1
|
Garncarzová M, Veselý L, Kim B, Kim K, Heger D. Spectroscopic characterization of phenol in frozen aqueous solution and on the ice surface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125948. [PMID: 40068314 DOI: 10.1016/j.saa.2025.125948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Phenol is one of the omnipresent pollutants in the environment, frequently detected in ambient air, water, soil, snow, and ice. Due to its low aqueous reactivity and inability to undergo direct photolysis under typical tropospheric conditions, phenol can be widely distributed and accumulated in the environment for an extended period of time. However, the reactivity of phenol can be influenced by a number of factors, including temperature, pH, and phase transitions. The present study examines the impact of the ice matrix and ice surface on the photophysical properties of phenol via UV-VIS, fluorescence, and Raman spectroscopies. We demonstrate that the freezing of an aqueous solution results in the vitrification or crystallization of the freeze-concentrated solution. The latter case is accompanied by a bathochromic shift of the absorption spectrum above 290 nm. The most pronounced red-shifts were obtained for deprotonated and crystalline samples, which suggests that direct photolysis under tropospheric conditions would be significantly enhanced in these cases. The study further demonstrates the difference in the molecular arrangement in freeze-concentrated solutions as compared to the surface of Ih ice.
Collapse
Affiliation(s)
- Marie Garncarzová
- Masaryk University, Faculty of Science, Department of Chemistry, Czech Republic
| | - Lukáš Veselý
- Masaryk University, Faculty of Science, Department of Chemistry, Czech Republic
| | - Bomi Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon 21990, Republic of Korea
| | - Dominik Heger
- Masaryk University, Faculty of Science, Department of Chemistry, Czech Republic.
| |
Collapse
|
2
|
Cui L, Gong Y, Zhao S, Shen J, Chen Z. Coexisting Anilines Accelerate the Oxidation of Phenolics by Manganese Oxides. WATER RESEARCH 2025; 283:123784. [PMID: 40381276 DOI: 10.1016/j.watres.2025.123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/12/2025] [Accepted: 05/04/2025] [Indexed: 05/20/2025]
Abstract
This work discovered that various anilines could accelerate the oxidation of phenolics by permanganate (MnVIIO4-) or birnessite (δ-MnO2) under ambient conditions. Taking phenol as a probe compound, the coexisting anilines increased the apparent kinetic constants of phenol oxidation by 1.73-18.14 times, that depends on the substituted groups on the anilines and pH conditions. Besides, taking 4-hydroxybenzoic acid (4-HBA) as a probe (a phenolic compound that inert toward permanganate), the coexisting anilines increased the apparent kinetic constants of 4-HBA oxidation by 1.46-210.82 times. Aromatic anilines could be oxidized by manganese oxides via electron-transfer process, leading to the formation of metastable intermediates known as aniline radicals, which could rapidly oxidize phenolics due to their high reactivities. Additionally, the oxidation products containing aromatic amino or imino groups, formed in the phenolics/anilines binary-contaminants system, can also induce the aforementioned acceleration process, such as benzidine and the cross-coupling products derived from phenolics and anilines. Therefore, even the anilines were consumed up, the accelerating oxidation of 4-HBA by permanganate could be sustained due to the in-situ formed oxidation products. Our study emphasized that the oxidized intermediates and products might influence the reaction pathways involving oxidants and contaminants among the environmental processes, especially in combined pollution system, thereby rendering the transformation pathways of contaminants significantly more intricate than initially anticipated.
Collapse
Affiliation(s)
- Lei Cui
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Environment, Harbin Institute of Technology (HIT), Harbin, China
| | - Yingxu Gong
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong.
| | - Shengxin Zhao
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Environment, Harbin Institute of Technology (HIT), Harbin, China
| | - Jimin Shen
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Environment, Harbin Institute of Technology (HIT), Harbin, China
| | - Zhonglin Chen
- State Key Laboratory of Urban-rural Water Resources and Environment, School of Environment, Harbin Institute of Technology (HIT), Harbin, China.
| |
Collapse
|
3
|
Ma Y, Huo Y, Zhou Y, Wen N, Gu Q, Chen M, He M, Xie J. The mechanisms of self-inhibited reactions during hydroxyl radical-induced degradation of aniline disinfection by products. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138568. [PMID: 40373406 DOI: 10.1016/j.jhazmat.2025.138568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Municipal wastewater post-treatment processes can effectively reduce the concentration of highly toxic disinfection by-products (DBPs) to minimize their ecological hazards. In this study, the reaction mechanisms and kinetics of 38 aniline disinfection by-products (AN-DBPs) degraded by ·OH in the post-treatment of municipal wastewater were investigated. Results showed that the apparent second-order reaction rate constants for the degradation of AN-DBPs by ·OH ranged from 1.25 × 108 M-1 s-1 to 1.71 × 1010 M-1 s-1, and the products generated were mainly hydroxyl adducts (AN-OH) and AN-DBPs cation radicals (AN-DBPs+·). Based on the differences in the reduction potentials (ΔEox) of AN-DBPs and their degradation products, we proposed two self-inhibited reaction pathways in the degradation process. AN-OH and AN-DBPs can reduce AN-DBPs+· to the parent compound via single electron transfer reactions. AN-OH and AN-DBPs with fewer halogen atoms were more likely to inhibit AN-DBPs+·. It was noteworthy that self-inhibited reactions would occur when ·OH-dominated processes were used to degrade AN-DBPs. In addition, Cl- in municipal wastewater usually has little effect on the self-inhibition efficiency, while the presence of Br-, HCO3-, and NH4+ usually promotes the self-inhibition reaction. These findings provide important theoretical insights for the effective removal of AN-DBP from water bodies.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Meichao Chen
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
4
|
Chen JH, Li WT, Cai KY, Tu HJ, Long ZT, Akhtar S, Liu LD. Proton-coupled electron transfer controls peroxide activation initiated by a solid-water interface. Nat Commun 2025; 16:3789. [PMID: 40263299 PMCID: PMC12015225 DOI: 10.1038/s41467-025-58917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Decentralized water treatment technologies, designed to align with the specific characteristics of the water source and the requirements of the user, are gaining prominence due to their cost and energy-saving advantages over traditional centralized systems. The application of chemical water treatment via heterogeneous advanced oxidation processes using peroxide (O-O) represents a potentially attractive treatment option. These processes serve to initiate redox processes at the solid-water interface. Nevertheless, the oxidation mechanism exemplified by the typical Fenton-like persulfate-based heterogeneous oxidation, in which electron transfer dominates, is almost universally accepted. Here, we present experimental results that challenge this view. At the solid-liquid interface, it is demonstrated that protons are thermodynamically coupled to electrons. In situ quantitative titration provides direct experimental evidence that the coupling ratio of protons to transferred electrons is almost 1:1. Comprehensive thermodynamic analyses further demonstrate that a net proton-coupled electron transfer occurs, with both protons and electrons entering the redox cycle. These findings will inform future developments in O-O activation technologies, enabling more efficient redox activity via the tight coupling of protons and electrons.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Wan-Ting Li
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Yibin Academy of Southwest University, Sichuan, 644005, China
| | - Kun-Yu Cai
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Hui-Jie Tu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Yibin Academy of Southwest University, Sichuan, 644005, China
| | - Zi-Tong Long
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shoaib Akhtar
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Lin-Dong Liu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
- Yibin Academy of Southwest University, Sichuan, 644005, China.
