1
|
Hou M, Gu X, Lai W, Fan Y, Sun S, Yan P, Zhang Y, Zheng X, He S. Sulfur-iron interactions forming activated Fe xS y pool in-situ to synergistically improve nitrogen removal in denitrification system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 388:126047. [PMID: 40449443 DOI: 10.1016/j.jenvman.2025.126047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/22/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Sulfur-iron coupling has received increasing attention for improving nitrogen removal. However, the boosting mechanisms of denitrification in sulfur-iron coupling biological system are still ambiguous, and no reasonable explanation has been given for the mismatch between the amount of S0 loss and the amount of SO42- produced in the coupling system. Therefore, this study established sulfur-iron coupling denitrification systems, and investigated the nitrogen removal performances and coupling mechanisms of the systems. The research results showed that the TN removal efficiencies of the sulfur-iron coupling systems were 122.73-149.27 % higher than those of the single electron donor systems. In the process of nitrogen removal, about 26.03-35.32 % of the more leached S0 and Fe0 in the coupling systems co-precipitated to form activated FexSy pool in-situ, contributing about 25.41 % of the nitrogen removal and allowing the systems to remove 76.32-100 % of TN without external electron donors; moreover, the oxidation process of S2- provided electrons for the reduction of Fe (Ⅲ) to Fe (Ⅱ), generating more electron donors. Metagenomic sequencing results showed significant increases in the richness and diversity of functional microorganisms associated with sulfur and iron autotrophic denitrification in the coupling systems, and their contributions to the key genes in the denitrification, sulfur transformation and iron cycle processes increased substantially. In general, this study offered deeper understanding for assessing the nitrogen removal potential of the sulfur-iron coupling system, as well as investigating the interactions between S0 and Fe0 and elucidating nitrogen removal pathways within the system.
Collapse
Affiliation(s)
- Mingxiu Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenyan Lai
- Suzhou Genji Technology Co., Ltd., Suzhou, 215000, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiangyong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Chen C, Zheng N, Zhu H, An Q, Li X, Peng L, Xiu Z. Polylactic acid microplastics and earthworms drive cadmium bioaccumulation and toxicity in the soil-radish health community. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138391. [PMID: 40286655 DOI: 10.1016/j.jhazmat.2025.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Recent studies underscored the toxicity of microplastics (MPs) as vectors for cadmium (Cd) in soil-plant systems, yet the driven potential of soil fauna in real-world environments remains overlooked. This study examined the interactive effects of earthworms and polylactic acid (PLA) MPs (0.5 % w/w) on rhizosphere biochemistry and Cd (2 mg/kg)-induced phytotoxicity in radish. The combined treatment of earthworms and PLA MPs significantly increased the soil available Cd (diethylenetriaminepentaacetic acid -extractable Cd) from 0.79 mg/kg to 1.01 mg/kg compared to the Cd treatment (p < 0.05) and enhanced the bacterial network stability. Cd accumulation in radish was significantly elevated under the combined treatment (roots: 2.04 mg/kg; leaves: 12.31 mg/kg) compared to the Cd treatment (roots: 1.59 mg/kg; leaves: 8.82 mg/kg) (p < 0.05). The combined treatment activated the radish antioxidant system. The combined treatment (roots: 6.08 g; leaves: 1.65 g) significantly reduced radish biomass compared to the Cd treatment (roots: 24.41 g; leaves: 4.45 g) (p < 0.05). Metabolic pathways involving lipid and carbohydrate metabolism, membrane transport, and secondary metabolite biosynthesis were disrupted. Structural equation modeling identified rhizosphere soil properties (pH, SOM, and CEC) as well as Cd and antioxidant systems in the leaf as major contributors to radish growth inhibition.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| |
Collapse
|
3
|
Wang X, Gao L, Wang S, Zhang X, Feng R, Jia S. Metagenomic insights into the assembly, function, and key taxa of bacterial community in full-scale pesticide wastewater treatment processes. ENVIRONMENTAL RESEARCH 2025; 271:121037. [PMID: 39920962 DOI: 10.1016/j.envres.2025.121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Pesticide wastewater emerges as a typical refractory wastewater, characterized by complex composition and high toxicity, posing significant treatment challenges. Bacterial communities are responsible for biological treatment of refractory wastewater in full-scale pesticide wastewater treatment plants (PWWTPs), providing important implications for optimizing system performance and improving management strategies. However, the knowledge of their composition, diversity, function, assembly patterns, and biological interactions remains limited. Therefore, this study applied high-throughput sequencing, machine learning models, and statistical analysis to investigate key features of bacterial communities in eight PWWTPs. We found that Proteobacteria and Bacteroidota were the most abundant phyla, with Pseudomonas, Hyphomicrobium, Comamonas, and Thauera being dominant genera. Bacterial community distribution and diversity varied significantly among influents, sludges, and effluents, with sludges and effluents exhibiting higher diversity, richness, and evenness compared to influents. Deterministic processes primarily shaped the bacterial communities, accounting for 77.12%, 61.44%, and 64.05% of variation in influents, sludges, and effluents, respectively. Homogeneous selection explained 47.71%, 31.37%, and 31.37% of variation across these communities. Key modules (Module 1 in influents, Modules 3 and 4 in sludges, and Module 1 in effluents) were significantly associated with various metabolic and degradative functions (p < 0.05). Core taxa identified by Random Forest analysis were strongly linked to key metabolic and degradation functions, such as the metabolism of cofactors and vitamins, carbohydrates, and amino acids as well as the degradation of benzoate, aminobenzoate, nitrotoluene, chloroalkane, and chloroalkene. This study deepens our understanding of bacterial community dynamics and key features in pesticide wastewater treatment systems, offering scientific guidance for process optimization, efficiency improvement, and system stability assessment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Zhang Z, Liu R, Zheng W, Lan Y, Li Y. Specialized genera and niche partitioning promote the biosynthesis of short-chain fatty acids in anaerobic cofermentation of sewage sludge and protein-rich waste. ENVIRONMENTAL RESEARCH 2025; 271:121034. [PMID: 39909096 DOI: 10.1016/j.envres.2025.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Elucidating the relationships among various microorganisms and their reactions to environmental fluctuations, such as dissolved organic matter (DOM), remains a key objective in the anaerobic cofermentation (ACF) of sewage sludge (SS) and protein-rich waste (PRW); however, this topic is inadequately understood. In this study, the microbial traits associated with the biosynthesis of short-chain fatty acids (SCFAs) were investigated in the ACF of SS in conjunction with four distinct PRWs (pupa, fishmeal, maize gluten, and soybean meal). Compared with those in the SS-only reactor, the first-order rate constants for biosolid dissolution in the SS/PRW reactors were increased by 1.9-4.0-fold. Pupa performed best among the four PRWs in the ACF process, with the solubilization rate increasing from 9.4% (SS-only reactor) to 33.5%. The copious and readily biodegradable DOM created a unique niche for functional microbes, leading to reframing of the microfloral structure. Specialized genera, such as Holophaga, Alistipes, and Geothrix, were responsible for SCFA biosynthesis in the SS/pupa reactor. The highly differentiated, low-redundancy microecosystem constructed in the SS/pupa reactor contributed to the independent functioning of the hydrolyzers and acidogens, resulting in an SCFA yield that was 6.9-fold greater than that in the SS-only reactor. In addition, the ACF of SS/pupa resulted in the genes encoding the NiFe hydrogenase and Wood-Ljungdahl pathway being intact, which promoted the synthesis of SCFAs, especially acetate. These findings offer new insights into the microbiological mechanisms that augment SCFA generation by the ACF of SS/PRW in terms of microorganism fate, metabolic network relationships, and microecosystem niche.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Liu
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| | - Wei Zheng
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yaqiong Lan
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
5
|
Xiao J, Huang J, Chen Y, Wang Y, Qian X, Liu D, Cao Y. The introduction of nano zero-valent iron in constructed wetlands simultaneously enhanced the removal of perfluorooctanoic acid (PFOA) and nutrients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124285. [PMID: 39933384 DOI: 10.1016/j.jenvman.2025.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
Constructed wetland (CW) serve as the final ecological barrier for hazardous materials entering the natural water environment. Due to the ecological toxicity and difficult bioutilization characteristics of perfluorooctanoic acid (PFOA) itself, CW technology faces great challenges in the field of PFOA remediation. In this study, nano zero-valent iron (nZVI) was introduced into CWs to explore the mechanism of the synergistic removal of PFOA and nutrients in nZVI-CW system. The results indicated that the addition of 10 mg/L nZVI improved the removal efficiency of CW for 1 and 10 mg/L PFOA, with an average removal rate increased by 3.53-8.70%. The transformation products in CW effluents were qualitatively detected using HPLC-Q-TOF-MS, suggesting that the degradation of PFOA may involve decarboxylation, hydrolysis, redox, elimination, substitution and intramolecular rearrangement processes. The presence of nZVI enhanced the average removal rates of NH4+-N, NO3--N and TP by 2.78-18.4% in CWs. The increase in key substrate enzyme activity confirmed the stimulating effect of nZVI on microbial activity. The addition of nZVI facilitated the growth and enrichment of hydroautotrophic denitrifying bacteria, nitrat-dependent iron-oxidizing bacteria, and dissimilatory iron-reducing bacteria. Two types of dissimilatory iron-reducing bacteria (Geobacter and Acinetobacter) may be potential PFOA-degrading bacteria. Additionally, signaling pathways related to carbohydrate metabolism, energy metabolism, and xenobiotic degradation and metabolism exhibited higher abundance in the nZVI treated groups.
