1
|
Mu D, Yang H, Gao W, Zhao J, Wang L, Wang F, Song C, Wei Z. Nuclear magnetic resonance revealed the structural unit difference and polymerization process of pre-humic acid from different organic waste sources. Int J Biol Macromol 2025; 304:140457. [PMID: 39929467 DOI: 10.1016/j.ijbiomac.2025.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Pre-humic acid (HA) is brown humus that is only soluble in dilute alkali in natural soil. However, the mechanism underlying HA structural heterogeneity caused by material differences remains unknown. In this study, nuclear magnetic resonance (1H NMR) and fourier transform infrared spectroscopy were used to analyze the structure of HA with varying molecular weights. 1H NMR revealed that HA structures from the same source exhibit similar chemical shifts at various molecular weights, indicating that macromolecular and micromolecular HA had the same structural unit. Principal coordinate analysis demonstrated that the nitrogen-rich source of HA displayed higher structural similarity, whereas the lignin source of HA exhibited remarkable structural differences. This difference was attributed to the different contents of the 11 core structures of HA from different sources. The accuracy of the structural units from different sources is further verified by the predicted chemical shift and the root mean square error. Moreover, the interaction results indicated that HA derived from nitrogen-rich sources contains several hydrogen bonds, and the pine branch demonstrated the highest π-π interaction leading to a tightly packed three-dimensional conformation. The study on the heterogeneity of HA provides a theoretical basis for its evolution in biogeochemical cycle.
Collapse
Affiliation(s)
- Daichen Mu
- College of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jinghan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Liqin Wang
- College of Life Science, Yulin university, Yulin 719000, China
| | - Feng Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
2
|
Wang W, Xu M, He C, Joya MB, Hadja Kaka AZ, Kollah ES, Mwansa BK, Tremblay PL, Zhang T. A polyethyleneimine-coated thermally-oxidized graphitic-carbon nitride adsorbent for the removal of organic pollutants. CHEMOSPHERE 2025; 373:144168. [PMID: 39889647 DOI: 10.1016/j.chemosphere.2025.144168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Negatively charged organic pollutants in water are responsible for a large range of public health and ecological issues. Low-cost and low-toxicity graphitic carbon nitride (CN), with its abundant functional groups and surface defects, is a promising material for the removal of organic molecules by adsorption. However, basic synthesis methods for CN often result in a material with morphology and electric charge that are suboptimal for interacting with negatively charged pollutants. Here, an adsorbent was prepared by thermally oxidizing a tubular CN precursor and then coating the resulting flake-shaped material (FCNO) with the polycationic polymer polyethyleneimine (PEI). The resulting adsorbent, FCNO550-PEI, removed humic acid (HA), a widespread problematic organic molecule, as well as the common toxic anionic dye Congo red (CR). FCNO550-PEI was superior to other CN-based adsorbents previously reported in the literature with maximum adsorption capacities according to the Sips isotherm model for HA and CR of 437.1 mg/g and 1430.3 mg/g, respectively. In addition, FCNO550-PEI could adsorb HA and CR from different types of water and was reusable. Besides electrostatic interactions and hydrogen bonds between PEI and the pollutants, HA and CR adsorption was enabled by π-π interactions with the FCNO support itself. The high efficiency of FCNO550-PEI for the removal of HA and CR highlights its potential for water treatment applications.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Architecture and Materials Engineering, Hubei University of Education, Wuhan, 430205, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China
| | - Chun He
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Muhammad Babur Joya
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | | | - Emmanuel Seneway Kollah
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Blessings Kapungwe Mwansa
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China.
| | - Tian Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, Hainan, PR China.
| |
Collapse
|
3
|
Zeng J, Zhao Q, Xiong Z, Zhang S, Deng S, Liu D, Zhang X. Surface functionalization of two-dimensional nanomaterials beyond graphene: Applications and ecotoxicity. Adv Colloid Interface Sci 2025; 336:103357. [PMID: 39612722 DOI: 10.1016/j.cis.2024.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications. Moreover, when released into the environment, these 2D nanomaterials may interact with natural organic matter (NOM). Both intentional surface modification and unintentional environmental corona formation can alter the structure and physicochemical properties of 2D nanomaterials, potentially affecting their ecological toxicity. This review provides a comprehensive overview of covalent functionalization strategies and non-covalent interactions of 2D nanomaterials beyond graphene with organic substances, examining the resultant changes in material properties after modification. Covalent functionalization methods discussed include nucleophilic substitution reactions, addition reactions, condensation, and coordination. Non-covalent interactions are classified by substance type, covering interactions with NOM, in vivo biomolecules, and synthetic compounds. In addition, the review delves into the effects of surface functionalization on the toxicity of 2D nanomaterials to bacteria and algae. This discussion contributes to a foundational understanding for assessing the potential ecological risks associated with 2D nanomaterials.
Collapse
Affiliation(s)
- Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
4
|
Zhang J, Hou X, Zhang K, Xiao Q, Gardea-Torresdey JL, Zhou X, Yan B. Photochemistry of microplastics-derived dissolved organic matter: Reactive species generation and organic pollutant degradation. WATER RESEARCH 2025; 269:122802. [PMID: 39579559 DOI: 10.1016/j.watres.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Dissolved organic matter (DOM) originating from microplastics (MPs-DOM) is increasingly recognized as a substantial component of aquatic DOM. The photochemistry of MPs-DOM, essential for understanding its environmental fate and impacts, remains largely unexplored. This study investigates the photochemical behaviors of MPs-DOM derived from two common plastics: polystyrene (PS) and polyvinyl chloride (PVC), which represent aromatic and aliphatic plastics, respectively. Spectral and high-resolution mass spectrometry analyses demonstrated that photoreactions preferentially targeted poly-aromatic compounds within the MPs-DOM, leading to degradation products that predominantly form N-aliphatic/lipid-like substances. This transformation is characterized by decreased aromaticity and unsaturation. Additionally, irradiation of MPs-DOM generated reactive species (RS), including triplet intermediates (3DOM*) and singlet oxygen (1O2), with apparent quantum yields of 0.06-0.16 % and 0.16-0.35 %, respectively-values considerably lower than those for conventional DOM (1.19-1.56 % for 3DOM* and 1.34-1.90 % for 1O2). Despite this, the RS generated from MPs-DOM significantly enhance the degradation of coexisting organic pollutants, such as antibiotic resistance genes (ARGs). The findings shed light on the photoinduced transformation of MPs-DOM and suggest that MPs-DOM functions as a natural photocatalyst, mediating redox reactions of pollutants in sunlit aquatic settings. This highlights its previously underestimated role in natural attenuation and aquatic photochemistry.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Xianfeng Hou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Kena Zhang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Quanzhi Xiao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Sabri M, Kazim H, Tawalbeh M, Al-Othman A, Almomani F. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. CHEMOSPHERE 2024; 365:143373. [PMID: 39306101 DOI: 10.1016/j.chemosphere.2024.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Humic acid (HA) is a prominent contaminant in wastewater, and its elimination is crucial to ensure purified drinking water. A variety of sources of HA in wastewater exist, ranging from agricultural runoff, industrial discharges, and natural decomposition. Adsorption is a technique that has been heavily investigated in this direction. The process complexities, technological advancements, and sustainable approaches are discussed in this review. A range of adsorbents can be employed for HA removal, including modified membranes, carbon nanotubes (CNTs), clay nanoparticles, and acid-modified natural materials. This work compares the effectiveness of the preceding adsorbents along with their advantages and limitations. This review also discusses the optimization of various process parameters, such as pH, ionic strength, and temperature, with an emphasis on response surface methodology for process optimization. Furthermore, the challenges and limitations associated with each removal technique are discussed, along with the potential areas for improvement and future directions in the field of wastewater treatment.
