1
|
Gao Y, Qiu Y, Wan F, Cui S, Zhao Q, Zhao Y, Zhang D, Zhang C, Zhou J, Liu W, Zhuang S. PBScreen: A server for the high-throughput screening of placental barrier-permeable contaminants based on multifusion deep learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125858. [PMID: 39954759 DOI: 10.1016/j.envpol.2025.125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Contaminants capable of crossing the placental barrier (PB) adversely affect female reproduction and fetal development. The rapid identification of PB-permeable contaminants is urgently needed due to the inefficiencies of conventional cell-based transwell assays for the screening of large quantities of chemicals. Herein, we construct a PBScreen server using a multifusion deep learning (DL) model for the accurate and rapid screening of PB-permeable chemicals. This model is trained using graph convolutional networks and deep neural networks algorithms. It achieves state-of-the-art performance with an accuracy of 0.927, a false negative rate of 0.074, and an area under the receiver operating characteristic curve of 0.960. The robustness and generalization of the model as assessed using the external validation set and BeWo cell-based transwell assays demonstrate its potential for diverse applications. Our study establishes an efficient high-throughput screening tool that aids in screening PB-permeable chemicals, thereby enhancing the risk assessment of contaminants associated with key public health concerns.
Collapse
Affiliation(s)
- Yuchen Gao
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu Qiu
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fang Wan
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qiming Zhao
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yaxuan Zhao
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Dirong Zhang
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA
| | - Jianhong Zhou
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Yuan KY, Gu YH, Pei YH, Yu SY, Li TZ, Feng T, Liu Y, Tian J, Miao X, Xiong J, Hu M, Yuan BF. Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136970. [PMID: 39740555 DOI: 10.1016/j.jhazmat.2024.136970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums. 38 pollutants were detected in serums, including 5 BPs, 13 OPFRs, 2 BFRs, 4 PAEs, and 14 PFASs. Among the detected pollutants, bisphenol A (BPA) exists in the highest concentration (GM: 10.92 ng/mL in maternal serums and 12.66 ng/mL in cord serums), followed by tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), perfluorooctanoic acid (PFOA), and 4,4'-(1,3-phenylenediisopropylidene) bisphenol (BPM). The exposure concentrations of the same type of pollutants were highly correlated between maternal and cord serums. Perfluorohexanoic acid (PFHxA) had the highest TTE value (5.526), while perfluorooctane sulfonic acid (PFOS) had the lowest (0.206). TTEs of PFOS and perfluorononanoic acid (PFNA) were higher for female newborns, whereas TTEs of perfluorohexadecanoic acid (PFHxDA) and perfluorodecane sulfonic acid (PFDS) were higher for male newborns. Moreover, the expression levels of the transplacental transporters ABCA1, ABCC2, ABCC3, ABCC4, ABCG1, SLCO3A1, and SLC22A3 were associated with the transplacental transfer of triphenyl phosphate (TPHP), TDCIPP, di-n-propyl phthalate (DPRP), perfluoroundecanoic acid (PFUnDA), perfluorotridecanoic acid (PFTrDA), and PFOS. Further research is essential to unveil the mechanisms involved in the transplacental transfer of environmental pollutants, ultimately boosting our comprehension of their impact on fetal health and birth outcomes.
Collapse
Affiliation(s)
- Ke-Yu Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yao-Hua Gu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; School of Nursing, Wuhan University, Wuhan 430071, China
| | - Yi-Hao Pei
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Si-Yu Yu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tian-Zhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tian Feng
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianbo Tian
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Xiaoping Miao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Min Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Zhang J, Jiang W, Tao F, Ding G, Li F, Tian Y, Tao S. Children-specific environmental protection strategies are needed in China. ECO-ENVIRONMENT & HEALTH 2025; 4:100132. [PMID: 40017903 PMCID: PMC11867267 DOI: 10.1016/j.eehl.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 03/01/2025]
Abstract
China, home to over 250 million children, has witnessed remarkable economic development in recent decades, successfully addressing many issues related to basic hygiene and sanitation in children, thereby altering the childhood disease spectrum. However, the emergence of environment-related disorders among children has become a significant concern. Despite the rapid accumulation of scientific knowledge on the adverse effects of environmental pollution on child health, the availability of children-specific protective strategies and actions remains alarmingly low. This commentary synthesizes the information and viewpoints presented and discussed by experts at the International Forum on Children's Environmental Health in China. It summarizes the strategies and actions proposed to reduce adverse environmental exposure and protect children's short- and long-term health and a call for more children-centered evidence-action transformation. The following four specific actions were proposed: (1) strengthen health education in parents, caregivers, and children, and personal protection for children; (2) monitor child exposure and environment-related health status; (3) set up child-specific interventions and regulations; and (4) conduct more research on environment exposures and child health.