Collapse
Affiliation(s)
- Jun Xiao
- College of Resources and Environment, Southwest University, Chongqing, China, (400715); School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China.
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, China, (400715)
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China
| | - Xiuwen Qian
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China
| | - Dengping Liu
- College of Resources and Environment, Southwest University, Chongqing, China, (400715)
| | - Yuan Cao
- College of Resources and Environment, Southwest University, Chongqing, China, (400715)
| |
Collapse
|
6
|
Xia M, Li X, Zhang M, Li Y, Wu J. Effect of root exudation on community structure of rhizosphere microorganism of three macrophytes during treating swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124551. [PMID: 39954503 DOI: 10.1016/j.jenvman.2025.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Macrophytes not only directly absorb nitrogen (N) from wastewater, but also influence N removal processes. They were achieved by microorganisms in rhizosphere through root exudations and oxygen secretion. However, changes of root exudes and rhizosphere microbial community structure in macrophytes in high N wastewater are still unclear. Objectives of this study were to investigate effects of dissolved organic carbon (DOC) and organic acids (OA) on composition and diversity of microbial communities across three macrophytes during treating swine wastewater. Result showed that secretion rates of DOC and total organic acid (TOA) displayed an increasing trend with extended experimental times in Pontederia cordata and Iris pseudacorus rhizosphere, while it presented a decline trend in Canna indica rhizosphere. Preponderant phyla in rhizosphere were Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Genera Geobacter enriched in I. pseudacorus rhizosphere, while unidentified_Cyanobacteria enriched in P. cordata rhizosphere. Diversity and richness of microbial communities in C. indica and P. cordata rhizosphere at different experimental periods showed no significant differences (P > 0.05). However, diversity of microbial community increased in I. pseudacorus rhizosphere. Although interactions among microorganisms reduced, they became more mutualistic after treating swine wastewater. Concentration of NH4+-N and total nitrogen (TN), pH, dissolved oxygen (DO) in swine wastewater, malonic acid and succinic acid released by roots enhanced N cycle functions of microbial community. The results contribute to further comprehension of the mechanism of N removal in rhizosphere during treating swine wastewater.
Collapse
Affiliation(s)
- Menghua Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zhao X, Meng X, Li Q, Ho SH. Nitrogen metabolic responses of non-rhizosphere and rhizosphere microbial communities in constructed wetlands under nanoplastics disturbance. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136777. [PMID: 39642721 DOI: 10.1016/j.jhazmat.2024.136777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Constructed wetlands (CWs) serve as crucial sinks for nanoplastics, making them a significant research hotspot regarding the impacts of nanoplastics on the nitrogen metabolism within microbial communities. However, there has been a lack of comparative analysis between rhizosphere and non-rhizosphere microbial communities under nanoplastics disturbance. This study analyzes the nitrogen metabolic responses of these microbial communities in CWs following repeated nanoplastics disturbance. Results indicated that repeated nanoplastics disturbances led to a 17.72 % decrease in the relative abundance of nitrifying bacteria in rhizosphere microbial community, while the relative abundance of Polaromonas increased by 5.24 % in non-rhizosphere community. Microbial network revealed that rhizosphere microbial community primarily contributed to nitrogen metabolism by forming a tightly connected network. In contrast, non-rhizosphere microbes dominated nitrogen cycling by promoting energy and information exchange among microbes. Furthermore, rhizosphere and non-rhizosphere microbial communities exhibited distinct resistance and adaptation to nanoplastics disturbance. Rhizosphere microbes responded by activating antioxidant systems, whereas non-rhizosphere microbes could develop adaptive growth and metabolism, using nanoplastics as a carbon source. The adaptation strategies of non-rhizosphere community proved more advantageous for coping with persistent nanoplastics disturbance. This study comprehensively investigated the differences of nitrogen metabolism between rhizosphere and non-rhizosphere microorganisms in CWs under nanoplastics disturbance.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qinglin Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shih-Hsin Ho
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Wang G, Chi T, Li R, Li T, Zhang X. Harnessing the rhizosphere sponge to smooth pH fluctuations and stabilize contaminant retention in biofiltration system. BIORESOURCE TECHNOLOGY 2025; 418:131971. [PMID: 39672238 DOI: 10.1016/j.biortech.2024.131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Fluctuating pH conditions can affect heavy metal mobility, thereby limiting the efficiency of biofiltration systems (BS). To address this, we developed an innovative rhizosphere sponge, biochar-based bioreactor (RBB), designed to stabilize Cd2+ removal across a pH range of 5 to 9. RBB consistently outperformed the control, achieving a notable 91.3 % Cd2+ removal at pH 5. By creating optimized oxygen and redox zoning, the rhizosphere sponge enhanced both biochar surface reactions and microbial activity. Under acidic conditions, biochar facilitated Fe2+/Mn2+ precipitation into stable (oxy)hydroxides, a process further driven by microbial oxidation. Consequently, RBB accumulated 1.54 times more Fe-Mn oxide-bound Cd than the control, effectively reducing Cd2+ mobility. Additionally, loosely bound extracellular polymeric substances claimed preferential Cd2+ sequestration after acidification. The stabilized microecology and increased ecological niches, allowing RBB to better buffer against pH fluctuations, presenting it as a robust solution for sustainable heavy metal remediation in variable environments.
Collapse
Affiliation(s)
- Guoliang Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianying Chi
- CCCC-TDC Environmental Engineering Co. Ltd., Tianjin 300461, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
9
|
Zhang N, Zhu D, Yao Z, Zhu DZ. Virus-prokaryote interactions assist pollutant removal in constructed wetlands. BIORESOURCE TECHNOLOGY 2025; 416:131791. [PMID: 39528031 DOI: 10.1016/j.biortech.2024.131791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
As a vital part of microbial communities, viruses in constructed wetlands (CWs) remain poorly explored, yet they could significantly affect pollutant removal. Here, two pilot-scale CWs were built to investigate the viral community under different hydraulic loading rates (HLRs) using in-depth metagenomic analysis. Gene-sharing networks suggested that the CWs were pools of unexplored viruses. A higher abundance of prokaryotic functional genes related to sulfur cycling and denitrification was observed in the higher HLR condition, which was associated with greater removal of total nitrogen and nitrate nitrogen compared to the lower HLR condition. Viruses also affect nitrogen pollutant removal by potentially infecting functional prokaryotes, such as denitrification bacteria and ammonia-oxidizing bacteria, and by providing auxiliary metabolic genes involved in sulfur and nitrogen cycling. These findings reveal the significance of viruses in pollutant removal in CWs and enhance the understanding of the relationship between engineering design parameters and performance from microbial perspectives.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - David Z Zhu
- School of Civil & Environmental Engineering and GeographyScience, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Abdullah Al M, Zhang D, Liu S, Ming Y, Li M, Xing P, Yu X, Niu M, Wu K, Xie W, He Z, Yan Q. Community Assembly Mechanisms of nirK- and nirS-type Denitrifying Bacteria in Sediments of Eutrophic Lake Taihu, China. Curr Microbiol 2024; 82:53. [PMID: 39710748 DOI: 10.1007/s00284-024-04032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Denitrifying bacteria, particularly nirK- and nirS-type, are functionally equivalent and could occupy different niches, but their community assembly mechanisms and responses to environmental heterogeneity are poorly understood in eutrophic lakes. In this study, we investigated the community assembly mechanisms of nirK- and nirS-type denitrifying bacteria and clarified their responses to sediments environmental factors in Lake Taihu, China. The quantitative real-time PCR and Illumina HiSeq-based sequencing revealed that the abundance and composition of two types of denitrifying bacterial communities varied among different sites in the sediments of Lake Taihu. The functions of these two types of denitrifying bacteria were assigned to mainly nitrogen cycling along with carbon, oxygen, and sulfur cycling, indicating their diverse ecosystems functions. Neutral community model showed that majority of nirK- and nirS-type denitrifying bacteria were neutrally distributed, while dispersal and selection were the dominant drivers in shaping community assembly of nirK-type bacteria. The community assembly of nirS-type was mainly driven by homogeneous selection. We found complex network interactions between nirK- and nirS-type denitrifying bacteria with other bacterial communities, indicating the importance of other bacterial coexistence for ecosystem functions by denitrifying bacteria in lake sediments. Keystone taxa of other bacteria showed the highest interactions with denitrifying bacteria; further, a strong significant correlation between keystone taxa with environmental factors and sediment enzyme content revealed by Mantel tests. Specially, total phosphorous was the key environmental factor determining the composition and diversity of nirK and nirS-type denitrifying bacteria in lake sediments, whereas NAR, AmoA, and NIR were the key reductase enzymes directly or indirectly affected to them. Our results provide significant insights into understanding the effects of changing nirK- and nirS-type denitrifying bacterial diversities and underlying community assembly mechanisms under changing environmental conditions in eutrophic lake ecosystems.
