1
|
Wang S, Peng C, Sheng N, Lian L, Dai J, Guan X. Occurrence, ecological risk and estrogenic effect of 19 bisphenol analogues in the surface water used for drinking water in Shanghai, China. WATER RESEARCH 2025; 279:123408. [PMID: 40048907 DOI: 10.1016/j.watres.2025.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 02/27/2025] [Indexed: 05/06/2025]
Abstract
Bisphenol analogues (BPs), a prominent group of endocrine-disrupting compounds, are widely used in the production of epoxy resins and polycarbonate plastics, leading to their inevitable release into aquatic environments. However, limited data exists on the occurrence of BPs in drinking water sources and upstream rivers. In this study, we developed and validated a solid-phase extraction method coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the trace-level detection and simultaneous quantification of 19 BPs in surface water. Seventeen BPs were detected in the Taipu River with concentrations ranging from non-detectable to 38.2 ng L-1 and industrial discharges may be a primary source of BPs contamination. For the first time, the presence of bisphenol C-dichloride (BPC-di) and tetrachlorobisphenol A in surface water was reported, with mean concentrations of 11.5 ng L-1 and 2.0 ng L-1, respectively. In drinking source water, 15 BPs were found, with bisphenol A, bisphenol B, and BPC-di being the most abundant ones. Additionally, a comprehensive toxicity assessment was performed to evaluate the ecological risks associated with these BPs. Although risk quotient values indicated negligible ecological risk for these BPs, estrogen equivalence values suggested potential estrogenic risks in the river. This study provides new insights into the occurrence, ecological risks, and estrogenic effects of BPs in source water and its upstream river systems.
Collapse
Affiliation(s)
- Shuning Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Peng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lushi Lian
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
2
|
Shi WJ, Cao Z, Long XB, Yao CR, Zhang JG, Chen CE, Ying GG. Predicting estrogen receptor agonists from plastic additives across various aquatic-related species using machine learning and AlphaFold2. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138629. [PMID: 40378742 DOI: 10.1016/j.jhazmat.2025.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
The absence of effective public databases greatly limits high-throughput prediction of hormonal effects mediated by nuclear receptors in aquatic organisms. In this study, we developed novel strategies for multi-species screening of estrogen receptor (ER) agonists in plastic additives using AlphaFold2. Firstly, Deep Forest (DF), artificial neural network (ANN) and conventional machine learning (ML) models were utilized to screen ERα agonists. The DF models using RDKit.Chem.Descriptors and MorganFingerprint achieved a sensitivity = 0.96, specificity > 0.99, and an F1 score > 0.95, identifying 42 plastic additives as ERα agonists. Subsequently, ERα structures for Danio rerio (Dr), Oryzias melastigma (Om), Delphinus delphis (Dd), Physeter catodon (Pc), Mytilus edulis (Me), Xenopus tropicalis (Xt), Nipponia nippon (Nn), and Aptenodytes forsteri (Af) were constructed using AlphaFold2. Except for Me ERα, most species shared two common key amino acid residues responsible for ERα activity: arginine 85 and glutamic acid 44 (aligned serial numbers in the LBD). However, aquatic-related species exhibited other three additional key residues: glycine 212, leucine 216 and phenylalanine 95 (aligned serial numbers in the LBD). The number of compounds with docking energy < -9 kcal/mol for Dr, Om, Dd, Pc, Me, Xt, Nn, and Af were 4, 8, 4, 12, 10, 13, 7, and 9, respectively. The docking energy of estrone in all species was < -9 kcal/mol, while that of bisphenol P varied greatly among different species. The combined application of ML and AlphaFold enables high-throughput evaluation of the ecotoxicity posed by emerging pollutants across multiple aquatic-related species.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Zhou Cao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
3
|
Fabrello J, Matozzo V. DNA strand breaks in the crab Carcinus aestuarii exposed to three BPA analogues and their mixture. MARINE POLLUTION BULLETIN 2025; 212:117555. [PMID: 39826159 DOI: 10.1016/j.marpolbul.2025.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
In this study, the genotoxic effects of three different bisphenols (BPAF, BPF and BPS) and their mixture were assessed in the crab Carcinus aestuarii. Crabs were exposed for 7 and 14 days to 300 ng/L of BPA analogues, alone or as a mixture (100 ng/L for each compound). After 7- and 14-day exposure, gills and hepatopancreas were sampled from crabs to evaluate damage to DNA by quantifying the levels of DNA single- and double-strand breaks. Results indicated that BPA analogues increased the DNA damage in both gills and hepatopancreas. In detail, BPAF, the most hydrophobic compound tested, exerted a marked effect on DNA. Overall, results suggest that such relatively new compounds can cause damage to DNA in crabs, raising doubts about the toxicological profile of BPA analogues, at least in the species studied and under the conditions tested in this study.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
4
|
Alexander MV, Ayyar A, Gannon AW, Linares KE, Vincent SJ, Lowe S, To A, Blesson CS. The biological effects of bisphenol AF in reproduction and development: What do we know so far? Reprod Toxicol 2025; 132:108857. [PMID: 39954826 DOI: 10.1016/j.reprotox.2025.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Due to the established endocrine-disrupting effects of Bisphenol A (BPA), alternative bisphenols entered the market. Bisphenol AF (BPAF) is now commonly used in the industrial manufacturing of polycarbonate plastics and epoxy resins. However, BPAF's effects on reproduction and development have not been thoroughly reviewed. We investigated the relationship between BPAF exposure and reproduction and early development. We performed a literature review of studies on BPAF and reproductive physiology. Using keywords, we searched PubMed, Medline, Cochrane Library Database, Embase, and ClinicalTrials.gov for English language literature available until December 2024; we additionally identified and included studies from bibliographies. We included 125 articles, spanning in vitro and in vivo model organism and human studies. BPAF is a selective estrogen receptor modulator and an androgen receptor antagonist and is more potent than BPA. It is detected in urine, blood products, saliva, amniotic fluid, and breast milk. In vitro and in vivo studies demonstrate a spectrum of BPAF-induced endocrine and reproductive changes in both sexes. There is strong evidence of alterations in the hypothalamic-pituitary-gonadal axis and of altered steroidogenesis pathways. Multiple studies using zebrafish, Xenopus, chickens, and rodents, show BPAF's effects on embryogenesis, morphology, and sexual differentiation. Decreased serum testosterone and impaired spermatogenesis and oocyte viability have been demonstrated. The current literature shows clear disruptive effects of BPAF on reproductive health and embryonic development. Though further investigation is warranted, there is ample converging evidence to support limiting the use of BPAF and other similar bisphenols.
