1
|
Szponar N, Vega CM, Gerson J, McLagan DS, Pillaca M, Delgado S, Lee D, Rahman N, Fernandez LE, Bernhardt ES, Kiefer AM, Mitchell CPJ, Wania F, Bergquist BA. Tracing Atmospheric Mercury from Artisanal and Small-Scale Gold Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5021-5033. [PMID: 40043167 DOI: 10.1021/acs.est.4c10521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Artisanal and small-scale gold mining (ASGM) is one of the largest primary sources of mercury (Hg) pollution in the atmosphere globally; however, there is a paucity of atmospheric Hg data in ASGM areas. We measured atmospheric gaseous elemental mercury (GEM) concentrations and stable Hg isotopes at fine spatial resolution in the Madre de Dios region of Peru, where ASGM is a major source of Hg. This study employed new passive air samplers that overcome logistical challenges in measuring atmospheric Hg in remote locations. Regional GEM concentrations were elevated (∼1.3 to 11 ng m-3) compared to the background (<1 ng m-3), with very high GEM levels (∼10 to >5000 ng m-3) associated with mining areas and gold shops. Because ASGM-derived GEM is isotopically distinct, its contribution to regional and local atmospheric Hg was estimated using an isotope mixing model and found to be generally over 70%. We also show that vegetation is taking up ASGM-derived GEM, affecting both the concentrations and isotope compositions of GEM as well as in foliage and litter samples. This supports vegetation uptake as a key removal process of GEM from the atmosphere and therefore a major source of Hg to terrestrial ecosystems and soils, which is heightened in ASGM regions.
Collapse
Affiliation(s)
- Natalie Szponar
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 2B1, Canada
| | - Claudia M Vega
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Center for Amazonian Scientific Innovation (CINCIA), Puerto Maldonado, Madre de Dios 17001, Peru
| | - Jacqueline Gerson
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Scott McLagan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Geological Sciences & Geological Engineering and School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Martin Pillaca
- Center for Amazonian Scientific Innovation (CINCIA), Puerto Maldonado, Madre de Dios 17001, Peru
| | - Shamir Delgado
- Center for Amazonian Scientific Innovation (CINCIA), Puerto Maldonado, Madre de Dios 17001, Peru
| | - Domenica Lee
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 2B1, Canada
| | - Nabila Rahman
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 2B1, Canada
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Center for Amazonian Scientific Innovation (CINCIA), Puerto Maldonado, Madre de Dios 17001, Peru
| | - Emily S Bernhardt
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
| | - Adam M Kiefer
- Department of Chemistry, College of Liberal Arts and Sciences, Mercer University, Macon, Georgia 31207, United States
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Bridget A Bergquist
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 2B1, Canada
| |
Collapse
|
2
|
Zhou H, Li Y, Zhong Q, Wu X, Liang S. Global mercury dataset with predicted methylmercury concentrations in seafoods during 1995-2022. Sci Data 2025; 12:241. [PMID: 39934145 PMCID: PMC11814070 DOI: 10.1038/s41597-025-04570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Mercury exposure poses significant threats to human health, particularly in its organic form, methylmercury (MeHg). Diet is the main pathway for human MeHg exposure, especially through seafood consumption. In this context, numerous studies have established seafood MeHg concentration datasets to assess MeHg-related health risks from seafood consumption. However, existing datasets are limited to specific regions and short-term observations, making it difficult to support continuous and dynamic assessments of global MeHg-related health risks. This study takes a bottom-up approach to construct a global seafood MeHg concentration dataset during 1995-2022. Firstly, it compiles a long-term time series marine-scale dataset of seafood MeHg concentrations, based on the reported seafood mercury concentrations from existing literature and machine learning methods. Subsequently, this study used the seafood catch volumes of each nation in different marine areas as weights to estimate the national-scale seafood MeHg concentrations. This dataset can provide essential data support for environmental impact assessment of mercury and its compounds as mentioned in Articles 12 and 19 of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Haifeng Zhou
- School of Environment, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yumeng Li
- School of Environment, Beijing Normal University, Beijing, 100875, P. R. China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qiumeng Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaohui Wu
- School of Environment, Beijing Normal University, Beijing, 100875, P. R. China
| | - Sai Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
3
|
Zhang X, Kang H, Liu X, Zhou J, Liu M, Wang L, Xing X, Lu Q, Zeng X, Wei N, Kang S. Comparative Foliar Atmospheric Mercury Accumulation across Functional Types in Temperate Trees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2082-2094. [PMID: 39844512 DOI: 10.1021/acs.est.4c09462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Vegetation assimilation of atmospheric gaseous elemental mercury (GEM) represents the largest dry deposition pathway in global terrestrial ecosystems. This study investigated Hg accumulation mechanisms in deciduous broadleaves and evergreen needles, focusing on how ecophysiological strategies─reflected by δ13C, δ18O, leaf mass per area, and leaf dry matter content-mediated Hg accumulation. Results showed that deciduous leaves exhibited higher total Hg (THg) concentrations and accumulation rates (THgrate), which were 85.3 ± 17.7 and 110.0 ± 0.3% higher than those in evergreen needles. The two tree types exhibited distinct ecophysiological strategies: deciduous broadleaves, with higher stomatal conductance and photosynthetic rates, rapidly adjust stomata to changes in meteorological and pollutant factors, playing a key role in controlling THgrate. In contrast, evergreen needles featured stable stomatal control, highlighting the direct positive effect of GEM on their THgrate. Precipitation and wind speed negatively influenced foliar THgrate. Correlations between PM2.5, NO2, and THgrate in evergreen needles suggested synergistic patterns between atmospheric Hg and pollutants. This study underscores distinct GEM accumulation mechanisms across tree functional types and emphasizes the importance of species-specific foliar ecophysiological strategies. An empirical model linking THgrate with ecophysiological, meteorological, and atmospheric pollution factors was provided, contributing to the refinement of foliar Hg accumulation models.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Huhu Kang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis, 723 W. Michigan Street, Indianapolis, Indiana 46202, United States
| | - Xiaoyu Xing
- Qinling National Botanical Garden, Xi'an 710061, China
| | - Qiangqiang Lu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| | - Xiaomin Zeng
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Na Wei
- Climate Centre of Shaanxi Province, Xi'an 710049, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Tian W, Wang J, Man Y, Anderson CWN, Feng X. Novel Insights into Hg 0 Oxidation in Rice Leaf: Catalase Functions and Transcriptome Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:478-488. [PMID: 39750150 DOI: 10.1021/acs.est.4c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rice leaves can assimilate atmospheric mercury (Hg0), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg0 assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg0 oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg0. The inactivation of catalase reduced Hg0 oxidation by 91% in the leaf homogenate and the Hg0 oxidation rate increased along with CAT activity, showing the CAT's function in Hg0 oxidation. Hg0 was converted to Hg(cysteine)2 complexes in the leaf. Transcriptomic results revealed that the expression levels of both OsCATA and OsCATB (catalase-encoding genes) increased with Hg concentration, suggesting the involvement of catalase-related molecular network in Hg0 oxidation. Upstream transcription factors, including NAC (NAM-no apical meristem, ATAF-Arabidopsis transcription activation factor, and CUC-cup-shaped cotyledon), and ethylene-responsive transcription factor, are likely involved in catalase expression. Genes related to cysteine metabolism and amino acid transport appeared to regulate Hg accumulation. Our findings demonstrate the important function of catalase in Hg0 oxidation within rice and are fundamental for developing genetically modified rice cultivars to minimize human Hg exposure health risks.
