global Institute for Water Security, University of Saskatchewan, Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - Helen Baulch
- Global Institute for Water Security, University of Saskatchewan, Innovation Blvd, Saskatoon, SK S7N 3H5, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, 426 Auditorium Road East Lansing, MI, 48824, USA
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; Global Institute for Water Security, University of Saskatchewan, Innovation Blvd, Saskatoon, SK S7N 3H5, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
15
|
Hanamoto S, Yamamoto-Ikemoto R, Tanaka H. Spatiotemporal distribution of veterinary and human drugs and its predictability in Japanese catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161514. [PMID: 36634780 DOI: 10.1016/j.scitotenv.2023.161514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Little is known about the predictability of mass flows of veterinary drugs in Asian catchments, where effluent from livestock farms is a major source. We therefore conducted this study to understand the applicability and limitations of a population-based emission model, which assumed usage of veterinary and human drugs to be evenly distributed over the national livestock or human population throughout the year, and sources to be effluent discharges at livestock farms, households, and sewage treatment plants in Japanese catchments. We monitored five veterinary drugs (lincomycin, sulfamonomethoxine, tiamulin, tylosin, and tilmicosin), two human and livestock drugs (sulfamethoxazole and trimethoprim), two human drugs (carbamazepine and clarithromycin), and a metabolite (sulfapyridine) of a human drug once a month over 2 years in eight Japanese rivers which have active livestock farming in their catchments. Mass flows of carbamazepine and sulfapyridine were stable, while those of veterinary drugs fluctuated widely, especially sulfamonomethoxine and tilmicosin, whose 25 %-100 % ranges averaged 1.5 and 1.2 log units, respectively, attributable mainly to their usage patterns. The model accurately predicted mean mass flows of carbamazepine in the rivers with errors of <±0.3 log unit. Although it slightly to moderately overestimated those of the other four human-related compounds, the incorporation of an empirical correction factor, determined to minimize mean absolute error (MAE) among the rivers, substantially lowered their MAEs to <0.23 log units. However, the MAEs of the five veterinary drugs were as high as 0.42 (sulfamonomethoxine) to 0.60 (tiamulin) log units even with the coefficient, likely due mainly to the spatial distribution of their usage per capita. So as not to overlook spatiotemporal elevation of risks of veterinary drugs, a stochastic method should be applied in their management. This is the first study to assess the use of spatiotemporal homogeneity in usage per capita of veterinary drugs in Asian catchments.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryoko Yamamoto-Ikemoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
16
|
Zhu Y, Shen J, Guo M, Zheng H, Cao Y. Nitrogen-doped magnetic porous carbon material from low-cost anion-exchange resin as an efficient adsorbent for tetracyclines in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27315-27327. [PMID: 36378367 DOI: 10.1007/s11356-022-24093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, nitrogen-doped magnetic porous carbon material (N-MPC) was prepared through the high-temperature calcination of low-cost [Fe(CN)6]3--loaded anion-exchange resin, which was experimentally demonstrated to have significant adsorption performance for tetracycline (TC) in water. The N-MPC adsorbent with a large specific surface area (781.1 m2 g-1) was able to maintain excellent performance in a wide pH range from 4 to 10 or in high ionic strength solution. The adsorption of TC on N-MPC was found to be more consistent with the pseudo-second-order model and Langmuir adsorption model, and the maximum adsorption capacity (qm, cal) was calculated to be 603.4 mg g-1. As a recoverable magnetic adsorbent, the N-MPC remained a TC removal rate higher than 70% after four adsorption cycles. The adsorption mechanism was speculated on the basis of characterizations, where pore filling, hydrogen bonding interaction, and π-π electron donor-acceptor (EDA) interaction were crucial adsorption mechanisms. A variety of antibiotics were selected for adsorption, and excellent performance was found especially for TCs, indicating that the N-MPC can be used for the efficient removal of TCs from water.
Collapse
Affiliation(s)
- Yating Zhu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jia Shen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Haoling Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
17
|
Adhikari S, Kumar R, Driver EM, Bowes DA, Ng KT, Sosa-Hernandez JE, Oyervides-Muñoz MA, Melchor-Martínez EM, Martínez-Ruiz M, Coronado-Apodaca KG, Smith T, Bhatnagar A, Piper BJ, McCall KL, Parra-Saldivar R, Barron LP, Halden RU. Occurrence of Z-drugs, benzodiazepines, and ketamine in wastewater in the United States and Mexico during the Covid-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159351. [PMID: 36243065 PMCID: PMC9595400 DOI: 10.1016/j.scitotenv.2022.159351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/21/2023]
Abstract
Z-drugs, benzodiazepines and ketamine are classes of psychotropic drugs prescribed for treating anxiety, sleep disorders and depression with known side effects including an elevated risk of addiction and substance misuse. These drugs have a strong potential for misuse, which has escalated over the years and was hypothesized here to have been exacerbated during the COVID-19 pandemic. Wastewater-based epidemiology (WBE) constitutes a fast, easy, and relatively inexpensive approach to epidemiological surveys for understanding the incidence and frequency of uses of these drugs. In this study, we analyzed wastewater (n = 376) from 50 cities across the United States and Mexico from July to October 2020 to estimate drug use rates during a pandemic event. Both time and flow proportional composite and grab samples of untreated municipal wastewater were analyzed using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry to determine loadings of alprazolam, clonazepam, diazepam, ketamine, lorazepam, nordiazepam, temazepam, zolpidem, and zaleplon in raw wastewater. Simultaneously, prescription data of the aforementioned drugs were extracted from the Medicaid database from 2019 to 2021. Results showed high detection frequencies of ketamine (90 %), lorazepam (87 %), clonazepam (76 %) and temazepam (73 %) across both Mexico and United States and comparatively lower detection frequencies for zaleplon (22 %), zolpidem (9 %), nordiazepam (<1 %), diazepam (<1 %), and alprazolam (<1 %) during the pandemic. Average mass consumption rates, estimated using WBE and reported in units of mg/day/1000 persons, ranged between 62 (temazepam) and 1100 (clonazepam) in the United States. Results obtained from the Medicaid database also showed a significant change (p < 0.05) in the prescription volume between the first quarter of 2019 (before the pandemic) and the first quarter of 2021 (pandemic event) for alprazolam, clonazepam and lorazepam. Study results include the first detections of zaleplon and zolpidem in wastewater from North America.