Collapse
Affiliation(s)
- Megan V Alexander
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archana Ayyar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra W Gannon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alvin To
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Mit C, Beaudouin R, Palluel O, Turiès C, Daniele G, Giroud B, Bado-Nilles A. Exposure and hazard of bisphenol A, S and F: a multi-biomarker approach in three-spined stickleback. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3343-3356. [PMID: 37436621 DOI: 10.1007/s11356-023-28462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Due to the estrogenic behavior of bisphenol (BP) A, industries have developed many substitutes, such as BPS and BPF. However, due to their structural similarities, adverse effects on reproduction are currently observed in various organisms, including fish. Even if new results have shown impacts of these bisphenols on many other physiological functions, their mode of action remains unclear. In this context, we proposed to better understand the impact of BPA, BPS, and BPF on immune responses (leucocyte sub-populations, cell death, respiratory burst, lysosomal presence, and phagocytic activity) and on biomarkers of metabolic detoxification (ethoxyresorufin-O-deethylase, EROD, and glutathione S-transferase, GST) and oxidative stress (glutathione peroxidase, GPx, and lipid peroxidation with thiobarbituric acid reactive substance method, TBARS) in an adult sentinel fish species, the three-spined stickleback. In order to enhance our understanding of how biomarkers change over time, it is essential to determine the internal concentration responsible for the observed responses. Therefore, it is necessary to explore the toxicokinetics of bisphenols. Thus, sticklebacks were exposed either to 100 μg/L of BPA, BPF or BPS for 21 days, or for seven days to 10 and 100 μg/L of BPA or BPS followed by seven days of depuration. Although BPS has very different TK, due to its lower bioaccumulation compared to BPA and BPF, BPS affect oxidative stress and phagocytic activity in the same way. For those reasons, the replacement of BPA by any substitute should be made carefully in terms of risk assessment on aquatic ecosystems.
Collapse
Affiliation(s)
- Corentin Mit
- Experimental Toxicology and Modelling Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modelling Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Olivier Palluel
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Cyril Turiès
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Gaëlle Daniele
- CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Barbara Giroud
- CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Anne Bado-Nilles
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France.
| |
Collapse
|
6
|
Wu Y, Yang T, Wu Y, Liang Y, Zeng X, Yu Z, Peng P. Co-metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22799-22807. [PMID: 39665776 DOI: 10.1021/acs.est.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The fluorinated bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA) substitute bisphenol AF (BPAF) could be more persistent and toxic than BPA, but little is known about its environmental fate. In this study, we established a co-metabolic BPAF-degrading bacterial enrichment culture with BPA as the growth substrate. BPAF degradation by the enrichment culture was dependent on BPA, and BPAF could be eliminated to below the detection limit with successive additions of BPA. BPAF was mainly degraded via phenolic ring hydroxylation and sequential ring cleavage, which are minor BPA transformation pathway. Conjugated BPAF products were also identified based on the characteristic CF3- fragment and were found to accumulate during BPAF degradation. Sphingopyxis was the key BPA and BPAF degrader in the aerobic enrichment cultures, which was the most abundant genera in only BPA-added and BPA and BPAF-added cultures and was proven to be able to degrade BPA and BPAF by isolation. The aerobic co-metabolic BPAF degrading community also contain non-BPA and BPAF degraders, such as Pandoraea, which may play a supporting role in the community.
Collapse
Affiliation(s)
- Yiding Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyue Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511457, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Wang X, Zhou S, Huang Y, Chu P, Zhu L, Chen X. Nanoplastics and bisphenol A exposure alone or in combination induce hepatopancreatic damage and disturbances in carbohydrate metabolism in the Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107145. [PMID: 39546969 DOI: 10.1016/j.aquatox.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA) is a widely found endocrine-disrupting chemical (EDC). Nanoplastics (NPs) represent a novel environmental pollutant, and the combined toxicity of these pollutants on the hepatopancreas of marine arthropods is understudied. To investigate the potential risks associated with co-exposure to BPA and NPs on the hepatopancreas, Portunus trituberculatus was treated with 100 μg/L BPA, 104 particles/L NPs, and a combination of 100 μg/L BPA + 104 particles/L NPs for 21 days, respectively. Histological observation demonstrated that co-exposure severely damaged both hepatopancreas tissue and mitochondrial structure. Transcriptome analysis revealed that 1498 transcripts were differentially expressed under different exposure conditions, and these transcripts are involved in biological processes such as cellular processes and carbohydrate metabolism. BPA and NPs co-exposure modulate pyruvic acid (PA) levels by increasing the activity of pyruvate kinase (PK), leading to changes in glycogen and glucose (GLU) content within tissues, thus affecting glycolysis. The dysregulation of the CHI3L1, ACSS2 and ACYP2 genes induced by BPA and NPs co-exposure may collectively regulate the process of carbohydrate metabolism. Notably, the downregulation of the VPS4 gene and the upregulation of the GBA1, Pin1 and CCND2 gene may affect the cell cycle, potentially impacting cell proliferation after BPA and NPs co-exposure. These data indicate that co-exposure to BPA and NPs is more significantly cytotoxic and leads to changes in carbohydrate metabolism, cell proliferation, and histological damage in the hepatopancreas of P. trituberculatus. This knowledge emphasizes the need for proactive measures to mitigate the adverse effects of these environmental pollutants on human and ecological health while also providing valuable insights into the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China.
| | - Xiaocong Chen
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Fabrello J, Tarussio E, Romanello A, Schiavon A, Damoli VR, Luisi F, Roverso M, Bogialli S, Matozzo V. A multibiomarker approach to assess the effects of a BPA analogue-contaminated diet in the crab Carcinus aestuarii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107084. [PMID: 39276604 DOI: 10.1016/j.aquatox.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Bisphenol A analogues are largely used plasticisers that are going to replace bisphenol A in many sectors. Due to this replacement, their discharge and presence in the marine coastal areas are increasing, with unknown consequences for organisms and the trophic chain. This study assessed the effects of three different bisphenols (BPAF, BPF and BPS) - alone or as a mixture - provided via food (exposed clams) to the crab Carcinus aestuarii. First, clams were exposed for two weeks to 300 ng/L of each of the three bisphenols and their mixture (100 ng/L of each) to allow the bioaccumulation of the contaminants in bivalves. Then, crabs were fed for two weeks with BPA analogue-exposed clams, while unexposed clams were used to feed control crabs. After 7 and 14 days, haemolymph, gills and hepatopancreas were collected from crabs to measure a battery of biomarkers indicative of cytotoxicity, oxidative stress and damage, neurotoxicity, physiological performance (respiration and excretion rate) and electron transport system activity. Lastly, bioaccumulation of BPA analogues was assessed by UHPLC-HRMS in crabs. Our findings revealed that BPA analogue-exposed clams were able to alter total haemocyte count, haemocyte size and their proliferation. The activity of immune enzymes, such as phosphatases and phenoloxidase was altered. Moreover, we observed an impairment of antioxidant and detoxifying enzymes like SOD, CAT, GST and GPX activities. Alterations of metabolism-involved enzymes and physiological parameters and increased oxidative damage to macromolecules like proteins, lipids, and DNA were also observed in crabs. Among BPA analogues, only bioaccumulation of BPAF, which has the highest Logkow value among the tested bisphenols, was evidenced in crabs. Overall, the obtained results indicated that crabs, under the tested experimental conditions at least, underwent alterations in cellular, biochemical and physiological responses following a diet of bisphenol-exposed clams, suggesting a potential ecotoxicological risk in the marine food chain.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy.