Collapse
Affiliation(s)
- Weijun Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
| | - Christopher W N Anderson
- Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Bockhoff M, Marginson H, Ittulak H, Roy A, Amyot M. Influence of vegetative cover on snowpack mercury speciation and stocks in the greening Canadian subarctic region. ENVIRONMENTAL RESEARCH 2025; 264:120333. [PMID: 39547571 DOI: 10.1016/j.envres.2024.120333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A notable greening and warming of the Arctic and Subarctic due to climate change has uncertain implications for the global cycling of mercury (Hg). Snowpacks are dynamic reservoirs for Hg susceptible to solar radiation and wind pumping, with vegetative cover potentially altering Hg photochemistry. However, the impact of northern greening on the transformation of major Hg species and on Hg stocks remain poorly understood. Temporal surface snow and snowpit sampling was conducted under tree canopies and open tundra sites at the boreal-tundra ecotone in Nunavik, Canada. Maximum (mean) concentrations of 69.1 ng/L (8.8 ng/L) total mercury (HgT) and 46.9 ng/L (5.5 ng/L) reactive mercury (HgR) were measured in forest surface snow, with maximums attributed to rapid atmospheric oxidation events. Significant post-depositional reductions were recorded in the bay, tundra, and forest (67-99% HgR) and suggested greater Hg sequestration may occur under tree canopies. Increasing methylmercury (MeHg), HgT, and dissolved organic carbon (DOC) concentrations were detected across a vegetation gradient shifting towards humic-like organic matter. Notably, springtime depth profiles presented an approximate 12-fold greater accumulation of HgT under tree canopies compared to open tundra (p < 0.01), with up to 16-times higher stocks (HgT, MeHg, DOC) at elevated vegetation density (p < 0.05). In the North, increasing vegetation cover and surface warming may favor Hg accumulation and methylation in snowpacks, facilitated by interactions with organic matter, and further enriched by the reduced wind and solar exposure experienced under forest canopies.
Collapse
Affiliation(s)
- Maëlys Bockhoff
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada
| | - Holly Marginson
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada
| | - Henry Ittulak
- Northern Village of Kangiqsualujjuaq, QC, J0M 1N0, Canada
| | - Alexandre Roy
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, QC, Canada; Centre d'Études Nordiques, Québec, Canada
| | - Marc Amyot
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada; Centre d'Études Nordiques, Québec, Canada.
| |
Collapse
|
6
|
Kang H, Liu X, Zhang X, Guo J, Huang J, Ying X, Wang Y, Zhang Q, Kang S. Important accumulated mercury pool in a remote alpine forest and dynamic accumulation revealed by tree rings in China's Qilian Mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175441. [PMID: 39151616 DOI: 10.1016/j.scitotenv.2024.175441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Quantification mercury (Hg) pools in forests is crucial for understanding the Hg assimilation, flux and even biogeochemical cycle in forest ecosystems. While several investigations focused on Hg pools among broad-leaved, coniferous and mixed forests, there was still absent information on alpine forest. We sampled soil, moss and various tissues of the dominant Qinghai spruce (Picea crassifolia Kom.) to investigate Hg concentrations and pools, and assess Hg accumulation dynamics in the Qilian Mountains, northwestern China. The mean Hg concentration increased in the following order: trunk wood (1.8 ± 0.7 ng g-1) < branch (4.6 ± 0.8 ng g-1) < root (12.2 ± 2.9 ng g-1) < needle (19.3 ± 5.6 ng g-1) < bark (28.7 ± 9.0 ng g-1) < soil (34.1 ± 7.7 ng g-1) < litterfall (42.9 ± 2.9 ng g-1) < moss (62.5 ± 5.0 ng g-1). The soil contained Hg pools two orders of magnitude higher than vegetation and accounted for 92.2 % of the total Hg pool in the alpine forest ecosystem. Moss, despite representing only 2.7 % of total vegetation biomass, contained a disproportionate 16.7 % of the Hg pool. Although species-specific, aboveground spruce tissues exhibited higher Hg pools in alpine forests compared to other forests in China and America. The dynamic accumulation indicated that increasing atmospheric Hg concentration and enhancing tree productivity contributed to rising Hg assimilation in remote alpine forests, particularly after the 1960s. Our results highlight the relatively high levels of Hg pools in aboveground tree tissues of alpine forest and reveal a significant increase in Hg accumulation. We recommend that when assessing Hg dynamics in forest ecosystems, it is crucial to consider both the variability in atmospheric Hg exposure levels and the forest productivity.
Collapse
Affiliation(s)
- Huhu Kang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaohong Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyu Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jie Huang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiufeng Ying
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yabo Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Morelli G, Ciani F, Cocozza C, Costagliola P, Fagotti C, Friani R, Lattanzi P, Manca R, Monnanni A, Nannoni A, Rimondi V. Riparian trees in mercury contaminated riverbanks: An important resource for sustainable remediation management. ENVIRONMENTAL RESEARCH 2024; 257:119373. [PMID: 38852831 DOI: 10.1016/j.envres.2024.119373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Mining operations generate sediment erosion rates above those of natural landscapes, causing persistent contamination of floodplains. Riparian vegetation in mine-impacted river catchments plays a key role in the storage/remobilization of metal contaminants. Mercury (Hg) pollution from mining is a global environmental challenge. This study provides an integrative assessment of Hg storage in riparian trees and soils along the Paglia River (Italy) which drains the abandoned Monte Amiata Hg mining district, the 3rd former Hg producer worldwide, to characterize their role as potential secondary Hg source to the atmosphere in case of wildfire or upon anthropic utilization as biomass. In riparian trees and nearby soils Hg ranged between 0.7 and 59.9 μg/kg and 2.2 and 52.8 mg/kg respectively. In trees Hg concentrations were below 100 μg/kg, a recommended Hg limit for the quality of solid biofuels. Commercially, Hg contents in trees have little impact on the value of the locally harvested biomass and pose no risk to human health, although higher values (195-738 μg/kg) were occasionally found. In case of wildfire, up to 1.4*10-3 kg Hg/ha could be released from trees and 27 kg Hg/ha from soil in the area, resulting in an environmentally significant Hg pollution source. Data constrained the contribution of riparian trees to the biogeochemical cycling of Hg highlighting their role in management and restoration plans of river catchments affected by not-remediable Hg contamination. In polluted river catchments worldwide riparian trees represent potential sustainable resources for the mitigation of dispersion of Hg in the ecosystem, considering i) their Hg storage capacity, ii) their potential to be used for local energy production (e.g. wood-chips) through the cultivation and harvesting of biomasses and, iii) their role in limiting soil erosion from riparian polluted riverbanks, probably representing the best pragmatic choice to minimize the transport of toxic elements to the sea.
Collapse
Affiliation(s)
- Guia Morelli
- CNR - Institute of Geosciences and Earth Resources, Via G. La Pira 4, Florence, 50121, Italy
| | - Francesco Ciani
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy.
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Italy
| | - Pilario Costagliola
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Cesare Fagotti
- ARPA Toscana-Area Vasta Sud, Loc. Ruffolo, 53100, Siena, Italy
| | - Rossella Friani
- ARPA Toscana-Area Vasta Sud, Loc. Ruffolo, 53100, Siena, Italy
| | - Pierfranco Lattanzi
- CNR - Institute of Geosciences and Earth Resources, Via G. La Pira 4, Florence, 50121, Italy
| | - Rosarosa Manca
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Alessio Monnanni
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Alessia Nannoni
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Valentina Rimondi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| |
Collapse
|
8
|
Chen L, Zhou J, Guo L, Bian X, Xu Z, Chen Q, Wen SH, Wang K, Liu YR. Global Distribution of Mercury in Foliage Predicted by Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15629-15637. [PMID: 38860911 DOI: 10.1021/acs.est.4c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Foliar assimilation of elemental mercury (Hg0) from the atmosphere plays a critical role in the global Hg biogeochemical cycle, leading to atmospheric Hg removal and soil Hg insertion. Recent studies have estimated global foliar Hg assimilation; however, large uncertainties remained due to coarse accounting of observed foliar Hg concentrations, posing a substantial challenge in constraining the global Hg budget. Here, we integrated a comprehensive observation database of foliar Hg concentrations and machine learning algorithms to predict the first spatial distribution of foliar Hg concentrations on a global scale, contributing to the first estimate of global Hg pools in foliage. The global average of foliar Hg concentrations was estimated to be 24.0 ng g-1 (7.5-56.5 ng g-1), and the global total in foliar Hg pools reached 4561.3 Mg (1455.2-9062.8 Mg). The spatial distribution showed the hotspots in tropical regions, including the Amazon, Central Africa, and Southeast Asia. A range of 2268.5-2727.0 Mg yr-1 was estimated for annual foliar Hg assimilation accounting for the perennial continuous assimilation by evergreen vegetation foliage. The first spatial maps of foliar Hg concentrations and Hg pools may aid in understanding the global biogeochemical cycling of Hg, especially in the context of climate change and global vegetation greening.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Long Guo
- College of Resources and Environment and State Environmental Protection, Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Bian
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Zeng Xu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Qinzheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Shu-Hai Wen
- College of Resources and Environment and State Environmental Protection, Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection, Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Monteiro LC, Vieira LCG, Bernardi JVE, Recktenvald MCNDN, Nery AFDC, Fernandes IO, de Miranda VL, da Rocha DMS, de Almeida R, Bastos WR. Mercury distribution, bioaccumulation, and biomagnification in riparian ecosystems from a neotropical savanna floodplain, Araguaia River, central Brazil. ENVIRONMENTAL RESEARCH 2024; 252:118906. [PMID: 38609069 DOI: 10.1016/j.envres.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.