Collapse
Affiliation(s)
- Moin Sabri
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Hisham Kazim
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates; Energy, Water and Sustainable Environment Research Center, College of Engineering, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Qatar.
| |
Collapse
|
6
|
Hu P, Li H, Tan Y, Adeleye AS, Hao T. Enhanced electrochemical treatment of humic acids and metal ions in leachate concentrate: Experimental and molecular mechanism investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132774. [PMID: 37839382 DOI: 10.1016/j.jhazmat.2023.132774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Membrane technologies are effective for treating leachate, but they generate leachate concentrates (LCs), which contain elevated humic acids (HAs) and metals. LCs are very challenging and expensive to treat; but in-situ coagulation-electrochemical oxidation (CO-EO) treatment is promising. We previously hypothesized and proved that substituting the widely used graphite cathode with an Al cathode will generate Al(OH)3 floccules that would enhance HAs removal in CO-EO systems. However, the fundamental mechanisms are unclear. Here, we examined this hypothesis using laboratory experiments (using an Al cathode and a Ti/Ti4O7 anode CO-EO system) and performed molecular dynamics (MD) simulation to investigate the underlying mechanisms. Up to 84.2% HAs was removed by the Al-cathode system, which is ∼10% higher than a graphite cathode-based system. Based on MD simulation we found that enhanced HAs removal occurred via two steps: (1) degradation by oxidants produced at the anode, and (2) subsequent coagulation with the Al(OH)3 generated from the Al cathode. This finding challenges the current belief that whole HAs and Al(OH)3 directly flocculate. Meanwhile, metal removal efficiency by the graphite cathode system was only 0.8-13.9%, which increased up to 13-folds at most when in the Al cathode system. This work provides new molecular-level insights into an efficient electrochemical treatment of LC.
Collapse
Affiliation(s)
- Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Huankai Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Yunkai Tan
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
7
|
Ma C, Peng Y, Su M, Song G, Chen D. Fabrication of highly efficient hydroxyapatite microtubes for uranium sequestration and immobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118417. [PMID: 37352631 DOI: 10.1016/j.jenvman.2023.118417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Uranium-containing wastewater is a common by-product of uranium mining. Phosphate and phosphate minerals can interact with uranyl ions [U(VI)], impeding the migration of these ions by forming relatively stable uranium-containing crystalline phase(s). In this study, hydroxyapatite microtubes (HAP-T) were fabricated to sequester uranyl ions from simulated radioactive wastewater. HAP-T had excellent adsorption and stability properties; over 98.76% of U(VI) could be sequestrated by 0.25 g/L HAP-T within 5 min at pH = 4.0. The isotherms and kinetics data could be suitably reflected by the Freundlich and the pseudo second-order kinetic models, respectively. The maximum adsorption capacity of HAP-T was 356.42 mg/g. The adsorption ability of HAP-T for U(VI) was inhibited when Mg2+ or SO42- ions or fulvic acid (FA) substances existed in the simulated radioactive wastewater. The inhibition by FA was attributed to its negative charges, which caused competition between FA and HAP-T for uranium sequestration. The primary mechanisms of U(VI) sequestration by HAP-T were electrostatic interactions and surface complexation. The effectiveness of HAP-T, HAP-B (bio-hydroxyapatite synthesized from fish bone), and HAP-C (commercially available synthesized hydroxyapatite) for uranium immobilization was compared; HAP-T was more effective than HAP-B or HAP-C in immobilizing uranium. HAP-T, which has a micron-sized tubular structure, is likely less mobile in groundwater than are HAP-B and HAP-C, which have nanoscale granular structures. In conclusion, HAP-T can be used to sequester and immobilize uranyl ions.
Collapse
Affiliation(s)
- Chuqin Ma
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu'er Peng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Wu J, Shi N, Li N, Wang Z. Dual-Ligand ZIF-8 Bearing the Cyano Group for Efficient and Selective Uranium Capture from Seawater. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46952-46961. [PMID: 37774146 DOI: 10.1021/acsami.3c09809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Uranium extraction from seawater is a potential technique that will change the world. Adsorption capacity, selectivity, and antibacterial ability for high-performance uranium adsorbents remain the major challenges. In this study, a dual-ligand zeolitic imidazolate framework 8 (ZIF-8) decorated with cyano groups (ZIF-8-CN) is prepared via a facile blend strategy at room temperature. Owing to the abundant mesopores and nitrogen functional groups, ZIF-8-CN shows an extremely high uranium uptake of 1000 mg/g at pH = 6, which is 2.42 times that of pristine ZIF-8. Noteworthily, ZIF-8-CN possesses a 16.2 mg/g uranium adsorption in natural seawater within 28 days, and the distribution coefficient (Kd = 3.25 × 106 mL/g) is far greater than that for other coexisting metal ions, demonstrating a marked preference for uranyl ions. Except for the coordination between uranium and nitrogen in imidazole, the cyano groups provide additional adsorption sites and preferentially bind to uranyl, thereby strengthening the affinity for uranyl. Notably, ZIF-8-CN displays ultrastrong antimicrobial ability against both Escherichia coli and Staphylococcus aureus, which is greatly desired for the scale-up marine tests. Our study demonstrates the high potential of ZIF-8-CN in uranium capture and provides a wide scope for the application of mixed-ligand MOFs.
