1
|
Cai D, Dale JJ, Petcher S, Wu X, Hasell T. Investigating the Effect of UV Irradiation and TiO2 Addition on Heavy Metal Adsorption by Inverse Vulcanized Sulfur Polymers. Chemistry 2024; 30:e202402194. [PMID: 39373665 DOI: 10.1002/chem.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Organomercury contamination in wastewater is a longstanding global concern, prompting the establishment of the Mi-namata Convention in 2013, following the tragic Minamata Bay incident in Japan. Despite numerous proposed solutions, the development of an affordable and convenient adsorbent remains a challenge. Sulfur, being one of the most abundant elements globally, has shown promise in mercury adsorption in previous research. This study delves into the influence of light exposure on the process of mercury adsorption. Our findings reveal that exposure to UV-A wavelengths (315 nm-400 nm), in combination with the addition of titanium dioxide (TiO2), enhances the adsorption capacity of a sulfur-rich polymer. The maximum observed adsorption capacity reached 47 mg/g under these conditions. Notably, the presence of TiO2 and UV exposure did not significantly impact the adsorption of inorganic mercury and gold.
Collapse
Affiliation(s)
- Diana Cai
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Joseph J Dale
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Sam Petcher
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Xiaofeng Wu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
2
|
Fang F, Ding L, Zhang Y, Qiao X, Qian L, Wei R, Chen H, Ji H, Pi B, Wong MH, Tao H, Xu N, Zhang L. Bacterial mercury methylation modulated by vitamin B9: An overlooked pathway leads to increased environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135625. [PMID: 39191012 DOI: 10.1016/j.jhazmat.2024.135625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
There has been a serious health and environmental concern in conversion of inorganic mercury (Hg) to the neurotoxin, methylmercury (MeHg) by anaerobic microbes, while very little is known about the potential role of vitamin B9 (VB9) regulator in the biochemical generation of MeHg. This study innovatively investigated bacterial Hg methylation by Geobacter sulfurreducens PCA in the presence of VB9 under two existing scenarios. In the low-complexing scenario, the bacterial MeHg yield reached 68 % higher than that without VB9 within 72 h, which was attributed to free VB9-protected PCA cells relieving oxidative stress, as manifested by the increased expression of Hg methylation gene (hgcAB cluster by 19-48 %). The high-complexing scenario emphasized the intracellular Hg accumulation (38-45 %) after 12 h, as indicated by the increased expression of outer membrane protein-related and mercuric reductase-encoding genes, indicating the inefficient bioavailability of Hg due to a gradual shift from Hg reduction toward Hg0 re-oxidation controlled by competitive ligand exchange. These results suggested that VB9 application significantly raised the potential for bacterial Hg methylation and cellular accumulation, thus proposing insights into the biochemical behaviors of hazardous Hg in farming environments where vulnerable organisms are more possibly co-exposed to higher levels of Hg and VB9.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yaoyu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xuejiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruqian Wei
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hanchun Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haodong Ji
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bin Pi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510700, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-on-Don, Russia; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Butovych H, Keshavarz F, Barbiellini B, Lähderanta E, Ilnytskyi J, Patsahan T. Role of EDTA protonation in chelation-based removal of mercury ions from water. Phys Chem Chem Phys 2024; 26:25402-25411. [PMID: 39318161 DOI: 10.1039/d4cp02980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A robust method of hazardous metal ion removal from an aqueous environment involves the use of chelating agents, such as ethylenediaminetetraacetic acid (EDTA). Here, we focus on mercury (Hg2+) uptake by EDTA using both molecular dynamics and density functional theory simulations. Our results indicate that the deprotonation of the EDTA carboxylate groups improves the localization of negative charge on the deprotonated sites. This mechanism facilitates charge transfer between the metal ions and EDTA, and provides a stronger and more stable EDTA-Hg2+ complex formation improving the efficiency of the chelation process. The best metal removal conditions are achieved using the fully deprotonated form of EDTA, which naturally occurs at pH levels above 3.