Collapse
Affiliation(s)
- Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil; Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil; Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | | | | | - Iara Oliveira Fernandes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - Vinicius Lima de Miranda
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ronaldo de Almeida
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | | |
Collapse
|
10
|
Yuan T, Huang S, Zhang P, Song Z, Ge J, Miao X, Wang Y, Pang Q, Peng D, Wu P, Shao J, Zhang P, Wang Y, Guo H, Guo W, Zhang Y. Potential decoupling of CO 2 and Hg uptake process by global vegetation in the 21st century. Nat Commun 2024; 15:4490. [PMID: 38802424 PMCID: PMC11130250 DOI: 10.1038/s41467-024-48849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg's fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr-1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.
Collapse
Affiliation(s)
- Tengfei Yuan
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Peng Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu, China
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, Nanjing, Jiangsu, China
| | - Jun Ge
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, Nanjing, Jiangsu, China
| | - Xin Miao
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yujuan Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qiaotong Pang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Dong Peng
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junjiong Shao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yabo Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Weidong Guo
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China.
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu, China.
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Yuan W, Wang X, Lin CJ, Zhang G, Wu F, Liu N, Jia L, Zhang H, Lu H, Dong J, Feng X. Fate and Transport of Mercury through Waterflows in a Tropical Rainforest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4968-4978. [PMID: 38452105 DOI: 10.1021/acs.est.3c09265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ge Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Sa R, Wang Z, Xu Z, Zhao Q, Zhang Q, Zhang X. Distribution characteristics of mercury concentration and estimation of mercury pools in different age groups of Larix gmelinii forests of Daxing'an Mountain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122653. [PMID: 37778492 DOI: 10.1016/j.envpol.2023.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Forests are important sinks of atmospheric mercury. Quantifying mercury pools in forest ecosystem tissues are essential for understanding the global mercury cycle. To reveal the characteristics of Hg concentration and Hg pool distribution in natural forests at different ages, samples from the vegetation layer, organic horizons, coarse wood debris, and mineral soil layers were collected in young forest, middle forest, near-mature forest, and mature forest of Larix gmelinii forests at the Daxing'an Mountain. The results showed that there were differences in the absorption and accumulation of Hg by different tree species and tissues. In Larix gmelinii, the concentration of Hg followed the order of bark > branch > leaf > root > core, whereas in Betula platyphylla, the order was bark > leaf > branch > root > core. The mercury concentration in the organic horizons increased gradually with the decomposition process. There were no obvious regular patterns in the mercury concentrations of each tissue in different age groups Larix gmelinii forests. Furthermore, total biomass mercury pools (overstory, shrub layer, herb layer, moss layer, and coarse woody debris (CWD)) in the young, middle, near-mature, and mature forests of Larix gmelinii forests at Daxing'an Mountain were estimated to be 99.0 μg m-2,207 μg m-2,207 μg m-2 and 194 μg m-2, respectively. On ecosystem scale, total mercury pools were 16.9 mg m-2 (young), 27.5 mg m-2 (middle), 17.0 mg m-2 (near-mature), and 11.8 mg m-2(mature). The mineral soil mercury pool accounts for 94.0%-98.1% of the total ecosystem mercury pool, and its mercury pool proportion gradually decreased with the increase in forest age. These obtained results are quite valuable for further assessing the role of forest ecosystems in the atmospheric mercury cycle and estimating potential mercury emissions from biomass burning during forest wildfires.
Collapse
Affiliation(s)
- Rula Sa
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Inner Mongolia Power (Group) Co., Ltd., Inner Mongolia Power Research Institute Branch, Hohhot, Inner Mongolia Autonomous Region, 010020, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zehua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingpeng Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuliang Zhang
- Inner Mongolia Agricultural University, Hohhot, 010019, China; National Field Scientific Observation and Research Station of Greater Khingan Forest Ecosystem, Inner Mongolia, Genhe, 022350, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Chu Z, Zhou Y, Liu M, Lin H, Cheng M, Xie H, Yuan L, Zhang Z, Zhang Q, Li C, Chen Y, Guo Y, Chen L, Wang X. Large-Scale Observations Support Aboveground Vegetation as an Important Biological Mercury Sink in the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17278-17290. [PMID: 37919873 DOI: 10.1021/acs.est.3c05164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Mercury, a pervasive global pollutant, primarily enters the atmosphere through human activities and legacy emissions from the land and oceans. A significant portion of this mercury subsequently settles on land through vegetation uptake. Characterizing mercury storage and distribution within vegetation is essential for comprehending regional and global mercury cycles. We conducted an unprecedented large-scale aboveground vegetation mercury survey across the expansive Tibetan Plateau. We find that mosses (31.1 ± 0.5 ng/g) and cushion plants (15.2 ± 0.7 ng/g) outstood high mercury concentrations. Despite exceptionally low anthropogenic mercury emissions, mercury concentrations of all biomes exceeded at least one-third of their respective global averages. While acknowledging the role of plant physiological factors, statistical models emphasize the predominant impact of atmospheric mercury on driving variations in mercury concentrations. Our estimations indicate that aboveground vegetation on the plateau accumulates 32-12+21 Mg (interquartile range) mercury. Forests occupy the highest biomass and store 82% of mercury, while mosses, representing only 3% of the biomass, disproportionally contribute 13% to mercury storage and account for 43% (2.5-1.4+3.0 Mg/year) of annual mercury assimilation by vegetation. Additionally, our study underscores that extrapolating aboveground vegetation mercury storage from lower-altitude regions to the Tibetan Plateau can lead to substantial overestimation, inspiring further exploration in alpine ecosystems worldwide.
Collapse
Affiliation(s)
- Zhaohan Chu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yunzhuo Zhou
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Menghan Cheng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Han Xie
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liuliang Yuan
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihao Zhang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chengcheng Li
- Modern Chinese Literature, Department of Chinese Language and Literature, Peking University, Beijing 100871, China
| | - Yuang Chen
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanpei Guo
- Institute of Ecology, Key Laboratory for Earth Surface Processes and College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Long Chen
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Meloni F, Farieri A, Higueras PL, Esbrí JM, Nisi B, Cabassi J, Rappuoli D, Vaselli O. Mercury distribution in plants and soils from the former mining area of Abbadia San Salvatore (Tuscany, Central Italy). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8523-8538. [PMID: 37648955 PMCID: PMC10611595 DOI: 10.1007/s10653-023-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
The distribution of heavy metals in plants (Castanea sativa, Sambucus nigra, Verbascum thapsus, Popolus spp., Salix spp., Acer pseudoplatanus, Robinia pseudoacacia) growing in soils from active and abandoned mining areas is of scientific significance as it allows to recognize their ability to survive in a hostile environment and provide useful indications for phytoremediation operations. In this work, soils from the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg contents (up to 1068 mg kg-1). Eventually, the concentration of Hg in the different parts of the plants growing on these soils was also determined. Most studied soils were dominated by inorganic Hg (up to 92%) while the DHA concentrations were < 151 µg TPF g-1 day-1, suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF), being predominantly characterized by values < 1. Sambucus nigra and Verbascum thapsus had the highest Hg contents (39.42 and 54.54 mg kg-1, respectively). The plant leaves appear to be the main pathways of Hg uptake, as also observed in other mining areas, e.g., Almadèn (Spain), indicating that particulate-Hg and Hg0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.