Collapse
Affiliation(s)
- Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guodong Ding
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Zhang S, Cheng Z, Zhang T, Ding Y, Zhu H, Wang L, Sun H. Liquid crystal monomers induce placental development and progesterone release dysregulation through transplacental transportation. Nat Commun 2025; 16:1204. [PMID: 39885209 PMCID: PMC11782568 DOI: 10.1038/s41467-025-56552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Embryonic and fetal development can be affected during gestation by exposure to xenobiotics that cross the placenta. Liquid crystal monomers (LCMs) are emerging contaminants commonly found in indoor environments; however, whether they can cross the placenta and affect placental development remains unexplored. Here, we develop an evaluation system that integrates human biomonitoring, uterine perfusion in pregnant rats, and placental cells. We find fourteen out of the fifty-six LCMs that are detected in maternal and cord serum samples from ninety-three healthy pregnant women, at median levels of 13.9 and 18.1 ng/mL, respectively. Subsequent explorations of in utero exposure in rats indicate that aromatic amino acid transporter 1 (SLC16A10) mediates transplacental transportation of the LCMs. Placental cells exposed to LCMs exhibit delayed placental development and reduced progesterone release. These findings show that SLC16A10-mediated transplacental transportation of LCMs inhibits placental development and progesterone release, highlighting the importance of gestational exposure to emerging contaminants.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou, 510275, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Huang Y, Chen W, Gan Y, Liu X, Tian Y, Zhang J, Li F. Prenatal exposure to per- and polyfluoroalkyl substances, genetic factors, and autistic traits: Evidence from the Shanghai birth cohort. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135857. [PMID: 39383700 DOI: 10.1016/j.jhazmat.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
The epidemiological evidence regarding prenatal PFAS exposure and its interaction with genetic factors on the autistic traits risk is unclear. This study included 1610 mother-child pairs from the Shanghai Birth Cohort (SBC). Ten PFAS were quantified in blood serum collected in the first trimester. Child autistic traits were evaluated at age 4 using a Chinese version of the social responsiveness scale-short form (SRS-SF). We calculated the polygenic risk score (PRS) to evaluate the cumulative genetic effects of autism. Additive interaction models were established to explore whether genetic susceptibility modified the effects of prenatal PFAS exposure. After adjusting for confounders, we found prenatal PFOA exposure was associated with an increased risk of autistic traits in children (OR, 3.05; 95 % CI, 1.14-7.58), and the increased risk associated with PFOA was mitigated among women who reported pre-pregnancy folic acid supplementation. Additionally, an increased risk of autistic traits was observed in children with higher levels of prenatal PFHxS exposure and a high PRS (p for interaction = 0.021). Our findings suggest prenatal PFAS exposure may increase the risk of autistic traits in children, especially in those with a high genetic risk. Further research is warranted to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Zhang S, Cheng Z, Li X, Shi Y, Zhu H, Zhang T, Wang L, Sun H. Trans-Placental Transfer Mechanisms of Aromatic Amine Antioxidants (AAs) and p-Phenylenediamine Quinones (PPD-Qs): Evidence from Human Gestation Exposure and the Rat Uterine Perfusion Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39558173 DOI: 10.1021/acs.est.4c09416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Aromatic amine antioxidants (AAs), as rubber additives, and their ozone photochemical oxidation products of p-phenylenediamine quinone (PPD-Qs) have attracted great attention recently due to their wide environmental occurrences and toxicity. However, there is currently no research on the exposure risks during pregnancy and their trans-placental transfer mechanisms. Herein, 20 AAs and six PPD-Qs were analyzed in 60 maternal urine and fifty-six amniotic fluid samples (n = 53 pairs). ΣAAs (median: 8.57 and 15.4 ng/mL) and ΣPPD-Qs (0.236 and 2.29 ng/mL) were both observed, where the median concentration of PPD-Qs was significantly (p < 0.05) higher than that of the parent PPDs (0.130 and 0.092 ng/mL) in the maternal urine and amniotic fluid samples, respectively. The result of the self-established rat uterine perfusion model and molecular docking analysis suggested that passive diffusion and active transport patterns were involved in the trans-placental transfer. This study will raise concerns regarding intrauterine exposure and the trans-placental transfer mechanisms to AAs/PPD-Qs during pregnancy.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian Liaoning 116026, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
C. Muñoz C, Charles S, Vermeiren P. Advancing Maternal Transfer of Organic Pollutants across Reptiles for Conservation and Risk Assessment Purposes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17567-17579. [PMID: 39311708 PMCID: PMC11465641 DOI: 10.1021/acs.est.4c04668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Embryonic exposure through maternally transferred pollutants can affect embryo vitality, survival, and health. Reptiles face global declines and are sensitive to embryonic pollutant exposure. Yet, they are often neglected in pollution risk assessment and conservation. We analyzed maternal transfer of organic pollutants in reptiles through a systematic extraction, homogenization, and integration of published data on organic pollutants measured in mother-egg pairs into a comprehensive database (DOI:10.5281/zenodo.10900226), complemented with molecular physical-chemical properties of the pollutants. Over four decades, 17 publications provided 19,955 data points shifting from legacy to emerging contaminants although research on newer contaminants lags regulatory and societal demands. Challenges including taxonomic bias, heterogeneity in sampled tissues, and 73% of censored data complicate comparative analyses. However, significant opportunities were identified including the use of the turtle Malachlemys terrapin and snake Enhydris chinensis as flagship species where a large amount of data is available across tissues (allowing investigation into physiological relations) and compounds (allowing insights into maternal transfer across the chemical universe). Data on other freshwater and marine turtles provide the possibility of exploring taxonomic patterns in this subgroup. The analysis, integrated database, and discussion present opportunities for research in an era where science needs to achieve more with limited wildlife data.
Collapse
Affiliation(s)
- Cynthia C. Muñoz
- Department
of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø, Norway
| | - Sandrine Charles
- CNRS,
UMR 5558, Laboratory of Biometry and Evolutionary Biology, Claude Bernard University Lyon 1, Villeurbanne F-69622, France
| | - Peter Vermeiren
- Department
of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø, Norway
| |
Collapse
|
8
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Guan R, Cai R, Guo B, Wang Y, Zhao C. A Data-Driven Computational Framework for Assessing the Risk of Placental Exposure to Environmental Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7770-7781. [PMID: 38665120 DOI: 10.1021/acs.est.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A computational framework based on placental gene networks was proposed in this work to improve the accuracy of the placental exposure risk assessment of environmental compounds. The framework quantitatively characterizes the ability of compounds to cross the placental barrier by systematically considering the interaction and pathway-level information on multiple placental transporters. As a result, probability scores were generated for 307 compounds crossing the placental barrier based on this framework. These scores were then used to categorize the compounds into different levels of transplacental transport range, creating a gradient partition. These probability scores not only facilitated a more intuitive understanding of a compound's ability to cross the placental barrier but also provided valuable information for predicting potential placental disruptors. Compounds with probability scores greater than 90% were considered to have significant transplacental transport potential, whereas those with probability scores less than 80% were classified as unlikely to cross the placental barrier. Furthermore, external validation set results showed that the probability score could accurately predict the compounds known to cross the placental barrier. In conclusion, the computational framework proposed in this study enhances the intuitive understanding of the ability of compounds to cross the placental barrier and opens up new avenues for assessing the placental exposure risk of compounds.