Collapse
Affiliation(s)
- Mamun Abdullah Al
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Dandan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Sirui Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Yuzhen Ming
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoli Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Mingyang Niu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Kun Wu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Wei Xie
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
11
|
Deng S, Cun D, Lin R, Peng D, Du Y, Wang A, Guan B, Tan R, Chang J. Enhanced remediation of real agricultural runoff in surface-flow constructed wetlands by coupling composite substrate-packed bio-balls, submerged plants and functional bacteria: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2024; 263:120124. [PMID: 39395554 DOI: 10.1016/j.envres.2024.120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Import of agricultural runoff containing nutrients considerably contributes to eutrophication of receiving water bodies. Surface-flow constructed wetlands (SFCWs) are commonly applied for agricultural runoff purification, but the performance is usually unsatisfactory. In this study, suspended bio-balls filled with zeolite and iron-carbon (Fe-C) composite substrates, submerged macrophyte (Ceratophyllum demersum) and functional denitrifying bacteria were collectively added into SFCW microcosms to enhance the remediation efficiency for real agricultural runoff with high nutrient concentrations and low content of bioavailable organic matter. The bio-ball added SFCWs achieved notably higher pollutant removal efficiencies (21.1%, 80.2% and 47.5% for chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), respectively) than the control (COD: 6.9%, TN: 64.4%, TP: 27.9%), because of the versatile functions of filling materials for pollutant removal. C. demersum plantation (COD: 44.2%, TN: 82.8% and TP: 53.7%) and functional bacteria inoculation (COD: 51.8%, TN: 85.8% and TP: 55.1%) further enhanced the efficiency of the SFCWs for agricultural runoff remediation. Bio-ball addition and C. demersum plantation significantly increased the humification degree and reduced the molecular weight of dissolved organic matter (DOM) in the agricultural runoff. Moreover, the two intensification measures also notably reduced organic and nitrogen contents in the wetland sediment. Remarkable distinction in bacterial community distribution patterns was observed in the SFCW sediment and filling substrates in bio-balls. Keystone genera including Clostridium_sensu_stricto_1 and Bacillus in the zeolite, Sphingomonas and Exiguobacterium in the Fe-C substrates and Sediminibacterium in the sediment might be critical for agricultural runoff remediation in the SFCW microcosms. The study highlights a high potential of the intensified SFCWs by these coupling measures for agricultural runoff remediation.
Collapse
Affiliation(s)
- Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming, 650091, China
| | - Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Dongliang Peng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; China Construction Third Bureau Green Industry Investment Co., Ltd, Chongqing, 430074, China
| | - Yanduo Du
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Aoxue Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Bowen Guan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Rong Tan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Pang Q, Zhao G, Wang D, Zhu X, Xie L, Zuo D, Wang L, Tian L, Peng F, Xu B, He F, Ding J, Chu W. Water periods impact the structure and metabolic potential of the nitrogen-cycling microbial communities in rivers of arid and semi-arid regions. WATER RESEARCH 2024; 267:122472. [PMID: 39305525 DOI: 10.1016/j.watres.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Guohua Zhao
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Dan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Dezhi Zuo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China.
| | - Linfeng Tian
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China; Environmental Monitoring Station of Shizuishan, Shizuishan 753000, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jing Ding
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China
| | - Wenhai Chu
- College of Environmental Science and Engineering, Tongji University, Shanghai 20082, PR China.
| |
Collapse
|
13
|
Gao L, Wang X, Wang Y, Xu X, Miao Y, Shi P, Jia S. Refractory wastewater shapes bacterial assembly and key taxa during long-term acclimatization. WATER RESEARCH 2024; 265:122246. [PMID: 39163712 DOI: 10.1016/j.watres.2024.122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Bacterial assembly and key taxa during long-term acclimatization in refractory wastewater treatment systems is of paramount importance for optimizing system performance and improving management strategies. Therefore, this study employed high-throughput sequencing, coupled with machine learning models and statistical analysis approaches, to comprehensively elucidate key features of bacterial communities and assembly processes in pesticide wastewater treatment systems. A nine-month monitoring showed substantial variation in diversity and composition of bacterial community between two interconnected biological treatment units (designated as BA and PA). Dynamics of bacterial communities in both units were similar. Moreover, water quality played crucial roles in regulating the bacterial community structure of activated sludge, which were primarily driven by deterministic patterns. Homogeneous selection contributed to 62.85 % and 64.43 % of the variations in BA and PA samples, respectively. Additionally, network analysis revealed significant modularity in bacterial compositions in both groups. Linear regression analysis identified major bacterial modules associated with metabolism and degradation functions. Notably, Module 2 in PA samples has significant positive correlations with functions related to metabolism of nucleotide, amino acid, and xenobiotics, as well as benzoate degradation. Furthermore, key taxa in ecological modules identified by Random Forest model, such as Pseudomonas, Sphingobium, and PHOS-HE28, were dominant populations with metabolism and degradation functions. Particularly, Sphingobium, appeared to be a potential multifunctional degrading bacterium, related to amino acid and xenobiotics metabolism, as well as fatty acid, valine, leucine, isoleucine, fluorobenzoate, and aminobenzoate degradation. These findings are important for developing operating strategies to maintain stable system performance during refractory wastewater treatment.
Collapse
Affiliation(s)
- Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, United States; Department of Marine and Environmental Sciences, Northeastern University, Boston 02115, United States
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Zhang M, Dong P, Zhang X, Wang H, Zhang L, Wang H. Effects of filling substrates on remediation performance and sulfur transformation of sulfate reducing packed-bed bioreactors treating acid mine drainage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123026. [PMID: 39447368 DOI: 10.1016/j.jenvman.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The filling substrate is one of key factors influencing effectiveness of sulfate reducing packed-bed bioreactor (SRPB) treating acid mine drainage (AMD). The effects of four substrates (i.e. quartz sand, steel residue, biochar, and peanut shell) on remediation performance and sulfur transformation of SRPB treating AMD was studied. The results showed that steel residue and biochar improved sulfate reduction efficiency (61% and 49%) compared to quartz sand (32%), whereas peanut shell inhibited sulfate reduction efficiency (19%), attributed to its decomposition process leading to a severe accumulation of acetic acid. More amounts of sulfides generated in steel residue bioreactor were converted into acid volatile sulfide and elemental sulfur, resulting in a significant decrease in dissolved sulfide in the effluent. Metals (Fe, Al, Zn, Cd and Cr) except for Mn were effectively immobilized in the bioreactors, particularly for Al and Cd. Sulfate reducing bacteria and sulfide oxidizing bacteria lived symbiotically in all bioreactors which exhibited similar heterogeneity in microbial distribution and function, i.e. bacterial sulfate reduction mainly occurring in bottom-middle layers and photoautotrophic sulfide oxidation in upper layer close to outlet. The microbial response mechanism to various substrate environments was revealed through co-occurrence networks analysis. This study suggests that attention should be paid to the inhibitory effect of acetic acid accumulation on sulfate reduction when using sole lignocellulosic waste (peanut shell), and steel residue and biochar could be utilized as filling substances to promote sulfate reduction.
Collapse
Affiliation(s)
- Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Peng Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xuhui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liandong Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
15
|
Zhang W, Ye J, Hu F, Zhang J, Chen P, Yuan Z, Xu Z. Microbial community succession and responses to internal environmental drivers throughout the operation of constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 259:119522. [PMID: 38960356 DOI: 10.1016/j.envres.2024.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Constructed wetlands (CWs) have been widely used to ensure effective domestic wastewater treatment. Microorganisms-derived CWs have received extensive attention as they play a crucial role. However, research on the succession patterns of microbial communities and the influencing mechanisms of internal environmental factors throughout entire CW operations remains limited. In this context, three parallel-operated CWs were established in this study to assess the microbial communities and their influencing environmental factors at different substrate depths throughout the operation process using 16S rRNA gene high-throughput sequencing and metagenomic sequencing. The results showed gradual reproduction and accumulation of the microbial communities throughout the CW operation. Although gradual increases in the richness and diversity of the microbial communities were found, there were decreases in the functional expression of the dominant microbial species. The excessive accumulation of microorganisms will decrease the oxidation-reduction potential (ORP) within CWs and attenuate their influence on effluent. Dissolved oxygen (DO) was the major factor influencing the microbial community succession over the CW operation. The main identified functional bacterial genera responsible for the ammonium oxidation, nitrification, and denitrification processes in the CWs were Nitrosospira, Nitrobacter, Nitrospira, Rhodanobacter, and Nakamurella. The narG gene was identified as a key functional gene linking various components of nitrogen cycling, while pH, electrical conductivity (EC), and ORP were the major environmental factors affecting the metabolism characteristics of nitrogen functional microorganisms. This study provides a theoretical basis for the effective regulation of related microbial communities to achieve long-term, efficient, and stable CW operations.
Collapse
Affiliation(s)
- Wencan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfeng Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Feng Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Peipei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhanzhan Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
16
|
Bi Y, Liu F, Fu Z, Qiao H, Wang J. Enhancing total nitrogen removal in constructed wetlands: A Comparative study of iron ore and biochar amendments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121873. [PMID: 39059309 DOI: 10.1016/j.jenvman.2024.121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Efficient nitrogen removal in constructed wetlands (CWs) remains challenging when treating agricultural runoff with a low carbon-to-nitrogen ratio (C/N). However, using biochar, iron ore, and FeCl3-modified biochar (Fe-BC) as amendments could potentially improve total nitrogen (TN) removal efficiency in CWs, but the underlying mechanisms associated with adding these substrates are unclear. In this study, five CWs: quartz sand constructed wetland (Control), biochar constructed wetland, Fe-BC constructed wetland, iron ore constructed wetland, and iron ore + biochar constructed wetland, were built to compare their treatment performance. The rhizosphere microbial community compositions and their co-occurrence networks were analyzed to reveal the underlying mechanisms driving their treatment performance. The results showed that iron ore was the most efficient amendment, although all treatments increased TN removal efficiency in the CWs. Ammonia-oxidizing, heterotrophic denitrifying, nitrate-dependent anaerobic ferrous oxidizing (NAFO), and Feammox bacteria abundance was higher in the iron ore system and led to the simultaneous removal of NH4+-N, NO3--N, and NO2--N. Visual representations of the co-occurrence networks further revealed that there was an increase in cooperative mutualism (the high proportion of positive links) and more complex interactions among genera related to the nitrogen and iron cycle (especially ammonia-oxidizing bacteria, heterotrophic denitrifying bacteria, NAFO bacteria, and Feammox bacteria) in the iron ore system, which ultimately contributed to the highest TN removal efficiency. This study provides critical insights into how different iron ore or biochar substrates could be used to treat agricultural runoff in CWs.