Collapse
Affiliation(s)
- Sangeet Adhikari
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85281, AZ, USA; Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Rahul Kumar
- Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Erin M Driver
- Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Devin A Bowes
- Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Keng Tiong Ng
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Juan Eduardo Sosa-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Karina G Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, KY 40202, USA
| | - Brian J Piper
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; Center for Pharmacy Innovation and Outcomes, Forty Fort, PA 18704, USA
| | | | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Leon P Barron
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rolf U Halden
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85281, AZ, USA; Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA; OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ 85287, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
18
|
Meade EB, Iwanowicz LR, Neureuther N, LeFevre GH, Kolpin DW, Zhi H, Meppelink SM, Lane RF, Schmoldt A, Mohaimani A, Mueller O, Klaper RD. Transcriptome signatures of wastewater effluent exposure in larval zebrafish vary with seasonal mixture composition in an effluent-dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159069. [PMID: 36174698 DOI: 10.1016/j.scitotenv.2022.159069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plant (WWTP) effluent-dominated streams provide critical habitat for aquatic and terrestrial organisms but also continually expose them to complex mixtures of pharmaceuticals that can potentially impair growth, behavior, and reproduction. Currently, few biomarkers are available that relate to pharmaceutical-specific mechanisms of action. In the experiment reported in this paper, zebrafish (Danio rerio) embryos at two developmental stages were exposed to water samples from three sampling sites (0.1 km upstream of the outfall, at the effluent outfall, and 0.1 km below the outfall) during base-flow conditions from two months (January and May) of a temperate-region effluent-dominated stream containing a complex mixture of pharmaceuticals and other contaminants of emerging concern. RNA-sequencing identified potential biological impacts and biomarkers of WWTP effluent exposure that extend past traditional markers of endocrine disruption. Transcriptomics revealed changes to a wide range of biological functions and pathways including cardiac, neurological, visual, metabolic, and signaling pathways. These transcriptomic changes varied by developmental stage and displayed sensitivity to variable chemical composition and concentration of effluent, thus indicating a need for stage-specific biomarkers. Some transcripts are known to be associated with genes related to pharmaceuticals that were present in the collected samples. Although traditional biomarkers of endocrine disruption were not enriched in either month, a high estrogenicity signal was detected upstream in May and implicates the presence of unidentified chemical inputs not captured by the targeted chemical analysis. This work reveals associations between bioeffects of exposure, stage of development, and the composition of chemical mixtures in effluent-dominated surface water. The work underscores the importance of measuring effects beyond the endocrine system when assessing the impact of bioactive chemicals in WWTP effluent and identifies a need for non-targeted chemical analysis when bioeffects are not explained by the targeted analysis.
Collapse
Affiliation(s)
- Emma B Meade
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Nicklaus Neureuther
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rachael F Lane
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Dr, Lawrence, KS 66049, United States
| | - Angela Schmoldt
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Aurash Mohaimani
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Olaf Mueller
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States; Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States.
| |
Collapse
|
19
|
Masoner JR, Kolpin DW, Cozzarelli IM, Bradley PM, Arnall BB, Forshay KJ, Gray JL, Groves JF, Hladik ML, Hubbard LE, Iwanowicz LR, Jaeschke JB, Lane RF, McCleskey RB, Polite BF, Roth DA, Pettijohn MB, Wilson MC. Contaminant Exposure and Transport from Three Potential Reuse Waters within a Single Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1353-1365. [PMID: 36626647 PMCID: PMC9878729 DOI: 10.1021/acs.est.2c07372] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.
Collapse
Affiliation(s)
- Jason R. Masoner
- U.S.
Geological Survey, Oklahoma
City, Oklahoma 73116, United States
| | - Dana W. Kolpin
- U.S.
Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | - Brian B. Arnall
- Oklahoma
State University, Stillwater, Oklahoma 74078, United States
| | - Kenneth J. Forshay
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80225, United States
| | - Justin F. Groves
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | | | | | - Luke R. Iwanowicz
- U.S.