| | - Elisabetta Tarussio
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Alessia Romanello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Anna Schiavon
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | | | - Francesco Luisi
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
9
|
Fabrello J, Ciscato M, Asnicar D, Giorgi J, Roverso M, Bogialli S, Matozzo V. Effects of Bisphenol A analogues and their mixture on the crab Carcinus aestuarii: Cytotoxicity, oxidative stress and damage, neurotoxicity, physiological responses, and bioaccumulation. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106800. [PMID: 39432956 DOI: 10.1016/j.marenvres.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA) analogues are emerging contaminants, whose ecotoxicological profile for aquatic species, particularly marine ones, is little known. In this study, the effects of an environmentally realistic concentration (300 ng/L) of three BPA analogues (BPAF, BPF, and BPS) - alone or as a mixture (MIX) - were evaluated for the first time on the crab Carcinus aestuarii. A multibiomarker approach was adopted to assess the effects of 7 and 14 days of exposure on haemolymph parameters, gill and hepatopancreas biochemical parameters, and physiological responses of crabs. Bioaccumulation of the three bisphenols was also investigated in crabs by UHPLC-HRMS. A significant reduction in total haemocyte counts was recorded in crabs exposed for 7 days to BPAF and MIX and for 14 days to the MIX, whereas an increase was found in crabs treated for 14 days with BPAF. Cell proliferation increased significantly in crabs exposed for 14 days to BPS and MIX. An imbalance of the antioxidant system, as well as oxidative damage, was recorded in gills and hepatopancreas. No neurotoxic effects were observed in crabs. At the physiological level, exposure to MIX increased the respiration rate of crabs. As for bioaccumulation, only bisphenol AF was detected in crabs. Overall, the present study demonstrated that BPA analogues can affect some important cellular parameters, induce oxidative stress and alter physiological responses in crabs.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| | - Davide Asnicar
- Aquatic Bioscience, Huntsman Marine Science Centre, St. Andrews, NB, Canada
| | - Jacopo Giorgi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
10
|
Battistoni M, Metruccio F, Di Renzo F, Moretto A, Bacchetta R, Menegola E. Effects of combined exposure to two bisphenol plasticizers (BPA and BPB) on Xenopus laevis development. Reprod Toxicol 2024; 128:108614. [PMID: 38866257 DOI: 10.1016/j.reprotox.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Due to its endocrine disruptive activity, the plastic additive Bisphenol A (BPA) is classified as substance of very high concern (EU ECHA 2017). A correlation between environmental exposure to BPA and congenital defects has been described in humans and in experimental species including the amphibian Xenopus laevis, where severe branchial defects were associated to lethality. The exposure of X. laevis embryos to the BPA analogue bisphenol B (BPB) was recently linked to similar teratogenic effects, with BPB having relative potency about 3 times higher than BPA. The combined BPA-BPB exposure is realistic as both BPA and BPB are detected in human samples and environment. Limited experimental data are available on the combined developmental toxicity of BPA and BPB. The aim of the present work is to evaluate the effects of BPA and BPB mixture in the X. laevis development model, using R-FETAX procedure. The exposure was limited to the first day of development (corresponding to the phylotypic developmental period, common to all vertebrates). Samples were monitored for lethal effects during the full six-day test period and the external morphology was evaluated at the end of the test. Mixture effects were described by modelling, using the PROAST software package. Overall data modelling showed that dose-addiction could not be rejected, suggesting a health concern for co-exposure.
Collapse
Affiliation(s)
- M Battistoni
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| | - F Metruccio
- ICPS, ASST Fatebenefratelli Sacco, via GB Grassi, Milan 74-20159, Italy
| | - F Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy.
| | - A Moretto
- Università degli Studi di Padova, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, via Giustiniani, Padua 2-35128, Italy
| | - R Bacchetta
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| | - E Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| |
Collapse
|
11
|
Zhang S, Hou R, Sun C, Huang Q, Lin L, Li H, Liu S, Cheng Y, Xu X. Metabolic activity of gut microbial enrichment cultures from different marine species and their transformation abilities to plastic additives. ENVIRONMENT INTERNATIONAL 2024; 190:108882. [PMID: 38996798 DOI: 10.1016/j.envint.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The role of the gut microbiota in host physiology has been previously elucidated for some marine organisms, but little information is available on their metabolic activity involved in transformation of environmental pollutants. This study assessed the metabolic profiles of the gut microbial cultures from grouper (Epinephelus coioides), green mussel (Perna viridis) and giant tiger prawn (Penaeus monodon) and investigated their transformation mechanisms to typical plastic additives. Community-level physiological profiling analysis confirmed the utilization profiles of the microbial cultures including carbon sources of carbohydrates, amines, carboxylic acids, phenolic compounds, polymers and amino acids, and the plastic additives of organophosphate flame retardants, tetrabromobisphenol A derivates and bisphenols. Using in vitro incubation, triphenyl phosphate (TPHP) was found to be rapidly metabolized into diphenyl phosphate by the gut microbiota as a representative ester-containing plastic additive, whereas the transformation of BPA (a representative phenol) was relatively slower. Interestingly, all three kinds of microbial cultures efficiently transformed the hepatic metabolite of BPA (BPA-G) back to BPA, thereby increasing its bioavailability in the body. The specific enzyme analysis confirmed the ability of the gut microbiota to perform the metabolic reactions. The results of 16S rRNA sequencing and network analysis revealed that the genera Escherichia-Shigella, Citrobacter, and Anaerospora were functional microbes, and their collaboration with fermentative microbes played pivotal roles in the transformation of the plastic additives. The structure-specific transformations by the gut microbiota and their distinct bioavailability deserve more attention in the future.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Chuansheng Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuanyue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Hajji AL, Lucas KN. Anthropogenic stressors and the marine environment: From sources and impacts to solutions and mitigation. MARINE POLLUTION BULLETIN 2024; 205:116557. [PMID: 38875966 DOI: 10.1016/j.marpolbul.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Human-released contaminants are often poorly understood wholistically in marine ecosystems. This review examines the sources, pathways, impacts on marine animals, and mitigation strategies of five pollutants (plastics, per- and polyfluoroalkyl substances, bisphenol compounds, ethynylestradiol, and petroleum hydrocarbons). Both abiotic and biotic mechanisms contribute to all five contaminants' movement. These pollutants cause short- and long-term effects on many biological processes genetically, molecularly, neurologically, physiologically, reproductively, and developmentally. We explore the extension of adverse outcome pathways to ecosystem effects by considering known inter-generational and trophic relations resulting in large-scale direct and indirect impacts. In doing so, we develop an understanding of their roles as environmental stressors in marine environments for targeted mitigation and future work. Ecosystems are interconnected and so international collaboration, standards, measures preceding mass production, and citizen involvement are required to protect and conserve marine life.
Collapse
Affiliation(s)
- Angelina L Hajji
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Kelsey N Lucas
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Liao M, Gan Z, Sun W, Su S, Li Z, Zhang Y. Spatial distribution, source identification, and potential risks of 14 bisphenol analogues in soil under different land uses in the megacity of Chengdu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124064. [PMID: 38701965 DOI: 10.1016/j.envpol.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17β-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.