Collapse
Affiliation(s)
- Federica Meloni
- Department of Earth Sciences, Via G. La Pira, 4-50121, Florence, Italy.
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy.
| | | | - Pablo L Higueras
- Instituto de Geología Aplicada, EIMIA - Pl. Manuel Meca 1 13400 Almadén, Ciudad Real, Spain
| | - José M Esbrí
- Departament of Mineralogy and Petrology, (UCM), C. de José Antonio Novais, 12, 28040, Madrid, Spain
| | - Barbara Nisi
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy
| | - Jacopo Cabassi
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy
| | - Daniele Rappuoli
- Unione Dei Comuni Amiata Val d'Orcia, Unità Di Bonifica, Via Grossetana, 209-53025, Piancastagnaio, Siena, Italy
- Parco Museo Minerario Di Abbadia San Salvatore - Via Suor Gemma, 53021 Abbadia San Salvatore 1, Siena, Italy
| | - Orlando Vaselli
- Department of Earth Sciences, Via G. La Pira, 4-50121, Florence, Italy.
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy.
| |
Collapse
|
15
|
Baroni D, Ancora S, Franzaring J, Loppi S, Monaci F. Tree-rings analysis to reconstruct atmospheric mercury contamination at a historical mining site. FRONTIERS IN PLANT SCIENCE 2023; 14:1260431. [PMID: 37900738 PMCID: PMC10613024 DOI: 10.3389/fpls.2023.1260431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Mercury (Hg) is a global environmental concern due to its toxicity (especially high in methylated form) and the long-range distribution of its gaseous elemental form (GEM). Hg-contaminated areas, such as abandoned mining sites, pose intrinsic difficulties for their management and heavy monitoring costs. In these environments, plant-based solutions may play a key role in the ecosystem quality assessment and support remediation strategies, combining reliability and cost-effectiveness. In this study, we adopted a biomonitoring approach by using tree rings of four different species collected in the proximity of the mining-metallurgical area of Abbadia San Salvatore, central Italy, a major former Hg mining district whose reclamation is currently in progress. Our dendrochemical analysis was aimed at identifying the historical changes of local atmospheric Hg contamination and at singling out, for the first time in the study area, other potentially toxic elements (PTEs) associated with the past mining activity. Collected cores dated back to early as 1940 and provided the temporal patterns of atmospheric Hg emission vs the produced liquid quantities, so reconstructing the historical impact of the mining site on nearby terrestrial ecosystems and resident human population. Current GEM contamination was found about twenty times lower than that of the fully operational mine periods. From a first survey on other PTEs, thallium (Tl) and lead (Pb) appeared to be potentially associated with the mining activity, thus suggesting new working assumptions for further dendrochemical analyses and for the inclusion of Pb in human biomonitoring surveys of the Mt. Amiata area, actually not present in the control list. The results prompt a more thorough assessment by tracking for a longer time span a critical site that is an ideal open-field lab to study the ecophysiology of different tree species in relation to environmental behavior of PTEs for better-assessing wildlife and human exposures.
Collapse
Affiliation(s)
- Davide Baroni
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Stefania Ancora
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Jürgen Franzaring
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Fabrizio Monaci
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Chen P, Wang X, Yuan W, Wang D. Typical heavy metals accumulation, transport and allocation in a deglaciated forest chronosequence, Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132162. [PMID: 37517237 DOI: 10.1016/j.jhazmat.2023.132162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Understanding heavy metals (HMs) accumulation and transportation is the foundation to assess the ecological risks caused by the pollution of HMs in terrestrial ecosystems. There are large knowledge gaps regarding impacts of vegetation succession on shaping the HMs accumulation, transportation and allocation in the remote alpine regions. Herein, we comprehensively investigated the distribution and source contribution of mercury (Hg), cadmium (Cd) and chromium (Cr) along with vegetation succession in a deglaciated forest chronosequence of Qinghai-Tibet Plateau. Results showed that Hg and Cd were highly enriched in organic soils, while Cr concentrations and pool sizes decreased significantly with the vegetation succession. Atmospheric Hg deposition contributed to the dominant Hg sources in topsoil (74 - 87%), whereas moraine weathering was the main source of Cr (73 - 76%). Both moraine (18 - 48%) and atmospheric deposition inputs (52 - 82%) affected Cd accumulation in topsoil. Over the last century, the accumulation rate of Hg and Cd showed the distinctly decreasing trends due to the vegetation leading to the elevated atmospheric depositions at the earlier deglacial sites. The negative accumulation rate of Cr along with the vegetation succession reflected the formation of organic soil diluting the geogenic inputs of Cr.
Collapse
Affiliation(s)
- Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Zheng G, Chen Q, Zhou F, Li P. Retention properties and mechanism of agricultural waste maize whisker on atmospheric mercury. BIORESOUR BIOPROCESS 2023; 10:67. [PMID: 38647626 PMCID: PMC10991902 DOI: 10.1186/s40643-023-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/29/2023] [Indexed: 04/25/2024] Open
Abstract
Mercury (Hg) is a global pollutant transmitted mainly through the atmosphere, posing a serious threat to biological survival and human health. Porous materials, with high specific surface area, high porosity, and high adsorption, are particularly suitable for the purification of atmospheric Hg mixtures. However, plant porous materials are rarely directly used for atmospheric Hg purification. In this study, the properties and mechanism of maize whisker in removing atmospheric Hg were analyzed. The results show that the Hg content in the whiskers increases significantly as the initial Hg concentration increases, and 79.38% Hg can be removed by 0.2 g maize whiskers after 1 h exposure when the initial Hg concentration is 0.1 μg m-3, indicating that maize whiskers can accumulate atmospheric Hg rapidly and effectively. The hole diameter of the maize whisker is between 0.83 and 3.06 μm, which is suitable for the adsorption of small substances. Correlation analysis shows that maize whiskers have a significant correlation between atmospheric Hg retention and its specific surface area, pore size, medium pore ratio, and micropore ratio, suggesting that the maize whisker hole feature has a significant influence on its ability to retain atmospheric Hg. Compared with the energy profiles before and after Hg treatment, the peak of Mg decreased after Hg adsorption. Fourier infrared spectrometer analysis suggests that functional groups such as -OH, -COOH, and -O- are involved in the adsorption process. The change in pH value shows an obvious effect on the overall change in zeta potential in the adsorption process. Therefore, a variety of mechanisms, including physical adsorption, electrostatic adsorption, complexation, chelation, and ion exchange, are involved in Hg retention with the maize whisker. This study reveals the important potential value of agricultural waste maize whiskers in the purification of atmospheric heavy metal Hg.
Collapse
Affiliation(s)
- Guiling Zheng
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Qianxiu Chen
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China.
| | - Peng Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
18
|
Liu YR, Guo L, Yang Z, Xu Z, Zhao J, Wen SH, Delgado-Baquerizo M, Chen L. Multidimensional Drivers of Mercury Distribution in Global Surface Soils: Insights from a Global Standardized Field Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12442-12452. [PMID: 37506289 DOI: 10.1021/acs.est.3c04313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 μg kg-1 with an average of 74.0 μg kg-1 across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg0 deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.