Geological Survey, Kearneysville, West Virginia, 25430, United States
| | | | - Rachael F. Lane
- U.S. Geological
Survey, Lawrence, Kansas 66049, United States
| | | | | | - David A. Roth
- U.S. Geological Survey, Boulder, Colorado 80303, United States
| | | | | |
Collapse
|
20
|
Xiong Y, Shi Q, Sy ND, Dennis NM, Schlenk D, Gan J. Influence of methylation and demethylation on plant uptake of emerging contaminants. ENVIRONMENT INTERNATIONAL 2022; 170:107612. [PMID: 36347118 PMCID: PMC9988749 DOI: 10.1016/j.envint.2022.107612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Contaminants of emerging concern (CECs) as well as their transformation products (TPs) are often found in treated wastewater and biosolids, raising concerns about their environmental risks. Small changes in chemical structure, such as the addition or loss of a methyl group, as the result of methylation or demethylation reaction, may significantly alter a chemical's physicochemical properties. In this study, we evaluated the difference in accumulation and translocation between four CECs and their respective methylated or demethylated derivatives in plant models. Suspended Arabidopsis thaliana cell culture and wheat seedlings were cultivated in nutrient solutions containing individual compounds at 1 mg/L. The methylated counterparts were generally more hydrophobic and showed comparative or greater accumulation in both plant models. For example, after 1 h incubation, methylparaben was found in A. thaliana cells at levels two orders of magnitude greater than demethylated methylparaben. In contrast, the demethylated counterparts, especially those with the addition of a hydroxyl group after demethylation, showed decreased plant uptake and limited translocation. For example, acetaminophen and demethylated naproxen were not detected in the shoots of wheat seedlings after hydroponic exposure. Results from this study suggest that common transformations such as methylation and demethylation may affect the environmental fate of CECs, and should be considered to obtain a more comprehensive understanding of risks of CECs in the environment.
Collapse
Affiliation(s)
- Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nicole M Dennis
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Manasfi R, Tadić D, Gomez O, Perez S, Chiron S. Persistence of N-oxides transformation products of tertiary amine drugs at lab and field studies. CHEMOSPHERE 2022; 309:136661. [PMID: 36191765 DOI: 10.1016/j.chemosphere.2022.136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
This work aimed at studying the formation and persistence of N-oxides transformation products (TPs) of tertiary amine drugs by combining laboratory and field studies relevant for surface water. A monitoring study using passive samplers was first achieved for assessing attenuation of selected pharmaceuticals and their related N-oxides and N-, O-dealkylated TPs (i.e., venlafaxine, tramadol, amisulpride and sulpiride) along a 1.7 km river stretch between two sampling sites. This study revealed the stability of tramadol-N-oxide, amisulpride-N-oxide and the fast dissipation of O-desmethylvenlafaxine-N-oxide, as well as the significance of N-oxidized TPs in comparison to N-dealkylated TPs and parent compounds in river. Lab-scale experiments were then implemented for a better understanding of their mechanisms of formation and degradation under aerobic water/sediment testing and under simulated solar photochemistry. N-oxidation reactions were always a minor transformation pathway under both degradation conditions with respect to N-and O-dealkylation reactions. The amount of generated N-oxides were similar for venlafaxine, tramadol and sulpiride and peaked in the 8.4-12.8% and <4% of their initial concentration (100 μg/L), during photodegradation and biodegradation experiments, respectively. Other transformation pathways such as hydroxylation and α-C-hydroxylation followed by oxidation to amide or dehydration were also identified. Investigated N-oxides TPs (except O-desmethylvenlafaxine-N-oxide) were found stable under solar photolysis and aerobic biodegradation with a very slight reverse reaction to parent compound observed for tramadol-N-oxide and amisulpride-N-oxide. Lab-scale degradation experiments were not able to anticipate the high occurrence levels of N-oxide compounds in the environment. This was most likely due to faster degradation kinetics and/or higher sorption to sediment of parent compounds and dealkylated TPs over N-oxide TPs, resulting in higher relative accumulation of the latter.
Collapse
Affiliation(s)
- R Manasfi
- UMR HydroSciences Montpellier, University of Montpellier - CNRS - IRD, 15 Avenue Ch, Flahault, 34093, Montpellier, Cedex 5, France
| | - D Tadić
- UMR HydroSciences Montpellier, University of Montpellier - CNRS - IRD, 15 Avenue Ch, Flahault, 34093, Montpellier, Cedex 5, France
| | - O Gomez
- ON HEALTH, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18, 08034, Barcelona, Spain
| | - S Perez
- ON HEALTH, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18, 08034, Barcelona, Spain
| | - S Chiron
- UMR HydroSciences Montpellier, University of Montpellier - CNRS - IRD, 15 Avenue Ch, Flahault, 34093, Montpellier, Cedex 5, France.
| |
Collapse
|
22
|
Schumann PG, Meade EB, Zhi H, LeFevre GH, Kolpin DW, Meppelink SM, Iwanowicz LR, Lane RF, Schmoldt A, Mueller O, Klaper RD. RNA-seq reveals potential gene biomarkers in fathead minnows ( Pimephales promelas) for exposure to treated wastewater effluent. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1708-1724. [PMID: 35938375 DOI: 10.1039/d2em00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluent greatly contributes to the generation of complex mixtures of contaminants of emerging concern (CECs) in aquatic environments which often contain neuropharmaceuticals and other emerging contaminants that may impact neurological function. However, there is a paucity of knowledge on the neurological impacts of these exposures to aquatic organisms. In this study, caged fathead minnows (Pimephales promelas) were exposed in situ in a temperate-region effluent-dominated stream (i.e., Muddy Creek) in Coralville, Iowa, USA upstream and downstream of a WWTP effluent outfall. The pharmaceutical composition of Muddy Creek was recently characterized by our team and revealed many compounds there were at a low microgram to high nanogram per liter concentration. Total RNA sequencing analysis on brain tissues revealed 280 gene isoforms that were significantly differentially expressed in male fish and 293 gene isoforms in female fish between the upstream and downstream site. Only 66 (13%) of such gene isoforms overlapped amongst male and female fish, demonstrating sex-dependent impacts on neuronal gene expression. By using a systems biology approach paired with functional enrichment analyses, we identified several potential novel gene biomarkers for treated effluent exposure that could be used to expand monitoring of environmental effects with respect to complex CEC mixtures. Lastly, when comparing the results of this study to those that relied on a single-compound approach, there was relatively little overlap in terms of gene-specific effects. This discovery brings into question the application of single-compound exposures in accurately characterizing environmental risks of complex mixtures and for gene biomarker identification.