Collapse
Affiliation(s)
- Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ruitong Cai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Binbin Guo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
10
|
Zhang Y, Sun Q, Mustieles V, Martin L, Sun Y, Bibi Z, Torres N, Coburn-Sanderson A, First O, Souter I, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Predictors of Serum Per- and Polyfluoroalkyl Substances Concentrations among U.S. Couples Attending a Fertility Clinic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5685-5694. [PMID: 38502775 DOI: 10.1021/acs.est.3c08457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Previous studies have examined the predictors of PFAS concentrations among pregnant women and children. However, no study has explored the predictors of preconception PFAS concentrations among couples in the United States. This study included 572 females and 279 males (249 couples) who attended a U.S. fertility clinic between 2005 and 2019. Questionnaire information on demographics, reproductive history, and lifestyles and serum samples quantified for PFAS concentrations were collected at study enrollment. We examined the PFAS distribution and correlation within couples. We used Ridge regressions to predict the serum concentration of each PFAS in females and males using data of (1) socio-demographic and reproductive history, (2) diet, (3) behavioral factors, and (4) all factors included in (1) to (3) after accounting for temporal exposure trends. We used general linear models for univariate association of each factor with the PFAS concentration. We found moderate to high correlations for PFAS concentrations within couples. Among all examined factors, diet explained more of the variation in PFAS concentrations (1-48%), while behavioral factors explained the least (0-4%). Individuals reporting White race, with a higher body mass index, and nulliparous women had higher PFAS concentrations than others. Fish and shellfish consumption was positively associated with PFAS concentrations among both females and males, while intake of beans (females), peas (male), kale (females), and tortilla (both) was inversely associated with PFAS concentrations. Our findings provide important data for identifying sources of couples' PFAS exposure and informing interventions to reduce PFAS exposure in the preconception period.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012, Spain
- University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - John C Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| |
Collapse
|
11
|
Chen H, Wei S, Li J, Zhong Z, Chen D. Transplacental transport of per- and polyfluoroalkyl substances (PFAS): Mechanism exploration via BeWo cell monolayer model. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133205. [PMID: 38278074 DOI: 10.1016/j.jhazmat.2023.133205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have received global concern on adverse effects on pregnancy outcomes. Although human studies have reported fetal exposure to PFAS, the underlying mechanisms driving transplacental transfer of PFAS have not been sufficiently understood. The present study aimed to investigate chemical-specific transplacental transfer of PFAS and potential mechanisms based on a BeWo cell monolayer model. The findings of concentration- and time-dependent transport, asymmetry in bidirectional transport, molecular docking and transporter inhibition experiments indicate that passive diffusion and membrane transporter-involved active transport could collectively determine transplacental transport of PFAS. Membrane transporters could play important roles in chemical-specific transport. The inhibition of OAT transporter resulted in promotion of trans-monolayer transport for most PFAS, while an opposite trend was observed when P-gp, BCRP and MRP transporters were prohibited. By contrast, inhibition of OCT resulted in inhibitory effects on the transport of some PFAS (i.e., PFHxA, PFHpA, PFOA, and PFNA), and promotive effects on the other substances (i.e., PFUdA, PFHpS, PFOS, 6:2 Cl-PFESA and PFOSA). Therefore, simultaneous involvement of diverse membrane transporters in utero could result in complicated influence on transplacental transport. Our work constitutes a solid ground for further exploration of the effects of gestational PFAS exposure on birth outcomes.
Collapse
Affiliation(s)
- Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Shuchao Wei
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Jing Li
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Zhong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4368-4380. [PMID: 38386007 DOI: 10.1021/acs.est.3c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
13
|
Guan R, Liu W, Li N, Cui Z, Cai R, Wang Y, Zhao C. Machine learning models based on residue interaction network for ABCG2 transportable compounds recognition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122620. [PMID: 37769706 DOI: 10.1016/j.envpol.2023.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
As the one of the most important protein of placental transport of environmental substances, the identification of ABCG2 transport molecules is the key step for assessing the risk of placental exposure to environmental chemicals. Here, residue interaction network (RIN) was used to explore the difference of ABCG2 binding conformations between transportable and non-transportable compounds. The RIN were treated as a kind of special quantitative data of protein conformation, which not only reflected the changes of single amino acid conformation in protein, but also indicated the changes of distance and action type between amino acids. Based on the quantitative RIN, four machine learning algorithms were applied to establish the classification and recognition model for 1100 compounds with transported by ABCG2 potential. The random forest (RF) models constructed with RIN presented the best and satisfied predictive ability with an accuracy of training set of 0.97 and the test set of 0.96 respectively. In conclusion, the construction of residue interaction network provided a new perspective for the quantitative characterization of protein conformation and the establishment of prediction models for transporter molecular recognition. The ABCG2 transport molecular recognition model based on residue interaction network provides a possible way for screening environmental chemistry transported through placenta.