Collapse
Affiliation(s)
- Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Guo
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Zeng Xu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jiating Zhao
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Hai Wen
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla 41012, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
19
|
Yuan W, Wang X, Lin CJ, Song Q, Zhang H, Wu F, Liu N, Lu H, Feng X. Deposition and Re-Emission of Atmospheric Elemental Mercury over the Tropical Forest Floor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10686-10695. [PMID: 37437160 DOI: 10.1021/acs.est.3c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 μg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 μg m-2 year-1, of which 63.0 ± 9.3 μg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 μg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 μg m-2 year-1), we estimated a ∼12.6 μg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Qinghai Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
20
|
Méndez-López M, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Variation of Hg concentration and accumulation in the soil of maritime pine plantations along a coast-inland transect in SW Europe. ENVIRONMENTAL RESEARCH 2023; 231:116155. [PMID: 37196692 DOI: 10.1016/j.envres.2023.116155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Climatic conditions have been shown as a major driver of the fate of Hg in forest ecosystems at a global scale, but less is known about climatic effects at shorter scales. This study assesses whether the concentration and pools of Hg in soils collected from seventeen Pinus pinaster stands describing a coastal-inland transect in SW Europe vary along a regional climatic gradient. In each stand, samples of the organic subhorizons (OL, OF + OH) and the mineral soil (up to 40 cm) were collected and some general physico-chemical properties and total Hg (THg) were analyzed. Total Hg was significantly higher in the OF + OH than in the OL subhorizons (98 and 38 μg kg-1, respectively), favored by a greater organic matter humification in the former. In the mineral soil, mean THg values decreased with depth, ranging from 96 μg kg-1 in the 0-5 cm layers to 54 μg kg-1 in the deepest layers (30-40 cm), respectively. The average Hg pool (PHg) was 0.30 mg m-2 in the organic horizons (92% accumulated in the OF + OH subhorizons), and 27.4 mg m-2 in the mineral soil. Changes in climatic factors, mainly precipitation, along the coast-inland transect resulted in a remarkable variation of THg in the OL subhorizons, consistent with their role as the first receiver of atmospheric Hg inputs. The high precipitation rate and the occurrence of fogs in coastal areas characterized by the oceanic influence would explain the higher THg found in the uppermost soil layers of pine stands located close to the coastline. The regional climate is key to the fate of mercury in forest ecosystems by influencing the plant growth and subsequent atmospheric Hg uptake, the atmospheric Hg transference to the soil surface (wet and dry deposition and litterfall) and the dynamics that determine net Hg accumulation in the forest floor.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
21
|
Zhou J, Bollen SW, Roy EM, Hollinger DY, Wang T, Lee JT, Obrist D. Comparing ecosystem gaseous elemental mercury fluxes over a deciduous and coniferous forest. Nat Commun 2023; 14:2722. [PMID: 37169778 PMCID: PMC10175444 DOI: 10.1038/s41467-023-38225-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Sources of neurotoxic mercury in forests are dominated by atmospheric gaseous elemental mercury (GEM) deposition, but a dearth of direct GEM exchange measurements causes major uncertainties about processes that determine GEM sinks. Here we present three years of forest-level GEM deposition measurements in a coniferous forest and a deciduous forest in northeastern USA, along with flux partitioning into canopy and forest floor contributions. Annual GEM deposition is 13.4 ± 0.80 μg m-2 (coniferous forest) and 25.1 ± 2.4 μg m-2 (deciduous forest) dominating mercury inputs (62 and 76% of total deposition). GEM uptake dominates in daytime during active vegetation periods and correlates with CO2 assimilation, attributable to plant stomatal uptake of mercury. Non-stomatal GEM deposition occurs in the coniferous canopy during nights and to the forest floor in the deciduous forest and accounts for 24 and 39% of GEM deposition, respectively. Our study shows that GEM deposition includes various pathways and is highly ecosystem-specific, which complicates global constraints of terrestrial GEM sinks.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Silas W Bollen
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
| | - Eric M Roy
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ting Wang
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
| | - John T Lee
- School of Forest Resources, University of Maine, Orono, ME, USA
| | - Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA.
- University of California, Agriculture and Natural Resources, Davis, CA, USA.
| |
Collapse
|
22
|
Sonke JE, Angot H, Zhang Y, Poulain A, Björn E, Schartup A. Global change effects on biogeochemical mercury cycling. AMBIO 2023; 52:853-876. [PMID: 36988895 PMCID: PMC10073400 DOI: 10.1007/s13280-023-01855-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.
Collapse
Affiliation(s)
- Jeroen E. Sonke
- Géosciences Environnement Toulouse, CNRS/IRD, Université Paul Sabatier Toulouse 3, 14 ave Edouard Belin, 31400 Toulouse, France
| | - Hélène Angot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 1025 rue de la piscine, 38000 Grenoble, France
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023 Jiangsu China
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Erik Björn
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Amina Schartup
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
23
|
Schneider L, Fisher JA, Diéguez MC, Fostier AH, Guimaraes JRD, Leaner JJ, Mason R. A synthesis of mercury research in the Southern Hemisphere, part 1: Natural processes. AMBIO 2023; 52:897-917. [PMID: 36943620 PMCID: PMC10073387 DOI: 10.1007/s13280-023-01832-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Recent studies demonstrate a short 3-6-month atmospheric lifetime for mercury (Hg). This implies Hg emissions are predominantly deposited within the same hemisphere in which they are emitted, thus placing increasing importance on considering Hg sources, sinks and impacts from a hemispheric perspective. In the absence of comprehensive Hg data from the Southern Hemisphere (SH), estimates and inventories for the SH have been drawn from data collected in the NH, with the assumption that the NH data are broadly applicable. In this paper, we centre the uniqueness of the SH in the context of natural biogeochemical Hg cycling, with focus on the midlatitudes and tropics. Due to its uniqueness, Antarctica warrants an exclusive review of its contribution to the biogeochemical cycling of Hg and is therefore excluded from this review. We identify and describe five key natural differences between the hemispheres that affect the biogeochemical cycling of Hg: biome heterogeneity, vegetation type, ocean area, methylation hotspot zones and occurence of volcanic activities. We review the current state of knowledge of SH Hg cycling within the context of each difference, as well as the key gaps that impede our understanding of natural Hg cycling in the SH. The differences demonstrate the limitations in using NH data to infer Hg processes and emissions in the SH.
Collapse
Affiliation(s)
- Larissa Schneider
- School of Culture, History and Language. Australian National University, Coombs Bld 9 Fellows Rd, Acton. Canberra, ACT 2601 Australia
| | - Jenny A. Fisher
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - María C. Diéguez
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue), 1250 San Carlos de Bariloche (8400), Quintral Argentina
| | - Anne-Hélène Fostier
- Instituto de Química/Unicamp, Rua Josué de Castro, s/n – Cidade Universitária, Campinas, SP 13083-970 Brazil
| | - Jean R. D. Guimaraes
- Lab. de Traçadores, Inst. de Biofísica, Bloco G, CCS (Centro de Ciências da Saúde), Av. Carlos Chagas Filho 373, Rio de Janeiro, Ilha do Fundão CEP 21941-902 Brazil
| | - Joy J. Leaner
- Department of Environmental Affairs and Development Planning, Western Cape Government, 1 Dorp Street, Western Cape, Cape Town, 8001 South Africa
| | - Robert Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 USA
| |
Collapse
|
24
|
Yuan W, Liu M, Chen D, Xing YW, Spicer RA, Chen J, Them TR, Wang X, Li S, Guo C, Zhang G, Zhang L, Zhang H, Feng X. Mercury isotopes show vascular plants had colonized land extensively by the early Silurian. SCIENCE ADVANCES 2023; 9:eade9510. [PMID: 37115923 PMCID: PMC10146902 DOI: 10.1126/sciadv.ade9510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The colonization and expansion of plants on land is considered one of the most profound ecological revolutions, yet the precise timing remains controversial. Because land vegetation can enhance weathering intensity and affect terrigenous input to the ocean, changes in terrestrial plant biomass with distinct negative Δ199Hg and Δ200Hg signatures may overwrite the positive Hg isotope signatures commonly found in marine sediments. By investigating secular Hg isotopic variations in the Paleozoic marine sediments from South China and peripheral paleocontinents, we highlight distinct negative excursions in both Δ199Hg and Δ200Hg at Stage level starting in the early Silurian and again in the Carboniferous. These geochemical signatures were driven by increased terrestrial contribution of Hg due to the rapid expansion of vascular plants. These excursions broadly coincide with rising atmospheric oxygen concentrations and global cooling. Therefore, vascular plants were widely distributed on land during the Ordovician-Silurian transition (~444 million years), long before the earliest reported vascular plant fossil, Cooksonia (~430 million years).