| |
Collapse
|
5
|
Du P, Yang B, Chow ATS, Shi D, Wong KMC, Wang J. From Quencher to Promoter: Revisiting the Role of 2,4,6-Trimethylphenol (TMP) in Triplet-State Photochemistry of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4444-4454. [PMID: 39999104 DOI: 10.1021/acs.est.4c09859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triplet-state dissolved organic matter (3DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with 3DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP's effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike 3DOM*, TMP-RS may react with SMX with the formation of non-SMX•+ intermediates. This process prevents the reduction of SMX•+ and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP's involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Alex Tat-Shing Chow
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Dongliang Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Carena L, Bertolotti S, Minutoli V, Sarakha M, Fernandes A, Lopes A, Sordello F, Minella M, Vione D. Direct and indirect photolysis of oxolinic acid in surface waters and its inhibition by antioxidant effects. WATER RESEARCH 2025; 271:122880. [PMID: 39637690 DOI: 10.1016/j.watres.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Oxolinic acid is a quinolone antibiotic used in aquaculture to prevent and treat animal diseases. Because of its application and the large expansion of aquaculture in the latest decades, oxolinic acid enters environmental waters through the effluents of aquaculture facilities, posing concerns due to its potential adverse effects on aquatic ecosystems. It is thus important to study the fate of this antibiotic in water bodies. This work investigated the reactivity of the anionic form of oxolinic acid (OxA) by direct and indirect photolysis. The quantum yield of direct photolysis and the bimolecular rate constants of OxA reactions with reactive species photochemically produced in fresh- and seawater (i.e., HO•, CO3•-, triplet states of dissolved organic matter, 1O2, and Br2•-) were determined through steady-state irradiation experiments and laser flash photolysis measurements. Results showed that OxA photoreactivity is significant, in particular towards HO• and CO3•- radicals. However, the direct photolysis and reactions with CO3•- and the triplet states of dissolved organic matter were found to be significantly inhibited in the presence of phenol, here used as a representative compound for antioxidant dissolved organic matter, most likely because of a back-reduction process. Photochemical modeling predicted an antibiotic half-life time of some days in fresh- and seawater, showing that OxA degradation is mainly due to direct photolysis in both environments plus reactions with CO3•- (freshwater) and Br2•- (seawater).
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Torino, Italy.
| | - Silvia Bertolotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Torino, Italy; Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Viola Minutoli
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Mohamed Sarakha
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal
| | | | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| |
Collapse
|
7
|
Wang C, Guo R, Guo C, Yin H, Xu J. Photodegradation of typical psychotropic drugs in the aquatic environment: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:320-354. [PMID: 39886903 DOI: 10.1039/d4em00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Continuous consumption combined with incomplete removal during wastewater treatment means residues of psychotropic drugs (PDs), including antidepressants, antipsychotics, antiepileptics and illicit drugs, are continuously entering the aquatic environment, where they have the potential to affect non-target organisms. Photochemical transformation is an important aspect to consider when evaluating the environmental persistence of PDs, particularly for those present in sunlit surface waters. This review summarizes the latest research on the photodegradation of typical PDs under environmentally relevant conditions. According to the analysis results, four classes of PDs discussed in this paper are influenced by direct and indirect photolysis. Indirect photodegradation has been more extensively studied for antidepressants and antiepileptics compared to antipsychotics and illicit drugs. Particularly, the photosensitization process of dissolved organic materials (DOM) in natural waters has received significant research attention due to its ubiquity and specificity. The direct photolysis pathway plays a less significant role, but it is still relevant for most PDs discussed in this paper. The photodegradation rates and pathways of PDs are influenced by various water constituents and parameters such as DOM, nitrate and pH value. The contradictory results reported in some studies can be attributed to differences in experimental conditions. Based on this analysis of the existing literature, the review also identifies several key aspects that warrant further research on PD photodegradation. These results and recommendations contribute to a better understanding of the environmental role of water matrixes and provide important new insights into the photochemical fate of PDs in aquatic environments.
Collapse
Affiliation(s)
- Chuanguang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruonan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hailong Yin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Kralles ZT, Deherikar PK, Werner CA, Hu X, Kolodziej EP, Dai N. Halogenation of Anilines: Formation of Haloacetonitriles and Large-Molecule Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17497-17509. [PMID: 39297711 DOI: 10.1021/acs.est.4c05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Aniline-related structures are common in anthropogenic chemicals, such as pharmaceuticals and pesticides. Compared with the widely studied phenolic compounds, anilines have received far less assessment of their disinfection byproduct (DBP) formation potential, even though anilines and phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline (1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields with the highest yield observed for 2-ethylaniline (6.5%). The trihalomethane yields of anilines correlated with their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography-high-resolution mass spectrometry revealed several large-molecule DBPs, including chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage products. The product time profiles suggested that the reaction pathways include initial ring chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with the expected toxicity.
Collapse
Affiliation(s)
- Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Prashant K Deherikar
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Christian A Werner
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Ximin Hu
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Buckley S, Leresche F, Norris K, Rosario-Ortiz FL. Role of Direct and Sensitized Photolysis in the Photomineralization of Dissolved Organic Matter and Model Chromophores to Carbon Dioxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13808-13819. [PMID: 39047179 DOI: 10.1021/acs.est.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This study addresses the fundamental processes that drive the photomineralization of dissolved organic matter (DOM) to carbon dioxide (CO2), deconvoluting the role of direct and sensitized photolysis. Here, a suite of DOM isolates and model compounds were exposed to simulated sunlight in the presence of various physical and chemical quenchers to assess the magnitude, rate, and extent of direct and sensitized photomineralization to CO2. Results suggest that CO2 formation occurs in a biphasic kinetic system, with fast production occurring within the first 3 h, followed by slower production thereafter. Notably, phenol model chromophores were the highest CO2 formers and, when conjugated with carboxylic functional groups, exhibited a high efficiency for CO2 formation relative to absorbed light. Simple polycarboxylated aromatic compounds included in this study were shown to be resistant to photomineralization. Quencher results suggest that direct photolysis and excited triplet state sensitization may be largely responsible for CO2 photoproduction in DOM, while singlet oxygen and hydroxyl radical sensitization may play a limited role. After 3 h of irradiation, the CO2 formation rate significantly decreased, and the role of sensitized reactions in CO2 formation increased. Together, the results from this study advance the understanding of the fundamental reactions driving DOM photomineralization to CO2, which is an important part of the global carbon cycle.