Collapse
Affiliation(s)
| | - Emma B Meade
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| | - Hui Zhi
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Olaf Mueller
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
He Y, Zhang Y, Ju F. Metformin Contamination in Global Waters: Biotic and Abiotic Transformation, Byproduct Generation and Toxicity, and Evaluation as a Pharmaceutical Indicator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13528-13545. [PMID: 36107956 DOI: 10.1021/acs.est.2c02495] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is the first-line antidiabetic drug and one of the most prescribed medications worldwide. Because of its ubiquitous occurrence in global waters and demonstrated ecotoxicity, metformin, as with other pharmaceuticals, has become a concerning emerging contaminant. Metformin is subject to transformation, producing numerous problematic transformation byproducts (TPs). The occurrence, removal, and toxicity of metformin have been continually reviewed; yet, a comprehensive analysis of its transformation pathways, byproduct generation, and the associated change in adverse effects is lacking. In this review, we provide a critical overview of the transformation fate of metformin during water treatments and natural processes and compile the 32 organic TPs generated from biotic and abiotic pathways. These TPs occur in aquatic systems worldwide along with metformin. Enhanced toxicity of several TPs compared to metformin has been demonstrated through organism tests and necessitates the development of complete mineralization techniques for metformin and more attention on TP monitoring. We also assess the potential of metformin to indicate overall contamination of pharmaceuticals in aquatic environments, and compared to the previously acknowledged ones, metformin is found to be a more robust or comparable indicator of such overall pharmaceutical contamination. In addition, we provide insightful avenues for future research on metformin.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| |
Collapse
|
24
|
Zhi H, Webb DT, Schnoor JL, Kolpin DW, Klaper RD, Iwanowicz LR, LeFevre GH. Modeling Risk Dynamics of Contaminants of Emerging Concern in a Temperate-region Wastewater Effluent-dominated Stream. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022; 8:1408-1422. [PMID: 36061088 PMCID: PMC9431852 DOI: 10.1039/d2ew00157h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Wastewater effluent-dominated streams are becoming increasingly common worldwide, including in temperate regions, with potential impacts on ecological systems and drinking water sources. We recently quantified the occurrence/ spatiotemporal dynamics of pharmaceutical mixtures in a representative temperate-region wastewater effluent-dominated stream (Muddy Creek, Iowa) under baseflow conditions and characterized relevant fate processes. Herein, we quantified the ecological risk quotients (RQs) of 19 effluent-derived contaminants of emerging concern (CECs; including: 14 pharmaceuticals, 2 industrial chemicals, and 3 neonicotinoid insecticides) and 1 run-off-derived compound (atrazine) in the stream under baseflow conditions, and estimated the probabilistic risks of effluent-derived CECs under all-flow conditions (i.e., including runoff events) using stochastic risk modeling. We determined that 11 out of 20 CECs pose medium-to-high risks to local ecological systems (i.e., algae, invertebrates, fish) based on literature-derived acute effects under measured baseflow conditions. Stochastic risk modeling indicated decreased, but still problematic, risk of effluent-derived CECs (i.e., RQ≥0.1) under all-flow conditions when runoff events were included. Dilution of effluent-derived chemicals from storm flows thus only minimally decreased risk to aquatic biota in the effluent-dominated stream. We also modeled in-stream transport. Thirteen out of 14 pharmaceuticals persisted along the stream reach (median attenuation rate constant k<0.1 h-1) and entered the Iowa River at elevated concentrations. Predicted and measured concentrations in the drinking water treatment plant were below the human health benchmarks. This study demonstrates the application of probabilistic risk assessments for effluent-derived CECs in a representative effluent-dominated stream under variable flow conditions (when measurements are less practical) and provides an enhanced prediction tool transferable to other effluent-dominated systems.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Danielle T. Webb
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Jerald L. Schnoor
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W. Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rebecca D. Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R. Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Gregory H. LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
- Corresponding Author:; Phone: 319-335-5655; 4105 Seamans Center for Engineering, University of Iowa, Iowa City Iowa, United States
| |
Collapse
|
25
|
Shi Q, Xiong Y, Kaur P, Sy ND, Gan J. Contaminants of emerging concerns in recycled water: Fate and risks in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152527. [PMID: 34953850 DOI: 10.1016/j.scitotenv.2021.152527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Recycled water (RW) has been increasingly recognized as a valuable source of water for alleviating the global water crisis. When RW is used for agricultural irrigation, many contaminants of emerging concern (CECs) are introduced into the agroecosystem. The ubiquity of CECs in field soil, combined with the toxic, carcinogenic, or endocrine-disrupting nature of some CECs, raises significant concerns over their potential risks to the environment and human health. Understanding such risks and delineating the fate processes of CECs in the water-soil-plant continuum contributes to the safe reuse of RW in agriculture. This review summarizes recent findings and provides an overview of CECs in the water-soil-plant continuum, including their occurrence in RW and irrigated soil, fate processes in agricultural soil, offsite transport including runoff and leaching, and plant uptake, metabolism, and accumulation. The potential ecological and human health risks of CECs are also discussed. Studies to date have shown limited accumulation of CECs in irrigated soils and plants, which may be attributed to multiple attenuation processes in the rhizosphere and plant, suggesting minimal health risks from RW-fed food crops. However, our collective understanding of CECs is rather limited and knowledge of their offsite movement and plant accumulation is particularly scarce for field conditions. Given a large number of CECs and their occurrence at trace levels, it is urgent to develop strategies to prioritize CECs so that future research efforts are focused on CECs with elevated risks for offsite contamination or plant accumulation. Irrigating specific crops such as feed crops and fruit trees may be a viable option to further minimize potential plant accumulation under field conditions. To promote the beneficial reuse of RW in agriculture, it is essential to understand the human health and ecological risks imposed by CEC mixtures and metabolites.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