Collapse
Affiliation(s)
- Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yunqian Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, Beijing, China
| |
Collapse
|
14
|
Fabrello J, Guidorizzi S, Ciscato M, Battistuzzi M, Moschin E, Dalla Vecchia F, Moro I, Roverso M, Bogialli S, Matozzo V. Ultrastructural changes, pigment responses and bioaccumulation in the microalga Phaeodactylum tricornutum Bohlin exposed to BPA analogues. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106970. [PMID: 38838503 DOI: 10.1016/j.aquatox.2024.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
As well-known, microalgae have a pivotal role in aquatic environments, being the primary producer. In this study, we investigated the effects of Bisphenol A (BPA) analogues on cell ultrastructure, reactive oxygen species (ROS) production and photosynthetic pigment responses in the diatom Phaeodactylum tricornutum. Microalgae were exposed during both exponential and stationary growth phases to an environmental relevant concentration (300 ng/L) of three differing BPA analogues (BPAF, BPF, and BPS) and their mixture (100 ng/L of each compound). Bioaccumulation of such compounds in microalgae was also analysed. During the stationary growth phase, a significant increase in the percentage of cells with hydrogen peroxide production was recorded after exposure to both BPS and MIX. Conversely, no significant effects on total chlorophylls and carotenoids were observed. During exponential growth phase we observed that control cultures had chloroplasts with well-organized thylakoid membranes and a central pyrenoid. On the contrary, the culture cells treated with BPA analogues and MIX showed chloroplasts characterized by evident dilation of thylakoid membranes. The presence of degeneration areas in the cytoplasm was also recorded. During the stationary growth phase, control and culture cells were characterized by chloroplasts with a regular thylakoid system, whereas BPA analogues-exposed cells were characterized by a deep degradation of the cytoplasm but showed chloroplasts without evident alterations of the thylakoid system. Lipid bodies were visible in treated microalgae. Lastly, microalgae bioaccumulated mainly BPS and BPF, alone or in the MIX. Overall, results obtained revealed that BPA analogues can affect some important biochemical and ultrastructure features of microalgae, promoting ROS production. Lastly, the capability of microalgae to bioaccumulate bisphenols suggest a potential ecotoxicological risk for filter-feeders organisms.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy.
| | - Sofia Guidorizzi
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy
| | - Emanuela Moschin
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy
| | | | - Isabella Moro
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131 Padova, Italy
| |
Collapse
|
15
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
16
|
Fu Z, Jin H, Mao W, Hu Z. Conjugated bisphenol S metabolites in human serum and whole blood. CHEMOSPHERE 2024; 357:142082. [PMID: 38642776 DOI: 10.1016/j.chemosphere.2024.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Studies have shown that bisphenol S (BPS) is mainly present as its conjugated metabolites in human blood. However, the distribution of conjugated BPS metabolites in different human blood matrices has not been characterized. In this study, paired human serum and whole blood samples (n = 79) were collected from Chinese participants, and were measured for the occurrence of BPS and 4 BPS metabolites. BPS was detectable in 49% of human serum (
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
17
|
Yue J, Hu X, Xie H, Hu Z, Wu H, Zhang J, Sun B, Wang L. Investigation on the role of ·OH for BPA removal in coastal sediments: The important mediation of low reactivity Fe(II). CHEMOSPHERE 2024; 353:141575. [PMID: 38430934 DOI: 10.1016/j.chemosphere.2024.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Bisphenol A (BPA) in seawater tends to be deposited in coastal sediments. However, its degradation under tidal oscillations has not been explored comprehensively. Hydroxyl radicals (·OH) can be generated through Fe cycling under redox oscillations, which have a strong oxidizing capacity. This study focused on the contribution of Fe-mediated production of ·OH in BPA degradation under darkness. The removal of BPA was investigated by reoxygenating six natural coastal sediments, and three redox cycles were applied to prove the sustainability of the process. The importance of low reactivity Fe(II) in the production of ·OH was investigated, specifically, Fe(II) with carbonate and Fe(II) within goethite, hematite and magnetite. The degradation efficiency of BPA during reoxygenation of sediments was 76.78-94.82%, and the contribution of ·OH ranged from 36.74% to 74.51%. The path coefficient of ·OH on BPA degradation reached 0.6985 and the indirect effect of low reactivity Fe(II) on BPA degradation by mediating ·OH production reached 0.5240 obtained via partial least squares path modeling (PLS-PM). This study emphasizes the importance of low reactivity Fe(II) in ·OH production and provides a new perspective for the role of tidal-induced ·OH on the fate of refractory organic pollutants under darkness.
Collapse
Affiliation(s)
- Jingyuan Yue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaojin Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bo Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
18
|
Chen Y, Chen X, Lin W, Chen J, Zhu Y, Guo Z. Bisphenols in Aquatic Products from South China: Implications for Human Exposure. TOXICS 2024; 12:154. [PMID: 38393249 PMCID: PMC10891950 DOI: 10.3390/toxics12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
In this study, 245 representative samples of aquatic products were selected from local markets in Shenzhen by stochastic sampling. The samples comprised eight species and fell into three aquatic product categories: fish, crustaceans, and bivalves. A total of eight BPs were determined by liquid chromatography coupled with mass spectrometry, namely, bisphenol A (BPA), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol S (BPS), bisphenol P (BPP), bisphenol Z (BPZ), and bisphenol F (BPF). All BPs were detected in aquatic products, except for BPAF, indicating pervasive contamination by BPs in aquatic products. BPS demonstrated the highest detection rate both before and after enzymatic hydrolysis, whereas BPAP exhibited the lowest detection rate before enzymatic hydrolysis and BPB displayed the lowest detection rate after enzymatic hydrolysis. The concentration difference before and after enzymatic hydrolysis proved to be statistically significant. Moreover, 49-96% of BPs in aquatic products were found in the combined state, underscoring the essentiality of conducting detections on aquatic product samples following enzymatic hydrolysis. While the health risks associated with ingesting BPs residues through aquatic product consumption were found to be minimal for residents at risk of exposure, the results suggest the necessity for more stringent regulations governing the consumption of aquatic products.
Collapse
Affiliation(s)
- Yinhai Chen
- Center for Disease Control and Prevention of Shantou, Shantou 515041, China; (X.C.); (Z.G.)
| | | | | | | | | | | |
Collapse
|
19
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Rytel L. Exposure assessment to bisphenol A (BPA) and its analogues bisphenol S (BPS) and bisphenol F (BPF) in wild boars by hair analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167076. [PMID: 37714361 DOI: 10.1016/j.scitotenv.2023.167076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Bisphenols are widely used in various branches of industry for the production of plastics. They penetrate to the natural environment and thus living organisms. As endocrine disruptors, bisphenols have adverse effects on various internal organs and systems. Contrary to humans, the knowledge of the exposure of wild terrestrial mammals to bisphenols is extremely limited. Therefore, this study for the first time assessed the exposure level of wild boars to three bisphenols commonly used in industry (i.e. bisphenol A - BPA, bisphenol S - BPS and bisphenol F - BPF) using hair sample analysis in liquid chromatography-mass spectrometry (LC-MS). The presence of BPA and/or BPS has been noted in the samples collected from >80 % of animals included in the study (n = 54), while the presence of BPF was not found in any sample. At least one of the bisphenols was present in every sample tested. Mean concentrations of BPA and BPS in the hair of wild boars were 151.40 ± 135.10 pg/mg dry weight (dw.) and 29.40 ± 36.97 pg./mg dw, respectively. Concentrations of BPA and BPS in females were statistically higher than in males (p < 0.05). Moreover, statistically significantly higher concentration levels of BPA (and not BPS) in the areas with higher degree of industrialization and higher human population density were also found. This is the first study concerning the use of hair samples to assess the exposure of wild terrestrial mammals to bisphenols. The obtained results show that an analysis of the hair may be a useful tool of biomonitoring bisphenols in wild animals. The presence of BPA and BPS in wild boar hair in relatively high concentration also suggests that these substances may have an influence on the health status not only in humans and aquatic animals, but also in wild terrestrial mammals. However, many aspects connected with this issue are not clear and require further study.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
20
|
Nguyen HT, Yoshinouchi Y, Hirano M, Nomiyama K, Nakata H, Kim EY, Iwata H. In silico simulations and molecular descriptors to predict in vitro transactivation potencies of Baikal seal estrogen receptors by environmental contaminants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115495. [PMID: 37748367 DOI: 10.1016/j.ecoenv.2023.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
Baikal seals (Pusa sibirica) are vulnerable to high levels of organic pollutants. Here, we evaluated the transactivation potencies of bisphenols (BPs) and hydroxylated polychlorinated biphenyls (OH-PCBs) via the Baikal seal estrogen receptor α and β (bsERα and bsERβ) using in vitro and in silico approaches. In vitro reporter gene assays showed that most BPs and OH-PCBs exhibited estrogenic activity with bsER sub-type-specific potency. Among the BPs tested, bisphenol AF showed the lowest EC50 for both bsERs. 4'-OH-CB50 and 4'-OH-CB30 showed the lowest EC50 among OH-PCBs tested for bsERα and bsERβ, respectively. 4-((4-Isopropoxyphenyl)-sulfonyl)phenol, 4'-OH-CB72, and 4'-OH-CB121 showed weak bsERα-specific transactivation. Only 4-OH-CB107 did not affect both bsERs. In silico docking simulations revealed the binding affinities of these chemicals to bsERs and partially explained the in vitro results. Using the in silico simulations and molecular descriptors as explanatory variables and the in vitro results as objective variables, the quantitative structure-activity relationship (QSAR) models constructed for classification and regression accurately separated bsER-active compounds from non-active compounds and predicted the in vitro bsERα- and bsERβ-transactivation potencies, respectively. The QSAR models also suggested that chemical polarity, van der Waals surface area, bridging atom structure, position of the phenolic-OH group, and ligand interactions with key residues of the ligand binding pocket are critical variables to account for the bsER transactivation potency of the test compounds. We also succeeded in constructing computational models for predicting in vitro transactivation potencies of mouse ERs in the same manner, demonstrating the applicability of our approach independent of species-specific responses.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Yuka Yoshinouchi
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Masashi Hirano
- Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto 8612055, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 8608555, Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul 130701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan.