Collapse
Affiliation(s)
- Shelby Buckley
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kari Norris
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Zhou R, Zhang X. Effects of Tryptophan and Tyrosine on the Transformation of Monophenols in Chromophoric Dissolved Organic Matter Solutions: Enhance the Forward Transformation and Reduce the Reverse Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10108-10115. [PMID: 38813774 DOI: 10.1021/acs.est.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Tryptophan (Trp) and tyrosine (Tyr) are the primary precursors of protein-like components in dissolved organic matter. Phenolic compounds are ubiquitous in aquatic environments and are considered the main electron donor in chromophoric dissolved organic matter (CDOM). Our results showed that Trp and Tyr (50 μM) enhanced the transformation of six monophenols (20 μM) with varying numbers of -CH3 and -OCH3 substituent groups by a factor of 1.0-1.8. The enhancement factor increased with the ratio of Trp (Tyr) to monophenols. In four different CDOM solutions (5 mg C/L, pH 8.0), a maximum enhancement factor of 3.2-6.7 was observed at a Trp/monophenol concentration ratio of 50. Conversely, monophenols greatly inhibited the transformation of Trp or Tyr. The enhancement factor decreased as the initial pH increased from 3.0 to 10.0. Additionally, the enhancement factor was not directly proportional to the oxidation potential of monophenol. We propose that the promotion effects are generated through the direct oxidation of monophenols by Trp (Tyr) radicals as well as through the reaction between Trp (Tyr) radicals and the one-electron reductant of CDOM.
Collapse
Affiliation(s)
- Ruiya Zhou
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Xu Zhang
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
11
|
Du R, Wen J, Huang J, Zhang Q, Shi X, Wang B, Deng S, Yu G. Dissolved organic matter isolates obtained by solid phase extraction exhibit higher absorption and lower photo-reactivity: Effect of components. WATER RESEARCH 2024; 256:121604. [PMID: 38640562 DOI: 10.1016/j.watres.2024.121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Notable differences in photo-physical and chemical properties were found between bulk water and solid phase extraction (SPE) isolates for dissolved organic matter (DOM). The moieties extracted using modified styrene divinylbenzene cartridges, which predominantly consist of conjugated aromatic molecules like humic acids, contribute mainly to light absorption but exhibit lower quantum yields of fluorescence and photo-produced reactive intermediates (PPRIs). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed lignin as the moieties displaying most significant variance in abundance. In Van Krevelen-Spearman plot, we observed molecules positively or negatively correlated with DOM's optical and photochemical properties (including SUVA254, steady-state concentrations of ·OH, 1O2 quantum yield, etc.) were confined to specific regions, which can be delineated using a threshold modified aromaticity index (AImod) of 0.3. Based on the relationships between optical properties and PPRI production, it is suggested that the energy gap between ground state and excited singlet state (△ES1→S0), governing the inner conversion rate, serves as a determinant for apparent quantum yield of PPRIs in DOM, with intra-molecular charge transfer (CT) interactions potentially playing a pivotal role. Regarding DOM's photoreactivity with pollutants, this study has revealed, for the first time, that protein/amino sugars/amino acids could act as antioxidant groups in addition to phenols on the photolysis of sulfadiazine. These findings provide valuable insights into DOM photochemistry and are expected to stimulate further research in this area.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyu Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
12
|
Yan Y, Meng Y, Miu K, Wenk J, Anastasio C, Spinney R, Tang CJ, Xiao R. Direct Determination of Absolute Radical Quantum Yields in Hydroxyl and Sulfate Radical-Based Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8966-8975. [PMID: 38722667 DOI: 10.1021/acs.est.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The absolute radical quantum yield (Φ ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ •OH and Φ SO 4 • - at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ • OH PMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ • OH PMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to Φ SO 4 • - PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ , serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yunxiang Meng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Kanying Miu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jannis Wenk
- Department of Chemical Engineering, Water Innovation & Research Centre (WIRC@Bath), University of Bath, Bath BA2 7AY, U.K
| | - Cort Anastasio
- Department of Land, Air, and Water Resource, University of California, Davis, California 95616, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
13
|
Zhong X, Sun J, Yuan Y, Zhang Y, Bai X, Lin Q, Dai K, Xu Z. Photochemical behaviors of sludge extracellular polymeric substances from bio-treated effluents towards antibiotic degradation: Distinguish the main photosensitive active component and its environmental implication. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133667. [PMID: 38325102 DOI: 10.1016/j.jhazmat.2024.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Activated sludge extracellular polymeric substances (ASEPSs) comprise most dissolved organic matters (DOMs) in the tail water. However, the understanding of the link between the photolysis of antibiotic and the photo-reactivity/photo-persistence of ASEPS components is limited. This study first investigated the photochemical behaviors of ASEPS's components (humic acids (HA), hydrophobic substances (HOS) and hydrophilic substances (HIS)) separated from municipal sludge's EPS (M-EPS) and nitrification sludge's EPS (N-EPS) in the photolysis of sulfadiazine (SDZ). The results showed that 60% of SDZ was removed by the M-EPS, but the effect in the separated components was weakened, and only 24% - 39% was degraded. However, 58% of SDZ was cleaned by HOS in N-EPS, which was 23% higher than full N-EPS. M-EPS components had lower steady-state concentrations of triplet intermediates (3EPS*), hydroxyl radicals (·OH) and singlet oxygen (1O2) than M-EPS, but N-EPS components had the highest concentrations (5.96 ×10-15, 8.44 ×10-18, 4.56 ×10-13 M, respectively). The changes of CO, C-O and O-CO groups in HA and HOS potentially correspond to reactive specie's generation. These groups change little in HIS, which may make it have radiation resistance. HCO-3 and NO-3 decreased the indirect photolysis of SDZ, and its by-product N-(2-Pyrimidinyl)1,4-benzenediamine presents high environmental risk.
Collapse
Affiliation(s)
- Xuexian Zhong
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kang Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
14
|
Guo Y, Peng B, Liao J, Cao W, Liu Y, Nie X, Li Z, Ouyang R. Recent advances in the role of dissolved organic matter during antibiotics photodegradation in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170101. [PMID: 38242474 DOI: 10.1016/j.scitotenv.2024.170101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The presence of residual antibiotics in the environment is a prominent issue. Photodegradation behavior is an important way of antibiotics reduction, which is closely related to dissolved organic matter (DOM) in water. The review provides an overview of the latest advancements in the field. Classification, characterization of DOM, and the dominant mechanisms for antibiotic photodegradation were discussed. Furthermore, it summarized and compared the effects of DOM on different antibiotics photodegradation. Moreover, the review comprehensively considered the factors influencing the photodegradation of antibiotics in the aquatic environment, including the characteristics of light, temperature, dosage of DOM, concentration of antibiotics, solution pH, and the presence of coexisting ions. Finally, potential directions were proposed for the development of predictive models for the photodegradation of antibiotics. Based on the review of existing literature, this paper also considered several pathways for the future study of antibiotic photodegradation. This study allows for a better understanding of the DOM's environmental role and provides important new insights into the photochemical fate of antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Yinghui Guo
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Bo Peng
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China.
