1
|
Kučera I, Sedláček V. Flavin-dependent enzymatic and photochemical interconversions between phenylarsonic and phenylarsonous acids. Biometals 2025:10.1007/s10534-025-00685-7. [PMID: 40240666 DOI: 10.1007/s10534-025-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Phenylarsonic acid is the parent compound of a group of derivatives that occur as anthropogenic environmental contaminants in both less toxic As(V) and much more toxic As(III) redox states. To elucidate the mechanisms underlying their enzymatic redox conversions, the activities of two flavin reductases, ArsH and FerA, from the soil bacterium Paracoccus denitrificans were compared. The stopped-flow data demonstrated that PhAs(V) oxidized dihydroflavin mononucleotide bound to ArsH, but not to FerA. This result proves that ArsH has some substrate specificity for organoarsenic compounds. Under aerobic conditions, both enzymes accelerated the oxidation of PhAs(III) in a catalase-sensitive manner, indicating that hydrogen peroxide acts as an intermediate. H2O2 was shown to react with PhAs(III) in a bimolecular (1:1) irreversible reaction. When exposed to blue light, flavin alone mediated rapid oxidation of PhAs(III) by O2. Photooxidation by flavin acted in concert with chemical oxidation by transiently accumulating H2O2. The described processes may be relevant in the context of arsenic ecotoxicology and remediation.
Collapse
Affiliation(s)
- Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic.
| | - Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic
| |
Collapse
|
2
|
Zhou Z, Yu H, Liu J, Zhu L, Wang G, Shi K. Ferruginous hemeprotein HhuH facilitates the cadmium adsorption and chromium reduction in Stenotrophomonas sp. SY1. Appl Environ Microbiol 2025; 91:e0209724. [PMID: 39629984 PMCID: PMC11784086 DOI: 10.1128/aem.02097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 02/01/2025] Open
Abstract
Cadmium (Cd) and chromium (Cr) are frequently encountered toxicants, while iron (Fe) plays a crucial role in bacterial survival under conditions of heavy metal stress. However, intracellular Fe ion depletion by heavy metals leads to a state of Fe starvation. Therefore, it is imperative to investigate the mechanism through which bacteria maintain a balance between heavy metal detoxification and Fe homeostasis. This study demonstrates Cd(II) immobilization and Cr(VI) reduction abilities of Stenotrophomonas sp. SY1, while proteomics reveals the upregulation of heme metabolism in response to Cd(II) and Cr(VI) exposure. The expression of the heme-uptake system in Escherichia coli can enhance Cd(II) immobilization and facilitate Cr(VI) reduction. The ferruginous hemeprotein HhuH exhibits the ability to chelate Cd(II) and reduce Cr(VI). The presence of Cd(II) and Cr(VI) in strain SY1 initially led to Fe starvation. Subsequently, the hemeprotein HhuH facilitated Cd(II) adsorption and Cr(VI) reduction, thereby restoring normal cellular Fe homeostasis. Our findings explain the hemeprotein-mediated mechanism for Cd(II) adsorption and Cr(VI) reduction, providing further insights into the correlation between heavy metal and Fe metabolism.IMPORTANCEIron (Fe) is an indispensable trace element for many organisms, and virtually, all bacteria require Fe as a cofactor in enzymes to facilitate redox reactions involved in fundamental cellular processes during periods of heavy metal stress. Understanding bacterial response to Fe in heavy metal contamination is essential. Therefore, our study elucidates Cd(II) adsorption and Cr(VI) reduction processes mediated by the Fe-bearing hemeprotein HhuH. It is a unique trifunctional protein capable of chelating Cd(II) and reducing Cr(VI), demonstrating significant potential in the environmental remediation of heavy metals.