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Mu Liu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Daizhao Chen
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (X.F.); (D.C.)
| | - Yao-Wu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Robert A. Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, UK
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jitao Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Theodore R. Them
- Department of Geology and Environmental Geosciences, College of Charleston, Charleston, SC 29424, USA
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shizhen Li
- Oil and Gas Survey, China Geological Survey, Ministry of Natural Resources, Beijing 100083, China
| | - Chuan Guo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Gongjing Zhang
- Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liyu Zhang
- Wuxi Research Institute of Petroleum Geology, Petroleum Exploration and Production Research Institute, SINOPEC, Wuxi 214126, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (X.F.); (D.C.)
| |
Collapse
|
25
|
Huang JH, Berg B, Chen C, Thimonier A, Schmitt M, Osterwalder S, Alewell C, Rinklebe J, Feng X. Predominant contributions through lichen and fine litter to litterfall mercury deposition in a subalpine forest. ENVIRONMENTAL RESEARCH 2023; 229:116005. [PMID: 37116676 DOI: 10.1016/j.envres.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Litterfall, typically referring to needles/leaves, may stand for >50% of the total mercury (Hg) deposition in forest ecosystems. By detailed categorisation, we reveal for the first time that the contributions through lichens and fine litter, together 9.98 μg Hg m-2 yr-1, could be as high as that in needle litter (9.96 μg m-2 yr-1) to the annual total Hg deposition (44.6 μg m-2 yr-1) in a subalpine forest in Switzerland. Noticeably, needle litter had the highest contribution (53%) to total Hg in the autumn litterfall but lichens and fine litter together predominated in other seasons (47-59%). Such a seasonal pattern is caused by the high ability of lichens and fine litter to accumulate Hg and the high needle litterfall in autumn, which is related to a good rainfall in summer followed by a dry period in autumn. The constantly higher Hg levels in lichens and fine litter than in needle litter together with similar seasonal patterns of litterfall during 2009-2019 and rainfall during 1980-2019 suggest that our finding can be generally valid. Here, we highlight not only the considerable role of non-needle litterfall in Hg deposition but also the association with weather for seasonal Hg dynamics in different litterfall components.
Collapse
Affiliation(s)
- Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Environmental Geosciences, University of Basel, 4056, Basel, Switzerland.
| | - Björn Berg
- Department of Forest Sciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Anne Thimonier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Maria Schmitt
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, 4056, Basel, Switzerland; Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Christine Alewell
- Environmental Geosciences, University of Basel, 4056, Basel, Switzerland
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, 42285, Wuppertal, Germany
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
26
|
Yuan T, Zhang P, Song Z, Huang S, Wang X, Zhang Y. Buffering effect of global vegetation on the air-land exchange of mercury: Insights from a novel terrestrial mercury model based on CESM2-CLM5. ENVIRONMENT INTERNATIONAL 2023; 174:107904. [PMID: 37012193 DOI: 10.1016/j.envint.2023.107904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The vegetation uptake of atmospheric elemental mercury [Hg(0)] and its subsequent littering are critical processes of the terrestrial Hg cycles. There is a large uncertainty in the estimated global fluxes of these processes due to the knowledge gap in the underlying mechanisms and their relationship with environmental factors. Here, we develop a new global model based on the Community Land Model Version 5 (CLM5-Hg) as an independent component of the Community Earth System Model 2 (CESM2). We explore the global pattern of gaseous elemental Hg [Hg(0)] uptake by vegetation and the spatial distribution of litter Hg concentration constrained by observed datasets as well as its driving mechanism. The annual vegetation uptake of Hg(0) is estimated as 3132 Mg yr-1, which is considerably higher than previous global models. The scheme of dynamic plant growth including stomatal activities substantially improves the estimation for global terrestrial distribution of Hg, compared to the leaf area index (LAI) based scheme that is often used by previous models. We find the global distribution of litter Hg concentrations driven by vegetation uptake of atmospheric Hg(0), which are simulated to be higher in East Asia (87 ng/g) than in the Amazon region (63 ng/g). Meanwhile, as a significant source for litter Hg, the formation of structural litter (cellulose litter + lignin litter) results in a lagging effect between Hg(0) deposition and litter Hg concentration, implying the buffering effect of vegetation on the air-land exchange of Hg. This work highlights the importance of vegetation physiology and environmental factors in understanding the vegetation sequestration of atmospheric Hg globally, and calls for greater efforts to protect forests and afforestation.
Collapse
Affiliation(s)
- Tengfei Yuan
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
27
|
Casagrande GCR, Dambros J, de Andrade EA, Martello F, Sobral-Souza T, Moreno MIC, Battirola LD, de Andrade RLT. Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:477. [PMID: 36928432 DOI: 10.1007/s10661-023-11063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The spatial distribution and dispersion of mercury (Hg) is associated with the structural conditions of the environment, primarily land use and vegetation cover. Man-made emissions of the metal from activities such as artisanal and small-scale gold mining (ASGM) can influence this distribution. Forest ecosystems are of particular importance as they constitute one of the most active environments in the biogeochemical cycle of Hg, and understanding these dynamics is essential to better understand its global cycle. In this study, we determined the content of Hg present in different forest strata (soil, leaf litter, herbaceous, underwood/bush, and arboreal), as well as the relationship between the presence of Hg and the landscape heterogeneity, percentage of gold mines, and ground slope. This study was carried out in tropical forest areas of the southern Brazilian Amazon. Accumulation and transport of Hg between forest strata was assessed in order to understand the influence of these forest environments on Hg accumulation in areas where ASGM occurs. We verified that there is a difference in Hg content between forest strata, indicating that atmospheric Hg is accumulated onto the arboreal stratum and transported vertically to strata below the canopy, i.e., underwood/bush and herbaceous, and subsequently accumulated in the leaf litter and transferred to the soil. Leaf litter was the stratum with the highest Hg content, characterized as a receptor for most of the Hg load from the upper strata in the forest. Therefore, it was confirmed that Hg accumulation dynamics are at play between the areas analyzed due to the proximity of ASGMs in the region. This indicates that the conservation of forest areas plays an important role in the process of atmospheric Hg deposition and accumulation, acting as a mercury sink in areas close to man-made emissions.
Collapse
Affiliation(s)
- Gabriela Cristina Rabello Casagrande
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Juliane Dambros
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| | - Felipe Martello
- Vale Institute of Technology-Sustainable Development, Rua Boaventura da Silva, 955, Nazaré, CEP 66055-090, Belém, Pará, Brazil
| | - Thadeu Sobral-Souza
- Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Maria Inês Cruzeiro Moreno
- Departament of Biological Science, Institute of Biotechnology, Federal University of Catalão, Campus I, Av. Dr. Lamartine Pinto de Avelar, 1120 Setor Universitário, CEP 75704-020, Catalão, Goiás, Brazil
| | - Leandro Dênis Battirola
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil.