Collapse
Affiliation(s)
- Halyna Butovych
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Fatemeh Keshavarz
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Erkki Lähderanta
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Universitat de les Illes Balears, Cra Valldemossa, km. 7.5, 07122 Palma, Spain
| | - Jaroslav Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera str., 79013 Lviv, Ukraine
| | - Taras Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera str., 79013 Lviv, Ukraine
| |
Collapse
|
4
|
Fang Y, Liu G, Wang Y, Liu Y, Yin Y, Cai Y, Mebel AM, Jiang G. Transformation of Mercurous [Hg(I)] Species during Laboratory Standard Preparation and Analysis: Implication for Environmental Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6825-6834. [PMID: 38567993 DOI: 10.1021/acs.est.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 μg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 μg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.
Collapse
Affiliation(s)
- Yingying Fang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ying Wang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
5
|
Schwab L, Gallati N, Reiter SM, Kimber RL, Kumar N, McLagan DS, Biester H, Kraemer SM, Wiederhold JG. Mercury Isotope Fractionation during Dark Abiotic Reduction of Hg(II) by Dissolved, Surface-Bound, and Structural Fe(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15243-15254. [PMID: 37748105 PMCID: PMC10569049 DOI: 10.1021/acs.est.3c03703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionation during dark, abiotic reduction of Hg(II) by dissolved iron(Fe)(II), magnetite, and Fe(II) sorbed to boehmite or goethite by analyzing both the reactants and products of laboratory experiments. For homogeneous reduction of Hg(II) by dissolved Fe(II) in continuously purged reactors, the results followed a Rayleigh distillation model with enrichment factors of -2.20 ± 0.16‰ (ε202Hg) and 0.21 ± 0.02‰ (E199Hg). In closed system experiments, allowing reequilibration, the initial kinetic fractionation was overprinted by isotope exchange and followed a linear equilibrium model with -2.44 ± 0.17‰ (ε202Hg) and 0.34 ± 0.02‰ (E199Hg). Heterogeneous Hg(II) reduction by magnetite caused a smaller isotopic fractionation (-1.38 ± 0.07 and 0.13 ± 0.01‰), whereas the extent of isotopic fractionation of the sorbed Fe(II) experiments was similar to the kinetic homogeneous case. Small mass-independent fractionation of even-mass Hg isotopes with 0.02 ± 0.003‰ (E200Hg) and ≈ -0.02 ± 0.01‰ (E204Hg) was consistent with theoretical predictions for the nuclear volume effect. This study contributes significantly to the database of Hg isotope enrichment factors for specific processes. Our findings show that Hg(II) reduction by dissolved Fe(II) in open systems results in a kinetic MDF with a larger ε compared to other abiotic reduction pathways, and combining MDF with the observed MIF allows the distinction from photochemical or microbial Hg(II) reduction pathways.
Collapse
Affiliation(s)
- Lorenz Schwab
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Environmental
Engineering Institute IIE-ENAC, Soil Biogeochemistry Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), Route
des Ronquos 86, 1951 Sion, Switzerland
| | - Niklas Gallati
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sofie M. Reiter
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Richard L. Kimber
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Soil
Chemistry and Chemical Soil Quality Group, Department of Environmental
Sciences, University of Wageningen, Droevendaalsesteeg 3a, 6708 Wageningen, Netherlands
| | - David S. McLagan
- Environmental
Geochemistry Group, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
- Department
of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- School
of Environmental Studies, Queen’s
University, Kingston, Ontario K7L 3N6, Canada
| | - Harald Biester
- Environmental
Geochemistry Group, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Stephan M. Kraemer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jan G. Wiederhold
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
6
|
Wang Y, Liu G, Fang Y, Liu P, Liu Y, Guo Y, Shi J, Hu L, Cai Y, Yin Y, Jiang G. Dark oxidation of mercury droplet: Mercurous [Hg(I)] species controls transformation kinetics. WATER RESEARCH 2023; 244:120472. [PMID: 37619304 DOI: 10.1016/j.watres.2023.120472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Liquid elemental mercury droplet (Hg(0)l) is an important species in heavy Hg-contaminated environments. The oxidation processes of Hg(0)l and its related mechanisms are still poorly understood. Herein, for the first time, it was verified that mercurous species [Hg(I)] was an important species in natural water contaminated by Hg(0)l as well as in the simulated dark oxidation of Hg(0)l. The formation and further transformation of Hg(I) controlled the overall oxidation process of Hg(0)l and were affected by different environmental factors. Through kinetic modeling using ACUCHEM program, oxidation of Hg(0) to Hg(I) (Hg(0) → Hg(I)) was determined to be the rate-limiting step in Hg(0)l oxidation because its k value ((8.7 ± 0.21) × 10-11s-1) is seven orders of magnitude lower than that of Hg(I) oxidation (Hg(I) → Hg(II), (4.7 ± 0.15) × 10-4s-1). Ligands like OH-, Cl-, and natural organic matter enhanced the formation of Hg(I) via promoting the constants of comproportionation (up to (9.5 ± 0.78) × 10-4s-1). These findings highlight the importance of Hg(I) in Hg(0)l oxidation process by controlling the transformation kinetics of Hg species, facilitating an improved understanding of the environmental redox cycles of Hg.