Collapse
Affiliation(s)
- Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zeyang Cui
- School of Information Science & Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ruitong Cai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Zhao HN, Thomas SP, Zylka MJ, Dorrestein PC, Hu W. Urine Excretion, Organ Distribution, and Placental Transfer of 6PPD and 6PPD-Quinone in Mice and Potential Developmental Toxicity through Nuclear Receptor Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13429-13438. [PMID: 37642336 PMCID: PMC11648498 DOI: 10.1021/acs.est.3c05026] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The rubber antioxidant 6PPD has gained significant attention due to its highly toxic transformation product, 6PPD-quinone (6PPDQ). Despite their detection in urines of pregnant women, the placental transfer and developmental toxicity of 6PPD and 6PPDQ are unknown. Here, we treated C57Bl/6 mice with 4 mg/kg 6PPD or 6PPDQ to investigate their urine excretion and placental transfer. Female and male mice exhibited sex difference in excretion profiles of 6PPD and 6PPDQ. Urine concentrations of 6PPDQ were one order of magnitude lower than those of 6PPD, suggesting lower excretion and higher bioaccumulation of 6PPDQ. In pregnant mice treated with 6PPD or 6PPDQ from embryonic day 11.5 to 15.5, 6PPDQ showed ∼1.5-8 times higher concentrations than 6PPD in placenta, embryo body, and embryo brain, suggesting higher placental transfer of 6PPDQ. Using in vitro dual-luciferase reporter assays, we revealed that 6PPDQ activated the human retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα) at concentrations as low as 0.3 μM, which was ∼10-fold higher than the concentrations detected in human urines. 6PPD activated the RXRα at concentrations as low as 1.2 μM. These results demonstrate the exposure risks of 6PPD and 6PPDQ during pregnancy and emphasize the need for further toxicological and epidemiological investigations.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sydney P. Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mark J. Zylka
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
| | - Wenxin Hu
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Zhang Y, Mustieles V, Wang YX, Sun Y, Agudelo J, Bibi Z, Torres N, Oulhote Y, Slitt A, Messerlian C. Folate concentrations and serum perfluoroalkyl and polyfluoroalkyl substance concentrations in adolescents and adults in the USA (National Health and Nutrition Examination Study 2003-16): an observational study. Lancet Planet Health 2023; 7:e449-e458. [PMID: 37286242 PMCID: PMC10901144 DOI: 10.1016/s2542-5196(23)00088-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a family of highly fluorinated aliphatic compounds, which are widely used in commercial applications, including food packaging, textiles, and non-stick cookware. Folate might counteract the effects of environmental chemical exposures. We aimed to explore the relationship between blood folate biomarker concentrations and PFAS concentrations. METHODS This observational study pooled cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2016 cycles. NHANES is a population-based national survey that measures the health and nutritional status of the US general population every 2 years by means of questionnaires, physical examination, and biospecimen collection. Folate concentrations in red blood cells and in serum, and perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) concentrations in serum were examined. We used multivariable regression models to assess the percentage change in serum PFAS concentrations in relation to changes in folate biomarker concentrations. We additionally used models with restricted cubic splines to investigate the shape of these associations. FINDINGS This study included 2802 adolescents and 9159 adults who had complete data on PFAS concentrations, folate biomarkers, and covariates, were not pregnant, and had never had a cancer diagnosis at the time of the survey. The mean age was 15·4 years (SD 2·3) for adolescents and 45·5 years (17·5) for adults. The proportion of male participants was slightly higher in adolescents (1508 [54%] of 2802 participants) than in adults (3940 [49%] of 9159 participants). We found negative associations between red blood cell folate concentrations and serum concentrations of PFOS (percentage change for a 2·7 fold-increase in folate level -24·36%, 95% CI -33·21 to -14·34) and PFNA (-13·00%, -21·87 to -3·12) in adolescents, and PFOA (-12·45%, -17·28 to -7·35), PFOS (-25·30%, -29·67 to -20·65), PFNA (-21·65%, -26·19 to -16·82), and PFHxS (-11·70%, -17·32 to 5·70) in adults. Associations for serum folate concentrations and PFAS were in line with those found for red blood cell folate levels, although the magnitude of the effects was lower. Restricted cubic spline models suggested linearity of the observed associations, particularly for associations in adults. INTERPRETATION In this large-scale, nationally representative study, we found consistent inverse associations for most examined serum PFAS compounds in relation to folate concentrations measured in either red blood cells or serum among both adolescents and adults. These findings are supported by mechanistic in-vitro studies that show the potential of PFAS to compete with folate for several transporters implicated in PFAS toxicokinetics. If confirmed in experimental settings, these findings could have important implications for interventions to reduce the accumulated PFAS body burden and mitigate the related adverse health effects. FUNDING United States National Institute of Environmental Health Sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Yi-Xin Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | | - Zainab Bibi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Carmen Messerlian
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
16
|
Wu Y, Bao J, Liu Y, Wang X, Qu W. A Review on Per- and Polyfluoroalkyl Substances in Pregnant Women: Maternal Exposure, Placental Transfer, and Relevant Model Simulation. TOXICS 2023; 11:430. [PMID: 37235245 PMCID: PMC10224256 DOI: 10.3390/toxics11050430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are important and ubiquitous environmental contaminants worldwide. These novel contaminants can enter human bodies via various pathways, subsequently posing risks to the ecosystem and human health. The exposure of pregnant women to PFASs might pose risks to the health of mothers and the growth and development of fetuses. However, little information is available about the placental transfer of PFASs from mothers to fetuses and the related mechanisms through model simulation. In the present study, based upon a review of previously published literature, we initially summarized the exposure pathways of PFASs in pregnant women, factors affecting the efficiency of placental transfer, and mechanisms associated with placental transfer; outlined simulation analysis approaches using molecular docking and machine learning to reveal the mechanisms of placental transfer; and finally highlighted future research emphases that need to be focused on. Consequently, it was notable that the binding of PFASs to proteins during placental transfer could be simulated by molecular docking and that the placental transfer efficiency of PFASs could also be predicted by machine learning. Therefore, future research on the maternal-fetal transfer mechanisms of PFASs with the benefit of simulation analysis approaches is warranted to provide a scientific basis for the health effects of PFASs on newborns.