26
|
Cai J, Niu B, Xie Q, Lu N, Huang S, Zhao G, Zhao J. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2917-2935. [PMID: 35148082 DOI: 10.1021/acs.est.1c07824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characteristic emerging pollutants at low concentration have raised much attention for causing a bottleneck in water remediation, especially in complex water matrices where high concentration of interferents coexist. In the future, tailored treatment methods are therefore of increasing significance for accurate removal of target pollutants in different water matrices. This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability. Thus, typical approaches and fundamentals to achieve selectivity are subsequently summarized including their mechanism, superiority and inferior position, application scope, improvement method and the bottlenecks. The results show that different methods may be applicable to certain conditions and target pollutants. To better understand the mechanism of each selective method and further select the appropriate method, advanced methods for qualitative and quantitative characterization of selectivity are presented. The processes of adsorption, interaction, electron transfer, and bond breaking are discussed. Some comparable selective quantitative methods are helpful for promoting the development of related fields. The research framework of selectivity removal and its fundamentals are established. Presently, although continuous advances and remarkable achievements have been attained in the selective removal of characteristic organic pollutants, there are still various substantial challenges and opportunities. It is hopeful to inspire the researches on the new generation of water and wastewater treatment technology, which can selectively and preferentially treat characteristic pollutants, and establish a reliable research framework to lead the direction of environmental science.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Qihao Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Ning Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Shuyu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
27
|
Millar EN, Surette MG, Kidd KA. Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151156. [PMID: 34687704 DOI: 10.1016/j.scitotenv.2021.151156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 05/15/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) contain numerous contaminants, including antimicrobials, that could affect the composition of the beneficial bacterial communities associated with host aquatic organisms. There is also potential for these effects to transfer to terrestrial predators. Riparian spiders and five families of aquatic macroinvertebrates were collected from sites upstream and downstream of two WWTPs, Waterloo and Kitchener, discharging to the Grand River, Ontario, Canada. Whole-body microbiota were analyzed following the extraction, PCR amplification, and sequencing of bacterial DNA using the V3-V4 hypervariable regions of the 16S rRNA genetic barcode. Changes in the relative abundance of major microbiome phyla were observed in all downstream aquatic insects except Hydropsychidae caddisflies, which exhibited little site variation. Shannon alpha diversity differed among sites for Tetragnathidae spiders, Perlidae, Hydropsychidae, and Heptageniidae. Downstream of the Waterloo WWTP alpha diversity decreased in spiders, while downstream of the Kitchener WWTP this measure decreased in Perlidae and increased in spiders. Bray-Curtis beta diversity was dissimilar among sites in all invertebrate taxa; upstream sites differed from those downstream of Waterloo in spiders, Perlidae, and Hydropsychidae, and from those downstream of Kitchener in spiders, Perlidae, and Hydropsychidae. Finally, effluent-derived bacteria were found in the microbiomes of downstream spiders and aquatic insects and not upstream. Overall, results indicated that the microbiomes of invertebrates collected downstream differed from those collected upstream of WWTPs, which has implications for altered host health and transport of WWTP-derived bacteria through aquatic ecosystems.
Collapse
Affiliation(s)
- Elise N Millar
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
28
|
Huang F, Chen L, Zhang C, Liu F, Li H. Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150636. [PMID: 34592302 DOI: 10.1016/j.scitotenv.2021.150636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The potential adverse impacts of antibiotic contamination on environmental quality are generating increasing concern. Given that an alarming amount and variety of antibiotics have been used in China, a list of priority antibiotics is urgently needed to develop regulatory frameworks to control antibiotic use and monitor environmental pollution. This study established a new method of ranking priority antibiotics based on their prevalence (Pv), occurrence (O), persistence, and bioaccumulation, and toxicity (PBT) in the environment. The Pv and O criteria were weighted and quantified using the decennial national screening datasets (>15,000 concentration values for 105 candidate antibiotics in eight environmental compartments), and quantitative structure-activity relationships were used to estimate PBT values. A total of 26 high priority antibiotics were identified using the PvOPBT method, including 8 quinolones, 5 sulfonamides, 5 macrolides, 4 tetracyclines, 3 from other classes, and 1 unclassified antibiotic. For individual antibiotic classes, the β-lactams and aminoglycosides were ranked from no priority to low priority, whereas the macrolides and tetracyclines were ranked from medium to high priority. Although the PvOPBT ranking scores for the aqueous and solid phases demonstrated an apparent difference for some candidate antibiotics, eighteen antibiotics were ranked as high priority in both aqueous phases and solid phases and are suggested as the top priorities worthy of immediate attention. These top priority antibiotics are primarily utilized in animal husbandry within China. Therefore, urgent action is needed to limit the use of these top priority antibiotics in the animal industry.