Collapse
Affiliation(s)
- Ying Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yingying Fang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Shen Z, Liu G, Guo Y, Jiang T, Liu Y, Shi J, Hu L, Yin Y, Cai Y, Jiang G. Dissolved organic matter mediated dark- and photo-aging processes of Hg(II): Critical impacts of binding sites and sulfidation on Hg(II) abiotic reduction and microbial methylation. WATER RESEARCH 2023; 242:120294. [PMID: 37429137 DOI: 10.1016/j.watres.2023.120294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Dissolved organic matter (DOM)-mediated divalent mercury (Hg(II)) aging kinetics play a crucial role in controlling Hg(II) transformation and bioavailability in natural aquatic environments. However, the differential environmental behaviors of new and aged Hg(II) in a same reaction system remains unknown. In this study, multi-isotope tracing was used to investigate the impacts of binding site and sulfidation during DOM-mediated Hg(II) aging processes on Hg(II) reduction and microbial methylation in the same reaction system. Stepwise reduction approach and liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) demonstrate that DOM-mediated dark aging processes are mainly driven by the rearrangement of DOM binding sites with Hg(II), but not the formation of mercury sulfide nanoparticles (HgSNP). The abundant but weaker RO/N (carboxyl and amino) Hg(II)-binding sites are replaced with stronger RSH (thiol) moieties towards Hg(II) binding with aging, resulting in a decrease in Hg(II) reduction. In contrast, besides reduction, DOM-mediated Hg(II) photoaging induces the formation of HgSNP, as revealed by LC-ICP-MS, which in turn decreases the microbial methylation potential of Hg(II). These findings help better understand and predict the kinetic characteristics of Hg(II) reactivity and its influence on Hg cycle within natural aquatic environments.
Collapse
Affiliation(s)
- Zelin Shen
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Zhang L, Kang-Yun CS, Lu X, Chang J, Liang X, Pierce EM, Semrau JD, Gu B. Adsorption and intracellular uptake of mercuric mercury and methylmercury by methanotrophs and methylating bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121790. [PMID: 37187279 DOI: 10.1016/j.envpol.2023.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The cell surface adsorption and intracellular uptake of mercuric Hg(II) and methylmercury (MeHg) are important in determining the fate and transformation of Hg in the environment. However, current information is limited about their interactions with two important groups of microorganisms, i.e., methanotrophs and Hg(II)-methylating bacteria, in aquatic systems. This study investigated the adsorption and uptake dynamics of Hg(II) and MeHg by three strains of methanotrophs, Methylomonas sp. Strain EFPC3, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath, and two Hg(II)-methylating bacteria, Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. Distinctive behaviors of these microorganisms towards Hg(II) and MeHg adsorption and intracellular uptake were observed. The methanotrophs generally took up 60-80% of inorganic Hg(II) inside cells after 24 h incubation, lower than methylating bacteria (>90%). Approximately 80-95% of MeHg was rapidly taken up by all the tested methanotrophs within 24 h. In contrast, after the same time, G. sulfurreducens PCA adsorbed 70% but took up <20% of MeHg, while P. mercurii ND132 only adsorbed 20% but took up negligible amounts of MeHg. These results suggest that microbial surface adsorption and intracellular uptake of Hg(II) and MeHg depend on the specific types of microbes and appear to be related to microbial physiology that requires further detailed investigation. Despite being incapable of methylating Hg(II), methanotrophs play important roles in immobilizing both Hg(II) and MeHg, potentially influencing their bioavailability and trophic transfer. Therefore, methanotrophs are not only important sinks for methane but also for Hg(II) and MeHg and can influence the global cycling of C and Hg.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biosystems Engineering and Soil Science, University of Tennesee, Knoxville, TN 37996, USA
| |
Collapse
|
9
|
Zhang L, Yin Y, Sun Y, Liang X, Graham DE, Pierce EM, Löffler FE, Gu B. Inhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5655-5665. [PMID: 36976621 PMCID: PMC10100821 DOI: 10.1021/acs.est.2c09457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggesting that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. This research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yongchao Yin