Collapse
Affiliation(s)
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | | | | |
Collapse
|
17
|
Zhang Y, Mustieles V, Sun Q, Coull B, McElrath T, Rifas-Shiman SL, Martin L, Sun Y, Wang YX, Oken E, Cardenas A, Messerlian C. Association of Early Pregnancy Perfluoroalkyl and Polyfluoroalkyl Substance Exposure With Birth Outcomes. JAMA Netw Open 2023; 6:e2314934. [PMID: 37256622 PMCID: PMC10233420 DOI: 10.1001/jamanetworkopen.2023.14934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
Importance Prenatal perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to adverse birth outcomes. Previous research showed that higher folate concentrations are associated with lower blood PFAS concentrations in adolescents and adults. Further studies are needed to explore whether prenatal folate status mitigates PFAS-related adverse birth outcomes. Objective To examine whether prenatal folate status modifies the negative associations between pregnancy PFAS concentrations, birth weight, and gestational age previously observed in a US cohort. Design, Setting, and Participants In a prospective design, a prebirth cohort of mothers or pregnant women was recruited between April 1999 and November 2002, in Project Viva, a study conducted in eastern Massachusetts. Statistical analyses were performed from May 24 and October 25, 2022. Exposure Plasma concentrations of 6 PFAS compounds were measured in early pregnancy (median gestational week, 9.6). Folate status was assessed through a food frequency questionnaire and measured in plasma samples collected in early pregnancy. Main Outcomes and Measures Birth weight and gestational age, abstracted from delivery records; birth weight z score, standardized by gestational age and infant sex; low birth weight, defined as birth weight less than 2500 g; and preterm birth, defined as birth at less than 37 completed gestational weeks. Results The cohort included a total of 1400 mother-singleton pairs. The mean (SD) age of the mothers was 32.21 (4.89) years. Most of the mothers were White (73.2%) and had a college degree or higher (69.1%). Early pregnancy plasma perfluorooctanoic acid concentration was associated with lower birth weight and birth weight z score only among mothers whose dietary folate intake (birth weight: β, -89.13 g; 95% CI, -166.84 to -11.42 g; birth weight z score: -0.13; 95% CI, -0.26 to -0.003) or plasma folate concentration (birth weight: -87.03 g; 95% CI, -180.11 to 6.05 g; birth weight z score: -0.14; 95% CI, -0.30 to 0.02) were below the 25th percentile (dietary: 660 μg/d, plasma: 14 ng/mL). No associations were found among mothers in the higher folate level groups, although the tests for heterogeneity did not reject the null. Associations between plasma perfluorooctane sulfonic acid and perfluorononanoate (PFNA) concentrations and lower birth weight, and between PFNA and earlier gestational age were noted only among mothers whose prenatal dietary folate intake or plasma folate concentration was in the lowest quartile range. No associations were found among mothers in higher folate status quartile groups. Conclusions and Relevance In this large, US prebirth cohort, early pregnancy exposure to select PFAS compounds was associated with adverse birth outcomes only among mothers below the 25th percentile of prenatal dietary or plasma folate levels.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Instituto de Investigación Biosanitaria Ibs, Consortium for Biomedical Research in Epidemiology and Public Health Grenada, Spain
| | - Qi Sun
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas McElrath
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Leah Martin
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yang Sun
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Emily Oken
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston
| |
Collapse
|
18
|
Lemay AC, Sontarp EJ, Martinez D, Maruri P, Mohammed R, Neapole R, Wiese M, Willemsen JAR, Bourg IC. Molecular Dynamics Simulation Prediction of the Partitioning Constants ( KH, Kiw, Kia) of 82 Legacy and Emerging Organic Contaminants at the Water-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6296-6308. [PMID: 37014786 DOI: 10.1021/acs.est.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The tendency of organic contaminants (OCs) to partition between different phases is a key set of properties that underlie their human and ecological health impacts and the success of remediation efforts. A significant challenge associated with these efforts is the need for accurate partitioning data for an ever-expanding list of OCs and breakdown products. All-atom molecular dynamics (MD) simulations have the potential to help generate these data, but existing studies have applied these techniques only to a limited variety of OCs. Here, we use established MD simulation approaches to examine the partitioning of 82 OCs, including many compounds of critical concern, at the water-air interface. Our predictions of the Henry's law constant (KH) and interfacial adsorption coefficients (Kiw, Kia) correlate strongly with experimental results, indicating that MD simulations can be used to predict KH, Kiw, and Kia values with mean absolute deviations of 1.1, 0.3, and 0.3 logarithmic units after correcting for systematic bias, respectively. A library of MD simulation input files for the examined OCs is provided to facilitate future investigations of the partitioning of these compounds in the presence of other phases.