| |
Collapse
|
21
|
Wu S, Liu S, Wang Z, Chen Y, Zhao G. Comprehensive analysis of bisphenol analogues in complex water using a group-targeting aptamer engineered by base mutation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132427. [PMID: 37672991 DOI: 10.1016/j.jhazmat.2023.132427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Bisphenol analogues (BPs) are typical environmental hormones with endocrine-disrupting effects and reproductive toxicity requiring analysis and monitoring in complex aquatic environments. However, the presence of various co-existing contaminants makes the accurate determination of total BPs difficult. To address this challenge, there is a strong need to obtain a group-targeting binder to specifically detect a class of BPs. In this work, for the first time we have identified the group-targeting BPs-aptamer with similar affinities for multiple structurally and qualitatively similar BPs. Base mutations were introduced into an aptamer specific to bisphenol A (BPA) and utilized molecular docking calculations to identify a group-targeting aptamer capable of binding BPs, including BPA, bisphenol B (BPB), bisphenol E (BPE) and bisphenol F (BPF) with binding constants in the range of 2.0 × 106 ∼ 2.7 × 106 / M. In addition, an electrochemical aptamer-based sensor (aptasensor) was constructed for highly sensitive and comprehensive analysis of a class of BPs. This aptasensor demonstrated remarkable anti-interference performance against co-existing contaminants at concentrations up to 100-fold and achieved an impressive detection limit of 6.7 pM. This innovative approach of engineering a group-targeting BPs-aptamer is important for the comprehensive analysis of BPs, providing insights into identification and monitoring a class of pollutants.
Collapse
Affiliation(s)
- Siqi Wu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Siyao Liu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
22
|
Peng X, Zhou J, Chen G, Tan J, Zhu Z. Profile, Tissue Distribution, and Time Trend of Bisphenol Plastic Additives in Freshwater Wildlife of the Pearl River Ecosystem, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2130-2142. [PMID: 37431940 DOI: 10.1002/etc.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Plastic-related contaminants in the environment have attracted increasing attention, with plastic pollution becoming a serious issue globally. The present study investigated the potential bioaccumulation and biotransfer of bisphenol (BP) compounds that are widely added in various products such as plastics and other products in a freshwater ecosystem, China. Among commonly applied 14 BP analogues, bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were predominant, representing 64%-100% of the total concentrations of BPs (ΣBPs) in freshwater wildlife. Both the concentrations and analogue profiles in the fish showed seasonal differences and species dependence. Higher BP concentrations were observed in fish collected during the dry season than the wet season. Higher percentages of non-BPA analogues (e.g., BPS and BPF) were observed in fish collected during the wet season. Pelagic species accumulated notably higher levels of BPs than midwater and bottom species. The liver generally contained the highest ΣBPs, followed successively by the swim bladder, belly fat, and dorsal muscle. The analogue profile also showed some differences among tissues, varying by species and season. Lower ΣBPs but higher percentages of non-BPA analogues were observed in female than male common carp. Time trends of the BPA concentration in fish varied by species, probably related to habitats and diets of the fish. Habitats, feeding behaviors, and trophic transfer may have significant impacts on exposure of wildlife to BPs in natural ecosystems. The BPs did not demonstrate strong potential for bioaccumulation. More research is warranted about metabolism and transgenerational transfer of BPs in wildlife to fully reveal the bioaccumulation and consequently ecological risks of these chemicals in the environment. Environ Toxicol Chem 2023;42:2130-2142. © 2023 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Wang H, Gao R, Liang W, Wei S, Zhou Y, Wang Z, Lan L, Chen J, Zeng F. Large-scale biomonitoring of bisphenol analogues and their metabolites in human urine from Guangzhou, China: Implications for health risk assessment. CHEMOSPHERE 2023; 338:139601. [PMID: 37480947 DOI: 10.1016/j.chemosphere.2023.139601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous in the environment and have gained significant attention regarding their associated health risks. However, there is a lack of comprehensive biomonitoring data on BPs and their metabolites in human urine. To address this, we conducted a study evaluate the exposure to BPs in the general population of Guangzhou, China. A total of 1440 urine samples were collected from volunteers and analyzed for the presence of BPs and their metabolites after being pooled into 36 groups based on age and gender. The findings revealed the common detection of ten free-form BPs, as well as the urinary metabolites of BPA and BPS, in the pooled urine samples. BPA was the predominant free-form compound, constituting 50% of the total BPs. The primary urinary metabolites of BPA and BPS are BPA-G and BPS-G, respectively, indicating glucuronidation as their primary metabolic pathway. The composition of urinary metabolites of BPA and BPS varied by age and sex, while the concentration of total BPs in urine was not significantly associated with age and sex. Enzymatic hydrolysis yielded a mean amplification of individual BPs concentrations in urine samples ranging from 1.8 times (BPA) to 4.6 times (BPS). Based on the outcomes, it was estimated that conjugated forms accounted for 96.9%, 96.2%, 94.7%, 94.1%, 92.6%, 89.1%, 87.3%, 87.2%, 87.1% and 85.8% of BPP, BPAF, BPZ, BPE, BPAP, BPF, BPA, BPC, BPS and BPF, respectively, in the pooled urine samples. Preliminary risk assessments indicated that the estimated daily intake of BPA was much higher than the latest proposed tolerable daily intake. Due to the unavailability of health-based guideline values for alternative BPs, some of them exhibit daily intakes comparable to BPA, implying that greater attention should be paid to health risks associated with exposure to BPs.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