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yanchen Sun
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xujun Liang
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David E. Graham
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric M. Pierce
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frank E. Löffler
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Baohua Gu
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Ye M, Xiang Y, Gong J, Wang X, Mao Z, Liu Z. Monitoring Hg 2+ and MeHg + poisoning in living body with an activatable near-infrared II fluorescence probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130612. [PMID: 37056002 DOI: 10.1016/j.jhazmat.2022.130612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
Noninvasively imaging mercury poisoning in living organisms is critical to understanding its toxicity and treatments. Especially, simultaneous fluorescence imaging of Hg2+ and MeHg+in vivo is helpful to disclose the mysteries of mercury poisoning. The key limitation for mercury imaging in vivo is the low imaging signal-to-background ratio (SBR) and limited imaging depth, which may result in unreliable detection results. Here, we designed and prepared a near-infrared II (NIR II) emissive probe, NIR-Rh-MS, leveraging the "spirolactam ring-open" tactic of xanthene dyes for in situ visualization of mercury toxicity in mice. The probe produces a marked fluorescence signal at 1015 nm and displays good linear responses to Hg2+ and MeHg+ with excellent sensitivity, respectively. The penetration experiments elucidate that the activated NIR-II fluorescence signal of the probe penetrates to a depth of up to 7 mm in simulated tissues. Impressively, the probe can monitor the toxicity of Hg2+ in mouse livers and the accumulation of MeHg+ in mouse brains via intravital NIR-II imaging for the first time. Thus, we believe that detecting Hg2+ and MeHg+ in different organs with a single NIR-II fluorescence probe in mice would assuredly advance the toxicologic study of mercury poisoning in vivo.
Collapse
Affiliation(s)
- Miantai Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunhui Xiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiankang Gong
- College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhiqiang Mao
- College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; College of Health Science and Engineering, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
McLagan DS, Schwab L, Wiederhold JG, Chen L, Pietrucha J, Kraemer SM, Biester H. Demystifying mercury geochemistry in contaminated soil-groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1406-1429. [PMID: 34981096 PMCID: PMC9491299 DOI: 10.1039/d1em00368b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Interpretation of mercury (Hg) geochemistry in environmental systems remains a challenge. This is largely associated with the inability to identify specific Hg transformation processes and species using established analytical methods in Hg geochemistry (total Hg and Hg speciation). In this study, we demonstrate the improved Hg geochemical interpretation, particularly related to process tracing, that can be achieved when Hg stable isotope analyses are complemented by a suite of more established methods and applied to both solid- (soil) and liquid-phases (groundwater) across two Hg2+-chloride (HgCl2) contaminated sites with distinct geological and physicochemical properties. This novel approach allowed us to identify processes such as Hg2+ (i.e., HgCl2) sorption to the solid-phase, Hg2+ speciation changes associated with changes in groundwater level and redox conditions (particularly in the upper aquifer and capillary fringe), Hg2+ reduction to Hg0, and dark abiotic redox equilibration between Hg0 and Hg(II). Hg stable isotope analyses play a critical role in our ability to distinguish, or trace, these in situ processes. While we caution against the non-critical use of Hg isotope data for source tracing in environmental systems, due to potentially variable source signatures and overprinting by transformation processes, our study demonstrates the benefits of combining multiple analytical approaches, including Hg isotope ratios as a process tracer, to obtain an improved picture of the enigmatic geochemical behavior and fate of Hg at contaminated legacy sites.