Collapse
Affiliation(s)
- Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
17
|
Pang Q, Wang D, Jiang Z, Abdalla M, Xie L, Zhu X, Peng F, Smith P, Wang L, Miao L, Hou J, Yu P, He F, Xu B. Intensified river salinization alters nitrogen-cycling microbial communities in arid and semi-arid regions of China. ECO-ENVIRONMENT & HEALTH 2024; 3:271-280. [PMID: 39252856 PMCID: PMC11381997 DOI: 10.1016/j.eehl.2024.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 09/11/2024]
Abstract
Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources. However, a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking. A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics. To further analyze the impact of salinity on nitrogen metabolism processes, we evaluated rivers with long-term salinity gradients based on in situ observations. The genes and enzymes that were inhibited generally by salinity, especially those involved in nitrogen fixation and nitrification, showed low abundances in three salinity levels. The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion, especially for denitrification genes/enzymes that were enriched under medium salinity. Denitrifying bacteria exhibited various relationships with salinity, while dissimilatory nitrate reduction to ammonium bacterium (such as Hydrogenophaga and Curvibacter carrying nirB) were more inhibited by salinity, indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration. Most genera exhibited symbiotic and mutual relationships, and the highest proportion of significant positive correlations of abundant genera was found under medium salinity. This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules, and our results are useful for improving the availability of river water resources in arid and semi-arid regions.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Mohamed Abdalla
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, UK
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, UK
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lingzhan Miao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Yu
- Shandong Academy of Environmental Sciences Co., Ltd, Jinan 250100, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
18
|
Zhong L, Sun HJ, Pang JW, Ding J, Zhao L, Xu W, Yuan F, Zhang LY, Ren NQ, Yang SS. Ciprofloxacin affects nutrient removal in manganese ore-based constructed wetlands: Adaptive responses of macrophytes and microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134579. [PMID: 38761761 DOI: 10.1016/j.jhazmat.2024.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
19
|
Zhang D, Yu H, Yu X, Yang Y, Wang C, Wu K, Niu M, He J, He Z, Yan Q. Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments. ADVANCED BIOTECHNOLOGY 2024; 2:21. [PMID: 39883300 PMCID: PMC11740870 DOI: 10.1007/s44307-024-00028-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 01/31/2025]
Abstract
Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing. We found that the N removal activities could be affected through potential competition and inhibition among microbial metabolic pathways. High-diversity microbial communities generally increased the abundance and expression of N removal functional genes. Further enrichment experiments showed that the enrichment of N removal microorganisms led to a development of simplified but more stable microbial communities, characterized by similar evolutionary patterns among N removal microorganisms, tighter interactions, and increased adaptability. Notably, the sustained provision of NH4+ and NO2- during the enrichment could potentially strengthen the interconnections among denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) processes. Moreover, the identification of shared metabolic traits among denitrification, anammox and DNRA implies important cooperative associations and adaptability of N removal microorganisms. Our findings highlight the microbial interactions affect the adaptive strategies of key microbial taxa involved in N removal.
Collapse
Affiliation(s)
- Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Huang Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
- School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Xiaoli Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yuchun Yang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Cheng Wang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Kun Wu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Mingyang Niu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
20
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Zhong L, Yang SS, Sun HJ, Cui CH, Wu T, Pang JW, Zhang LY, Ren NQ, Ding J. New insights into substrates shaped nutrients removal, species interactions and community assembly mechanisms in tidal flow constructed wetlands treating low carbon-to-nitrogen rural wastewater. WATER RESEARCH 2024; 256:121600. [PMID: 38640563 DOI: 10.1016/j.watres.2024.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group Co., Ltd., Beijing 100096, China; China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Yang X, Chen Y, Liu T, Zhang L, Wang H, Chen M, He Q, Liu G, Ju F. Plastic particles affect N 2O release via altering core microbial metabolisms in constructed wetlands. WATER RESEARCH 2024; 255:121506. [PMID: 38552486 DOI: 10.1016/j.watres.2024.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Constructed wetlands (CWs) have been proven to effectively immobilize plastic particles. However, little is known about the differences in the impact of varying sized plastic particles on nitrous oxide (N2O) release, as well as the intervention mechanisms in CWs. Here, we built a lab-scale wetland model and introduced plastic particles of macro-, micro-, and nano-size at 100 μg/L for 370 days. The results showed that plastic particles of all sizes reduced N2O release in CWs, with the degrees being the strongest for the Nano group, followed by Micro and Macro groups. Meanwhile, 15N- and 18O-tracing experiment revealed that the ammoxidation process contributed the most N2O production, followed by denitrification. While for every N2O-releasing process, the contributing proportion of N2O in nitrification-coupled denitrification were most significantly cut down under exposing to macro-sized plastics and had an obvious increase in nitrifier denitrification in all groups, respectively. Finally, we revealed the three mechanism pathways of N2O release reduction with macro-, micro-, and nano-sized plastics by impacting carbon assimilation (RubisCO activity), ammonia oxidation (gene amo abundance and HAO activity), and N-ion transmembrane and reductase activities, respectively. Our findings thus provided novel insights into the potential effects of plastic particles in CWs as an eco-technology.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Management, Faculty of Civil Engineering and Geosciences, Section of Sanitary Engineering, Delft University of Technology, Delft 2628 CN, the Netherlands; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China.
| | - Tao Liu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Hui Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Management, Faculty of Civil Engineering and Geosciences, Section of Sanitary Engineering, Delft University of Technology, Delft 2628 CN, the Netherlands
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.
| |
Collapse
|
23
|
Wang X, Zhang D, Ma K, Bu C, Wang Y, Tang Y, Xu J, Xu Y. Biochar and zero-valent iron alleviated sulfamethoxazole and tetracycline co-stress on the long-term system performance of bioretention cells: Insights into microbial community, antibiotic resistance genes and functional genes. ENVIRONMENTAL RESEARCH 2024; 248:118271. [PMID: 38262515 DOI: 10.1016/j.envres.2024.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.
Collapse
Affiliation(s)
- Xue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Danyi Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kexin Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Chibin Bu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jianing Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
24
|
Fan Y, Sun S, Gu X, Zhang M, Peng Y, Yan P, He S. Boosting the denitrification efficiency of iron-based constructed wetlands in-situ via plant biomass-derived biochar: Intensified iron redox cycle and microbial responses. WATER RESEARCH 2024; 253:121285. [PMID: 38354664 DOI: 10.1016/j.watres.2024.121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Considering the unsatisfied denitrification performance of carbon-limited wastewater in iron-based constructed wetlands (ICWs) caused by low electron transfer efficiency of iron substrates, utilization of plant-based conductive materials in-situ for improving the long-term reactivity of iron substrates was proposed to boost the Fe (III)/Fe (II) redox cycle thus enhance the nitrogen elimination. Here, we investigated the effects of withered Iris Pseudacorus biomass and its derived biochar on nitrogen removal for 165 days in ICWs. Results revealed that accumulate TN removal capacity in biochar-added ICW (BC-ICW) increased by 14.7 % compared to biomass-added ICW (BM-ICW), which was mainly attributed to the synergistic strengthening of iron scraps and biochar. The denitrification efficiency of BM-ICW improved by 11.6 % compared to ICWs, while its removal capacity declined with biomass consumption. Autotrophic and heterotrophic denitrifiers were enriched in BM-ICW and BC-ICW, especially biochar increased the abundance of electroactive species (Geobacter and Shewanella, etc.). An active iron cycle exhibited in BC-ICW, which can be confirmed by the presence of more liable iron minerals on iron scraps surface, the lowest Fe (III)/Fe (II) ratio (0.51), and the improved proportions of iron cycling genes (feoABC, korB, fhuF, TC.FEV.OM, etc.). The nitrate removal efficiency was positively correlated with the nitrogen, iron metabolism functional genes and the electron transfer capacity (ETC) of carbon materials (P < 0.05), indicating that redox-active carbon materials addition improved the iron scraps bioavailability by promoting electron transfer, thus enhancing the autotrophic nitrogen removal. Our findings provided a green perspective to better understand the redox properties of plant-based carbon materials in ICWs for deep bioremediation in-situ.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
25
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
26
|
Shi B, Cheng X, Jiang S, Pan J, Zhu D, Lu Z, Jiang Y, Liu C, Guo H, Xie J. Unveiling the power of COD/N on constructed wetlands in a short-term experiment: Exploring microbiota co-occurrence patterns and assembly dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169568. [PMID: 38143001 DOI: 10.1016/j.scitotenv.2023.169568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood. In this study, we conducted comprehensive mechanistic experiments to investigate the response of CWs to changes in influent CNR, focusing on the effluent, rhizosphere, and substrate microbiota. Our goal is to provide new insights into CW management by integrating microbial ecology and environmental engineering perspectives. We constructed two groups of horizontal subsurface flow constructed wetlands (HFCWs) and set up three influent CNRs to analyse the microbial responses and nutrient removal. The results indicated that increasing influent CNR led to a decrease in microbial α-diversity and niche width. Genera involved in nitrogen removal and denitrification, such as Rhodobacter, Desulfovibrio, and Zoogloea, were enriched under medium/high CNR conditions, resulting in higher nitrate (NO3--N) removal (up to 99 %) than that under lower CNR conditions (<60 %). Environmental factors, including water temperature (WT), pH, and phosphorus (P), along with CNR-induced COD and NO3--N play important roles in microbial succession in HFCWs. The genus Nitrospira, which is involved in nitrification, exhibited a significant negative correlation (p < 0.05) with WT, COD, and P. Co-occurrence network analysis revealed that increasing influent CNR reduced the complexity of the network structure and increased microbial competition. Analysis using null models demonstrated that the microbial community assembly in HFCWs was primarily driven by stochastic processes under increasing influent CNR conditions. Furthermore, HFCWs with more stochastic microbial communities exhibited better denitrification performance (NO3--N removal). Overall, this study enhances our understanding of nutrient removal, microbial co-occurrence, and assembly mechanisms in CWs under varying influent CNRs.