24
|
Sendra M, Moreno-Garrido I, Blasco J. Single and multispecies microalgae toxicological tests assessing the impact of several BPA analogues used by industry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122073. [PMID: 37331580 DOI: 10.1016/j.envpol.2023.122073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
BPA is a hazard for human and environmental health and recently BPA was added to the Candidate List of substances of very high concern by European Chemical Agency (ECHA). In accordance with this proposal, the authorities have encouraged the replacement of BPA by BPA analogues; however, little is known about the impact of these compounds on the environment. Due to this situation five BPA analogues (BPS, BPAP, BPAF, BPFL and BPC) were chosen in order to study their effects on marine primary producers. Three marine microalgae species (Phaeodactylum tricornutum, Tetraselmis suecica and Nannochloropsis gaditana) were selected for single and multispecies tests concerning the ecotoxicological effects of these BPA analogues. Microalgae were exposed to BPs over 72 h at different dosages (5, 20, 40, 80, 150 and 300 μM). Responses such as: growth, ROS production, cell complexity, cell size, autofluorescence of chlorophyll a, effective quantum yield of PSII and pigment concentrations were assessed at 24, 48 and 72 h. The results revealed that BPS and BPA showed lower toxicity to microalgae in comparison with BPFL > BPAF > BPAP and >BPC for the endpoints studied. N. gaditana was the least sensitive microalgae in comparison to P. tricornutum and T. suecica. However, a different trend was found in the multispecies tests where T. suecica dominated the microalgae community in relation to N. gaditana and P. tricornutum. The results of this work revealed for first time that present day BPA analogues are a threat and not a safe substitute for BPA in terms of the marine phytoplanktonic community. Therefore, the results of their impact on aquatic organisms should be shared.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain; International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), R&D Center, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
25
|
Arrokhman S, Luo YH, Lin P. Additive cardiotoxicity of a bisphenol mixture in zebrafish embryos: The involvement of calcium channel and pump. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115225. [PMID: 37418940 DOI: 10.1016/j.ecoenv.2023.115225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Bisphenol A (BPA) and its analogs, such as bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol B (BPB), are often simultaneously detected in environmental and human specimens. Thus, assessing the toxicity of bisphenol (BP) mixtures is more relevant than assessing that of each BP type. Here, we found that BPs, individually or in a mixture, concentration-dependently and additively increased the mortality of zebrafish embryos (ZFEs) at 96 h post fertilization (hpf) and induced bradycardia (i.e., reduced heart rate) at 48 hpf, indicating their cardiotoxic potency. BPAF was the most potent, followed by BPB, BPA, and BPF. We then explored the mechanism underlying BP-induced bradycardia in ZFEs. Although BPs increased the mRNA expression of the estrogen-responsive gene, treatment with the estrogen receptor inhibitor ICI 182780 did not prevent BP-induced bradycardia. Because they did not change cardiomyocyte counts or heart development-related gene expression, BPs might not affect cardiomyocyte development. By contrast, BPs might impair calcium homeostasis during cardiac contraction and relaxation through the downregulation of the expression of the mRNAs for the pore-forming subunit of L-type Ca2+ channel (LTCC; cacna1c) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA; atp2a2a). BPs reduced SERCA activity significantly. BPs also potentiated the cardiotoxicity induced by the LTCC blocker nisoldipine, conceivably by inhibiting SERCA activity. In conclusion, BPs additively induced bradycardia in ZFEs, possibly by impeding calcium homeostasis during cardiac contraction and relaxation. BPs also potentiated the cardiotoxicity of calcium channel blockers.
Collapse
Affiliation(s)
- Salim Arrokhman
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
26
|
Mahmad A, Ubaidah Noh T, Izzah Khalid N. Eco-friendly water treatment: The role of MIL metal–organic frameworks for the bisphenols adsorption from water. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
27
|
Huang Z, Gao J, Chen Y, Huan Z, Liu Y, Zhou T, Dong Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2023; 38:1445-1454. [PMID: 36929865 DOI: 10.1002/tox.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Bisphenol AF (BPAF), an emerging environmental endocrine disruptor, has been detected in surface waters worldwide and has adverse effects on aquatic organisms. The accumulation of BPAF in oceans and its potential toxic effect on marine organisms are important concerns. In this study, the effects of BPAF (10, 100, 1, and 5 mg/L) on marine medaka (Oryzias melastigma) were evaluated, including effects on the survival rate, heart rate, hatchability, morphology, and gene expression in embryos. The survival rate of marine medaka embryos was significantly lower after treatment with 5 mg/L BPAF than in the solvent control group. Exposure to 1 mg/L and 5 mg/L BPAF significantly reduced hatchability. Low-dose BPAF (10 μg/L) significantly accelerated the heart rate of embryos, while high-dose BPAF (5 mg/L) significantly decreased the heart rate. BPAF exposure also resulted in notochord curvature, pericardial edema, yolk sac cysts, cardiovascular bleeding, and caudal curvature in marine medaka. At the molecular level, BPAF exposure affected the transcript levels of genes involved in the thyroid system (dio1, dio3a, trhr2, tg, and thra), cardiovascular system (gata4, atp2a1, and cacna1da), nervous system (elavl3 and gap43), and antioxidant and inflammatory systems (sod, pparβ, and il-8) in embryos. These results indicate that BPAF exposure can alter the expression of functional genes, induce abnormal development, and reduce the hatching and survival rates in marine medaka embryos. Overall, BPAF can adversely affect the survival and development of marine medaka embryos, and BPAF may not be an ideal substitute for BPA.