Collapse
Affiliation(s)
- D S McLagan
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, Canada
| | - L Schwab
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - J G Wiederhold
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - L Chen
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - J Pietrucha
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - S M Kraemer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - H Biester
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
13
|
Yin X, Wang L, Liang X, Zhang L, Zhao J, Gu B. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128835. [PMID: 35398798 DOI: 10.1016/j.jhazmat.2022.128835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a pervasive environmental pollutant and poses serious health concerns as inorganic Hg(II) can be converted to the neurotoxin methylmercury (MeHg), which bioaccumulates and biomagnifies in food webs. Phytoplankton, representing the base of aquatic food webs, can take up Hg(II) and influence MeHg production, but currently little is known about how and to what extent phytoplankton may impact Hg(II) methylation by itself or by methylating bacteria it harbors. This study investigated whether some species of phytoplankton could produce MeHg and how the live or dead phytoplankton cells and excreted algal organic matter (AOM) impact Hg(II) methylation by several known methylators, including iron-reducing bacteria (FeRB), Geobacter anodireducens SD-1 and Geobacter sulfurreducens PCA, and the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans ND132 (or Pseudodesulfovibrio mercurii). Our results indicate that, among the 4 phytoplankton species studied, none were capable of methylating Hg(II). However, the presence of phytoplankton cells (either live or dead) from Chlorella vulgaris (CV) generally inhibited Hg(II) methylation by FeRB but substantially enhanced methylation by SRB D. desulfuricans ND132. Enhanced methylation was attributed in part to CV-excreted AOM, which increased Hg(II) complexation and methylation by ND132 cells. In contrast, inhibition of methylation by FeRB was attributed to these bacteria incapable of competing with phytoplankton for Hg(II) binding and uptake. These observations suggest that phytoplankton could play different roles in affecting Hg(II) methylation by the two groups of anaerobic bacteria, FeRB and SRB, and thus shed additional light on how phytoplankton blooms may modulate MeHg production and bioaccumulation in the aquatic environment.
Collapse
Affiliation(s)
- Xixiang Yin
- Shandong Jinan Eco-environmental Monitoring Center, Jinan 250014, China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Lihong Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Jiating Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Ten 37996, United States.
| |
Collapse
|
14
|
Zhang L, Philben M, Taş N, Johs A, Yang Z, Wullschleger SD, Graham DE, Pierce EM, Gu B. Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118878. [PMID: 35085651 DOI: 10.1016/j.envpol.2022.118878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Michael Philben
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Neslihan Taş
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
15
|
Worms IAM, Kavanagh K, Moulin E, Regier N, Slaveykova VI. Asymmetrical Flow Field-Flow Fractionation Methods for Quantitative Determination and Size Characterization of Thiols and for Mercury Size Speciation Analysis in Organic Matter-Rich Natural Waters. Front Chem 2022; 10:800696. [PMID: 35252112 PMCID: PMC8888841 DOI: 10.3389/fchem.2022.800696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetrical flow field-flow fractionation (AF4) efficiently separates various macromolecules and nano-components of natural waters according to their hydrodynamic sizes. The online coupling of AF4 with fluorescence (Fluo) and UV absorbance (UV) detectors (FluoD and UVD, respectively) and inductively coupled plasma–mass spectrometry (ICP-MS) provides multidimensional information. This makes it a powerful tool to characterize and quantify the size distributions of organic and inorganic nano-sized components and their interaction with trace metals. In this study, we developed a method combining thiol labeling by monobromo(trimethylammonio)bimane bromide (qBBr) with AF4–FluoD to determine the size distribution and the quantities of thiols in the macromolecular dissolved organic matter (DOM) present in highly colored DOM-rich water sampled from Shuya River and Lake Onego, Russia. We found that the qBBr-labeled components of DOM (qB-DOM) were of humic type, characterized by a low hydrodynamic size (dh < 2 nm), and have concentrations <0.3 μM. After enrichment with mercury, the complexes formed between the nano-sized components and Hg were analyzed using AF4–ICP-MS. The elution profile of Hg followed the distribution of the UV-absorbing components of DOM, characterized by slightly higher sizes than qB-DOM. Only a small proportion of Hg was associated with the larger-sized components containing Fe and Mn, probably inorganic oxides that were identified in most of the samples from river to lake. The size distribution of the Hg–DOM complexes was enlarged when the concentration of added Hg increased (from 10 to 100 nM). This was explained by the presence of small iron oxides, overlapping the size distribution of Hg–DOM, on which Hg bound to a small proportion. In addition, to provide information on the dispersion of macromolecular thiols in colored DOM-rich natural water, our study also illustrated the potential of AF4–FluoD–UVD–ICP-MS to trace or quantify dynamic changes while Hg binds to the natural nano-colloidal components of surface water.