Collapse
Affiliation(s)
- Jiakun Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Nan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
9
|
Yu M, Feng L, Hua Y, Tang A, Yang H. Understanding the Nanoscale Affinity between Dissolved Organic Matter and Noncrystalline Mineral with the Implication for Water Treatment. Inorg Chem 2023; 62:13130-13139. [PMID: 37532281 DOI: 10.1021/acs.inorgchem.3c02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In recent decades, the concentration of dissolved organic matter (DOM) in aquatic ecosystems has gradually increased, leading to water pollution problems. Understanding the interfacial chemical processes of DOM on natural minerals is important to the exploration of high-efficiency absorbents. However, studying DOM chemical processes and adsorption mechanisms are still challenging due to the complex DOM structure and environmental system. Hence, we characterized the microstructure changes after the formation of amorphous calcium phosphate (ACP) at the interface of montmorillonite (Mt) minerals in a simulated environment system. Combined with atomic force microscopy and density functional theory (DFT) simulation, the mechanism of interfacial interaction between Mt-ACP and DOM was characterized at the molecular level. Moreover, we further evaluated the adsorption behavior of Mt-ACP as a potential adsorbent for organic matter. The comprehensive investigation of humic acid adsorption, intermolecular force, and DFT simulation is conducive to our understanding of the interfacial interaction mechanism between organic matter and noncrystalline minerals in aquatic environments and provides new perspectives on the application of clay-based mineral materials in pollutant removal under exposure from DOM.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Li Feng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Ma Y, Chen J, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Efficient removal of polybrominated diphenyl ethers from soil washing effluent by dummy molecular imprinted adsorbents: Selectivity and mechanisms. J Environ Sci (China) 2023; 129:45-57. [PMID: 36804241 DOI: 10.1016/j.jes.2022.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Surfactant enhanced elution is an effective method for removing hydrophobic organic pollutants from soils. The key to the development of leaching technology is selective removal of targeted pollutants in soil washing effluent and recycling of surfactant solutions. In this study, a molecular imprinting technique was applied to selectively sorb polybrominated diphenyl ethers (PBDEs) in soil washing effluent. The novel molecular imprinted polymers (MIPs) using different template molecules were synthesized by precipitation polymerization. Adsorption behaviors and mechanisms of MIPs were studied through experiments and theoretical calculations. The results show that 4-bromo-4'-hydroxybiphenyl and toluene can be effective imprinting molecule for MIPs synthesis. The maximal adsorption capacity of selected dummy molecular imprinted polymer (D1-MIP) was 1032.36 µmol/g, and that of part molecular imprinted polymer (P-MIP) was 981.13 µmol/g. Their imprinting factors in 5 PBDEs adsorption ranged from 2.13 to 5.88, the recovery percentage of Triton X-100 can reach 99.09%, confirming the feasibility of reusing surfactant. Various PBDEs could be removed by MIPs, and Quantitative Structure Property Relationship analysis revealed that PBDEs' molecular volume, planarity, polarity, and hydrophobicity have major influences on their adsorption performance. DFT calculation revealed that Van der Waals force and hydrogen bonding played important roles during selective adsorption. These results can provide effective theoretical guidance for surfactant enhanced soil elution in practical engineering applications.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
11
|
Yang H, Xu L, Li Y, Liu H, Wu X, Zhou P, Graham NJD, Yu W. Fe xO/FeNC modified activated carbon packing media for biological slow filtration to enhance the removal of dissolved organic matter in reused water. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131736. [PMID: 37295334 DOI: 10.1016/j.jhazmat.2023.131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
The biological slow filtration reactor (BSFR) process has been found to be moderately effective for the removal of refractory dissolved organic matter (DOM) in the treatment of reused water. In this study, bench scale experiments were conducted using a mixture of landscape water and concentrated landfill leachate as feed water, to compare a novel iron oxide (FexO)/FeNC modified activated carbon (FexO@AC) packed BSFR, with a conventional activated carbon packed BSFR (AC-BSFR), operated in parallel. The results showed that the FexO@AC packed BSFR had a refractory DOM removal rate of 90%, operated at a hydraulic retention time (HRT) of 10 h at room temperature for 30 weeks, while under the same conditions the removal by the AC-BSFR was only 70%. As a consequence, the treatment by the FexO@AC packed BSFR substantially reduced the formation potential of trihalomethanes, and to a less extent, haloacetic acids. The modification of FexO/FeNC media raised the conductivity and the oxygen reduction reaction (ORR) efficiency of the AC media to accelerate the anaerobic digestion by consuming the electrons that are generated by anaerobic digestion itself, which lead to the marked improvement in refractory DOM removal.