| | - Jinggan Liao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Weicheng Cao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Yaojun Liu
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Rui Ouyang
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
15
|
Pan Y, Garg S, Fu QL, Peng J, Yang X, Waite TD. Copper Safeguards Dissolved Organic Matter from Sunlight-Driven Photooxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21178-21189. [PMID: 38064756 DOI: 10.1021/acs.est.3c07549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Sunlight plays a crucial role in the transformation of dissolved organic matter (DOM) and the associated carbon cycle in aquatic environments. This study demonstrates that the presence of nanomolar concentrations of copper (Cu) significantly decreases the rate of photobleaching and the rate of loss of electron-donating moieties of three selected types of DOM (including both terrestrial and microbially derived DOM) under simulated sunlight irradiation. Employing Fourier transform ion cyclotron resonance mass spectrometry, we further confirm that Cu selectively inhibits the photooxidation of lignin- and tannin-like phenolic moieties present within the DOM, in agreement with the reported inhibitory impact of Cu on the photooxidation of phenolic compounds. On the basis of the inhibitory impact of Cu on the DOM photobleaching rate, we calculate the contribution of phenolic moieties to DOM photobleaching to be at least 29-55% in the wavelength range of 220-460 nm. The inhibition of loss of electrons from DOM during irradiation in the presence of Cu is also explained quantitatively by developing a mathematical model describing hydrogen peroxide (a proxy measure of loss of electrons from DOM) formation on DOM irradiation in the absence and presence of Cu. Overall, this study advances our understanding of DOM transformation in natural sunlit waters.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
16
|
Zhou R, Liu J, Zhou C, Zhang X. Phototransformation of Lignin-related Compounds in Chromophoric Dissolved Organic Matter Solutions. WATER RESEARCH 2023; 245:120586. [PMID: 37717330 DOI: 10.1016/j.watres.2023.120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Lignin is a major terrestrial source of chromophoric dissolved organic matter (CDOM), and studying the phototransformation of lignin monomers and their related compounds can enhance our understanding of CDOM intramolecular interactions. Coniferyl aldehyde (Coni) and sinapaldehyde (Sina) form ground-state complexes with CDOM, with equilibrium constants of 7,800 (± 1,800) and 20,000 (± 2,000) M-1, respectively. In comparison, vanillin (Van) exhibits minimal affinity for CDOM complexation. The bimolecular reaction rate constants between singlet oxygen (1O2) and these phenolic carbonyl compounds ranged from 0.46 (± 0.02) to 1.8 (± 0.1) × 107 M-1s-1, which is approximately one order of magnitude lower than their reaction rate constants (0.51 (± 0.02)-1.25 (± 0.02) × 108 M-1s-1) with the triplet excited state of CDOM (3CDOM*). In acidic CDOM solutions (pH 5.0), 1O2, H2O2, and organic peroxyl radicals had negligible impact on the transformation. Comparing the initial transformation rate in the presence and in the absence of NaN3 or furfuryl alcohol led to an overestimation of the contribution of 1O2 to the transformation of Van, Coni, or Sina. 3CDOM* scavengers could not fully inhibit the transformation of Coni or Sina. The remaining transformation is considered to arise from either the unquenched intra-CDOM phase 3CDOM* or a fraction of Coni⊂CDOM or Sina⊂CDOM complex, which underwent intramolecular photoinduced chemical reactions.
Collapse
Affiliation(s)
- Ruiya Zhou
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, P.R. China
| | - Juan Liu
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, P.R. China
| | - Chi Zhou
- Hubei Water Resources Research Institute, Wuhan, 430070, P.R. China.
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, P.R. China.
| |
Collapse
|
17
|
Zhong C, Cao H, Huang Q, Xie Y, Zhao H. Degradation of Sulfamethoxazole by Manganese(IV) Oxide in the Presence of Humic Acid: Role of Stabilized Semiquinone Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13625-13634. [PMID: 37650769 DOI: 10.1021/acs.est.3c03698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chen Zhong
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongbing Xie
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Okuno M, Yamana K, Kawamura S, Nishimura K, Hino S, Kawasaki R, Ikeda A. Selective Photodynamic Activity of Tetrakis(4-aminophenyl)porphyrins with and without Acetyl Protecting Groups on Cancer and Normal Cells. Chemistry 2023; 29:e202301385. [PMID: 37334625 DOI: 10.1002/chem.202301385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Tetrakis(4-aminophenyl)porphyrin (1) and tetrakis(4-acetamidophenyl)porphyrin (2) were dissolved in water with the incorporation of a polysaccharide (λ-carrageenan (CGN)) as a water-solubilizing agent. Although the photodynamic activity of the CGN-2 complex was considerably lower than that of the CGN-1 complex, the selectivity index (SI; IC50 in a normal cell/IC50 in a cancer cell) of the CGN-2 complex was considerably higher than that of the CGN-1 complex. This is because the photodynamic activity of the CGN-2 complex was significantly affected by the intracellular uptakes by the normal and cancer cells. During in vivo experiments, the CGN-2 complex inhibited tumor growth under light irradiation with high blood retention compared with the CGN-1 complex and Photofrin, which exhibited lower blood retention. This study showed that the photodynamic activity and SI are influenced by substituent groups of arene in the meso-positions of porphyrin analogs.
Collapse
Affiliation(s)
- Masafumi Okuno
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Shogo Kawamura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Kotaro Nishimura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Shodai Hino
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
19
|
Du R, Zhang Q, Wang B, Huang J, Deng S, Yu G. Quantitative structure-activity relationship models for the reaction rate coefficients between dissolved organic matter and PPCPs. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131845. [PMID: 37354719 DOI: 10.1016/j.jhazmat.2023.131845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
To predict PPCPs' photolysis rate in natural aquatic environment, it is essential to grasp the reaction rates between DOM and PPCPs, yet there are few measured data and no prediction models for this important photochemical parameter. To address this, a reaction rate coefficient (αDOM) was defined to describe the apparent rate of DOM-involved photoreaction for PPCPs. The measured αDOM values for 40 PPCPs in 9 DOM samples varied dramatically, ranging from (-2.1 ± 0.1)× 1010 to (2.2 ± 0.1)× 1011 M-1 s-1. Then the quantitative structure-activity relationship (QSAR) models were developed using chemical and water quality descriptors via the random forest method. We initially separated positive and negative values by a classifier with an AUC value of 0.965, followed by the construction of regression models for positive and negative values, respectively, using a regressor. Positive models achieved satisfactory goodness-of-fit and predictive ability (R2adj=0.92 and Q2ext=0.86), while negative models demonstrated acceptable performance (R2adj=0.71 and Q2ext=0.70). Finally, a comprehensive photolysis model that incorporates the QSAR models for αDOM was established and the significance of water quality parameters was emphasized through sensitive analysis. This model enables more elaborate predictions of PPCPs' photolysis rates in various water samples, providing valuable assistance for forecasting PPCPs' environmental fate.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
20
|
Pan Y, Garg S, Ouyang Y, Yang X, Waite TD. Inhibition of photosensitized degradation of organic contaminants by copper under conditions typical of estuarine and coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131812. [PMID: 37331060 DOI: 10.1016/j.jhazmat.2023.131812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Dissolved organic matter (DOM) driven-photochemical processes play an important role in the redox cycling of trace metals and attenuation of organic contaminants in estuarine and coastal ecosystems. In this study, we evaluate the effect of Cu on 4-carboxybenzophenone (CBBP) and Suwannee River natural organic matter (SRNOM)-photosensitized degradation of seven target contaminants (TCs) including phenols and amines under pH conditions and salt concentrations typical of those encountered in estuarine and coastal waters. Our results show that trace amounts of Cu(II) (25 -500 nM) induce strong inhibition of the photosensitized degradation of all TCs in solutions containing CBBP. The influence of TCs on the photo-formation of Cu(I) and the decrease in the lifetime of transformation intermediates of contaminants (TC•+/ TC•(-H)) in the presence of Cu(I) indicated that the inhibition effect of Cu was mainly due to the reduction of TC•+/ TC•(-H) by the photo-produced Cu(I). The inhibitory effect of Cu on the photodegradation of TCs decreased with the increase in Cl- concentration since less reactive Cu(I)-Cl complexes dominate at high Cl- concentrations. The impact of Cu on the SRNOM-sensitized degradation of TCs is less pronounced compared to that observed in CBBP solution since the redox active moieties present in SRNOM competes with Cu(I) to reduce TC•+/ TC•(-H). A detailed mathematical model is developed to describe the photodegradation of contaminants and Cu redox transformations in irradiated SRNOM and CBBP solutions.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiming Ouyang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