Collapse
Affiliation(s)
- Amélie C Lemay
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ethan J Sontarp
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniela Martinez
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Maruri
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Raneem Mohammed
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan Neapole
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Morgan Wiese
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jennifer A R Willemsen
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Ji D, Pan Y, Qiu X, Gong J, Li X, Niu C, Yao J, Luo S, Zhang Z, Wang Q, Dai J, Wei Y. Unveiling Distribution of Per- and Polyfluoroalkyl Substances in Matched Placenta-Serum Tetrads: Novel Implications for Birth Outcome Mediated by Placental Vascular Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5782-5793. [PMID: 36988553 DOI: 10.1021/acs.est.2c09184] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The placenta is pivotal for fetal development and maternal-fetal transfer of many substances, including per- and polyfluoroalkyl substances (PFASs). However, the intraplacental distribution of PFASs and their effects on placental vascular function remain unclear. In this study, 302 tetrads of matched subchorionic placenta (fetal-side), parabasal placenta (maternal-side), cord serum, and maternal serum samples were collected from Guangzhou, China. Eighteen emerging and legacy PFASs and five placental vascular biomarkers were measured. Results showed that higher levels of perfluorooctanoic (PFOA), perfluorooctane sulfonic acid (PFOS), and chlorinated polyfluorinated ether sulfonic acids (Cl-PFESAs) were detected in subchorionic placenta compared to parabasal placenta. There were significant associations of PFASs in the subchorionic placenta, but not in the serum, with placental vascular biomarkers (up to 32.5%) and lower birth size. Birth weight was negatively associated with PFOA (β: -103.8, 95% CI: -186.3 and -21.32) and 6:2 Cl-PFESA (β: -80.04, 95% CI: -139.5 and -20.61), primarily in subchorionic placenta. Mediation effects of altered placental angiopoietin-2 and vascular endothelial growth factor receptor-2 were evidenced on associations of adverse birth outcomes with intraplacental PFOS and 8:2 Cl-PFESA, explaining 9.5%-32.5% of the total effect. To the best of our knowledge, this study is the first to report on differential intraplacental distribution of PFASs and placental vascular effects mediating adverse birth outcomes and provides novel insights into the placental plate-specific measurement in PFAS-associated health risk assessment.
Collapse
Affiliation(s)
- Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuelin Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjin Gong
- Department of Obstetrics and Gynecology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou 511402, China
| | - Xianjie Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Conying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shili Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Zhang S, Cheng Z, Yang M, Guo Z, Zhao L, Baqar M, Lu Y, Wang L, Sun H. Percutaneous Penetration of Liquid Crystal Monomers (LCMs) by In Vitro Three-Dimensional Human Skin Equivalents: Possible Mechanisms and Implications for Human Dermal Exposure Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4454-4463. [PMID: 36867107 DOI: 10.1021/acs.est.2c07844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zijin Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
21
|
Cotrina EY, Oliveira Â, Llop J, Quintana J, Biarnés X, Cardoso I, Díaz-Cruz MS, Arsequell G. Binding of common organic UV-filters to the thyroid hormone transport protein transthyretin using in vitro and in silico studies: Potential implications in health. ENVIRONMENTAL RESEARCH 2023; 217:114836. [PMID: 36400222 DOI: 10.1016/j.envres.2022.114836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Several anthropogenic contaminants have been identified as competing with the thyroid hormone thyroxine (T4) for binding to transport proteins as transthyretin (TTR). This binding can potentially create toxicity mechanisms posing a threat to human health. Many organic UV filters (UVFs) and paraben preservatives (PBs), widely used in personal care products, are chemicals of emerging concern due to their adverse effects as potential thyroid-disrupting compounds. Recently, organic UVFs have been found in paired maternal and fetal samples and PBs have been detected in placenta, which opens the possibility of the involvement of TTR in the transfer of these chemicals across physiological barriers. We aimed to investigate a discrete set of organic UVFs and PBs to identify novel TTR binders. The binding affinities of target UVFs towards TTR were evaluated using in vitro T4 competitive binding assays. The ligand-TTR affinities were determined by isothermal titration calorimetry (ITC) and compared with known TTR ligands. In parallel, computational studies were used to predict the 3-D structures of the binding modes of these chemicals to TTR. Some organic UVFs, compounds 2,2',4,4'-tetrahydroxybenzophenone (BP2, Kd = 0.43 μM); 2,4-dihydroxybenzophenone (BP1, Kd = 0.60 μM); 4,4'-dihydroxybenzophenone (4DHB, Kd = 0.83 μM), and 4-hydroxybenzophenone (4HB, Kd = 0.93 μM), were found to display a high affinity to TTR, being BP2 the strongest TTR binder (ΔH = -14.93 Kcal/mol). Finally, a correlation was found between the experimental ITC data and the TTR-ligand docking scores obtained by computational studies. The approach integrating in vitro assays and in silico methods constituted a useful tool to find TTR binders among common organic UVFs. Further studies on the involvement of the transporter protein TTR in assisting the transplacental transfer of these chemicals across physiological barriers and the long-term consequences of prenatal exposure to them should be pursued.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (IQAC), Spanish Council of Scientific Research (IQAC-CSIC), 08034, Barcelona, Spain
| | - Ângela Oliveira
- Molecular Neurobiology Group, I3S - Instituto de Investigação e Inovação Em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, San Sebastian, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003, Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Isabel Cardoso
- Molecular Neurobiology Group, I3S - Instituto de Investigação e Inovação Em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal.
| | - M Silvia Díaz-Cruz
- ENFOCHEM Group. Institute of Environmental Assessment and Water Research (IDÆA) Excellence Center Severo Ochoa, Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain.
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC), Spanish Council of Scientific Research (IQAC-CSIC), 08034, Barcelona, Spain.