Collapse
Affiliation(s)
- Hankun Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujuan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment and Municipal Engineering, Qingdao Technological University, Qingdao 266033, Shandong, China
| | - Hongyu Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Colleges of Forestry, Northeast Forestry University, Mail Box 306, Hexing Road 26, Harbin, China
| | - Xue Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
12
|
Ma Y, Mao C, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Insight into the application of magnetic molecularly imprinted polymers in soil-washing effluent: Selective removal of 4,4'-dibromodiphenyl ether, high adaptivity of material and efficient recovery of eluent. CHEMOSPHERE 2023; 334:138990. [PMID: 37209856 DOI: 10.1016/j.chemosphere.2023.138990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Soil washing techniques can effectively remove soil polybrominated diphenyl ethers (PBDEs), but further removal of PBDEs from washing effluent is disrupted by environmental factors and coexisting organic matter. Hence, this work prepared novel magnetic molecularly imprinted polymers (MMIPs) to selectively remove PBDEs in soil washing effluent and recycling surfactants, with Fe3O4 nanoparticles as the magnetic core, methacrylic acid (MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Later, the prepared MMIPs were applied to adsorb 4,4'-dibromodiphenyl ether (BDE-15) in Triton X-100 soil-washing effluent and characterized by scanning electron microscopy (SEM), infrared spectrometry (FT-IR), nitrogen adsorption and desorption experiments. According to our observations, BDE-15 equilibrium adsorptions on dummy-template magnetic molecularly imprinted adsorbent (D-MMIP, 4-bromo-4'-hydroxyl biphenyl as template) and part-template magnetic molecularly imprinted adsorbent (P-MMIP, toluene as template) were reached within 40 min, and their equilibrium adsorption capacities were 164.54 μmol/g and 145.55 μmol/g, respectively, with imprinted factor α > 2.03, selectivity factor β > 2.14, and selectivity S > 18.05. MMIPs exhibited good adaptability to pH, temperature, and cosolvent. Our Triton X-100 recovery rate reached as high as 99.9%, and MMIPs maintained a more than 95% adsorption capacity after being recycled five times. Our results offer a novel approach to selectively remove PBDEs in soil-washing effluent, with efficient recovery of surfactants and adsorbents in soil-washing effluent.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; China National Research Center of Testing Techniques for Building Material, China Building Materials Academy, Beijing, 100024, China
| | - Changyu Mao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Sun Y, Pan Y, Zhang Z, Chen Z, Wang J, Wang B, Cheng Z, Ma W. Study on the role of AlOOH in fluorescence correction and depth purification of Cyclops water. CHEMOSPHERE 2023; 322:138190. [PMID: 36812996 DOI: 10.1016/j.chemosphere.2023.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Protein-like substances produced by biochemical reactions after disinfection of Zooplankton like Cyclops and humic substances in natural water are the main components of NOM (Natural organic matter). To eliminate early warning interference in the fluorescence detection of organic matter in natural water, a clustered flower-like AlOOH (aluminum oxide hydroxide) sorbent was prepared. HA (humic acid) and amino acids were selected as mimics of humic substances and protein-like substances in natural water. The results demonstrate that the adsorbent can selectively adsorb HA from the simulated mixed solution and restore the fluorescence properties of tryptophan and tyrosine. Based on these results, a stepwise fluorescence detection strategy was developed and used in natural water rich in zooplanktonic Cyclops. The results show that the established stepwise fluorescence strategy can well overcome the interference caused by fluorescence quenching. The sorbent was also used for water quality control to enhance coagulation treatment. Finally, trial runs of the water plant demonstrated its effectiveness and suggested a potential control method for early warning and monitoring of water quality.
Collapse
Affiliation(s)
- Yawen Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhe Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Chen
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Jiali Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Wei Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Li H, Wang J, Yue D, Wang J, Tang C, Zhang L. The Adsorption Behaviors and Mechanisms of Humic Substances by Thermally Oxidized Graphitic Carbon Nitride. TOXICS 2023; 11:369. [PMID: 37112596 PMCID: PMC10142187 DOI: 10.3390/toxics11040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Thermal oxidation is efficient for enhancing the photocatalysis performance of graphitic carbon nitride (g-C3N4), while its effect on adsorption performance has not been fully studied, which is crucial to the application of g-C3N4 as adsorbents and photocatalysts. In this study, thermal oxidation was used to prepare sheet-like g-C3N4 (TCN), and its application for adsorption of humic acids (HA) and fulvic acids (FA) was evaluated. The results showed that thermal oxidation clearly affected the properties of TCN. After thermal oxidation, the adsorption performance of TCN was enhanced significantly, and the adsorption amount of HA increased from 63.23 (the bulk g-C3N4) to 145.35 mg/g [TCN prepared at 600 °C (TCN-600)]. Based on fitting results using the Sips model, the maximum adsorption amounts of TCN-600 for HA and FA were 327.88 and 213.58 mg/g, respectively. The adsorption for HA and FA was markedly affected by pH, alkaline, and alkaline earth metals due to electrostatic interactions. The major adsorption mechanisms included electrostatic interactions, π-π interactions, hydrogen bonding, along with a special pH-dependent conformation (for HA). These findings implied that TCN prepared from environmental-friendly thermal oxidation showed promising prospects for humic substances (HSs) adsorption in natural water and wastewater.
Collapse
Affiliation(s)
- Hongxin Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianchao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Chu Tang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lingyue Zhang
- School of Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| |
Collapse
|
15
|
Geng C, Lin R, Yang P, Liu P, Guo L, Cui B, Fang Y. Highly selective adsorption of Hg (II) from aqueous solution by three-dimensional porous N-doped starch-based carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52107-52123. [PMID: 36826770 DOI: 10.1007/s11356-023-26002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
For the first time, N-doped carbon materials with 3D porous-layered skeleton structure was synthesized through a one-step co-pyrolysis method, which was fabricated by co-pyrolysis of natural corn starch and melamine using metal catalysts (Ni (II) and Mn (II)). The 3D-NC possessed a heterogeneously meso-macroporous surface with a hierarchically connected sheet structure inside. Batch adsorption experiments suggested that highly selective adsorption of Hg (II) by the 3D-NC could be completed within 90 min and had maximum adsorption capacities as high as 403.24 mg/g at 293 K, pH = 5. The adsorption mechanism for Hg (II) was carefully evaluated and followed the physical adsorption, electrostatic attraction, chelation, and ion exchange. Besides, thermodynamic study demonstrated that the Hg (II) adsorption procedure was spontaneous, endothermic, and randomness. More importantly, the 3D-NC could be regenerated and recovered well after adsorption-desorption cycles, showing a promising prospect in the remediation of Hg (II)-contaminated wastewater.