Collapse
Affiliation(s)
- Fuyang Huang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Linpeng Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chong Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States of America.
| |
Collapse
|
29
|
Hubbard LE, Kolpin DW, Givens CE, Blackwell BR, Bradley PM, Gray JL, Lane RF, Masoner JR, McCleskey RB, Romanok KM, Sandstrom MW, Smalling KL, Villeneuve DL. Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1028-1040. [PMID: 34967600 PMCID: PMC9219000 DOI: 10.1021/acs.est.1c06821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 μg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 μg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 μg L-1; clothianidin TMG, 2.02 μg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.
Collapse
Affiliation(s)
| | - Dana W. Kolpin
- U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Brett R. Blackwell
- U.S. Environmental Protection Agency, Duluth, Minnesota 55084, United States
| | - Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina 29210, United States
| | - James L. Gray
- U.S. Geological Survey, Lakewood, Colorado 80225, United States
| | - Rachael F. Lane
- U.S. Geological Survey, Lawrence, Kansas 66049, United States
| | - Jason R. Masoner
- U.S. Geological Survey, Oklahoma City, Oklahoma 73116, United States
| | | | | | | | - Kelly L. Smalling
- U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | |
Collapse
|
30
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
31
|
Singh RR, Lai A, Krier J, Kondić T, Diderich P, Schymanski EL. Occurrence and Distribution of Pharmaceuticals and Their Transformation Products in Luxembourgish Surface Waters. ACS ENVIRONMENTAL AU 2021; 1:58-70. [PMID: 37101936 PMCID: PMC10114791 DOI: 10.1021/acsenvironau.1c00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Pharmaceuticals and their transformation products (TPs) are continuously released into the aquatic environment via anthropogenic activity. To expand knowledge on the presence of pharmaceuticals and their known TPs in Luxembourgish rivers, 92 samples collected during routine monitoring events between 2019 and 2020 were investigated using nontarget analysis. Water samples were concentrated using solid-phase extraction and then analyzed using liquid chromatography coupled to a high-resolution mass spectrometer. Suspect screening was performed using several open source computational tools and resources including Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/), MetFrag (https://msbi.ipb-halle.de/MetFrag/), PubChemLite (https://zenodo.org/record/4432124), and MassBank (https://massbank.eu/MassBank/). A total of 94 pharmaceuticals, 88 confirmed at a level 1 confidence (86 of which could be quantified, two compounds too low to be quantified) and six identified at level 2a, were found to be present in Luxembourg rivers. Pharmaceutical TPs (12) were also found at a level 2a confidence. The pharmaceuticals were present at median concentrations up to 214 ng/L, with caffeine having a median concentration of 1424 ng/L. Antihypertensive drugs (15), psychoactive drugs (15), and antimicrobials (eight) were the most detected groups of pharmaceuticals. A spatiotemporal analysis of the data revealed areas with higher concentrations of the pharmaceuticals, as well as differences in pharmaceutical concentrations between 2019 and 2020. The results of this work will help guide activities for improving water management in the country and set baseline data for continuous monitoring and screening efforts, as well as for further open data and software developments.
Collapse
Affiliation(s)
- Randolph R. Singh
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- IFREMER
(Institut Français de Recherche pour l’Exploitation
de la Mer), Laboratoire Biogéochimie
des Contaminants Organiques, Rue de l’Ile d’Yeu, BP 21105, Nantes 44311 Cedex 3, France
| | - Adelene Lai
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Institute
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany
| | - Jessy Krier
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| | - Todor Kondić
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| | - Philippe Diderich
- Administration
de la gestion de l’eau, Ministère
de l’Environnement, du Climat et du Développement durable, L-2918 Luxembourg, Luxembourg
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
32
|
Zhi H, Mianecki AL, Kolpin DW, Klaper RD, Iwanowicz LR, LeFevre GH. Tandem field and laboratory approaches to quantify attenuation mechanisms of pharmaceutical and pharmaceutical transformation products in a wastewater effluent-dominated stream. WATER RESEARCH 2021; 203:117537. [PMID: 34416647 DOI: 10.1016/j.watres.2021.117537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Evolving complex mixtures of pharmaceuticals and transformation products in effluent-dominated streams pose potential impacts to aquatic species; thus, understanding the attenuation dynamics in the field and characterizing the prominent attenuation mechanisms of pharmaceuticals and their transformation products (TPs) is critical for hazard assessments. Herein, we determined the attenuation dynamics and the associated prominent mechanisms of pharmaceuticals and their corresponding TPs via a combined long-term field study and controlled laboratory experiments. For the field study, we quantified spatiotemporal exposure concentrations of five pharmaceuticals and six associated TPs in a small, temperate-region effluent-dominated stream during baseflow conditions where the wastewater plant was the main source of pharmaceuticals. We selected four sites (upstream, at, and two progressively downstream from effluent discharge) and collected water samples at 16 time points (64 samples in total, approximately twice monthly, depending on flows) for 1 year. Concurrently, we conducted photolysis, sorption, and biodegradation batch tests under controlled conditions to determine the major attenuation mechanisms. We observed 10-fold greater attenuation rates in the field compared to batch tests, demonstrating that connecting laboratory batch tests with field measurements to enhance predictive power is a critical need. Batch systems alone, often used for assessment, are useful for determining fate processes but poorly approximate in-stream attenuation kinetics. Sorption was the dominant attenuation process (t1/2<7.7 d) for 5 of 11 compounds in the batch tests, while the other compounds (n = 6) persisted in the batch tests and along the 5.1 km stream reach. In-stream parent-to-product transformation was minimal. Differential attenuation contributed to the evolving pharmaceutical mixture and created changing exposure conditions with concomitant implications for aquatic and terrestrial biota. Tandem field and laboratory characterization can better inform modeling efforts for transport and risk assessments.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Alyssa L Mianecki
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, Great Lakes Water Institute, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States.