Collapse
Affiliation(s)
- Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China.
| | - Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Junheng Pan
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Zhuoyin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Yuheng Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Chunsheng Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Heyi Guo
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
27
|
Fan H, Huang Z, Feng C, Wu Z, Tian Y, Ma F, Li H, Huang J, Qin X, Zhou Z, Zhang X. Functional keystone taxa promote N and P removal of the constructed wetland to mitigate agricultural nonpoint source pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169155. [PMID: 38065493 DOI: 10.1016/j.scitotenv.2023.169155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.
Collapse
Affiliation(s)
- Huixin Fan
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Yuxin Tian
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Fengfeng Ma
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China.
| |
Collapse
|
28
|
Pang Q, Xie L, Shen C, Zhu X, Wang L, Ni L, Peng F, Yu J, Wang L, He F. Triclosan disturbs nitrogen removal in constructed wetlands: Responses of microbial structure and functions. ENVIRONMENTAL RESEARCH 2024; 243:117847. [PMID: 38065393 DOI: 10.1016/j.envres.2023.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
This study investigated the influence of wetland types (vertical and tidal flow constructed wetlands [CWs] [VFCW and TFCW, respectively]) and concentrations of triclosan (TCS) on the removal of pollutants (TCS and nitrogen) and microbial characteristics. The efficiency of TCS removal was significantly higher with 5 μg/L TCS (Phase B) than with 30 μg/L (Phase C) in the two CWs. The efficiencies of removal of NH4+-N and NO3--N were significantly inhibited in Phase C. Compared with the VFCW, the TFCW removed more NH4+-N at the same concentration of TCS, whereas less NO3--N was removed, and it even accumulated. Saccharimondales, an important functional genus with the highest abundance and more node connections with other genera, had a sharp decrease in relative abundance as the increasing concentrations of TCS of the two CWs conformed with its relative abundance and significantly negatively correlated with the concentration of TCS. Differentiated Roseobacter_Clade_CHAB-I-5_Lineage and Sphaerotilus were enriched in the VFCW and TFCW, respectively. The abundance of enzymes that catalyzed nitritation was significantly inhibited by TCS, whereas nitrate reductase (EC 1.7.99.4) catalyzed both denitrification and dissimilatory nitrate reduction to ammonium (DNRA), and nitrite reductase (NADH) (EC 1.7.1.15) that catalyzed DNRA comprised a larger proportion in the two CWs. Simultaneously, the abundances of two enzymes were higher in the TFCW than in the VFCW. The network analysis indicated that the main genera were promoted more by TCS in the VFCW, while inhibited in the TFCW. Moreover, the concentrations of nitrogen (NH4+-N, NO3--N, and TN) significantly positively correlated with TCS-resistant bacteria, and negatively correlated with most nitrogen-transforming bacteria with species that varied between the VFCW and TFCW. The results of this study provide a reference for the molecular biological mechanism of the simultaneous removal of nitrogen and TCS in the CWs.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Caofeng Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Lixiao Ni
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ling Wang
- Xinjiang Tianxi Environmental Protection Technology Co., LTD., Urumqi, 830000, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
29
|
Zeng L, Wen J, Huang B, Yang Y, Huang Z, Zeng F, Fang H, Du H. Environmental DNA metabarcoding reveals the effect of environmental selection on phytoplankton community structure along a subtropical river. ENVIRONMENTAL RESEARCH 2024; 243:117708. [PMID: 37993044 DOI: 10.1016/j.envres.2023.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The Dongjiang River, a major tributary of the Pearl River system that supplies water to more than 40 million people in Guangdong Province and neighboring regions of China, harbors rich biodiversity, including many endemic and endangered species. However, human activities such as urbanization, agriculture, and industrialization have posed serious threats to its water quality and biodiversity. To assess the status and drivers of phytoplankton diversity, which is a key indicator of aquatic ecosystem health, this study used Environmental DNA (eDNA) metabarcoding combined with machine learning methods to explore spatial variations in the composition and structure of phytoplankton communities along the Dongjiang River, including its estuary. The results showed that phytoplankton diversity exhibited spatial distribution patterns, with higher community structure similarity and lower network complexity in the upstream than in the downstream regions. Environmental selection was the main mechanism shaping phytoplankton community composition, with natural factors driving the dominance of Pyrrophyta, Ochrophyta, and Cryptophyta in the upstream regions and estuaries. In contrast, the downstream regions was influenced by high concentrations of pollutants, resulting in increased abundance of Cryptophyta. The random forest model identified temperature, dissolved oxygen, chlorophyll a, NO2-, and NH4+ as the main factors influencing the primary phytoplankton communities and could be used to predict changes during wet periods. This study provides valuable insights into the factors influencing phytoplankton diversity and community composition in the Dongjiang River, and demonstrates the application value of eDNA metabarcoding technique in large-scale, long-distance river biodiversity monitoring.
Collapse
Affiliation(s)
- Luping Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Jing Wen
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Bangjie Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Fantang Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China.
| | - Hongwei Du
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China.
| |
Collapse
|
30
|
Chen C, Zheng N, Zhu H, An Q, Pan J, Li X, Ji Y, Li N, Sun S. Co-exposure to UV-aged microplastics and cadmium induces intestinal toxicity and metabolic responses in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132737. [PMID: 37832442 DOI: 10.1016/j.jhazmat.2023.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Aged microplastics (MPs) alter the interaction with heavy metals due to changes in surface properties. However, the combined toxicological effects of aged MPs on heavy metals in soil remain poorly understood. In this study, earthworms were employed as model animals to investigate the effects of aged MPs on the biotoxicity of cadmium (Cd) by simulating the exposure patterns of original and UV-aged MPs (polylactic acid (PLA) and polyethylene (PE)) with Cd. The results showed that UV-aging decreased the zeta potential and increased the specific surface area of the MPs, which enhanced the bioaccumulation of Cd and caused more severe oxidative stress to earthworms. Meanwhile, the earthworm intestines exhibited increased tissue damage, including chloragogenous tissue congestion lesions, and typhlosole damage. Furthermore, the combined exposure to UV-aged MPs and Cd enhanced the complexity of the microbial network in the earthworm gut and interfered with endocrine disruption, membrane structure, and energy metabolic pathways in earthworms. The results emphasized the need to consider the degradation of MPs in the environment. Hence, we recommend that future toxicological studies use aged MPs that are more representative of the actual environmental conditions, with the results being important for the risk assessment and management of MPs.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
31
|
Wang JF, Huang JW, Cai ZX, Li QS, Sun YY, Zhou HZ, Zhu H, Song XS, Wu HM. Differential Nitrous oxide emission and microbiota succession in constructed wetlands induced by nitrogen forms. ENVIRONMENT INTERNATIONAL 2024; 183:108369. [PMID: 38070437 DOI: 10.1016/j.envint.2023.108369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/25/2024]
Abstract
Nitrous oxide (N2O) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the N2O emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the N2O emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH4+-N or NO3--N) along with different carbon source supply (COD/N ratios: 3, 6, and 9). The results showed that CWs receiving NO3--N caused a slight increase in total nitrogen removal (by up to 11.8 %). This increase was accomplished by an enrichment of key bacteria groups, including denitrifiers, dissimilatory nitrate reducers, and assimilatory nitrate reducers, which enhanced the stability of microbial interaction. Additionally, it led to a greater abundance of denitrification genes (e.g., nirK, norB, norC, and nosZ) as inferred from the database. Consequently, this led to a gradual increase in N2O emission from 66.51 to 486.77 ug-N/(m2·h) as the COD/N ratio increased in CWs. Conversely, in CWs receiving NH4+-N, an increasing influent COD/N ratio had a negative impact on nitrogen biotransformation. This resulted in fluctuating trend of N2O emissions, which decreased initially, followed by an increase at later stage (with values of 122.87, 44.00, and 148.59 ug-N/(m2·h)). Furthermore, NH4+-N in the aquatic improved the nitrogen uptake by plants and promoted the production of more root exudates. As a result, it adjusted the nitrogen-transforming function, ultimately reducing N2O emissions in CWs. This study highlights the divergence in microbiota succession and nitrogen transformation in CWs induced by nitrogen form and COD/N ratio, contributing to a better understanding of the microbial mechanisms of N2O emission in CWs with NH4+-N or NO3--N at different COD/N ratios.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan-Zhan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
32
|
Wang JF, Cai ZX, Li YH, Sun YY, Wu HM, Song XS, Zhu H. Microbiota and genetic potential for reducing nitrous oxide emissions by biochar in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166489. [PMID: 37611707 DOI: 10.1016/j.scitotenv.2023.166489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The denitrification process in constructed wetlands (CWs) is responsible for most of the nitrous oxide (N2O) emissions, which is an undesired impact on the ecology of sewage treatment systems. This study compared three types of CWs filled with gravel (CW-B), gravel mixed with natural pyrite (CW-BF), or biochar (CW-BC) to investigate their impact on microbiota and genetic potential for N2O generation during denitrification under varying chemical oxygen demand (COD) to nitrate (NO3--N) ratios. The results showed that natural pyrite and biochar were superior in enhancing COD (90.6-91.2 %) and NO3--N removal (90.0-93.5 %) in CWs with a COD/NO3--N ratio of 9. The accumulation of NO2--N during the denitrification process was the primary cause of N2O emission, with the fluxes ranging from 95.6-472.0 μg/(m2·h) in CW-B, 92.9-400 μg/(m2·h) in CW-BF, and 54.0-293.3 μg/(m2·h) in CW-BC. The addition of biochar significantly reduced N2O emissions during denitrification, while natural pyrite had a lesser inhibitory effect on N2O emissions. The three types of substrates also influenced the structure of microbiota in the biofilm, with natural pyrite enriched nitrogen transformation microorganisms, especially for denitrifiers. Notably, biochar significantly enhanced the abundance of nosZ and the ratio of nosZ/(norB + norC), which are critical factors in reducing N2O emissions from CWs. Overall, the results suggest that the biochar-induced changes in microbiota and genetic potential during denitrification play a significant role in preventing N2O production in CWs, especially when treating sewage with a relatively high COD/NO3--N ratio.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Yi-Hao Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