21
|
Li Z, Qu B, Jiang J, Bekele TG, Zhao H. The photoactivity of complexation of DOM and copper in aquatic system: Implication on the photodegradation of TBBPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163620. [PMID: 37100127 DOI: 10.1016/j.scitotenv.2023.163620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
The photoactivity of dissolved organic matter (DOM) has a great impact on the photodegradation of organic pollutants in natural waters. In this study, the photodegradation of TBBPA was investigated under simulated sunlight irradiation in the presence of copper ion (Cu2+), dissolved organic matter (DOM) and Cu-DOM complexation (Cu-DOM) to illustrate the effect of Cu2+ on photoactivity of DOM. The rate of photodegradation of TBBPA in the presence of Cu-DOM complex was 3.2 times higher than that in pure water. The effects of Cu2+, DOM and Cu-DOM on the photodegradation of TBBPA were highly pH dependent and hydroxyl radical(·OH) responded for the acceleration effect. Spectral and radical experiments indicated that Cu2+ had high affinity to fluorescence components of DOM, and acted as both the cation bridge and electron shuttle, resulting the aggregation of DOM and increasing of steady-state concentration of ·OH (·OHss). Simultaneously, Cu2+ also inhibited intramolecular energy transfer leading to the decrease of steady-state concentration singlet oxygen (1O2ss) and triplet of DOM (3DOM⁎ss). The interaction between Cu2+ and DOM followed the order of conjugated carbonyl CO, COO- or CO stretching in phenolic groups and carbohydrate or alcoholic CO groups. With these results, a comprehensive investigation on the photodegradation of TBBPA in the presence of Cu-DOM was conducted, and the effect of Cu2+ on the photoactivity of DOM was illustrated. These findings helped to understanding the potential mechanism of interaction among metal cation, DOM and organic pollutants in sunlit surface water, especially for the DOM-induced photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun Ave., Haidian District, Beijing 100081, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| |
Collapse
|
22
|
Ma L, Worland R, Tran T, Anastasio C. Evaluation of Probes to Measure Oxidizing Organic Triplet Excited States in Aerosol Liquid Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6052-6062. [PMID: 37011016 DOI: 10.1021/acs.est.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxidizing triplet excited states of organic matter (3C*) drive numerous reactions in fog/cloud drops and aerosol liquid water (ALW). Quantifying oxidizing triplet concentrations in ALW is difficult because 3C* probe loss can be inhibited by the high levels of dissolved organic matter (DOM) and copper in particle water, leading to an underestimate of triplet concentrations. In addition, illuminated ALW contains high concentrations of singlet molecular oxygen (1O2*), which can interfere with 3C* probes. Our overarching goal is to find a triplet probe that has low inhibition by DOM and Cu(II) and low sensitivity to 1O2*. To this end, we tested 12 potential probes from a variety of compound classes. Some probes are strongly inhibited by DOM, while others react rapidly with 1O2*. One of the probe candidates, (phenylthiol)acetic acid (PTA), seems well suited for ALW conditions, with mild inhibition and fast rate constants with triplets, but it also has weaknesses, including a pH-dependent reactivity. We evaluated the performance of both PTA and syringol (SYR) as triplet probes in aqueous extracts of particulate matter. While PTA is less sensitive to inhibition than SYR, it results in lower triplet concentrations, possibly because it is less reactive with weakly oxidizing triplets.
Collapse
Affiliation(s)
- Lan Ma
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Reed Worland
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Theo Tran
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| |
Collapse
|
23
|
Du R, Zhang Q, Leresche F, Zhong M, Chen P, Huang J, Deng S, Rosario-Ortiz FL, Yu G. The determination and prediction of the apparent reaction rates between excited triplet-state DOM and selected PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163117. [PMID: 37044337 DOI: 10.1016/j.scitotenv.2023.163117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
To determine and predict the reaction rate between 3DOM* and PPCPs in various water bodies, this study defines a reaction rate coefficient ( [Formula: see text] ) to describe the reaction between 3DOM* and PPCPs. As the values also included the inhibition effect of DOM's antioxidant moieties, the calculation of [Formula: see text] is inconsistent with that of a bimolecular rate constant via the steady-state kinetic method. The [Formula: see text] values of 12 selected PPCPs were determined in two DOM solutions and ten DOM-containing water samples collected from typical surface water bodies in Beijing. The Pearson coefficients between nine predictors including the absorbance ratio (E2/E3), specific absorption coefficient at 254 nm (SUVA254), fluorescence index (FI), biological index (BIX), humification index (HIX), pH, total organic carbon (TOC), total fluorescence intensity (TFI) and TOC normalized TFI (TFI/TOC) and [Formula: see text] were examined. Correlation patterns for sulfonamides, β-blockers and diclofenac supported the electron transfer pathway, and was distinctly different from those appeared for FQs where quenching effect played a main part. TFI and TFI/TOC were recognized as the most useful surrogates in empirically predicting [Formula: see text] . For PPCPs that went through the electron transfer pathway, [Formula: see text] could be well fit to the Rehm-Weller model assuming a proportional relationship between TFI and △Get. For FQs, [Formula: see text] was found to linearly correlated with TFI/TOC. The [Formula: see text] values determined in this study enrich the database of PPCPs photolysis parameters, and the correlation analysis provides reference for forecasting PPCPs fate in the aquatic environment.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Frank Leresche
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Mengmeng Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
24
|
Cui S, Qi Y, Zhu Q, Wang C, Sun H. A review of the influence of soil minerals and organic matter on the migration and transformation of sulfonamides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160584. [PMID: 36455724 DOI: 10.1016/j.scitotenv.2022.160584] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) are common antibiotics that are widely present in the environment and can easily migrate in the environment, so they pose an environmental risk. Minerals and organic matter influence the antibiotic migration and transformation in sewage treatment plants, activated sludge, surface water, and soil environment. In the present paper, the influence of the process and mechanism of minerals and organic matter on the adsorption, degradation, and plant uptake of SAs in soil were summarized. In the impact process of mineral and organic matter on the SAs migration and transformation, the pH value is undoubtedly the most important factor because it determines the ionic state of SAs. In terms of influence mechanisms, the minerals absorb SAs well via cation exchange, complexation, H-bonding, and cation bridging. Mineral photodegradation is also one of the primary removal methods for SAs. Soil organic matter (SOM) can significantly increase the SAs adsorption. The adsorption forces of SAs and SOM or dissolved organic matter (DOM) were very similar, but SOM decreased SAs mobility in the environment, while DOM increased SAs availability. DOM generated active substances and aided in the photodegradation of SAs. This review describes the effects of minerals and organic matter on the fate of SAs in soil, which is useful in controlling the migration and transformation of SAs in the soil environment.