Collapse
Affiliation(s)
- Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ruikang Lin
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Peilin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
16
|
Mild routine to prepare Fe-Mn bimetallic nano-cluster (Fe-Mn NCs) and its magnetic starch-based composite adsorbent (Fe-Mn@SCAs) for wide pH range adsorption for Hg(Ⅱ) sewage. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
17
|
Guo L, Peng L, Li J, Zhang W, Shi B. Simultaneously efficient adsorption and highly selective separation of U(VI) and Th(IV) by surface-functionalized lignin nanoparticles: A novel pH-dependent process. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130123. [PMID: 36270193 DOI: 10.1016/j.jhazmat.2022.130123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The simultaneous removal and selective separation of U(VI) and Th(IV) via adsorption remain challenging due to their strong mobility, reactivity, and similar chemical properties. Thus, a surface-functioned lignin nanoparticle (AL-PEI) was synthesized to adsorb U(VI)/Th(IV) in a unitary system via a pH-dependent process. In alkaline solution, AL-PEI exhibited excellent adsorption performance, and the maximum adsorption capacities for U(VI) and Th(IV) reached 392 and 396 mg/g, respectively. Discrepantly in acidic solution, the adsorption performance of AL-PEI for U(VI) could still reach a high capacity (332 mg/g), whereas highly limited adsorption capacity (less than 40 mg/g) for Th(IV) was obtained, and the separation factor of U(VI) from U(VI)-Th(IV) matrix significantly reached 6662 in 3 M of the HNO3 medium. The simultaneously efficient adsorption in alkaline solution and highly selective separation performance in acidic solution of AL-PEI also showed excellent anti-ions interference capacities, high reusability, and strong stability. This study is the first to apply lignin fabricating radiation-resistant adsorbent material, and the adsorbent displays good performance for U(VI)/Th(IV) removal and selective separation via a novel pH-dependent process, which is important to the green and sustainable development of nuclear energy and environmental protection.
Collapse
Affiliation(s)
- Lijun Guo
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Liangqiong Peng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Jiheng Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Wenhua Zhang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| | - Bi Shi
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
18
|
Liu B, Han Z, Han Q, Shu Y, Li L, Chen B, Wang Z, Pedersen JA. Redispersion Behavior of 2D MoS 2 Nanosheets: Unique Dependence on the Intervention Timing of Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:939-950. [PMID: 36516400 DOI: 10.1021/acs.est.2c05282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aggregation-redispersion behavior of nanomaterials determines their transport, transformation, and toxicity, which could be largely influenced by the ubiquitous natural organic matter (NOM). Nonetheless, the interaction mechanisms of two-dimensional (2D) MoS2 and NOM and the subsequent influences on the redispersion behavior are not well understood. Herein, we investigated the redispersion of single-layer MoS2 (SL-MoS2) nanosheets as influenced by Suwannee River NOM (SRNOM). It was found that SRNOM played a decisive role on the redispersion of MoS2 2D nanosheets that varied distinctly from the 3D nanoparticles. Compared to the poor redispersion of MoS2 aggregates in the absence or post-addition of SRNOM to the aggregates, co-occurrence of SRNOM in the dispersion could largely enhance the redispersion and mobility of MoS2 by intercalating into the nanosheets. Upon adsorption to SL-MoS2, SRNOM enhanced the hydration force and weakened the van der Waals forces between nanosheets, leading to the redispersion of the aggregates. The SRNOM fractions with higher molecular mass imparted better dispersity due to the preferable sorption of the large molecules onto SL-MoS2 surfaces. This comprehensive study advances current understanding on the transport and fate of nanomaterials in the water system and provides fresh insights into the interaction mechanisms between NOM and 2D nanomaterials.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Zixin Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Li Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland21218, United States
| |
Collapse
|
19
|
Yu M, Hua Y, Sarwar MT, Yang H. Nanoscale Interactions of Humic Acid and Minerals Reveal Mechanisms of Carbon Protection in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:286-296. [PMID: 36524600 DOI: 10.1021/acs.est.2c06814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The concentrations of terrestrially sourced dissolved organic matter (DOM) have expanded throughout aquatic ecosystems in recent decades. Although sorption to minerals in soils is one major pathway to sequestrate soil organic matter, the mechanisms of organic matter-mineral interactions are not thoroughly understood. Here, we investigated the effect of calcium phosphate mineralization on humic acid (HA) fixation in simulated soil solutions, either with or without clay mineral montmorillonite (Mt). We found that Mt in solution promoted nucleation and crystallization of calcium phosphate (CaP) due to amorphous calcium phosphate clustering and coalescence on Mt surface, which contributed to the long-term persistence and accumulation of HA. Organic ligands with specific chemical groups on HA have higher binding energies to CaP-Mt than to CaP/Mt, according to dynamic force spectroscopy observations. Moreover, CaP-Mt formed in solution showed a great capacity for HA adsorption with a maximum adsorption quantity of 156.89 mg/g. Our findings directly support that Mt is crucial for DOM sequestration by facilitating CaP precipitation/transformation. This has an impact on how effectively we understand the long-term turnover of DOM and highlights knowledge gaps that might assist in resolving essential soil C sequestration issues.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
20
|
Feng Y, Lao J, Zou J, Zhu Z, Li D, Liu G, Mao L. Interaction of Graphitic Carbon Nitride with Cell Membranes: Probing Phospholipid Extraction and Lipid Bilayer Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17663-17673. [PMID: 36456188 DOI: 10.1021/acs.est.2c05560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how nanomaterials interact with cell membranes has important implications for ecotoxicology and human health. Here, we investigated the interactions between graphitic carbon nitride (g-C3N4, CN) and red blood cells, a plausible contact target for nanoparticles when they enter the bloodstream. Through a hemolysis assay, the cytotoxicity of CN derived from different precursors was quantitatively assessed, which is highly related to the surface area of CN. Reactive oxygen species (ROS) generation and lipid peroxidation detection confirmed that CN causes rapid cell membrane rupture by a physical interaction mechanism rather than ROS-related chemical oxidation. Dye leakage assay and theoretical simulation indicated that the less-layered CN is prone to folding inward to wrap and extract lipid molecules from cell membranes. The electron-rich inherent pores of CN play a dominant role in capturing the headgroups of phospholipids, whereas the hydrophobic interaction is critical for the anchoring of lipid tails. Our further experimental evidence demonstrated that the destructive extraction of phospholipids from cell membranes by CN occurs primarily in the outer leaflet, and phosphatidylcholine is the most easily extracted lipid. Moreover, the formation of protein corona on CN was found to decrease the nonspecific interactions but increase steric repulsion, thus mitigating CN cytotoxicity. Overall, our data provide a molecular basis for CN's cytotoxicity.