| | - Ricardo Lopes Tortorela de Andrade
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| |
Collapse
|
28
|
Méndez-López M, Parente-Sendín A, Calvo-Portela N, Gómez-Armesto A, Eimil-Fraga C, Alonso-Vega F, Arias-Estévez M, Nóvoa-Muñoz JC. Mercury in a birch forest in SW Europe: Deposition flux by litterfall and pools in aboveground tree biomass and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158937. [PMID: 36167130 DOI: 10.1016/j.scitotenv.2022.158937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric mercury (Hg) is largely assimilated by vegetation and subsequently transferred to the soil by litterfall, which highlights the role of forests as one of the largest global Hg sinks within terrestrial ecosystems. We assessed the pool of Hg in the aboveground biomass (leaves, wood, bark, branches and twigs), the Hg deposition flux through litterfall over two years (by sorting fallen biomass in leaves, twigs, reproductive structures and miscellaneous) and its accumulation in the soil profile in a deciduous forest dominated by Betula alba from SW Europe. The total Hg pool in the aboveground birch biomass was in the range 532-683 mg ha-1, showing the following distribution by plant tissues: well-developed leaves (171 mg ha-1) > twigs (160 mg ha-1) > bark (159 mg ha-1) > bole wood (145 mg ha-1) > fine branches (25 mg ha-1) > thick branches (24 mg ha-1) > newly sprouted leaves (20 mg ha-1). The total Hg deposition fluxes through litterfall were 15.4 and 11.7 μg m-2 yr-1 for the two years studied, with the greatest contribution coming from birch leaves (73 %). In the soil profile, the pool of Hg in the mineral soil (37.0 mg m-2) was an order of magnitude higher than in the organic horizons (1.0 mg m-2), mostly conditioned by parameters such as soil bulk density and thickness, total C and N contents and the presence of certain Al compounds.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| | - Andrea Parente-Sendín
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Noemi Calvo-Portela
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Antía Gómez-Armesto
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002 Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| |
Collapse
|
29
|
Peraza I, Chételat J, Richardson M, Jung TS, Awan M, Baryluk S, Dastoor A, Harrower W, Kukka PM, McClelland C, Mowat G, Pelletier N, Rodford C, Ryjkov A. Diet and landscape characteristics drive spatial patterns of mercury accumulation in a high-latitude terrestrial carnivore. PLoS One 2023; 18:e0285826. [PMID: 37186585 PMCID: PMC10184919 DOI: 10.1371/journal.pone.0285826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Limited information exists on mercury concentrations and environmental drivers of mercury bioaccumulation in high latitude terrestrial carnivores. Spatial patterns of mercury concentrations in wolverine (Gulo gulo, n = 419) were assessed across a 1,600,000 km2 study area in relation to landscape, climate, diet and biological factors in Arctic and boreal biomes of western Canada. Hydrogen stable isotope ratios were measured in wolverine hair from a subset of 80 animals to assess the spatial scale for characterizing environmental conditions of their habitat. Habitat characteristics were determined using GIS methods and raster datasets at two scales, the collection location point and a 150 km radius buffer, which was selected based on results of a correlation analysis between hydrogen stable isotopes in precipitation and wolverine hair. Total mercury concentrations in wolverine muscle ranged >2 orders of magnitude from 0.01 to 5.72 μg/g dry weight and varied geographically, with the highest concentrations in the Northwest Territories followed by Nunavut and Yukon. Regression models at both spatial scales indicated diet (based on nitrogen stable isotope ratios) was the strongest explanatory variable of mercury concentrations in wolverine, with smaller though statistically significant contributions from landscape variables (soil organic carbon, percent cover of wet area, percent cover of perennial snow-ice) and distance to the Arctic Ocean coast. The carbon and nitrogen stable isotope ratios of wolverine muscle suggested greater mercury bioaccumulation could be associated with feeding on marine biota in coastal habitats. Landscape variables identified in the modelling may reflect habitat conditions which support enhanced methylmercury transfer to terrestrial biota. Spatially-explicit estimates of wet atmospheric deposition were positively correlated with wolverine mercury concentrations but this variable was not selected in the final regression models. These landscape patterns provide a basis for further research on underlying processes enhancing methylmercury uptake in high latitude terrestrial food webs.
Collapse
Affiliation(s)
- Inés Peraza
- Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Murray Richardson
- Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Malik Awan
- Department of Environment, Government of Nunavut, Igloolik, Nunavut, Canada
| | - Steve Baryluk
- Environment and Natural Resources, Government of the Northwest Territories, Inuvik, Northwest Territories, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, Quebec, Canada
| | - William Harrower
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piia M Kukka
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Garth Mowat
- Ministry of Forests, British Columbia Government, Nelson, British Columbia, Canada
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Nicolas Pelletier
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Christine Rodford
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Andrei Ryjkov
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, Quebec, Canada
| |
Collapse
|
30
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
31
|
Méndez-López M, Gómez-Armesto A, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Needle age and precipitation as drivers of Hg accumulation and deposition in coniferous forests from a southwestern European Atlantic region. ENVIRONMENTAL RESEARCH 2022; 215:114223. [PMID: 36063908 DOI: 10.1016/j.envres.2022.114223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetation and climate are critical in the biogeochemical cycle of Hg in forest ecosystems. The study assesses the influence of needle age and precipitation on the accumulation of Hg in needle biomass and its deposition by litterfall in thirty-one pine plantations spread throughout two biogeographical regions in SW Europe. Well-developed branches of Pinus pinaster were sampled and pine needles were classified according to 4 age classes (y0, y1, y2, y3). The concentration of total Hg (THg) was analyzed in the samples and Hg content in needle biomass and its deposition by litterfall were estimated. The concentration of total Hg (THg) increased with needle age ranging from 9.1 to 32.7 μg Hg kg-1 in the youngest and oldest needles, respectively. The rate of Hg uptake (HgR) three years after needle sprouting was 10.2 ± 2.3 μg Hg kg-1 yr-1, but it decreased with needle age probably due to a diminution in photosynthetic activity as needles get older. The average total Hg stored in needle biomass (HgWt) ranged from 5.6 to 87.8 mg Hg ha-1, with intermediate needle age classes (y1 and y2) accounting for 70% of the total Hg stored in the whole needle biomass. The average deposition flux of Hg through needle litterfall (HgLt) was 1.5 μg Hg m-2 yr-1, with the y2 and y3 needles contributing most to the total Hg flux. The spatial variation of THg, HgWt and HgLt decreased from coastal pine stands, characterized by an oceanic climate, to inland pine stands, a feature closely related to the dominant precipitation regime in the study area. Climatic conditions and needle age are the main factors affecting Hg accumulation in tree foliage, and should be considered for an accurate assessment of forest Hg pools at a regional scale and their potential consequences in the functioning of terrestrial ecosystems.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Antía Gómez-Armesto
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
32
|
Monaci F, Ancora S, Paoli L, Loppi S, Wania F. Lichen transplants as indicators of gaseous elemental mercury concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120189. [PMID: 36116569 DOI: 10.1016/j.envpol.2022.120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Lichens play an important role in the biogeochemical cycling of mercury (Hg) and are commonly used as indicators of Hg enrichment in remote and anthropogenically impacted environments. To assess their capacity for Hg uptake and accumulation, we determined the concentration of gaseous elemental mercury (GEM) in air and the concentration of total Hg (THg) in transplanted thalli of two lichen species. Lichen transplants and passive air samplers (PASs) were concurrently deployed, side by side, at 10 sites within an abandoned mining area, characterized by large gradients in atmospheric Hg contamination. Highly variable time-weighted GEM concentrations determined by the PASs, ranging from 17 to 4,200 ng/m3, were mirrored by generally high Hg concentrations in transplanted thalli of both Xanthoria parietina (174-8,800 ng/g) and Evernia prunastri (143-5,500 ng/g). Hg concentrations in the two species co-varied linearly indicating about 60% greater Hg accumulation in X. parietina than in E. prunastri. Whereas Hg uptake in the fruticose E. prunastri increased linearly with GEM, a power law equation with a fractional exponent described the uptake in the foliose X. parietina. Extrapolating the relationships observed here to higher GEM levels yielded concentrations in lichen that agree very well with those measured in an earlier fumigation experiment performed under laboratory-controlled conditions. The uptake model of X. parietina was further verified by correctly estimating GEM concentrations from the THg measured in autochthonous thalli collected from the urban area adjacent to the mine site. Passive sampling can effectively provide time-weighted data of suitable spatial resolution to quantitatively describe GEM assimilation by lichens. Therefore, the combined use of passive sampling and lichen transplants can contribute to a more comprehensive understanding of the role of lichens, and potentially also of other cryptogams, in the deposition of atmospheric Hg to terrestrial ecosystems.