Collapse
Affiliation(s)
- Zijie Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Wang X, Guo N, Zhang Y, Wang G, Shi K. Cross-protection and cross-feeding between Enterobacter and Comamonas promoting their coexistence and cadmium tolerance in Oryza sativa L. Microbiol Res 2024; 286:127806. [PMID: 38924817 DOI: 10.1016/j.micres.2024.127806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/13/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that Comamonas sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in Enterobacter sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (paaK) and cell attachment and aggregation (csgAD) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H2O2 stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, OsCOPT4 and OsBCP1, by A11 and A23 enhances rice resistance against Cd(II) and H2O2 stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Li Z, Cui E, Gu N, Ma W, Guo Q, Li X, Jin J, Wang Q, Ding C. Unveiling the biointerfaces characteristics and removal pathways of Cr(Ⅵ) in Bacillus cereus FNXJ1-2-3 for the Cr(Ⅵ)-to-Cr(0) conversion. ENVIRONMENTAL RESEARCH 2024; 251:118663. [PMID: 38460667 DOI: 10.1016/j.envres.2024.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Entian Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Naipeng Gu
- UNHO (China) BioPharmaceutical Co., Ltd., Nanjing, Jiangsu, 210046, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Xuan Li
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Jianxiang Jin
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qun Wang
- Jiangsu YIDA Testing Technology Co., Ltd. , Building A-15, Big Data Industrial Park, Chengnan New District, Yancheng, Jiangsu, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
6
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
7
|
Lu H, Xu X, Yang Y, Xiao H, Xia F, Han X, Deng S, Wu S, Wang X, Jiang Y, Yan Q. Natural phosphorus-ferromanganese ore-based composites for the simultaneous remediation of arsenic- and lead-co-contaminated groundwater: synergistic effectiveness, kinetics, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102446-102461. [PMID: 37670088 DOI: 10.1007/s11356-023-29475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
Natural phosphorus-ferromanganese ore (NPO-NFMO) based composites by mechanical ball milling method, applying for the simultaneous remediation of arsenic (As) and lead (Pb) co-contaminated groundwater. Kinetic behavior adopted pseudo-second-order adsorption mechanism attaining equilibrium in 120 min over a wide pH range (2.0-6.0). NPO-NFMO realized higher adsorption capacity for As(III) (6.8 mg g-1) and Pb(II) (26.5 mg g-1) than those of single NPO (1.7 and 7.8 mg g-1) and NFMO (2.9 and 5.1 mg g-1), indicating that synergistic effects of NPO and NFMO considerably enhanced the adsorption capacity in mixed adsorption system. Fresh and used NPO-NFMO were characterized, and indicated that NPO-NFMO formed stable minerals of PbAs2O6 and PbFe2(AsO4)2(OH)2. The underlying adsorption mechanism indicated that As(III) and Pb(II) removal was involved with multiple mechanisms, including electrostatic adsorption, oxidation, complexation, and coprecipitation. The effects of key reaction parameters including mass ratios of NPO and NFMO, initial metal ion concentration, dosage, solution pH, and co-existing anions in groundwater were systematically investigated. The novel designed NPO-NFMO-based composites can be deemed as a promising amendment for simultaneous immobilization of As(III) and Pb(II) in co-contaminated soil and groundwater.
Collapse
Affiliation(s)
- Hongli Lu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Han Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Fu Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xingang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| |
Collapse
|
8
|
Zhuang F, Huang J, Li H, Peng X, Xia L, Zhou L, Zhang T, Liu Z, He Q, Luo F, Yin H, Meng D. Biogeochemical behavior and pollution control of arsenic in mining areas: A review. Front Microbiol 2023; 14:1043024. [PMID: 37032850 PMCID: PMC10080717 DOI: 10.3389/fmicb.2023.1043024] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Arsenic (As) is one of the most toxic metalloids that possess many forms. As is constantly migrating from abandoned mining area to the surrounding environment in both oxidation and reducing conditions, threatening human health and ecological safety. The biogeochemical reaction of As included oxidation, reduction, methylation, and demethylation, which is closely associated with microbial metabolisms. The study of the geochemical behavior of arsenic in mining areas and the microbial remediation of arsenic pollution have great potential and are hot spots for the prevention and remediation of arsenic pollution. In this study, we review the distribution and migration of arsenic in the mining area, focus on the geochemical cycle of arsenic under the action of microorganisms, and summarize the factors influencing the biogeochemical cycle of arsenic, and strategies for arsenic pollution in mining areas are also discussed. Finally, the problems of the risk control strategies and the future development direction are prospected.