Collapse
Affiliation(s)
- Shengyan Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Li M, Duan P, Huo Y, Jiang J, Zhou Y, Ma Y, Jin Z, Mei Q, Xie J, He M. The multiple roles of phenols in the degradation of aniline contaminants by sulfate radicals: A combined study of DFT calculations and experiments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130216. [PMID: 36334575 DOI: 10.1016/j.jhazmat.2022.130216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Recent research revealed inhibition or enhancement of dissolved organic matter (DOM) to the degradation of trace organic contaminants (TrOC) in natural and engineered water systems. Phenols containing acetyl, carboxyl, formyl, hydroxy, and methoxy groups were selected as the model DOM to quantitatively study their roles in the degradation of simple anilines, sulfonamide antibiotics, phenylurea pesticides by sulfate radicals (SO4•-). Experimental results found that p-methoxyphenol inhibited aniline and sulfamethoxazole degradation by thermally activated peroxydisulfate (TAP), while p-acetylphenol slightly promoted aniline degradation. Quantum chemical calculations were applied to study the microscopic mechanism and kinetics of phenols affecting the degradation of aniline pollutants (AN) in three ways: competitively reacting with SO4•-, repairing aniline cationic radicals (AN•+) and phenylaminyl radicals (AN(-H)•), and generating phenoxy radicals to degrade anilines. Generally, the degradation of sulfonamides and phenylureas prefer to be inhibited by hydroxy- and methoxy-phenols with low oxidation potential (Eox), due to their diffusion-limiting reaction with SO4•- and rapid back-reduction AN•+ with the calculated rate constants of (0.02 - 6.38) × 109 M-1 s-1. Phenols repairing AN(-H)• through H abstraction reaction is speculated to possibly dominate the joint degradation of phenols and anilines by TAP, which has a poor correlation with Eox. This study provides mechanistic insight into the chemical behavior of complex and heterogeneous DOM in complex aqueous environments.
Collapse
Affiliation(s)
- Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pijun Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhehui Jin
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Qiong Mei
- School of Land Engineering, Chang'an University, Xi'an 710064, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
26
|
Wang H, Han M, Wang M, Zhou H. Microheterogeneous Triplet Oxidation of Hydrophobic Organic Contaminants in Dissolved Black Carbon Solutions under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14574-14584. [PMID: 36173710 DOI: 10.1021/acs.est.2c06395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissolved black carbon (DBC) is proven to accelerate the triplet-mediated photodegradation of hydrophobic organic contaminants (HOCs). However, its photosensitization mechanisms are not clear. In this study, five HOCs including 2,4,6-trimethylphenol, N,N-dimethylaniline, 17β-estradiol, 17α-ethinylestradiol, and bisphenol A were selected as model compounds to explore the triplet-mediated phototransformation of HOCs in illuminated DBC solutions. All five HOCs presented high organic carbon-water partition coefficient (KOC) values in DBC solutions, indicating the strong sorption capacity of DBC for HOCs. When reaching sorption equilibrium, the apparent pseudo-first-order rate constants of HOCs vs log[DBC] were well fitted with a sorption-enhanced phototransformation model (R2 > 0.98). Using the sorption-enhanced phototransformation model, the degradation rates of HOCs determined at intra-DBC (kDBC,HOCs') were 1-2 orders of magnitude higher than those observed in aqueous bulk solution (kHOCsaq). Moreover, typical triplet quenchers (2,4,6-trimethylphenol and oxygen) exhibited a microheterogeneous quenching effect on the triplet-mediated photodegradation of 17β-estradiol. Therefore, our results suggested that HOCs underwent a microheterogeneous photooxidative degradation process in DBC solutions. Furthermore, a sorption-enhanced phototransformation mechanism was proposed to elucidate the microheterogeneous photooxidative behavior of HOCs in DBC solutions. This study provides new insights into the fate and transport of HOCs in aquatic environments.
Collapse
Affiliation(s)
- Hui Wang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou213001, P. R. China
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, P. R. China
| | - Mengqi Han
- College of Environmental Science & Engineering, Tongji University, Shanghai200092, P. R. China
| | - Mei Wang
- College of Environmental Science & Engineering, Tongji University, Shanghai200092, P. R. China
| | - Huaxi Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, P. R. China
| |
Collapse
|
27
|
Cheng S, Zhao Y, Pan Y, Lei Y, Zhou Y, Li C, Zhang X, Yang X. Quantification of the diverse inhibitory effects of dissolved organic matter on transformation of micropollutants in UV/persulfate treatment. WATER RESEARCH 2022; 223:118967. [PMID: 35973248 DOI: 10.1016/j.watres.2022.118967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM), ubiquitous in natural waters, is known to inhibit the degradation of micropollutants in the advanced oxidation processes such as the UV/peroxydisulfate process. However, the quantitative understanding of the inhibitory pathways is missing. In this study, guanosine, aniline and catechol belonging to amines, purines and phenols were first investigated due to their resistance to UV irradiation at 254 nm and similar reactivity with SO4•- and HO•, respectively. The presence of 0.5 mgC L-1 Suwannee River NOM (SRNOM) inhibited their degradation rates by 72.9%, 54.5%, and 32.4%, respectively, despite their similar degradation rates in the absence of SRNOM. The results highlight the importance of reverse reduction of oxidation intermediates to the parent compound by antioxidant moieties in SRNOM besides the inner filtering and radical scavenging effects. The three inhibitory pathways were quantified for 34 common micropollutants. In the presence of 0.5 mgC L-1 SRNOM, inner filtering effect was found to contribute less than 2.8% of the inhibitory percentages (IP). Radical scavenging effects contribute between 10.7% and 38.9% and compounds having lower reactivity with SO4•- (< 4.0 × 109 M-1 s-1) tended to be inhibited more strongly. The IP of reverse reduction effects of SRNOM varied significantly from none up to 70.8%. It was linearly related with a micropollutant's reduction potential. Purines and amines generally exhibited more pronounced reverse reduction inhibition than phenols. The results of this study provide guidance on improving the elimination efficiency of micropollutants.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujie Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanhao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
29
|