| |
Collapse
|
22
|
Zhang H, Bai X, Zhang T, Song S, Zhu H, Lu S, Kannan K, Sun H. Neonicotinoid Insecticides and Their Metabolites Can Pass through the Human Placenta Unimpeded. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17143-17152. [PMID: 36441562 DOI: 10.1021/acs.est.2c06091] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies on neonicotinoid (NEO) exposure in pregnant women and fetuses are scarce, and transplacental transfer of these insecticides is unknown. In this study, parent NEOs (p-NEOs) and their metabolites (m-NEOs) were determined in 95 paired maternal (MS) and cord serum (CS) samples collected in southern China. Imidacloprid was the predominant p-NEO in both CS and MS samples, found at median concentrations of 1.84 and 0.79 ng/mL, respectively, whereas N-desmethyl-acetamiprid was the most abundant m-NEO in CS (median: 0.083 ng/mL) and MS (0.13 ng/mL). The median transplacental transfer efficiencies (TTEs) of p-NEOs and m-NEOs were high, ranging from 0.81 (thiamethoxam, THM) to 1.61 (olefin-imidacloprid, of-IMI), indicating efficient placental transfer of these insecticides. Moreover, transplacental transport of NEOs appears to be passive and structure-dependent: cyanoamidine NEOs such as acetamiprid and thiacloprid had higher TTE values than the nitroguanidine NEOs, namely, clothianidin and THM. Multilinear regression analysis revealed that the concentrations of several NEOs in MS were associated significantly with hematological parameters related to hepatotoxicity and renal toxicity. To our knowledge, this is the first analysis of the occurrence and distribution of NEOs in paired maternal-fetal serum samples.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xueyuan Bai
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510275, P.R. China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
23
|
Zhang B, Wei Z, Gu C, Yao Y, Xue J, Zhu H, Kannan K, Sun H, Zhang T. First Evidence of Prenatal Exposure to Emerging Poly- and Perfluoroalkyl Substances Associated with E-Waste Dismantling: Chemical Structure-Based Placental Transfer and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17108-17118. [PMID: 36399367 DOI: 10.1021/acs.est.2c05925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limited information is available about prenatal exposure to per- and polyfluoroalkyl substances (PFAS) in electronic waste (e-waste) recycling sites. In this study, we determined 21 emerging PFAS and 13 legacy PFAS in 94 paired maternal and cord serum samples collected from an e-waste dismantling site in Southern China. We found 6:2 fluorotelomer sulfonate (6:2 FTSA), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), and perfluorooctanephosphonate (PFOPA) as the major emerging PFAS, regardless of matrices, at median concentrations of 2.40, 1.78, and 0.69 ng/mL, respectively, in maternal serum samples, and 2.30, 0.73, and 0.72 ng/mL, respectively, in cord serum samples. Our results provide evidence that e-waste dismantling activities contribute to human exposure to 6:2 FTSA, 6:2 Cl-PFESA, and PFOPA. The trans-placental transfer efficiencies of emerging PFAS (0.42-0.94) were higher than that of perfluorooctanesulfonic acid (0.37) and were structure-dependent. The substitution of fluorine with chlorine or hydrogen and/or hydrophilic functional groups may alter trans-placental transfer efficiencies. Multiple linear regression analysis indicated significant associations between maternal serum concentrations of emerging PFAS and maternal clinical parameters, especially liver function and erythrocyte-related biomarkers. This study provides new insights into prenatal exposure to multiple PFAS in e-waste dismantling areas and the prevalence of emerging PFAS in people living near the sites.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang Wei
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchuan Xue
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Abrahamsson D, Siddharth A, Robinson JF, Soshilov A, Elmore S, Cogliano V, Ng C, Khan E, Ashton R, Chiu WA, Fung J, Zeise L, Woodruff TJ. Modeling the transplacental transfer of small molecules using machine learning: a case study on per- and polyfluorinated substances (PFAS). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:808-819. [PMID: 36207486 PMCID: PMC9742309 DOI: 10.1038/s41370-022-00481-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Despite their large numbers and widespread use, very little is known about the extent to which per- and polyfluoroalkyl substances (PFAS) can cross the placenta and expose the developing fetus. OBJECTIVE The aim of our study is to develop a computational approach that can be used to evaluate the of extend to which small molecules, and in particular PFAS, can cross to cross the placenta and partition to cord blood. METHODS We collected experimental values of the concentration ratio between cord and maternal blood (RCM) for 260 chemical compounds and calculated their physicochemical descriptors using the cheminformatics package Mordred. We used the compiled database to, train and test an artificial neural network (ANN). And then applied the best performing model to predict RCM for a large dataset of PFAS chemicals (n = 7982). We, finally, examined the calculated physicochemical descriptors of the chemicals to identify which properties correlated significantly with RCM. RESULTS We determined that 7855 compounds were within the applicability domain and 127 compounds are outside the applicability domain of our model. Our predictions of RCM for PFAS suggested that 3623 compounds had a log RCM > 0 indicating preferable partitioning to cord blood. Some examples of these compounds were bisphenol AF, 2,2-bis(4-aminophenyl)hexafluoropropane, and nonafluoro-tert-butyl 3-methylbutyrate. SIGNIFICANCE These observations have important public health implications as many PFAS have been shown to interfere with fetal development. In addition, as these compounds are highly persistent and many of them can readily cross the placenta, they are expected to remain in the population for a long time as they are being passed from parent to offspring. IMPACT Understanding the behavior of chemicals in the human body during pregnancy is critical in preventing harmful exposures during critical periods of development. Many chemicals can cross the placenta and expose the fetus, however, the mechanism by which this transport occurs is not well understood. In our study, we developed a machine learning model that describes the transplacental transfer of chemicals as a function of their physicochemical properties. The model was then used to make predictions for a set of 7982 per- and polyfluorinated alkyl substances that are listed on EPA's CompTox Chemicals Dashboard. The model can be applied to make predictions for other chemical categories of interest, such as plasticizers and pesticides. Accurate predictions of RCM can help scientists and regulators to prioritize chemicals that have the potential to cause harm by exposing the fetus.