| |
Collapse
|
33
|
Fork ML, Fick JB, Reisinger AJ, Rosi EJ. Dosing the Coast: Leaking Sewage Infrastructure Delivers Large Annual Doses and Dynamic Mixtures of Pharmaceuticals to Urban Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11637-11645. [PMID: 34405672 DOI: 10.1021/acs.est.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are commonly detected at low concentrations in surface waters, where they disrupt biological and ecological processes. Despite their ubiquity, the annual mass of pharmaceuticals exported from watersheds is rarely quantified. We used liquid chromatography-mass spectroscopy to screen for 92 pharmaceuticals in weekly samples from an urban stream network in Baltimore, MD, USA, that lacks wastewater treatment effluents. Across the network, we detected 37 unique compounds, with higher concentrations and more compounds in streams with higher population densities. We also used concentrations and stream discharge to calculate annual pharmaceutical loads at the watershed outlet, which range from less than 1 kg to ∼15 kg and are equivalent to tens of thousands of human doses. By calculating annual watershed mass balances for eight compounds, we show that ∼0.05 to ∼42% of the pharmaceuticals consumed by humans in this watershed are released to surface waters, with the importance of different pathways (leaking sewage vs treated wastewater effluent) differing among compounds. These results demonstrate the importance of developing, maintaining, and improving sewage infrastructure to protect water resources from pharmaceutical contamination.
Collapse
Affiliation(s)
- Megan L Fork
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike AB, Millbrook, New York 12545, United States
| | - Jerker B Fick
- Department of Chemistry, Umeå University, Umeå 907 36, Sweden
| | - Alexander J Reisinger
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida 32603, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York, 12545 United States
| |
Collapse
|
34
|
Hama JR, Kolpin DW, LeFevre GH, Hubbard LE, Powers MM, Strobel BW. Exposure and Transport of Alkaloids and Phytoestrogens from Soybeans to Agricultural Soils and Streams in the Midwestern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11029-11039. [PMID: 34342221 DOI: 10.1021/acs.est.1c01477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytotoxins are naturally produced toxins with potencies similar/higher than many anthropogenic micropollutants. Nevertheless, little is known regarding their environmental fate and off-field transport to streams. To fill this research gap, a network of six basins in the Midwestern United States with substantial soybean production was selected for the study. Stream water (n = 110), soybean plant tissues (n = 8), and soil samples (n = 16) were analyzed for 12 phytotoxins (5 alkaloids and 7 phytoestrogens) and 2 widely used herbicides (atrazine and metolachlor). Overall, at least 1 phytotoxin was detected in 82% of the samples, with as many as 11 phytotoxins detected in a single sample (median = 5), with a concentration range from below detection to 37 and 68 ng/L for alkaloids and phytoestrogens, respectively. In contrast, the herbicides were ubiquitously detected at substantially higher concentrations (atrazine: 99% and metolachlor: 83%; the concentrations range from below detection to 150 and 410 ng/L, respectively). There was an apparent seasonal pattern for phytotoxins, where occurrence prior to and during harvest season (September to November) and during the snow melt season (March) was higher than that in December-January. Runoff events increased phytotoxin and herbicide concentrations compared to those in base-flow conditions. Phytotoxin plant concentrations were orders of magnitude higher compared to those measured in soil and streams. These results demonstrate the potential exposure of aquatic and terrestrial organisms to soybean-derived phytotoxins.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 South Clinton Street, Iowa City, Iowa 52240, United States
| | - Gregory H LeFevre
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
| | - Laura E Hubbard
- U.S. Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Megan M Powers
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
35
|
Im JK, Kim SH, Kim YS, Yu SJ. Spatio-Temporal Distribution and Influencing Factors of Human and Veterinary Pharmaceuticals in the Tributary Surface Waters of the Han River Watershed, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157969. [PMID: 34360259 PMCID: PMC8345536 DOI: 10.3390/ijerph18157969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Human and veterinary pharmaceuticals are being increasingly used for disease treatment; hence, their distribution and factors influencing them in the aquatic environment need to be investigated. This study observed the effect of human and animal populations, usage, purchasing criteria (prescription vs. non-prescription), and land use to identify the spatio-temporal distribution of eight pharmaceuticals at twenty-four sites of the tributaries of the Han River watershed. In rural areas, the mean concentration (detection frequency) of non-prescription pharmaceuticals (NPPs) was higher (lower) compared to that of prescription pharmaceuticals (PPs); in urban areas, a reverse trend was observed. Pharmaceutical concentrations in urban and rural areas were mainly affected by wastewater treatment plants (WWTPs) and non-point sources, respectively; concentrations were higher downstream (4.9 times) than upstream of the WWTPs. The concentration distribution (according to the target) was as follows: human–veterinary > human > veterinary. Correlation between total concentration and total usage of the pharmaceuticals was high, except for NPPs. Most livestock and land use (except cropland) were significantly positively correlated with pharmaceutical concentrations. Concentrations were mainly higher (1.5 times) during cold seasons than during warm seasons. The results of this study can assist policymakers in managing pharmaceutical pollutants while prioritizing emerging pollutants.