33
|
Li Z, Wang J, Yue H, Du M, Jin Y, Fan J. Marine toxin domoic acid alters nitrogen cycling in sediments. Nat Commun 2023; 14:7873. [PMID: 38036528 PMCID: PMC10689436 DOI: 10.1038/s41467-023-43265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
As a red tide algal toxin with intense neurotoxicity distributed worldwide, domoic acid (DA) has attracted increasing concerns. In this work, the integrative analysis of metagenome and metabolome are applied to investigate the impact of DA on nitrogen cycling in coastal sediments. Here we show that DA can act as a stressor to induce the variation of nitrogen (N) cycling by altering the abundance of functional genes and electron supply. Moreover, microecology theory revealed that DA can increase the role of deterministic assembly in microbial dynamic succession, resulting in the shift of niches and, ultimately, the alteration in N cycling. Notably, denitrification and Anammox, the important process for sediment N removal, are markedly limited by DA. Also, variation of N cycling implies the modification in cycles of other associated elements. Overall, DA is capable of ecosystem-level effects, which require further evaluation of its potential cascading effects.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| |
Collapse
|
34
|
Zhang J, Liu K, Li Y, Deng H, Huang D, Zhang J. Characterization and seasonal variation in biofilms attached to leaves of submerged plant. World J Microbiol Biotechnol 2023; 40:19. [PMID: 37993701 DOI: 10.1007/s11274-023-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
The microorganisms and functional predictions of leaf biofilms on submerged plants (Vallisneria natans (Val)) and in water samples (surface water (S) and bottom water (B)) in different seasons were evaluated in this study. S and B groups had 3249 identical operational taxonomic units (OTUs) (50.03%), while the Val group only had 1201 (18.49%) unique OTUs. There was significant overlap between microbial communities of S and B groups in the same season, while Val group showed the greater diversity. The dominant microbial clades were Proteobacteria (18.2-47.3%), Cyanobacteria (3.74-39.3%), Actinobacteria (1.64-29.3%), Bacteroidetes (1.31-21.7%), and Firmicutes (1.10-15.72%). Furthermore, there was a significant relationship between total organic carbon and the distribution of microbial taxa (p = 0.047), and TN may have altered the status of Cyanobacteria by affecting its biological nitrogen fixation capacity and reproductive capacity. The correlation network analysis results showed that the whole system consisted of 249 positive correlations and 111 negative correlations, indicating strong interactions between microbial communities. Functional predictions indicated that microbial functions were related to seasonal variation. These findings would guide the use of submerged plants to improve the diversity and stability of wetland microbial communities.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
| | - Yaguang Li
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China
| | - Hong Deng
- School of Ecological and Environmental Science, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, P.R. China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China.
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China.
| |
Collapse
|
35
|
Jin Y, Ding J, Zhan W, Du J, Wang G, Pang J, Ren N, Yang S. Effect of dissolved oxygen concentration on performance and mechanism of simultaneous nitrification and denitrification in integrated fixed-film activated sludge sequencing batch reactors. BIORESOURCE TECHNOLOGY 2023; 387:129616. [PMID: 37544541 DOI: 10.1016/j.biortech.2023.129616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) is a superior system for achieving simultaneous nitrification and denitrification (SND), however, the impact of dissolved oxygen (DO) has not been fully elucidated. Therefore, this study investigated the effect of DO concentration on performance and mechanism of SND in IFAS system. Results showed that IFAS outperformed control systems and achieved optimal SND performance at a DO concentration of 0.5 mg/L, with an SND efficiency of 88.51% and total nitrogen removal efficiency of 82.78%. Typical cycles analysis demonstrated limited-DO promoted SND performance. Further analysis implied biofilms exhibited high biomass and denitrification activity with decreasing DO. Microbial community analysis revealed low DO concentrations were responsible for abundant functional groups and genes associated with SND and promoted unconventional nitrogen removal pathways. Moreover, co-occurrence network analysis elucidated microbial interactions, responses to DO, and keystone genera. This study helps understanding the roles of DO for enhanced SND in IFAS.
Collapse
Affiliation(s)
- Yaruo Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- KENTECH Institute of Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, South Korea
| | - Guangyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiwei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Hu X, Yue J, Yao D, Zhang X, Li Y, Hu Z, Liang S, Wu H, Xie H, Zhang J. Plant development alters the nitrogen cycle in subsurface flow constructed wetlands: Implications to the strategies for intensified treatment performance. WATER RESEARCH 2023; 246:120750. [PMID: 37866244 DOI: 10.1016/j.watres.2023.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Plant development greatly influences the composition structure and functions of microbial community in constructed wetlands (CWs) via plant root activities. However, our knowledge of the effect of plant development on microbial nitrogen (N) cycle is poorly understood. Here, we investigated the N removal performance and microbial structure in subsurface flow CWs at three time points corresponding to distinct stages of plant development: seedling, mature and wilting. Overall, the water parameters were profoundly affected by plant development with the increased root activities including radial oxygen loss (ROL) and root exudates (REs). The removal efficiency of NH4+-N was significantly highest at the mature stage (p < 0.01), while the removal performance of NO3--N at the seedling stage. The highest relative abundances of nitrification- and anammox-related microbes (Nitrospira, Nitrosomonas, and Candidatus Brocadia, etc.) and functional genes (Amo, Hdh, and Hzs) were observed in CWs at the mature stage, which can be attributed to the enhanced intensity of ROL, creating micro-habitat with high DO concentration. On the other hand, the highest relative abundances of denitrification- and DNRA-related microbes (Petrimonas, Geobacter, and Pseudomonas, etc.) and functional genes (Nxr, Nir, and Nar, etc.) were observed in CWs at the seedling and wilting stages, which can be explained by the absence of ROL and biological denitrification inhibitor derived from REs. Results give insights into microbial N cycle in CWs with different stages of plant development. More importantly, a potential solution for intensified N removal via the combination of practical operation and natural regulation is proposed.
Collapse
Affiliation(s)
- Xiaojin Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jingyuan Yue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yunkai Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
37
|
Zhang L, Fang S, Hong W, Shen Z, Li S, Fang W. Differences in pathogenic community assembly processes and their interactions with bacterial communities in river and lake ecosystems. ENVIRONMENTAL RESEARCH 2023; 236:116847. [PMID: 37558117 DOI: 10.1016/j.envres.2023.116847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Pathogenic bacterial infections caused by water quality degradation are one of the most widespread environmental problems. Clarifying the structure of pathogens and their assembly mechanisms in lake ecosystems is vital to prevent the infestation of waterborne pathogens and maintain human health. However, the composition and assembly mechanisms of pathogenic bacterial communities in river and lake ecosystems are still poorly understood. In this study, we collected 17 water and 17 sediment samples from Lake Chaohu and its 11 inflow rivers. Sequencing of 16S rRNA genes was used to study bacterial pathogen communities. The results of the study showed that there was a significant difference (P < 0.05) in the composition of the pathogen community between riverine and lake habitats. Acinetobacter (36.49%) was the dominant bacterium in the river, whereas Flavobacterium (21.6%) was the most abundant bacterium in the lake. Deterministic processes (i.e., environmental filtering and species interaction) drove the assembly of pathogenic bacterial communities in the lake habitat, while stochastic processes shaped river pathogenic bacterial communities. Spearman correlation analysis showed that the α-diversity of bacterial communities was linearly and negatively linked to the relative abundance of pathogens. Having a higher bacterial community diversity had a suppressive effect on pathogen abundance. In addition, co-occurrence network analysis showed that bacterial communities were tightly linked to pathogenic bacteria. Pseudomonas aeruginosa and Salmonella enterica were identified as keystone species in an inflow water sampling network (W_FR), reducing the complexity of the network. These results provide a reference for assessments of water quality safety and pathogenic bacteria posing risks to human health in large freshwater lakes.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Shuqi Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wenqing Hong
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuo Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| |
Collapse
|
38
|
Zhang L, Yang B, Wang H, Wang S, He F, Xu W. Unveiling the nitrogen removal performance from microbial network establishment in vertical flow constructed wetlands. BIORESOURCE TECHNOLOGY 2023; 388:129749. [PMID: 37690488 DOI: 10.1016/j.biortech.2023.129749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The combined effects of substrate types (natural zeolite or shale ceramsite) and hydraulic retention time (HRT, 3-day or 6-day) on nutrient removal and microbial co-occurrence networks in vertical flow constructed wetlands (VFCWs) remains to be elucidated. In this study, zeolite-packed VFCWs demonstrated superior removal rates, achieving 93.65% removal of NH4+-N and 83.84% removal of COD at 6-day HRT. The activity and establishment of microbial community were influenced by combined operating conditions. The abundances of Amx, amoA, nxrA, and nosZ genes increased with longer HRTs in zeolite-packed VFCWs. Additionally, a 6-day HRT significantly increased the relative abundances of Proteobacteria and Nitrospirae. At the species level, zeolite-packed VFCWs exhibited ecological niche sharing as a coping strategy in response to environment changes, while ceramsite-packed VFCWs displayed ecological niche differentiation. Both zeolite-packed and ceramsite-packed VFCWs established functional networks of nitrogen-transforming genera that utilized ecological niche differentiation strategies.