Collapse
Affiliation(s)
- Fabrizio Monaci
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy.
| | - Stefania Ancora
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Luca Paoli
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126, Pisa, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Frank Wania
- University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1065 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
33
|
Castro PJ, Kellö V, Cernušák I, Dibble TS. Together, Not Separately, OH and O 3 Oxidize Hg (0) to Hg (II) in the Atmosphere. J Phys Chem A 2022; 126:8266-8279. [DOI: 10.1021/acs.jpca.2c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pedro J. Castro
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York13210, United States
| | - Vladimir Kellö
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215Bratislava, Slovakia
| | - Ivan Cernušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215Bratislava, Slovakia
| | - Theodore S. Dibble
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York13210, United States
| |
Collapse
|
34
|
Yuan W, Wang X, Lin CJ, Wu F, Luo K, Zhang H, Lu Z, Feng X. Mercury Uptake, Accumulation, and Translocation in Roots of Subtropical Forest: Implications of Global Mercury Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14154-14165. [PMID: 36150175 DOI: 10.1021/acs.est.2c04217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant roots are responsible for transporting large quantities of nutrients in forest ecosystems and yet are frequently overlooked in global assessments of Hg cycling budgets. In this study, we systematically determined the distribution of total Hg mass and its stable isotopic signatures in a subtropical evergreen forest to elucidate sources of Hg in plant root tissues and the associated translocation mechanisms. Hg stored in roots and its isotopic signatures show significant correlations to those found in surrounding soil at various soil depths. The odd mass-independent fractionation (MIF) of root Hg at a shallow soil depth displays a -0.10‰ to -0.50‰ negative transition compared to the values in aboveground woody biomass. The evidence suggests that root Hg is predominantly derived from surrounding soil, rather than translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-dependent fractionation (MDF) of -0.10‰ to -1.20‰ compared to the soil samples, indicating a preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root components imply limited Hg transport in roots. This work highlights that Hg stored in plant roots is not a significant sink of atmospheric Hg. The heterogeneous distribution of Hg mass in roots of various sizes represents a significant uncertainty of current estimates of Hg pool size in forest ecosystems.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
35
|
Feinberg A, Dlamini T, Jiskra M, Shah V, Selin NE. Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1303-1318. [PMID: 35485923 PMCID: PMC9491292 DOI: 10.1039/d2em00032f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000-4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (∼0.03 cm s-1), yet it underestimates measurements from a flux tower study (0.04 cm s-1vs. 0.07 cm s-1) and Amazon litterfall (0.05 cm s-1vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 to +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere-atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Thandolwethu Dlamini
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Xu Z, Wang Z, Zhang X. Mapping the forest litterfall mercury deposition in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156288. [PMID: 35644398 DOI: 10.1016/j.scitotenv.2022.156288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Litterfall mercury (Hg) deposition represents one of the biggest Hg inputs to forest ecosystems through assimilation of atmospheric gaseous elemental Hg (Hg0) to foliage. However, due to the availability of litterfall production and Hg concentration data, a comprehensive quantification of litterfall Hg deposition is still lacking in China. In this study, the forest litterfall production of five major forest types in China was modeled by using the random forest (RF) method and multi-source datasets. A substantial nationwide dataset of litterfall Hg concentration was compiled including the investigation of our research group and previous published data. The litterfall Hg flux of forest was quantified by integrating litterfall production map and litterfall Hg concentration data. The nationwide litterfall Hg concentration ranged from 12.75 to 178.00 ng g-1 with a mean of 51.99 ± 34.23 ng g-1. For litterfall production, the mean value was simulated to be 5.07 Mg ha-1 yr-1, with the highest values in tropical areas and the lowest in the northeast and northwest arid regions. The litterfall Hg flux of forest in China was characterized by high in the south and low in the north, ranging from 5.57 to 137.05 μg m-2 yr-1, with an average value of 25.88 ± 12.53 μg m-2 yr-1. Total Hg deposition from forest litterfall in China was estimated to be 27.0 ± 13.0 Mg yr-1, and that of evergreen broadleaf forest, mixed forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest were 10.8 ± 5.3 Mg yr-1, 8.5 ± 4.0 Mg yr-1, 6.1 ± 2.6 Mg yr-1, 1.5 ± 1.0 Mg yr-1 and 0.2 ± 0.1 Mg yr-1, respectively. This is the primary quantitative evaluation of the forest litterfall Hg deposition in China, which is essential for understanding the role and status of Chinese forest in the global Hg cycle.
Collapse
Affiliation(s)
- Zehua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Xia S, Yuan W, Lin L, Yang X, Feng X, Li X, Liu X, Chen P, Zeng S, Wang D, Su Q, Wang X. Latitudinal gradient for mercury accumulation and isotopic evidence for post-depositional processes among three tropical forests in Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128295. [PMID: 35074747 DOI: 10.1016/j.jhazmat.2022.128295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Tropical forest contributes to > 50% of global litterfall mercury (Hg) inputs and surface soil Hg storage, while with limited understanding of Hg biogeochemical processes. In this study, we displayed the 5-m resolution of Hg spatial distribution in three 1-ha tropical forest plots across the latitudinal gradient in Southwest China, and determined Hg isotopic signatures to understand factors driving Hg spatial distribution and sequestration processes. Our results show that tropical forest at the lowest latitude has the highest litterfall Hg input (74.95 versus 34.14-56.59 μg m-2 yr-1 at higher latitude plots), but the smallest surface soil Hg concentration (2-3 times smaller than at higher latitude sites). Hg isotopic evidence indicates that the decreasing climate mediated microbial Hg reduction in forest floor leads to the increasing Hg accumulation along the latitudinal gradient in three tropical forests. The terrain induced indirect effects by influencing litterfall Hg inputs, soil organic matters distribution and interplays between surface and deep soils drive the heterogeneity of surface soil Hg distribution within each sampling plot. Our results highlight though the elevated litterfall Hg inputs, the distinct post-depositional reductions induced Hg loss would remarkedly decrease atmospheric Hg net sink in tropical forest.
Collapse
Affiliation(s)
- Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; National Forest Ecosystem Research Station at Xishuangbanna, Mengla 666300, Yunnan, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xianming Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xu Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qizhao Su
- Mengla Institute of Conservation, Xishuangbanna Administration of Nature Reserves, Mengla 666300, Yunan, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
38
|
Yu B, Yang L, Liu H, Xiao C, Bu D, Zhang Q, Fu J, Zhang Q, Cong Z, Liang Y, Hu L, Yin Y, Shi J, Jiang G. Tracing the Transboundary Transport of Mercury to the Tibetan Plateau Using Atmospheric Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1568-1577. [PMID: 35001617 DOI: 10.1021/acs.est.1c05816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deposition of atmospheric mercury (Hg) is the most important Hg source on the high-altitude Himalayas and Tibetan Plateau. Herein, total gaseous Hg (TGM) at an urban and a forest site on the Tibetan Plateau was collected respectively from May 2017 to October 2018, and isotopic compositions were measured to clarify the influences of landforms and monsoons on the transboundary transport of atmospheric Hg to the Tibetan Plateau. The transboundary transported anthropogenic emissions mainly originated over Indo-Gangetic Plain and carried over the Himalayas by convective storms and mid-tropospheric circulation, contributing over 50% to the TGM at the Lhasa urban site, based on the binary mixing model of isotopes. In contrast, during the transport of TGM from South Asia with low altitude, the uptake by evergreen forest in Yarlung Zangbo Grand Canyon largely decreased the TGM level and shifted isotopic compositions in TGM at the Nyingchi forest site, which are located at the high-altitude end of the canyon. Our results provided direct evidence from Hg isotopes to reveal the distinct patterns of transboundary transport to the Tibetan Plateau shaped by landforms and climates, which is critical to fully understand the biogeochemical cycling of Hg in the high-altitude regions.
Collapse
Affiliation(s)
- Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Duo Bu
- Science Faculty, Tibet University, Lhasa 850000, China
| | | | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianggong Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyuan Cong
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|