Collapse
Affiliation(s)
- Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiayong Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiale Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Daguang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
21
|
Wang J, Li Y, Alharbi NS, Chen C, Ren X. Coupling few-layer MXene nanosheets with NiFe layered double hydroxide as 3D composites for the efficient removal of Cr(VI) and 1-naphthol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Feng Y, Han L, Sun H, Zhu D, Xue L, Jiang ZT, Poinern GEJ, Lu Q, Feng Y, Xing B. Every coin has two sides: Continuous and substantial reduction of ammonia volatilization under the coexistence of microplastics and biochar in an annual observation of rice-wheat rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157635. [PMID: 35905962 DOI: 10.1016/j.scitotenv.2022.157635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are verified to affect the fate of ammonia (NH3) in agricultural soils. However, the impacts and mechanisms of MPs coupled with biochar (BC), a widely used agricultural conditioner, on NH3 losses are mostly untapped. The aim of this study was to investigate the mechanisms of common MPs (i.e., polyethylene, polyester, and polyacrylonitrile) and straw-derived BC on NH3 volatilization in rice-wheat rotation soils. Results showed that BC alone and MPs with BC (MPs + BC) reduced 5.5 % and 11.2-26.6 % cumulative NH3 volatilization than the control (CK), respectively, in the rice season. The increased nitrate concentration and soil cation exchange capacity were dominant contributors to the reduced soil NH3 volatilization in the rice season. BC and MPs + BC persistently reduced 44.5 % and 60.0-62.6 % NH3 losses than CK in the wheat season as influenced by pH and nitrate concentration. Moreover, BC and MPs + BC increased humic acid-like substances in soil dissolved organic matter by an average of 159.1 % and 179.6 % than CK, respectively, in rice and wheat seasons. The increased adsorption of soil NH4+ and the promotion of crop root growth were the main mechanisms of NH3 reduction. Our findings partially revealed the mechanisms of the coexistence of MPs and BC on NH3 mitigation in rice-wheat rotational ecosystems.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Liuhe), Key Laboratory for Combined Farming and Raising, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Murdoch Applied Innovation Nanotechnology Research Group/Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Liuhe), Key Laboratory for Combined Farming and Raising, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhong-Tao Jiang
- Murdoch Applied Innovation Nanotechnology Research Group/Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group/Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia
| | - Qianwen Lu
- University of Connecticut, Department of Plant Sciences and Landscape Architecture, Storrs, CT 06269, United States of America
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Liuhe), Key Laboratory for Combined Farming and Raising, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States of America
| |
Collapse
|
23
|
Li M, Wang P, Huang C, Liu Y, Liu S, Zhang K, Cao J, Tan X, Liu S. Effect of dissolved humic acids and coated humic acids on tetracycline adsorption by K 2CO 3-activated magnetic biochar. Sci Rep 2022; 12:18966. [PMID: 36347872 PMCID: PMC9643364 DOI: 10.1038/s41598-022-22830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Humic acids (HAs) widely exist in water environment, and has an important impact on the adsorption of pollutants. Herein, HAs (both dissolved and coated) was employed to assess the effect on the removal of the organic contaminant tetracycline (TC) by K2CO3 modified magnetic biochar (KMBC). Results showed that low concentration of dissolved HAs promoted TC removal, likely due to a bridging effect, while higher concentration of dissolved HAs inhibited TC adsorption because of the competition of adsorption sites on KMBC. By characterization analysis, coated HAs changed the surface and pore characteristics of KMBC, which suppressed the TC removal. In a sequential adsorption experiment involving dissolved HAs and TC, the addition of HAs at the end of the experiment led to the formation of HAs-TC ligands with free TC, which improved the adsorption capacity of TC. TC adsorption by KMBC in the presence of dissolved HAs and coated HAs showed a downward trend with increasing pH from 5.0 to 10.0. The TC adsorption process was favorable and endothermic, and could be better simulated by pseudo-second-order kinetics and Freundlich isotherm model. Hydrogen bonds and π-π interactions were hypothesized to be the underlying influencing mechanisms.
Collapse
Affiliation(s)
- Meifang Li
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Ping Wang
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Chenxi Huang
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Yunguo Liu
- grid.67293.39College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China ,grid.67293.39Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China
| | - Shaobo Liu
- grid.216417.70000 0001 0379 7164School of Architecture and Art, Central South University, Lushan South Road, Yuelu District, Changsha, 410083 People’s Republic of China
| | - Ke Zhang
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115 USA
| | - Jingxiao Cao
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Xiaofei Tan
- grid.67293.39College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China ,grid.67293.39Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China
| | - Shaoheng Liu
- grid.440778.80000 0004 1759 9670College of Chemistry and Material Engineering, Hunan University of Arts and Science, Dongting Avenue, Wuling District, Changde, 415000 Hunan People’s Republic of China
| |
Collapse
|
24
|
Cui D, Tan W, Yue D, Yu H, Dang Q, Xi B. Reduction capacity of humic acid and its association with the evolution of redox structures during composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:188-196. [PMID: 36108537 DOI: 10.1016/j.wasman.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The reducing capacity (RC) of compost-derived humic acid (HA) is related to the type and number of redox-active functional moieties in its structure and has a considerable environmental influence on its geochemical redox cycle. Composting treatment can affect the redox-active fractions of organic substances through microbial transformation and degradation. However, the relationship between the RC of compost-derived HA and its fluorescence component and infrared spectra remains unclear. In this study, we assessed the response of the organic reducing capacity (ORC) and inorganic reducing capacity (IRC) of compost-derived HA to the stabilization of organic solid waste materials by analyzing the redox-active functional groups of HA extracted at different composting times. The results demonstrated that the RC of compost-derived HA continuously increased during composting because of the formation of fulvic- and humic-like fluorescent components, which consist of amide, phenolic hydroxyl, quinone, and aromatic groups. Adsorption occurred between HA and FeCit by aliphatic and out-of-plane aromatic CH, which released free hydrogen and increased the Fe-binding site; consequently, ORC was obviously higher than IRC. The results of this study could provide an understanding of the transformation of the fluorescent substances and functional groups that affect redox properties during composting; therefore, this study has considerable significance for exploring the application of compost products.