Collapse
Affiliation(s)
- Fan Zhuang
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jingyi Huang
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hongguang Li
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Xing Peng
- Hunan Renhe Environment Co., Ltd., Changsha, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, Hubei, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, China
| | - Teng Zhang
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenghua Liu
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Huaqun Yin
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- *Correspondence: Delong Meng
| |
Collapse
|
9
|
Su Y, Sun S, Liu Q, Zhao C, Li L, Chen S, Chen H, Wang Y, Tang F. Characterization of the simultaneous degradation of pyrene and removal of Cr(VI) by a bacteria consortium YH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158388. [PMID: 36049693 DOI: 10.1016/j.scitotenv.2022.158388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms that can simultaneously remediate organic pollutants and heavy metal contamination are great significance in bioremediation. Nevertheless, reports of such microorganisms are still scarce. Here, Pseudomonas sp. YH-1 and Rhodococcus sp. YH-3 were isolated and identified, and they showed greater tolerance to hexavalent (VI) (750 and 800 mg·L-1). The constructed bacteria consortium YH (YH-1:YH-3 = 1:1) could simultaneously degrade 41.69% of pyrene (50 mg·L-1) and remove 76.67% of Cr(VI) (30 mg·L-1) within 5 days. The potential mechanism of Cr(VI) tolerance of YH was further explored by genomic and microscopic analysis. The results showed that YH responded to Cr(VI) stress mainly through efflux of Cr(VI) by chrA and copZ, chromate reduction, DNA-repaired proteases reduces ROS damage, and biosorption by carboxyl, hydroxyl, amino functional groups. Strains YH-1 and YH-3 also contained a variety of genes associated with resistance to other heavy metals, such as cadmium (czcBD), mercury (merAPTR), manganese (mntABC) and copper (copAC, cusABRF and pcoBD). Based on GC-MS and genomic analysis, pyrene was degraded via salicylic acid and phthalic acid pathways. Moreover, a great number of genes related to aromatic hydrocarbon catabolism were identified in the genomes of YH-1 and YH-3. These results confirmed the potential application of the bacteria consortium YH in the bioremediation of water and soil co-contaminated with PAHs-heavy metals.
Collapse
Affiliation(s)
- Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| |
Collapse
|
10
|
Xu ZM, Zhang YX, Wang L, Liu CG, Sun WM, Wang YF, Long SX, He XT, Lin Z, Liang JL, Zhang JX. Rhizobacteria communities reshaped by red mud based passivators is vital for reducing soil Cd accumulation in edible amaranth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154002. [PMID: 35231517 DOI: 10.1016/j.scitotenv.2022.154002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Red mud (RM) was constantly reported to immobilize soil cadmium (Cd) and reduce Cd uptake by crops, but few studies investigated whether and how RM influenced rhizobacteria communities, which was a vital factor determining Cd bioavailability and plant growth. To address this concern, high-throughput sequencing and bioinformatics were used to analyze microbiological mechanisms underlying RM application reducing Cd accumulation in edible amaranth. Based on multiple statistical models (Detrended correspondence analysis, Bray-Curtis, weighted UniFrac, and Phylogenetic tree), this study found that RM reduced Cd content in plants not only through increasing rhizosphere soil pH, but by reshaping rhizobacteria communities. Special taxa (Alphaproteobacteria, Gammaproteobacteria, Actinobacteriota, and Gemmatimonadota) associated with growth promotion, anti-disease ability, and Cd resistance of plants preferentially colonized in the rhizosphere. Moreover, RM distinctly facilitated soil microbes' proliferation and microbial biofilm formation by up-regulating intracellular organic metabolism pathways and down-regulating cell motility metabolic pathways, and these microbial metabolites/microbial biofilm (e.g., organic acid, carbohydrates, proteins, S2-, and PO43-) and microbial cells immobilized rhizosphere soil Cd via the biosorption and chemical chelation. This study revealed an important role of reshaped rhizobacteria communities acting in reducing Cd content in plants after RM application.