Xiao J, Wang C, Feng BQ, Liu TY, Jia SY, Ren HT, Liu Y, Wu SH, Han X. Mediation of water-soluble oligoaniline by phenol in the aniline-persulfate system under alkaline conditions. Phys Chem Chem Phys 2022; 24:10394-10407. [PMID: 35441182 DOI: 10.1039/d1cp05983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although synthesis of oligoaniline (OANI) by persulfate and aniline has been investigated in the recent years, the impact of phenol on the synthesized soluble OANI is still not clear. In this study, our results indicate that phenol and pH mediate the production of the blue water-soluble OANI (OANIblue) in the reaction between sodium persulfate (SPS) and aniline under alkaline conditions, and the yields of OANIblue increase with increasing concentrations of phenol and pH values. Quenching experiments rule out the contributions of SO4˙- and ˙OH to aniline oxidation and imply that the non-radical activation of SPS is an important pathway in the formation of OANIblue. MALDI-TOF-MS analysis indicates that phenol apparently inhibits the polymerization degree of aniline in that the molecular weights of OANIblue gradually decrease from 1586.4 to 684.6 when phenol is increased from 0 to 2.0 mM. FTIR and Raman analyses confirm the structure of aniline oligomers in OANIblue and indicate that phenol inhibits the phenazine-like structure in OANIblue and facilitates the transformation of benzenoid rings to quinoid rings in the oxidation products. However, simultaneous activation of SPS by phenol and aniline is likely to occur in the reaction system with the formation of PhNH˙, as indicated by DFT calculations. The high scavenging reactivity of phenol towards both PhNH2˙+ and PhNH˙ implies that PhNH2˙+ and PhNH˙ are not the intermediates in the formation of OANIblue. DFT calculations also reveal that apart from the one-electron transfer pathway between aniline and SPS, the two-electron transfer pathway is also likely to occur in the presence of phenol, resulting in the formation of PhNH+/PhN˙˙ without producing PhNH2˙+ and PhNH˙. The produced PhNH+/PhN˙˙ intermediates then couple with aniline, PhNH+, aminophenyl sulfate and its hydrolysate to form dimers, trimers, oligomers, and eventually OANIblue. This study not only describes a novel method to prepare water-soluble OANI, but also gives new insight on the importance of phenol in the production of OANIblue.
Collapse
Affiliation(s)
- Jing Xiao
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Cong Wang
- School of Safety Supervision, North China Institute of Science and Technology, No. 467 Academy Street, Sanhe Yanjiao Development Zone, Langfang 065201, P. R. China
| | - Bai-Qi Feng
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Tian-Yu Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Shao-Yi Jia
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
30
|
Remke SC, Bürgin TH, Ludvíková L, Heger D, Wenger OS, von Gunten U, Canonica S. Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution. WATER RESEARCH 2022; 213:118095. [PMID: 35203017 DOI: 10.1016/j.watres.2022.118095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Reactive intermediates formed upon irradiation of chromophoric dissolved organic matter (CDOM) contribute to the degradation of various organic contaminants in surface waters. Besides well-studied "short-lived" photooxidants, such as triplet state CDOM (3CDOM*) or singlet oxygen, CDOM-derived "long-lived" photooxidants (LLPO) have been suggested as key players in the transformation of electron-rich contaminants. LLPO were hypothesized to mainly consist of phenoxyl radicals derived from phenolic moieties in the CDOM. To test this hypothesis and to better characterize LLPO, the transformation kinetics of selected target compounds (phenols and anilines) induced by a suite of electron-poor model phenoxyl radicals was studied in aerated aqueous solution at pH 8. The phenoxyl radicals were generated by photosensitized oxidation of the parent phenols using aromatic ketones as photosensitizers. Under steady-state irradiation, the presence of any of the electron-poor phenols lead to an enhanced abatement of the phenolic target compounds (at an initial concentration of 1.0 × 10-7 M) compared to solutions containing the photosensitizer but no electron-poor phenol. A trend of increasing reactivity with increasing one-electron reduction potential of the electron-poor phenoxyl radical (range: 0.85‒1.12 V vs. standard hydrogen electrode) was observed. Using the excited triplet state of 2-acetonaphthone as a selective oxidant for phenols, it was observed that the reactivity correlated with the concentration of electron-poor phenoxide present in solution. The rates of transformation of anilines induced by the 4-cyanophenoxyl radical were an order of magnitude smaller than for the phenolic target compounds. This was interpreted as a reduction of the radical intermediates back to the parent compound by the superoxide radical anion. Laser flash photolysis measurements confirmed the formation of the 4-cyanophenoxyl radical in solutions containing 2-acetonaphthone and 4-cyanophenol, and yielded values of (2.6 - 5.3) × 108 M-1 s-1 for the second-order rate constant for the reaction of this radical with 2,4,6-trimethylphenol. These and further results indicate that electron-poor model phenoxyl radicals generated through photosensitized oxidation are useful models to understand the photoreactivity of LLPO as part of the CDOM.
Collapse
Affiliation(s)
- Stephanie C Remke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, CH 8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH 1015, Switzerland
| | - Tobias H Bürgin
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Lucie Ludvíková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic; Present address: PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne University, CNRS, Paris 75005, France
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, CH 8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH 1015, Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, CH 8600, Switzerland.
| |
Collapse
|
31
|
Liu H, Zhang Z, Tu YN, Li Y, Lei Y, Tian S. Dual roles of Cu 2+ complexation with dissolved organic matter on the photodegradation of trace organic pollutants: Triplet- and OH-induced reactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152934. [PMID: 35007586 DOI: 10.1016/j.scitotenv.2022.152934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The triplet excited state of dissolved organic matter (3DOM⁎) is highly effective in the photodegradation of a broad spectrum of trace organic pollutants (TOPs), and its photoactivity is affected by concomitant metal ions in surface waters. However, the impact of environmental metal ions on the 3DOM⁎-induced photodegradation of TOPs has not been systemically explored. Herein, we investigated the effect of environmental Cu2+ on the 3DOM⁎-induced photodegradation kinetics of 16 TOPs. A fluorescence quenching experiment showed that a Cu(II)-DOM complex was formed. For the TOPs with stronger electron-donating groups (triplet-labile moieties, e.g., phenols and anilines), Cu2+ complexation notably inhibited 3DOM⁎-induced photodegradation. This may be ascribed to the decrease of 3DOM⁎ steady-state concentration because Cu2+ complexation reduces its formation rates and enhances scavenging rates tested by sorbic acid isomerization experiment. Meanwhile, it was found that Cu2+ complexation facilitated the photolysis of refractory TOPs (lower triplet reactivity) because of enhanced electron transfer between DOM and Cu(II), causing photoinduced OH formation. These findings implied that 3DOM⁎ reactivity differences in TOPs could affect the photodegradation rates in the complex system, which was confirmed via a linear correlation of photodegradation rate ratios for 16 TOPs induced by 3DOM⁎ in the presence/absence of Cu2+ with their 3DOM⁎ reactivity. These findings helped to improve our understanding of the photochemical reactivity of 3DOM⁎ in natural waters, especially the effects of environmentally concomitant metal ions.