Collapse
Affiliation(s)
- Dongyu Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
25
|
Zafar R, Bang TH, Lee YK, Begum MS, Rabani I, Hong S, Hur J. Change in adsorption behavior of aquatic humic substances on microplastic through biotic and abiotic aging processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157010. [PMID: 35772558 DOI: 10.1016/j.scitotenv.2022.157010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Interactions between microplastics (MPs) and humic substances (HS) are inevitable in MP-contaminated aquatic environment because of the ubiquitous presence of HS. In this study, we explored the effects of abiotic and biotic aging processes on the adsorption behavior of aquatic HS on MPs. Aging experiments were conducted using polyethylene (PE) as a representative MP, in which UV irradiation and microbial incubation were applied for 15 to 18 days to mimic the natural abiotic and biotic aging processes. Surface modifications after the aging treatments were evidenced by the appearance of CO, CO, O-C=O, and -OH groups; the formation of grooves on UV-aged PE; and the formation of biofilms on the surface of bio-aged PE. The specific surface areas of both treated PE MPs increased with aging. Higher HS adsorption on PE surface was observed after the aging treatments, with a highest kinetic rate for UV-aged PE than that for bio-aged PE. The adsorption isotherm models revealed that the aging processes enhanced the HS adsorption tendency, as evidenced by the highest adsorption capacity for UV-aged PE (~187 μg C/m2), followed by bio-aged PE (~157 μg C/m2) and pristine PE (~87.5 μg C/m2) for a comparable extended aging period (15-18 days). The difference was more pronounced at a lower pH. The enhanced HS adsorption was mainly attributed to the formation of hydrogen bonds, whereas HS adsorption on pristine PE was dominated by hydrophobic interactions and weak van der Waals interactions. Among the two identified fluorescent components (terrestrial humic-like C1 and protein-like C2), C1 exhibited a higher affinity for adsorption onto PE irrespective of aging. Our findings provide insights into the substantial changes that occur in the interactions between MPs and aquatic organic matter with aging processes, which may alter the fate and environmental impacts of MPs in many aquatic systems.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Truong Hai Bang
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Most Shirina Begum
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
26
|
Treatment of PBDEs from Soil-Washing Effluent by Granular-Activated Carbon: Adsorption Behavior, Influencing Factors and Density Functional Theory Calculation. Processes (Basel) 2022. [DOI: 10.3390/pr10091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soil-washing is a potential technology for the disposal of soil contaminated by e-waste; however, the produced soil-washing effluent will contain polybrominated diphenyl ethers (PBDEs) and a large number of surfactants, which are harmful to the environment, so the treatment of PBDEs and the recycling of surfactants are the key to the application of soil-washing technology. In this study, coconut shell granular-activated carbon (GAC) was applied to remove PBDEs from Triton X-100 (TX-100) surfactant which simulates soil-washing effluent. The adsorption results show that, GAC can simultaneously achieve effective removal of 4,4′-dibromodiphenyl ether (BDE-15) and efficient recovery of TX-100. Under optimal conditions, the maximum adsorption capacity of BDE-15 could reach 623.19 μmol/g, and the recovery rate of TX-100 was always higher than 83%. The adsorption process of 4,4′-dibromodiphenyl ether (BDE-15) by GAC could best be described using the pseudo-second-order kinetic model and Freundlich isothermal adsorption model. The coexistence ions had almost no effect on the removal of BDE-15 and the recovery rate of TX-100, and the solution pH had little effect on the recovery rate of TX-100; BDE-15 had the best removal effect under the condition of weak acid to weak base, indicating that GAC has good environmental adaptability. After adsorption, GAC could be regenerated with methanol and the adsorption effect of BDE-15 could still reach more than 81%. Density functional theory (DFT) calculation and characterization results showed that, Van der Waals interaction and π–π interaction are dominant between BDE-15 and GAC, and hydrogen bond interactions also exist. The existence of oxygen-containing functional groups is conducive to the adsorption of BDE-15, and the carboxyl group (-COOH) has the strongest promoting effect. The study proved the feasibility of GAC to effectively remove PBDEs and recover surfactants from the soil-washing effluent, and revealed the interaction mechanism between PBDEs and GAC, which can provide reference for the application of soil-washing technology.
Collapse
|
27
|
Xu Y, Bi Z, Zhang Y, Wu H, Zhou L, Zhang H. Impact of wine grape pomace on humification performance and microbial dynamics during pig manure composting. BIORESOURCE TECHNOLOGY 2022; 358:127380. [PMID: 35644453 DOI: 10.1016/j.biortech.2022.127380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The polyphenol humification pathway is essential for soil-forming and compost maturing processes. This study explored the effects of adding different proportions of polyphenol-rich wine grape pomace (WGP) on humification performance and microbial dynamics during pig manure (PM) composting. The results demonstrated that WGP effectively prolonged the duration of the thermophilic period, and improved humification production and compost maturity by enhancing beneficial interactions among microorganisms. Moreover, adding 40% WGP was optimal for nitrogen conservation, and the corresponding germination index (GI) reached 95%. Excitation-emission matrix (EEM) fluorescence spectroscopy analysis suggested that optimizing the WGP content was conducive to the conversion of protein-like substances, which improved the humification of organic matter. In addition, structural equation modelling (SEM) demonstrated that polyphenol content and temperature were the key parameters affecting the humification products. The results showed that WGP holds great promise to improve composting progress and fertilizer quality for biowaste utilization.
Collapse
Affiliation(s)
- Yang Xu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Zhitao Bi
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yingchao Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Ling Zhou
- School of Mechanical Electrification Engineering, Tarim University, Alaer 843300, China
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
He C, Fang K, Gong H, Liu J, Song X, Liang R, He Q, Yuan Q, Wang K. Advanced organic recovery from municipal wastewater with an enhanced magnetic separation (EMS) system: Pilot-scale verification. WATER RESEARCH 2022; 217:118449. [PMID: 35429875 DOI: 10.1016/j.watres.2022.118449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The up-concentration process has been demonstrated as an attractive approach to carbon-neutral wastewater treatment. Innovation in the separation processes can help eliminate the current heavy dependence on gravity, and credible pilot-scale verification is crucial for application promotion. We hereby proposed a pilot-scale enhanced magnetic separation (EMS) system as an up-concentration step to maximize energy recovery from municipal wastewater. The design of EMS was based on the hypothesis that magnetic-driven separation could be a breakthrough in separation speed, and adsorption could further enhance the separation efficiency by capturing soluble substances. Jar tests confirmed the feasibility of activated carbon adsorption, which could also roughen the surface of aggregates. Further, over one-year operation of a 300 m3/d EMS equipment provided optimum operation strategies and evidence of system effectiveness. More than 80% of particulate organics and 60% of soluble organics were removed within 10 min at an energy consumption of only 0.036 kWh/m3. The characteristics of sludge were clarified in terms of organic concentration, extracellular polymeric substances composition, and micro-community analysis. The anaerobic experiments further demonstrated the potential value of the concentrated products. Surprisingly, the developed EMS system exhibited significant advantages in time consumption and space occupation, with competitive operating cost and energy consumption. Overall, the results of this study posed the EMS process for up-concentration as a potential approach to organics recovery from municipal wastewater.