Collapse
Affiliation(s)
- Zeyin Huang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
28
|
Mao W, Mao L, Zhou F, Shen J, Zhao N, Jin H, Hu J, Hu Z. Influence of Gut Microbiota on Metabolism of Bisphenol A, a Major Component of Polycarbonate Plastics. TOXICS 2023; 11:340. [PMID: 37112567 PMCID: PMC10144690 DOI: 10.3390/toxics11040340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) is a major component of polycarbonate plastics and epoxy resins. While many studies have investigated the effect BPA exposure has upon changes in gut microbial communities, the influence of gut microbiota on an organism's ability to metabolize BPA remains comparatively unexplored. To remedy this, in this study, Sprague Dawley rats were intermittently (i.e., at a 7-day interval) or continuously dosed with 500 μg BPA/kg bw/day for 28 days, via oral gavage. In the rats which underwent the 7-day interval BPA exposure, neither their metabolism of BPA nor their gut microbiota structure changed greatly with dosing time. In contrast, following continuous BPA exposure, the relative level of Firmicutes and Proteobacteria in the rats' guts significantly increased, and the alpha diversity of the rats' gut bacteria was greatly reduced. Meanwhile, the mean proportion of BPA sulfate to total BPA in rat blood was gradually decreased from 30 (on day 1) to 7.4% (by day 28). After 28 days of continuous exposure, the mean proportion of BPA glucuronide to total BPA in the rats' urine elevated from 70 to 81%, and in the rats' feces the mean proportion of BPA gradually decreased from 83 to 65%. Under continuous BPA exposure, the abundances of 27, 25, and 24 gut microbial genera were significantly correlated with the proportion of BPA or its metabolites in the rats' blood, urine, and feces, respectively. Overall, this study principally aimed to demonstrate that continuous BPA exposure disrupted the rats' gut microbiota communities, which in turn altered the rats' metabolism of BPA. These findings contribute to the better understanding of the metabolism of BPA in humans.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 310032, China
| | - Lingling Mao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Feifei Zhou
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, China
| | - Jiafeng Shen
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Jun Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Zefu Hu
- Department of Pharmacy, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 310032, China
| |
Collapse
|
29
|
Dual S-scheme graphitic carbon-doped α-Bi2O3/β-Bi2O3/Bi5O7I ternary heterojunction photocatalyst for the degradation of Bisphenol A. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
30
|
Qu J, Mao W, Liao K, Zhang Y, Jin H. Association between urinary bisphenol analogue concentrations and lung cancer in adults: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120323. [PMID: 36191799 DOI: 10.1016/j.envpol.2022.120323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Elevated urinary bisphenol A (BPA) concentrations have been associated with lung cancer in humans. However, toxicological studies demonstrated that the proliferation of lung cancer cells was inhibited by BPA exposure. Therefore, it is still necessary to determine whether exposure to BPA and other bisphenol analogues (BPs) is associated with lung cancer in humans. In this study, 226 lung cancer patients and 243 controls were randomly recruited. Concentrations of three BPs in human urine were quantified and their relationships with the risk of human lung cancer were evaluated. BPA (mean 1.03 ng/mL, 0.87 μg/g Cre) was the predominant BP in human urine, followed by bisphenol S (BPS) (0.72 ng/mL, 0.53 μg/g Cre) and bisphenol F (0.32 ng/mL, 0.37 μg/g Cre). Significant correlations between creatinine-corrected urinary BPA concentrations and the lung cancer risk (odds ratio (OR) adjusted = 1.28, 95% confidence interval (CI): 1.17, 1.40; Ptrend = 0.04) were found using logistical regression analysis. Creatinine-corrected urinary concentrations of BPS in participants showed significant correlations with lung cancer (ORadjusted = 1.23, 95% CI: 1.04, 1.59; Ptrend = 0.01) in the adjusted model. In the stratification analysis, the significant correlation between urinary creatinine-corrected concentrations of BPA and the risk of lung cancer still observed in male participants (OR = 1.36, 95% CI: 1.09, 1.62, p = 0.040). This study demonstrates that elevated human exposure to BPA and BPS may be associated with the increased lung cancer risk.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
31
|
Vered G, Shenkar N. Limited effects of environmentally-relevant concentrations in seawater of dibutyl phthalate, dimethyl phthalate, bisphenol A, and 4-nonylphenol on the reproductive products of coral-reef organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120285. [PMID: 36179999 DOI: 10.1016/j.envpol.2022.120285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Plastic additives (PAs) are chemical compounds incorporated into the plastic during the manufacturing process. Phthalate acid esters, bisphenols, and nonylphenols are all PAs found in marine environments and associated with endocrine-disrupting processes. However, our knowledge regarding the impact of endocrine-disrupting PAs on coral-reef organisms is limited. As reef population structure is directly linked to reproduction and larval settlement processes, interference with hormonal systems can impact coral-reef community structure, particularly if the effects of PAs differ among species. In the current study we exposed the reproductive products of four tropical coral-reef invertebrates to environmentally-relevant concentrations of four prevalent PAs in seawater: dibutyl phthalate (DBP), dimethyl phthalate, (DMP), 4-nonylphenol (4-NP), and bisphenol A (BPA), as well as to 103 higher laboratory concentrations of these PAs. Our results revealed that apart from the significant negative effect of the 1 μg/L of 4-NP on the settlement of the soft coral Rhytisma fulvum, none of the other tested materials demonstrated a significant effect on the exposed organisms at environmentally-relevant concentrations in seawater. The 4-NP high laboratory concentration (1000 μg/L), however, had significant negative effects on all the examined species. The high laboratory BPA concentration (1000 μg/L) significantly reduced fertilization success in the solitary ascidian Herdmaniamomus, up to its complete failure to reproduce. Moreover, the high laboratory DMP concentration (100 μg/L) had a significant negative effect on planulae settlement of the stony coral Stylophora pistillata. Our findings demonstrate the negative and selective effects of PAs on the development and reproduction of coral-reef organisms; and, specifically, the significant effect found following exposure to 4-NP. Consequently, if we aim to fully understand the impact of these contaminants on this endangered ecosystem, we suggest that the actual concentrations within the living organism tissues should be tested in order to produce relevant risk assessments for brooding-coral species.
Collapse
Affiliation(s)
- Gal Vered
- The School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel
| | - Noa Shenkar
- The School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
32
|
Multi-residue determination of bisphenol analogues in organism tissues by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1682:463489. [PMID: 36130425 DOI: 10.1016/j.chroma.2022.463489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
A reliable and sensitive analyzing method was developed and validated for determination of 13 novel bisphenol analogues (BPs) along with bisphenol A (BPA) in organism tissues. The complex organism tissues were treated by ultrasonic-assisted extraction using acetonitrile/formic acid (99:1, v/v), followed by successive purification using enhanced matrix removal-lipid sorbents and primary secondary amine sorbents. The BPs were finally determined by ultra-high performance liquid chromatography-tandem mass spectrometry after derivatization using pyridine-3-sulfonyl chloride. Satisfactory recoveries of 75 - 118% were obtained for the BPs, with good repeatability (RSD < 20%). Matrix interferences were efficiently diminished. The method quantification limits (MQLs) reached 0.003 - 0.1 ng g-1 dry weight (dw). The validated method was successfully applied to a preliminary investigation of the BPs in wild marine organisms collected from the nearshore waters along the coast of Guangdong, China. Besides BPA, novel BPs such as bisphenol F, bisphenol AF, and tetrabromobisphenol A were also detected at < MDL - 15.5 ng g-1 dw. This work laid a strong basis for further in-depth research on bioaccumulation of the novel BPs in the environment.
Collapse
|
33
|
Guo Y, Yu RQ, Zhang L, Liang Y, Liu Z, Sun X, Wu Y. Cross-Generational Impacts of Diet Shift on Bisphenol Analogue Loads in Indo-Pacific Humpback Dolphins ( Sousa chinensis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10764-10774. [PMID: 35861411 DOI: 10.1021/acs.est.2c02222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous pollutants to marine organisms as endocrine disruptive chemicals. However, the residue contamination and the trophic transfer of BPs in the apex predator nearshore dolphins are poorly studied. Here, we measured the concentrations of six BPs, including bisphenol A (BPA), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF), bisphenol P (BPP), and bisphenol S (BPS) in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) (n = 75) collected from the Pearl River Estuary during a period with significant dietary changes (2004-2020). BPA and BPAF were the dominant components of the residue ∑BPs in the liver, with a proportion of 80%. Sex, maturity, and stranding location had no significant effects on BP levels. The generalized additive models indicated that BPA levels in juveniles and adults decreased from 2004 to 2013 while increasing from 2013 to 2020. The temporal trend of BPA levels was likely driven by the shift of the dominant diet from Harpadon nehereus to Thryssa spp. The concurrent increase of BPA loads in calves and juveniles and adults over the recent decades suggested that the diet-mediated variations of maternal BPA levels could be redistributed to their offspring.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
34
|
Chelcea I, Örn S, Hamers T, Koekkoek J, Legradi J, Vogs C, Andersson PL. Physiologically Based Toxicokinetic Modeling of Bisphenols in Zebrafish ( Danio rerio) Accounting for Variations in Metabolic Rates, Brain Distribution, and Liver Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10216-10228. [PMID: 35797464 PMCID: PMC9301920 DOI: 10.1021/acs.est.2c01292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is an industrial chemical, which has raised human health and environmental concerns due to its endocrine-disrupting properties. BPA analogues are less well-studied despite their wide use in consumer products. These analogues have been detected in water and aquatic organisms around the world, with some analogues showing toxic effects in various species including fish. Here, we present novel organ-specific time-course distribution data of bisphenol Z (BPZ) in female zebrafish (Danio rerio), including concentrations in the ovaries, liver, and brain, a rarely sampled organ with high toxicological relevance. Furthermore, fish-specific in vitro biotransformation rates were determined for 11 selected bisphenols. A physiologically based toxicokinetic (PBTK) model was adapted for four of these bisphenols, which was able to predict levels in the gonads, liver, and brain as well as the whole body within a 2-5-fold error with respect to experimental data, covering several important target organs of toxicity. In particular, predicted liver concentrations improved compared to currently available PBTK models. Predicted data indicate that studied bisphenols mainly distribute to the carcass and gonads and less to the brain. Our model provides a tool to increase our understanding on the distribution and kinetics of a group of emerging pollutants.