Collapse
Affiliation(s)
- Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Zhiyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yajie Lei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
32
|
Fang Y, Zheng W, Peng Y, Liu J, Gao J, Tu Y, Sun S, Huang X, She J, Chen C, Xu S, Yue Y. Differentiate Thermal Property of Mammary Glands for Precise Photothermal Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuxin Fang
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Yuxuan Peng
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Jianshu Gao
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Yi Tu
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Xiaona Huang
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Jinjuan She
- Department of Mechanical and Manufacturing Engineering Miami University Ohio 45056 USA
| | - Chuang Chen
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Shen Xu
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Yanan Yue
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
- Department of Mechanical and Manufacturing Engineering Miami University Ohio 45056 USA
| |
Collapse
|
33
|
García-Ballesteros S, García-Negueroles P, Amat AM, Arques A. Humic-Like Substances as Auxiliaries to Enhance Advanced Oxidation Processes. ACS OMEGA 2022; 7:3151-3157. [PMID: 35128227 PMCID: PMC8811936 DOI: 10.1021/acsomega.1c05445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
The application of humic-like substances (HLSs) in advanced oxidation processes for wastewater treatment is summarized in this work. HLSs share important characteristics with humic substances, and they can be isolated from different wastes using procedures that are related with their pH-dependent solubility. They are able to generate, upon irradiation, reactive species such as hydroxyl radicals and singlet oxygen or triplet excited states. Although photochemical removal of pollutants can be reached by HLSs, in general, irradiation times are very long. HLSs are good metal-complexing agents, and the Fe-HLS complex is able to participate in (photo)-Fenton-like processes at mild pH, preventing iron deactivation. Finally, novel hybrid materials with environmental applications have been synthesized using HLSs; in some cases, they also contain iron oxides, which allow a better separation but also the ability to drive heterogeneous (photo)-Fenton processes.
Collapse
|
34
|
Cheng S, Zhao Y, Pan Y, Yu J, Lei Y, Lei X, Ouyang G, Yang X. Role of Antioxidant Moieties in the Quenching of a Purine Radical by Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:546-555. [PMID: 34747613 DOI: 10.1021/acs.est.1c04576] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) has been known to inhibit the degradation of trace organic contaminants (TrOCs) in advanced oxidation processes but quantitative understanding is lacking. Adenine (ADN) was selected as a model TrOC due to the wide occurrence of purine groups in TrOCs and the well-documented transient spectra of its intermediate radicals. ADN degradation in the presence of DOM during UV/peroxydisulfate treatment was quantified using steady-state photochemical experiments, time-resolved spectroscopy, and kinetic modeling. The inhibitory effects of DOM were found to include competing for photons, scavenging SO4•- and HO•, and also converting intermediate ADN radicals (ADN(-H)•) back into ADN. Half of the ADN(-H)• were reduced back to ADN in the presence of about 0.2 mgC L-1 of DOM. The quenching rate constants of ADN(-H)• by the 10 tested DOM isolates were in the range of (0.39-1.18) × 107 MC-1 s-1. They showed a positive linear relationship with the total antioxidant capacity of DOM. The laser flash photolysis results of the low-molecular-weight analogues of redox-active moieties further supported the dominant role of antioxidant moieties in DOM in the quenching of ADN(-H)•. The diverse roles of DOM should be considered in predicting the abatement of TrOCs in advanced oxidation processes.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujie Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinpeng Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Yu X, Tan L, Yu Y, Xia Y, Guan Z, Gu J, Wang J, Chen H, Jiang F. Insights into the hydrated electron generation from UV/aniline: Mechanism and quantum efficiency. CHEMOSPHERE 2022; 287:132292. [PMID: 34562711 DOI: 10.1016/j.chemosphere.2021.132292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The insight into the neglected reduction process accompanied by UV-based oxidation process may provide new ideas for the development of advanced oxidation and reduction technologies. In this study, aniline was comprehensively investigated as an unexpected indicator of hydrated electron (eaq-) under UV irradiation. Monochloroacetic acid (MCAA) was selected as the probe of eaq- and the balance of chloride ions indicated the reduction of MCAA. Further, laser flash photolysis experiments demonstrated the generation of eaq- in the UV/aniline process and the half-life period of formed eaq- was demonstrated to be 0.13 μs. The photolysis of aniline along with the decay of the excited state of aniline was responsible for the eaq- generation. Besides, the hydrogen atom (H) generated from the photolysis can subsequently reacted with OH- to generate eaq-. The photolysis pathways of aniline were proposed by the results of GC-MS. Aniline was abstracted of H in solution to the formation of aniline radical (PhNH) or form aminophenol in three different isomers (orto-, meta- and para-aminophenol). Moreover, UV/aniline showed a higher reducing capacity of MCAA compared with other organic electron donors and sustained a highly reducing ability in a wide pH. And the calculation results of quantum efficiency (Φ) showed that excessive aniline was not conducive to the elevation of Φ. This study introduced a novel pathway of eaq- generation during the photolysis of aniline and provided a new perspective for eaq--based advanced reduction processes.
Collapse
Affiliation(s)
- Xiaoping Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yalin Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yun Xia
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Guan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jia Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Wang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
36
|
Wenk J, Graf C, Aeschbacher M, Sander M, Canonica S. Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15110-15122. [PMID: 34714642 PMCID: PMC8735754 DOI: 10.1021/acs.est.1c03301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dissolved organic matter (DOM) has a dual role in indirect phototransformations of aquatic contaminants by acting both as a photosensitizer and an inhibitor. Herein, the pH dependence of the inhibitory effect of DOM and the underlying mechanisms were studied in more than 400 kinetic irradiation experiments over the pH range of 6-11. Experiments employed various combinations of one of three DOM isolates, one of two model photosensitizers, the model antioxidant phenol, and one of nine target compounds (TCs), comprising several aromatic amines, in particular anilines and sulfonamides, and 4-cyanophenol. Using model photosensitizers without antioxidants, the phototransformation of most TCs increased with increasing pH, even for TCs for which pH did not affect speciation. This trend was attributed to pH-dependent formation yields of TC-derived radicals and their re-formation to the parent TC. Analogous trends were observed with DOM as a photosensitizer. Comparison of model and DOM photosensitizer data sets showed increasing inhibitory effects of DOM on TC phototransformation kinetics with increasing pH. In systems with anilines as a TC and phenol as a model antioxidant, pH trends of the inhibitory effect could be rationalized based on the reduction potential difference (ΔEred) of phenoxyl/phenol and anilinyl/aniline couples. Our results indicate that the light-induced transformation of aromatic amines in the aquatic environment is governed by the pH-dependent inhibitory effects of antioxidant phenolic moieties of DOM and pH-dependent processes related to the formation of amine oxidation intermediates.
Collapse
Affiliation(s)
- Jannis Wenk
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Department
of Chemical Engineering and Water Innovation & Research Centre
(WIRC), University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
- . Tel: +44-1225-383246
| | - Cornelia Graf
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- INFRAS
Research and Consulting, CH-3012 Berne, Switzerland
| | - Michael Aeschbacher
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Michael Sander
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- . Tel: +41-58-765-5453. Fax: +41-58-765-5210
| |
Collapse
|