Collapse
Affiliation(s)
- Dimitri Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA.
| | - Adi Siddharth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA
| | - Joshua F Robinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA
| | - Anatoly Soshilov
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Sarah Elmore
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Vincent Cogliano
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara St, Pittsburgh, PA, 15261, USA
| | - Elaine Khan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Randolph Ashton
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, 330 N Orchard St, Madison, WI, 53715, USA
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer Fung
- Department of Obstetrics, Gynecology, and Reproductive Science and the Center of Reproductive Science, University of California, San Francisco, San Francisco, CA, 94143-2240, USA
| | - Lauren Zeise
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Tracey J Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Tang S, Sun X, Qiao X, Cui W, Yu F, Zeng X, Covaci A, Chen D. Prenatal Exposure to Emerging Plasticizers and Synthetic Antioxidants and Their Potency to Cross Human Placenta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8507-8517. [PMID: 35674357 DOI: 10.1021/acs.est.2c01141] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gestational exposure to environmental chemicals and subsequent permeation through the placental barrier represents potential health risks to both pregnant women and their fetuses. In the present study, we explored prenatal exposure to a suite of 46 emerging plasticizers and synthetic antioxidants (including five transformation products of 2,6-di-tert-butyl-4-hydroxytoluene, BHT) and their potency to cross human placenta based on a total of 109 maternal and cord serum pairs. Most of these chemicals have rarely or never been investigated for prenatal exposure and associated health risks. Eleven of them exhibited detection frequency greater than 50% in maternal blood, including dibutyl fumarate (DBF), 2,6-di-tert-butylphenol (2,4-DtBP), 1,3-diphenylguanidine (DPG), methyl-2-(benzoyl)benzoate (MBB), triethyl citrate (TEC), BHT, and its five metabolites, with a median concentration from 0.05 to 3.1 ng/mL. The transplacental transfer efficiency (TTE) was determined for selected chemicals with valid measurements in more than 10 maternal/cord blood pairs, and the mean TTEs exhibited a large variation (i.e., 0.29-2.14) between chemicals. The determined TTEs for some of the target chemicals were comparable to the predicted values by our previously proposed models developed from molecular descriptors, indicating that their transplacental transfer potency could be largely affected by physicochemical properties and molecular structures. However, additional biological and physiological factors may influence the potency of environmental chemicals to cross human placenta. Overall, our study findings raise concern on human exposure to an increasing list of plastic additives during critical life stages (e.g., pregnancy) and potential health risks.
Collapse
Affiliation(s)
- Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangfei Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xinhang Qiao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wenxuan Cui
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Feixiang Yu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaowen Zeng
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Ma D, Lu Y, Liang Y, Ruan T, Li J, Zhao C, Wang Y, Jiang G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6014-6026. [PMID: 34142548 DOI: 10.1021/acs.est.1c01057] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has aroused public concerns as it can pose multiple health threats to pregnant women and cause adverse birth outcomes for fetuses. In previous studies, the prenatal exposure levels and transplacental transfer efficiencies (TTE) of PFASs have been reported and discussed. Specifically, the binding affinities between PFASs and some transporters were determined, demonstrating that the TTE values of PFASs are highly dependent on their binding behaviors. To summarize primary findings of previous studies and propose potential guidance for future research, this article provides a systematic overview on levels and characteristics of prenatal exposure to PFASs worldwide, summarizes relationships between TTE values and structures of PFASs, and discusses possible transplacental transfer mechanisms, especially for the combination between PFASs and transporters. Given the critical roles of transporters in the transplacental transfer of PFASs, we conducted molecular docking to further clarify the binding behaviors between PFASs and the selected transporters. We proposed that the machine learning can be a superior method to predict and reveal behaviors and mechanisms of the transplacental transfer of PFASs. In total, this is the first review providing a comprehensive overview on the prenatal exposure levels and transplacental transfer mechanisms of PFASs.
Collapse
Affiliation(s)
- Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Zou W, Shi B, Zeng T, Zhang Y, Huang B, Ouyang B, Cai Z, Liu M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front Pharmacol 2021; 12:746208. [PMID: 34912216 PMCID: PMC8666590 DOI: 10.3389/fphar.2021.746208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
The kidneys are a pair of important organs that excretes endogenous waste and exogenous biological agents from the body. Numerous transporters are involved in the excretion process. The levels of these transporters could affect the pharmacokinetics of many drugs, such as organic anion drugs, organic cationic drugs, and peptide drugs. Eleven drug transporters in the kidney (OAT1, OAT3, OATP4C1, OCT2, MDR1, BCRP, MATE1, MATE2-K, OAT4, MRP2, and MRP4) have become necessary research items in the development of innovative drugs. However, the levels of these transporters vary between different species, sex-genders, ages, and disease statuses, which may lead to different pharmacokinetics of drugs. Here, we review the differences of the important transports in the mentioned conditions, in order to help clinicians to improve clinical prescriptions for patients. To predict drug-drug interactions (DDIs) caused by renal drug transporters, the molecular docking method is used for rapid screening of substrates or inhibitors of the drug transporters. Here, we review a large number of natural products that represent potential substrates and/or inhibitors of transporters by the molecular docking method.
Collapse
Affiliation(s)
- Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Birui Shi
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yan Zhang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Ouyang
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Cai
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Liu
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Abrahamsson DP, Wang A, Jiang T, Wang M, Siddharth A, Morello-Frosch R, Park JS, Sirota M, Woodruff TJ. A Comprehensive Non-targeted Analysis Study of the Prenatal Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10542-10557. [PMID: 34260856 PMCID: PMC8338910 DOI: 10.1021/acs.est.1c01010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent technological advances in mass spectrometry have enabled us to screen biological samples for a very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human exposome in critical periods of development. The goal of this study was three-fold: (1) to analyze 590 matched maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); (2) to examine the differences in chemical abundance between maternal and cord blood samples; and (3) to examine the associations between exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass spectrometry using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these relationships was an association between three poly and perfluoroalkyl substances (PFASs) and endogenous fatty acids in both the maternal and cord samples indicating potential interactions between PFASs and fatty acid regulating proteins.
Collapse
Affiliation(s)
- Dimitri Panagopoulos Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| | - Aolin Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| | - Ting Jiang
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, 94710, California, United States
| | - Miaomiao Wang
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, 94710, California, United States
| | - Adi Siddharth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California Berkeley, Berkeley, 94720, California, United States
| | - June-Soo Park
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, 94710, California, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, 94158, California, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, 94158, California, United States
| | - Tracey J. Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| |
Collapse
|