Collapse
Affiliation(s)
- Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Kuo Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| | - Xinxin Song
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| | - Ruisong Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiuhang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Abstract
Humic acid (HA) in makeup water is one of the important safety issues of high−parameter power plants. Herein, the Zr−based metal organic frameworks (Zr−MOFs) were applied to remove humic acid in water. The mesoporous and active sites of Zr−MOFs were controlled by different ratios of ligands to increase the adsorption of HA. The maximum adsorption capacity was 150.15 mg g−1. The morphology and adsorption properties of the Zr−MOFs were characterized using scanning electron microscopy (SEM), X−ray diffraction (XRD), surface charge, Fourier Transform infrared (FT−IR), N2 adsorption−desorption and adsorption test. The adsorption process of HA accorded with the pseudo−second−order kinetics, while the adsorption isotherm conformed to the Langmuir model and the adsorption was proved to be a spontaneous and endothermic process. Physical adsorption by the mesoporous materials and the hydrogen bonding interactions between the Zr−MOFs and HA were the driving forces of HA adsorption. These results provided useful information for the effective removal of HA and enhanced our understanding of the adsorption mechanism of HA on Zr−MOFs.
Collapse
|
30
|
Ou T, Wu Y, Han W, Kong L, Song G, Chen D, Su M. Synthesis of thickness-controllable polydopamine modified halloysite nanotubes (HNTs@PDA) for uranium (VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127208. [PMID: 34592591 DOI: 10.1016/j.jhazmat.2021.127208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Halloysite nanotubes (HNTs) are considered structurally promising adsorption materials, but their application is limited due to their poor native adsorption properties. Improving the adsorption capacity of HNTs for radioactive U(VI) is of great significance. By controlling the mass ratio of HNTs and dopamine (DA), composite adsorbents (HNTs@PDA) with different polydopamine (PDA) layer thicknesses were synthesized. Characterization of HNTs@PDA demonstrated that the original structure of the HNTs was maintained. Adsorption experiments verified that the adsorption capacity of HNTs@PDA for U(VI) was significantly improved. The effects of solution pH, temperature, and coexisting ions on the adsorption process were investigated. The removal efficiency was observed to be 75% after five repeated uses. The adsorption mechanism of U(VI) by HNTs@PDA can be explained by considering electrostatic interactions and the complexation of C-O, -NH- and C-N/CN in the PDA layer. This study provides some basic information for the application of HNTs for U(VI) removal.
Collapse
Affiliation(s)
- Tao Ou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuhua Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixing Han
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Feng Y, Chen G, Zhang Y, Li D, Ling C, Wang Q, Liu G. Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C 3N 4 modified graphene oxide hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127362. [PMID: 34638075 DOI: 10.1016/j.jhazmat.2021.127362] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 05/27/2023]
Abstract
Development of economic and efficient absorbent for the simultaneous removal of antibiotics and heavy metals is needed. In this study, a three-dimensional porous ultrathin g-C3N4 (UCN) /graphene oxide (GO) hydrogel (UCN-GH) was prepared by co-assembling of UCN and GO nanosheets via the facile hydrothermal reaction. Characterizations indicated that the addition of UCN significantly decreased the reduction of CO and O-CO related groups of GO during the hydrothermal reaction and introduced amine groups on UCN-GH. The UCN-GH exhibited excellent ability on the co-removal of Cu(II) (qmax = 2.0-2.5 mmol g-1) and tetracycline (TC) (qmax = 1.2-3.0 mmol g-1) from water. The adsorption capacities were increased as UCN mass ratio increasing. The mutual effects between Cu(II) and TC were examined through adsorption kinetics and isotherm models. Characterizations and computational chemistry analysis indicated that Cu(II) is apt to coordinate with the amine groups on UCN than with oxygen groups on GO, which accounts for the enhanced adsorption ability of UCN-GH. In the binary system, Cu(II) acts as a bridge between TC and UCN-GH enhanced the removal of TC. The effects of pH and regular salt ions on the removal of Cu(II)/TC were examined. Moreover, the prepared UCN-GH also showed comparable co-adsorption capacities in practical water/wastewater.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guang Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yijian Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Daguang Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chen Ling
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qiaoying Wang
- Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Wang J, Li H, Yue D. Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127643. [PMID: 34740511 DOI: 10.1016/j.jhazmat.2021.127643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Since humic substances (HSs) can cause environmental problems, their elimination has been attracting more and more concerns. In this study, we investigated HSs adsorption onto urea-derived graphitic carbon nitride (CNU) and elucidated adsorption mechanisms (i.e. heterogeneity, interface rearrangement, and multiple interactions). The adsorption capacity of CNUs was enhanced as increasing calcination temperature and time. Among CNUs, CNU-575-3 showed the highest adsorption capacity; the maximum adsorption capacities for humic acid (HA) and fulvic acid (FA) were 164.06 mg C/g, 14.61 L/cm·g, 91.12 mg C/g, and 5.34 L/cm·g, respectively. The adsorption affinity of CNUs mainly correlated with the amount of amino groups, and that of HSs components was dependent on aromaticity due to π-π interactions. More specifically, terrestrial humic-like and fulvic-like components within HA and FA showed the greatest adsorption affinity, respectively. HSs adsorption was remarkably affected by pH, alkali metals, and alkali earth metals via electrostatic interactions, H-bonding, cation bridge, and configurational effect. In addition, the adsorption of Elliott soil HA (ESHA) and the landfill leachate concentrate by CNUs was also highly efficient. This study shows the great promise of CNUs for HSs adsorption in waters and wastewaters.
Collapse
Affiliation(s)
- Jianchao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongxin Li
- Beijing University of Civil Engineering and Architecture, School of Environment and Energy Engineering, Beijing 100044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Wang K, Liu H, Wang Y, Zhao D, Zhai J. Study on the Flocculation Performance of a Cationic Starch‐Based Flocculant on Humic Substances in Textile Dyeing Wastewater. STARCH-STARKE 2022. [DOI: 10.1002/star.202100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kexu Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Hongfei Liu
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Yating Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Dishun Zhao
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Jianhua Zhai
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| |
Collapse
|