Collapse
Affiliation(s)
- Liandong Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Shuzhi Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250000, China
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
39
|
Jin Y, Zhan W, Wu R, Han Y, Yang S, Ding J, Ren N. Insight into the roles of microalgae on simultaneous nitrification and denitrification in microalgal-bacterial sequencing batch reactors: Nitrogen removal, extracellular polymeric substances, and microbial communities. BIORESOURCE TECHNOLOGY 2023; 379:129038. [PMID: 37037336 DOI: 10.1016/j.biortech.2023.129038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
This study explored the influence and mechanism of microalgae on simultaneous nitrification and denitrification (SND) in microalgal-bacterial sequencing batch reactors (MB-SBR). It particularly focused on nitrogen transformation in extracellular polymeric substances (EPS) and functional groups associated with nitrogen removal. The results showed that MB-SBR achieved more optimal performance than control, with an SND efficiency of 68.01% and total nitrogen removal efficiency of 66.74%. Further analyses revealed that microalgae changed compositions and properties of EPS by increasing EPS contents and improving transfer, conversion, and storage capacity of nitrogen in EPS. Microbial community analysis demonstrated that microalgae promoted the enrichment of functional groups and genes related to SND and introduced diverse nitrogen removal pathways. Moreover, co-occurrence network analysis elucidated the interactions between communities of bacteria and microalgae and the promotion of SND by microalgae as keystone connectors in the MB-SBR. This study provides insights into the roles of microalgae for enhanced SND.
Collapse
Affiliation(s)
- Yaruo Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Rui Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin 150090, China
| | - Yahong Han
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin 150090, China
| | - Shanshan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
40
|
Wang GY, Ding J, He L, Wu T, Ding MQ, Pang JW, Liu LM, Gao XL, Zhang LY, Ren NQ, Yang SS. Enhanced anaerobic degradation of azo dyes by biofilms supported by novel functionalized carriers. BIORESOURCE TECHNOLOGY 2023; 378:129013. [PMID: 37019414 DOI: 10.1016/j.biortech.2023.129013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Azo dyes are significant organic pollutants known for their adverse effects on humans and aquatic life. In this study, anthraquinone-2-sulfonate (AQS) immobilized on biochar (BC) was employed as a novel carrier in up-flow anaerobic fixed-bed reactors to induce specific biofilm formation and promote the biotransformation efficiency of azo dyes. Novel carrier-packed reactor 1 (R1) and BC-packed reactor 2 (R2) were used to treat red reactive 2 (RR2) under continuous operation for 175 days. The decolorization rates of R1 and R2 were 96-83% and 91-73%, respectively. The physicochemical characteristics and extracellular polymeric substances (EPS) of the biofilm revealed a more stable structure in R1. Furthermore, the microbial community in R1 interacted more closely with each other and contained more keystone genera. Overall, this study provides a feasible method for improving the biotransformation of azo dyes, thus providing support for practical applications in wastewater treatment projects.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - Lu-Ming Liu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd., Harbin 150090, China
| | - Xin-Lei Gao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd., Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
41
|
Wu T, Ding J, Zhong L, Zhao YL, Sun HJ, Pang JW, Zhao L, Bai SW, Ren NQ, Yang SS. Synergistic analysis of performance, functional genes, and microbial community assembly in SNDPR process under Zn(II) stress. ENVIRONMENTAL RESEARCH 2023; 224:115513. [PMID: 36801232 DOI: 10.1016/j.envres.2023.115513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
One of the most prevalent heavy metals found in rural sewage is Zn(II), while its effect on simultaneous nitrification, denitrification and phosphorus removal (SNDPR) remains unclear. In this work, the responses of SNDPR performance to long-term Zn(II) stress were investigated in a cross-flow honeycomb bionic carrier biofilm system. The results indicated that Zn(II) stress at 1 and 5 mg L-1 could increase nitrogen removal. Maximum ammonia nitrogen, total nitrogen, and phosphorus removal efficiencies of up to 88.54%, 83.19%, and 83.65% were obtained at Zn(II) concentration of 5 mg L-1. The functional genes, such as archaeal amoA, bacterial amoA, NarG, NirS, NapA, and NirK, also reached the highest value at 5 mg L-1 Zn(II), with the absolute abundances of 7.73 × 105, 1.57 × 106, 6.68 × 108, 1.05 × 109, 1.79 × 108, and 2.09 × 108 copies·g-1 dry weight, respectively. The neutral community model demonstrated that deterministic selection was responsible for the system's microbial community assembly. Additionally, response regimes with extracellular polymeric substances and cooperation among microorganisms facilitated the stability of the reactor effluent. Overall, the findings of this paper contribute to improving the efficiency of wastewater treatment.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- National Engineering Research Center for Bioenergy, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shun-Wen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
42
|
Zhang D, Yu H, Yang Y, Liu F, Li M, Huang J, Yu Y, Wang C, Jiang F, He Z, Yan Q. Ecological interactions and the underlying mechanism of anammox and denitrification across the anammox enrichment with eutrophic lake sediments. MICROBIOME 2023; 11:82. [PMID: 37081531 PMCID: PMC10116762 DOI: 10.1186/s40168-023-01532-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Increasing attention has recently been devoted to the anaerobic ammonium oxidation (anammox) in eutrophic lakes due to its potential key functions in nitrogen (N) removal for eutrophication control. However, successful enrichment of anammox bacteria from lake sediments is still challenging, partly due to the ecological interactions between anammox and denitrifying bacteria across such enrichment with lake sediments remain unclear. RESULTS This study thus designed to fill such knowledge gaps using bioreactors to enrich anammox bacteria with eutrophic lake sediments for more than 365 days. We continuously monitored the influent and effluent water, measured the anammox and denitrification efficiencies, quantified the anammox and denitrifying bacteria, as well as the related N cycling genes. We found that the maximum removal efficiencies of NH4+ and NO2- reached up to 85.92% and 95.34%, respectively. Accordingly, the diversity of anammox and denitrifying bacteria decreased significantly across the enrichment, and the relative dominant anammox (e.g., Candidatus Jettenia) and denitrifying bacteria (e.g., Thauera, Afipia) shifted considerably. The ecological cooperation between anammox and denitrifying bacteria tended to increase the microbial community stability, indicating a potential coupling between anammox and denitrifying bacteria. Moreover, the nirS-type denitrifiers showed stronger coupling with anammox bacteria than that of nirK-type denitrifiers during the enrichment. Functional potentials as depicted by metagenome sequencing confirmed the ecological interactions between anammox and denitrification. Metagenome-assembled genomes-based ecological model indicated that the most dominant denitrifiers could provide various materials such as amino acid, cofactors, and vitamin for anammox bacteria. Cross-feeding in anammox and denitrifying bacteria highlights the importance of microbial interactions for increasing the anammox N removal in eutrophic lakes. CONCLUSIONS This study greatly expands our understanding of cooperation mechanisms among anammox and denitrifying bacteria during the anammox enrichment with eutrophic lake sediments, which sheds new insights into N removal for controlling lake eutrophication. Video Abstract.