Collapse
|
36
|
Thiebault T, Alliot F, Berthe T, Blanchoud H, Petit F, Guigon E. Record of trace organic contaminants in a river sediment core: From historical wastewater management to historical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145694. [PMID: 33940762 DOI: 10.1016/j.scitotenv.2021.145694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Some trace organic contaminants (TrOCs) can be considered as ubiquitous contaminants since the 1950s, and the study of their historical distribution within river sediments allows us to better understand the temporal variation of the chemical quality of sediments, and make assumptions about the most insightful forcings impacting these distributions. In this study, the occurrence of 41 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was studied in a sedimentary core sampled in a disused dock along the Seine River, France. This core covers a 60 year-long period between 1944 and 2003, and 23 TrOCs were detected at least once. Their concentrations mainly ranged between 1 and 10 ng g-1 within the core, except for tetracycline that exhibited higher concentrations (~hundreds of ng·g-1). The dating of the core, based on previous studies, enabled the characterization of the changes since 1945, potentially impacted by (i) the sewer connectivity, (ii) the upgrading of wastewater treatment technologies, (iii) historical modifications in the use of each TrOC, and (iv) the sedimentary composition. In every case the deepest occurrence of each TrOC in the core matched its market authorization date, indicating the potential of TrOC to be used as chronomarkers. This study also reveals that the recent upgrading of wastewater treatment technologies within the watershed decreased the concentrations of each TrOC, despite an increase in TrOC diversity in the most recent years.
Collapse
Affiliation(s)
- Thomas Thiebault
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France.
| | - Fabrice Alliot
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Thierry Berthe
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Hélène Blanchoud
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Fabienne Petit
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Elodie Guigon
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| |
Collapse
|
37
|
Webb DT, Zhi H, Kolpin DW, Klaper RD, Iwanowicz LR, LeFevre GH. Emerging investigator series: municipal wastewater as a year-round point source of neonicotinoid insecticides that persist in an effluent-dominated stream. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:678-688. [PMID: 33889902 PMCID: PMC8159912 DOI: 10.1039/d1em00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Neonicotinoids in aquatic systems have been predominantly associated with agriculture, but some are increasingly being linked to municipal wastewater. Thus, the aim of this work was to understand the municipal wastewater contribution to neonicotinoids in a representative, characterized effluent-dominated temperate-region stream. Our approach was to quantify the spatiotemporal concentrations of imidacloprid, clothianidin, thiamethoxam, and transformation product imidacloprid urea: 0.1 km upstream, the municipal wastewater effluent, and 0.1 and 5.1 km downstream from the wastewater outfall (collected twice-monthly for one year under baseflow conditions). Quantified results demonstrated that wastewater effluent was a point-source of imidacloprid (consistently) and clothianidin (episodically), where chronic invertebrate exposure benchmarks were exceeded for imidacloprid (36/52 samples; 3/52 > acute exposure benchmark) and clothianidin (8/52 samples). Neonicotinoids persisted downstream where mass loads were not significantly different than those in the effluent. The combined analysis of neonicotinoid effluent concentrations, instream seasonality, and registered uses in Iowa all indicate imidacloprid, and seasonally clothianidin, were driven by wastewater effluent, whereas thiamethoxam and imidacloprid urea were primarily from upstream non-point sources (or potential in-stream transformation for imidacloprid urea). This is the first study to quantify neonicotinoid persistence in an effluent-dominated stream throughout the year-implicating wastewater effluent as a point-source for imidacloprid (year-round) and clothianidin (seasonal). These findings suggest possible overlooked neonicotinoid indoor human exposure routes with subsequent implications for instream ecotoxicological exposure.
Collapse
Affiliation(s)
- Danielle T Webb
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA. and IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA. and IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, USA
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA. and IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Emadian SM, Sefiloglu FO, Akmehmet Balcioglu I, Tezel U. Identification of core micropollutants of Ergene River and their categorization based on spatiotemporal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143656. [PMID: 33261876 DOI: 10.1016/j.scitotenv.2020.143656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
Ergene River is heavily utilized for irrigation of fields to grow the main stocks of rice, wheat, and sunflower of Turkey also exported to Europe; therefore, monitoring the river's water quality is crucial for public health. Although the river quality is routinely monitored, the evaluation of pollution based on micropollutants is limited. In this study, we measured 222 organic micropollutants in 300 samples collected from 75 different locations on the Ergene River between August 2017 and May 2018 using direct injection liquid chromatography-tandem spectrometry with optimized scheduled multiple reaction monitoring. In total, 165 micropollutants were detected at a range of concentrations between 1.90 ng/L and 1824.55 μg/L. Sixty-three chemical substances were recurrent micropollutants that were detected at least one location in all seasons. Among them, 41 chemical substances were identified as the core micropollutants of the Ergene River using data-driven clustering methods. Hexa(methoxymethyl)melamine, benzotriazoles, and benzalkonium chlorides were frequently detected core micropollutants with an industrial origin. Besides, diuron, carbendazim, and cadusafos were common pesticides in the river. Core micropollutants were further categorized based on their type of source and environmental behavior using Kurtosis of concentration and load data obtained for each micropollutant. As a result, the majority of the core micropollutants are recalcitrant chemicals either released from a specific source located upstream of the river or have urban and agricultural sources dispersed on the watershed. In this study, we assessed the current state of pollution in the Ergene River at the micropollutant level with a very high spatial resolution and developed a statistical approach to categorize micropollutants that can be used to monitor the extent of pollution and track pollution sources in the river.
Collapse
Affiliation(s)
- S Mehdi Emadian
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey
| | - F Oyku Sefiloglu
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey
| | | | - Ulas Tezel
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|