Collapse
Affiliation(s)
- Ioana Chelcea
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Örn
- Department
of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-75007 Uppsala, Sweden
| | - Timo Hamers
- Department
of Environment & Health, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacco Koekkoek
- Department
of Environment & Health, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jessica Legradi
- Department
of Environment & Health, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Carolina Vogs
- Department
of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-75007 Uppsala, Sweden
- Institute
of Environmental Medicine, Karolinska Institutet, SE-171 65 Solna, Sweden
| | | |
Collapse
|
35
|
Rubin AM, Seebacher F. Bisphenols impact hormone levels in animals: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154533. [PMID: 35288143 DOI: 10.1016/j.scitotenv.2022.154533] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Bisphenols are used in the manufacture of plastics and are endocrine disrupting compounds detectable in free living organisms and environments globally. The original bisphenol, bisphenol A (BPA), is best known as a xenoestrogen, but it also disrupts other steroid hormones and other classes of hormones including thyroid and pituitary hormones. When its toxicity became better known, BPA was replaced by presumably less toxic alternatives, including bisphenols S, F, and AF. However, recent data suggest that all bisphenols can have endocrine disrupting effects, although their impacts remain unresolved particularly in non-human animals. Our aim was to establish the current state-of-knowledge of the effects of different bisphenols on circulating hormone levels in non-human animals. Our meta-analysis showed that a diverse range of hormones (including thyroid hormones, corticosterone, follicle stimulating hormone, luteinizing hormone, and estradiol) are strongly impacted by exposure to any bisphenol type, and that in laboratory rats (Rattus norvegicus) the effect was modified by life-stage. Although there were qualitative differences, BPA alternatives had as great or greater effects on hormone levels as BPA. However, data coverage across hormones was uneven, and most studies measured the effects of BPA on vertebrate reproductive hormones. Similarly, taxonomic coverage was poor. Over 80% of data originated from laboratory rats and zebrafish (Danio rerio) and there are no data for whole classes of invertebrates and vertebrates (e.g., amphibians). Our results show that all bisphenols alter circulating levels of a broad range of hormones. However, the current state-of-knowledge is incomplete so that the ecological impacts of bisphenols are difficult to gauge, although based on the available data bisphenols are likely to be detrimental to a broad range of taxa and ecosystems.
Collapse
Affiliation(s)
- Alexander M Rubin
- School Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
Yu G, Huang S, Luo X, Zhao W, Zheng Z. Single and combined toxicity effects of nanoplastics and bisphenol F on submerged the macrophyte Hydrilla verticillata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152564. [PMID: 34952055 DOI: 10.1016/j.scitotenv.2021.152564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Nano- and microplastics pose severe risks to the ecological environment. Nanoplastics (NPs) not only directly affect aquatic organisms, but also adsorb to other pollutants, resulting in compound pollution. Bisphenol F (BPF), an endocrine-disrupting chemical, is increasingly replacing bisphenol A (BPA) and is therefore widely distributed in the environment. In this study, the toxic effects of polystyrene nanoplastics (PS-NPs) and BPF and their combined exposure on the submerged macrophytes Hydrilla verticillata (H. verticillata) and leaf biofilms, were investigated. Results showed that 10 mg/L PS-NPs and combined exposure to 10 mg/L PS-NPs and 10 mg/L BPF significantly decreased the relative growth rate and chlorophyll content of H. verticillata, whereas BPF exposure alone had no impact on the growth and the contents of photosynthetic pigments in H. verticillata. Individual and combined exposure to PS-NPs and BPF can trigger antioxidant responses such as increased activities of superoxide dismutase, peroxidase, and malondialdehyde, as well as higher levels of glutathione S-transferase and glutathione and decreased catalase activity. The results of the scanning electron microscopy (SEM) showed that the nanoplastics particles were adsorbed on the surface of plant leaves, explaining their toxic effects, whereas BPF increases the sorption of PS-NPs on the surface of H. verticillata, potentially leading to PS-NPs enrichment in the food chain. The diversity and richness of the microbial community were altered by exposure to PS-NPs and BPF individually and in combination. The current study is the first to assess the effects of PS-NPs and BPF exposure on the growth, physiological characteristics, and leaf biofilm properties of submerged macrophytes.
Collapse
Affiliation(s)
- Gui Yu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wei Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
37
|
Wei P, Jiang G, Wang H, Ru S, Zhao F. Bisphenol AF exposure causes fasting hyperglycemia in zebrafish (Danio rerio) by interfering with glycometabolic networks. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106000. [PMID: 34715482 DOI: 10.1016/j.aquatox.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol AF (BPAF), one of the main alternatives to bisphenol A, has been frequently detected in various environmental media, including the human body, and is an emerging contaminant. Epidemiological investigations have recently shown the implications of exposure to BPAF in the incidence of diabetes mellitus in humans, indicating that BPAF may be a potential diabetogenic endocrine disruptor. However, the effects of BPAF exposure on glucose homeostasis and their underlying mechanisms in animals remain largely unknown, which may limit our understanding of the health risks of BPAF. To this end, zebrafish (Danio rerio), an emerging and valuable model in studying animal glycometabolism and diabetes, were exposed to environmentally relevant concentrations (5 and 50 μg/L) and 500 μg/L BPAF for 28 d. Several key toxicity endpoints of blood glucose metabolism were detected in our study, and the results showed significantly increased fasting blood glucose levels, hepatic glycogen contents and hepatosomatic indexes and decreased muscular glycogen contents in the BPAF-exposed zebrafish. The results of quantitative real-time PCR showed the abnormal expression of genes involved in glycometabolic networks, which might promote hepatic gluconeogenesis and inhibit glycogenesis and glycolysis in the muscle and/or liver. Furthermore, the failure of insulin regulation, including plasma insulin deficiency and impaired insulin signaling pathways in target tissues, may be a potential mechanism underlying BPAF-induced dysfunctional glycometabolism. In summary, our results provide novel in vivo evidence that BPAF can cause fasting hyperglycemia by interfering with glycometabolic networks, which emphasizes the potential health risks of environmental exposure to BPAF in inducing diabetes mellitus.
Collapse
Affiliation(s)
- Penghao Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China; School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Guobin Jiang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Hongfang Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| | - Fei Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, Shandong Province, China.
| |
Collapse
|