Collapse
|
16
|
Zhang Y, Zhang L, Liang X, Wang Q, Yin X, Pierce EM, Gu B. Competitive exchange between divalent metal ions [Cu(II), Zn(II), Ca(II)] and Hg(II) bound to thiols and natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127388. [PMID: 34879578 DOI: 10.1016/j.jhazmat.2021.127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Mercuric Hg(II) ion forms exceptionally strong complexes with various organic ligands, particularly thiols and dissolved organic matter (DOM) in natural water. Few studies, however, have experimentally determined whether or not the presence of base cations and transition metal ions, such as Ca(II), Cu(II), and Zn(II), would compete with Hg(II) bound to these ligands, as concentrations of these metal ions are usually orders of magnitude higher than Hg(II) in aquatic systems. Different from previous model predictions, a significant fraction of Hg(II) bound to cysteine (CYS), glutathione (GSH), or DOM was found to be competitively exchanged by Cu(II), but not by Zn(II) or Ca(II). About 20-75% of CYS-bound-Hg(II) [at 2:1 CYS:Hg(II)] and 14-40% of GSH-bound-Hg(II) [at 1:1 GSH:Hg(II)] were exchanged by Cu(II) at concentrations 1-3 orders of magnitude greater than Hg(II). Competitive exchange was also observed between Cu(II) and Hg(II) bound to DOM, albeit to a lower extent, depending on relative abundances of thiol and carboxylate functional groups on DOM and their equilibrium time with Hg(II). When complexed with ethylenediaminetetraacetate (EDTA), most Hg(II) could be exchanged by Cu(II) and Zn(II), as well as Ca(II) at increasing concentrations. These results shed additional light on competitive exchange reactions between Hg(II) and coexisting metal ions and have important implications in Hg(II) chemical speciation and biogeochemical transformation, particularly in contaminated environments containing relatively high concentrations of Hg(II) and metal ions.
Collapse
Affiliation(s)
- Yaoling Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources and Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Quanying Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
17
|
Zhu W, Fu X, Zhang H, Liu C, Skyllberg U, Sommar J, Yu B, Feng X. Mercury Isotope Fractionation during the Exchange of Hg(0) between the Atmosphere and Land Surfaces: Implications for Hg(0) Exchange Processes and Controls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1445-1457. [PMID: 34964623 DOI: 10.1021/acs.est.1c05602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atmosphere-surface exchange of elemental mercury (Hg(0)) is a vital component in global Hg cycling; however, Hg isotope fractionation remains largely unknown. Here, we report Hg isotope fractionation during air-surface exchange from terrestrial surfaces at sites of background (two) and urban (two) character and at five sites contaminated by Hg mining. Atmospheric Hg(0) deposition to soils followed kinetic isotope fractionation with a mass-dependent (MDF) enrichment factor of -4.32‰, and negligible mass-independent fractionation (MIF). Net Hg(0) emission generated average MDF enrichment factors (ε202Hg) of -0.91, -0.59, 1.64, and -0.42‰ and average MIF enrichment factors (E199Hg) of 0.07, -0.20, -0.14, and 0.21‰ for urban, background, and Hg mining soils and cinnabar tailing, respectively. Positive correlations between ε202Hg and ambient Hg(0) concentration indicate that the co-occurring Hg(0) deposition (accounting for 10-39%) in a regime of net soil emission grows with ambient Hg(0). The MIF of Hg(0) emission from soils (E199Hg range -0.27 to 0.14‰, n = 8) appears to be overall controlled by the photochemical reduction of kinetically constrained Hg(II) bonded to O ligands in background soils, while S ligands may have been more important in Hg mining area soils. In contrast, the small positive MIF of Hg(0) emission from cinnabar ore tailing (mean E199Hg = 0.21‰) was likely controlled by abiotic nonphotochemical reduction and liquid Hg(0) evaporation. This research provides critical observational constraints on understanding the Hg(0) isotope signatures released from and deposited to terrestrial surfaces and highlight stable Hg isotopes as a powerful tool for resolving atmosphere-surface exchange processes.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ben Yu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|