Collapse
Affiliation(s)
- Zhi-Min Xu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Yu-Xue Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Chun-Guang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Wei-Min Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yi-Fan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sheng-Xing Long
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiao-Tong He
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jia-Lin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie-Xiang Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Xie X, Li J, Luo L, Liao W, Luo S. Phenylarsonics in concentrated animal feeding operations: Fate, associated risk, and treatment approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128394. [PMID: 35158239 DOI: 10.1016/j.jhazmat.2022.128394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phenylarsonics are present as additives in animal feed in some countries. As only a small fraction of these additives is metabolized in animals, they mostly end up in the environment. A comprehensive investigation of the fate of these additives is crucial for evaluating their risks. This review aims to provide a clear understanding of the transformation mechanism of phenylarsonics in vivo and in vitro and to evaluate their fate and associated risks. Degradation of phenylarsonics releases toxic As species (mainly as inorganic arsenic (iAs)). Trivalent phenylarsonics are the metabolites or biotic degradation intermediates of phenylarsonics. The cleavage of As groups from trivalent phenylarsonics catalyzed by C-As lyase or other unknown pathways generates arsenite (As(III)). As(III) can be further oxidized to arsenate (As(V)) and methylated to methyl-arsenic species. The half-lives associated with abiotic degradation of phenylarsonics ranged from a few minutes to tens of hours, while those associated with biotic degradation ranged from several days to hundreds of days. Abiotic degradation resulted in a higher yield of iAs than biotic degradation. The use of phenylarsonics led to elevated total As and iAs levels in animal products and environmental matrices, resulting in As exposure risk to humans. The oxidation of phenylarsonics to As(V) facilitated the sorptive removal of As, which provides a general approach for treating these compounds. This review provides solid evidence that the use of phenylarsonics has adverse effects on both human health and environmental safety, and therefore, supports their withdrawal from the global market.
Collapse
Affiliation(s)
- Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Ji X, Wan J, Wang X, Peng C, Wang G, Liang W, Zhang W. Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152112. [PMID: 34875321 DOI: 10.1016/j.scitotenv.2021.152112] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The present study explored the immobilization of mixed bacteria-loaded biochar on As, Pb, and Cd was explored. Physisorption and sodium alginate encapsulation were used to synthesize two kinds of mixed bacteria-loaded biochars, referred to as BCM and BCB. The observations of Scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy distinctly demonstrated the colonization of mixed bacteria on biochar. Besides, the addition of BCM and BCB could increase soil pH with increasing incubation time. The residual fraction of heavy metals and soil dehydrogenase activities were also enhanced after 28 days of incubation. Pb was mainly immobilized by co-precipitation, which meant that Pb could be converted into a consistent crystalline form such as Pb5(PO4)3OH. The X-ray photoelectron spectroscopy and X-ray diffraction analyses of materials identified the formation of Ca2As2O7 and the presence of oxidation from trivalent arsenic to pentavalent arsenic. Cd was adsorbed by forming precipitations (CdCO3) and exchanging ions with the BCM and BCB. Synergistic reactions between anions and cations also contributed to the immobilization of heavy metals, such as the formation of PbAs2O6 and Cd3(AsO4)2. These results confirmed that mixed bacteria-loaded biochar was a feasible technology for the remediation of heavy metals contamination in site soils.
Collapse
Affiliation(s)
- Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Chen J, Zhang J, Wu YF, Zhao FJ, Rosen BP. ArsV and ArsW provide synergistic resistance to the antibiotic methylarsenite. Environ Microbiol 2021; 23:7550-7562. [PMID: 34676971 DOI: 10.1111/1462-2920.15817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Toxic organoarsenicals enter the environment from biogenic and anthropogenic activities such as microbial methylation of inorganic arsenic and pentavalent herbicides such as monosodium methylarsenate (MSMA or MAs(V)). Trivalent MAs(III) is considerably more toxic than arsenite or arsenate. Microbes have evolved mechanisms to detoxify organoarsenicals. We previously identified ArsV, a flavin-linked monooxygenase and demonstrated that it confers resistance to methylarsenite by oxidation to methylarsenate. The arsV gene is usually in an arsenic resistance (ars) operon controlled by an ArsR repressor and adjacent to a methylarsenite efflux gene, either arsK or a gene for a putative transporter. Here we show that Paracoccus sp. SY oxidizes methylarsenite. It has an ars operon with three genes, arsR, arsV and a transport gene termed arsW. Heterologous expression of arsV in Escherichia coli conferred resistance to MAs(III), while arsW did not. Co-expression of arsV and arsW increased resistance compared with either alone. The cells oxidized methylarsenite and accumulated less methylarsenate. Everted membrane vesicles from E. coli cells expressing arsW-accumulated methylarsenate. We propose that ArsV is a monooxygenase that oxidizes methylarsenite to methylarsenate, which is extruded by ArsW, one of only a few known pentavalent organoarsenical efflux permeases, a novel pathway of organoarsenical resistance.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.,Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|