Collapse
Affiliation(s)
- Dandan Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuchun Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Feng Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
43
|
Wu T, Zhong L, Pang JW, Ren NQ, Ding J, Yang SS. Effect of Fe3+ on the nutrient removal performance and microbial community in a biofilm system. Front Microbiol 2023; 14:1140404. [PMID: 37089551 PMCID: PMC10117941 DOI: 10.3389/fmicb.2023.1140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, the influence of Fe3+ on N removal, microbial assembly, and species interactions in a biofilm system was determined. The results showed that maximum efficiencies of ammonia nitrogen (NH4+-N), total nitrogen (TN), phosphorus (P), and chemical oxygen demand (COD) removal were achieved using 10 mg/L Fe3+, reaching values of 100, 78.85, 100, and 95.8%, respectively, whereas at concentrations of 15 and 30 mg/L Fe3+ suppressed the removal of NH4+-N, TN, and COD. In terms of absolute abundance, the expression of bacterial amoA, narG, nirK, and napA was maximal in the presence of 10 mg/L Fe3+ (9.18 × 105, 8.58 × 108, 1.09 × 108, and 1.07 × 109 copies/g dry weight, respectively). Irrespective of Fe3+ concentrations, the P removal efficiency remained at almost 100%. Candidatus_Competibacter (10.26–23.32%) was identified as the most abundant bacterial genus within the system. Determinism (50%) and stochasticity (50%) contributed equally to microbial community assembly. Co-occurrence network analysis revealed that in the presence of Fe3+, 60.94% of OTUs in the biofilm system exhibited positive interactions, whereas 39.06% exhibited negative interactions. Within the OTU-based co-occurrence network, fourteen species were identified as key microbes. The stability of the system was found to be predominantly shaped by microbial cooperation, complemented by competition for resources or niche incompatibility. The results of this study suggested that during chemical P removal in wastewater treatment plants using biofilm methods, the concentration of supplemental Fe3+ should be maintained at 10 mg/L, which would not only contribute to P elimination, but also enhance N and COD removal.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- *Correspondence: Jie Ding,
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- Shan-Shan Yang,
| |
Collapse
|
44
|
Kan P, Zhang N, Zeng B, Yao J, Zhi S, Chen H, Yao Z, Yangyao J, Zhang Z. Satellite taxa regulated the response of constructed wetlands microeukaryotic community to changing hydraulic loading rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160742. [PMID: 36528101 DOI: 10.1016/j.scitotenv.2022.160742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Revealing how species interaction and assembly processes structure the core and satellite microeukaryotic subcommunities in an engineering environment is crucial for understanding how biodiversity influences system function. By investigating the core and satellite microeukaryotic subcommunities in constructed wetlands (CWs), we depicted an integrated distribution pattern of microeukaryotic communities in the CWs with different hydraulic loading rates (HLRs). Surprisingly, our results suggested that high HLR reduced the diversity and network stability of the microeukaryote community in CW. The stochastic process becomes more important with the increased HLR. In addition, satellite and core taxa varied inconsistently under different HLRs except for niche breadth. And the changes in all taxa were consistent with those in satellite taxa. Satellite taxa, but not core taxa, was an important driver in shaping the dynamics of microeukaryotic communities and played an important role in maintaining the stability of the microeukaryotic community. Overall, our results not only fill a gap in understanding the microeukaryotic community dynamics and its basic drivers of CWs under different HLRs but also highlights the particular importance of satellite microeukaryotes in mediating biogeochemical cycles in CWs ecosystems.
Collapse
Affiliation(s)
- Peiying Kan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Nan Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bianhao Zeng
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Jiafeng Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheyun Zhang
- Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
45
|
Fang W, Fan T, Xu L, Wang S, Wang X, Lu A, Chen Y. Seasonal succession of microbial community co-occurrence patterns and community assembly mechanism in coal mining subsidence lakes. Front Microbiol 2023; 14:1098236. [PMID: 36819062 PMCID: PMC9936157 DOI: 10.3389/fmicb.2023.1098236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Liangji Xu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, China
| |
Collapse
|
46
|
Hu X, Huo J, Xie H, Hu Z, Liang S, Zhang J. Removal performance, biotransformation pathways and products of sulfamethoxazole in vertical subsurface flow constructed wetlands with different substrates. CHEMOSPHERE 2023; 313:137572. [PMID: 36528159 DOI: 10.1016/j.chemosphere.2022.137572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
For decades, sulfamethoxazole (SMX) has been frequently detected in the aquatic environments due to its high usage and refractory to degradation. Constructed wetland (CW) is regarded as an efficient advanced wastewater technology to eliminate organic pollutants including SMX. In CW system, substrate adsorption and further biodegradation are extremely important in SMX removal; however, the removal performance of SMX by CWs with different substrates varies greatly, and the biotransformation pathways, products, and mechanisms of SMX remain unclear. To address this, we constructed a CW with conventional substrate (CS, gravel) as control (C-CW) and three CWs with emerging substrates (ES, biochar, zeolite and pyrite for B-CW, Z-CW and P-CW, respectively), and explored the performance and mechanisms of SMX removal in CWs. Results illustrated that the removal performance of SMX in CWs with ES reached 94.89-99.35%, and significantly higher than that with CS of 89.50% (p < 0.05). Biodegradation contributed >90% SMX removal in all CWs. The microbial compositions and functions differed among CWs at the middle layer (mixed layer), which shaped diverse resistance pattern and metabolism pathways of microbiomes under SMX stress: P-CW and B-CW cope with SMX stress by enhancing material and energy metabolism, whereas Z-CW does that by enhancing metabolism and exocytosis of xenobiotics. Additionally, nine transformation pathways with 15 transformation products were detected in this study. A reversible process of desamino-SMX being reconverted to SMX might exist in P-CW, which caused a lower SMX removal efficiency in P-CW. This study provided a comprehensive insight into the processes and mechanisms of SMX removal in CWs with different substrates, which would be a useful guidance for substrate selection in CWs in terms of enhanced micropollutants removal.
Collapse
Affiliation(s)
- Xiaojin Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Junyu Huo
- China Energy Engineering Group East China Electric Power Test Research Institute Co. Ltd., Hangzhou, 311200, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
47
|
Liu Y, Feng L, Liu Y, Zhang L. A novel constructed wetland based on iron carbon substrates: performance optimization and mechanisms of simultaneous removal of nitrogen and phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23035-23046. [PMID: 36319923 DOI: 10.1007/s11356-022-23754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the combination of iron carbon micro-electrolysis (ICME) with constructed wetlands (CWs) for removal of nitrogen and phosphorus has attracted more and more attention. However, the removal mechanisms by CWs with iron carbon (Fe-C) substrates are still unclear. In this study, the Fe-C based CW (CW-A) was established to improve the removal efficiencies of nitrogen and phosphorus by optimizing the operating conditions. And the removal mechanisms of nitrogen and phosphorus were explored. The results shown that the removal rates of COD, NH4+-N, NO3--N, TN, and TP in CW-A could reach up to 84.4%, 94.0%, 81.1%, 86.6%, and 84.3%, respectively. Wetland plants and intermittent aeration have dominant effects on the removal of NH4+-N, while the removal efficiencies of NO3--N, TN, and TP were mainly affected by Fe-C substrates, wetland plants, and HRT. XPS analysis revealed that Fe(0)/Fe2+ and their valence transformation played important roles on the pollutants removal. High-throughput sequencing results showed that Fe-C substrates and wetland plants had considerable impacts on the microbial community structures, such as richness and diversity of microorganism. The relative abundance of autotrophic denitrification bacteria (e.g., Denitatsoma, Thauera, and Sulfuritalea) increased in CW-A than CW-C. The electrons and H2/[H] produced from Fe-C substrates were utilized by autotrophic denitrification bacteria for NO3--N reduction. Microbial degradation was the main removal mechanism of nitrogen in CW-A. Removal efficiency of phosphorus was enhanced resulted from the reaction of phosphate with iron ion. The application of CWs with Fe-C substrates and plants presented great potential for simultaneous removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Yashun Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
48
|
Zhong L, Wu T, Ding J, Xu W, Yuan F, Liu BF, Zhao L, Li Y, Ren NQ, Yang SS. Co-composting of faecal sludge and carbon-rich wastes in the earthworm's synergistic cooperation system: Performance, global warming potential and key microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159311. [PMID: 36216047 DOI: 10.1016/j.scitotenv.2022.159311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Composting is an effective alternative for recycling faecal sludge into organic fertilisers. A microflora-earthworm (Eisenia fetida) synergistic cooperation system was constructed to enhance the composting efficiency of faecal sludge. The impact of earthworms and carbon-rich wastes (rice straw (RS) and sawdust (S)) on compost properties, greenhouse gas emissions, and key microbial species of composting were evaluated. The addition of RS or S promoted earthworm growth and reproduction. The earthworm-based system reduced the volatile solid of the final substrate by 13.19-16.24 % and faecal Escherichia coli concentrations by 1.89-3.66 log10 cfu/g dry mass compared with the earthworm-free system. The earthworm-based system increased electrical conductivity by 0.322-1.402 mS/cm and reduced C/N by 56.16-64.73 %. The NH4+:NO3- ratio of the final faecal sludge and carbon-rich waste was <0.16. The seed germination index was higher than 80 %. These results indicate that earthworms contribute to faecal sludge maturation. Earthworm addition reduced CO2 production. The simultaneous addition of earthworms and RS system (FRS2) resulted in the lowest global warming potential (GWP). The microbial diversity increased significantly over time in the RS-only system, whereas it initially increased and later decreased in the FRS2 system. Cluster analysis revealed that earthworms had a more significant impact on the microbial community than the addition of carbon-rich waste. Co-occurrence networks for earthworm-based systems were simple than those for earthworm-free systems, but the major bacterial genera were more complicated. Highly abundant key species (norank_f_Chitinophagaceae and norank_f_Gemmatimonadaceae) are closely related. Microbes may be more cooperative than competitive, facilitating the conversion of carbon and nitrogen in earthworm-based systems. This work has demonstrated that using earthworms is an effective approach for promoting the efficiency of faecal sludge composting and reducing GWP.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
49
|
Zhang L, Hong W, Pan Z, Fang W, Shen Z, Cai H. Wastewater treatment effectiveness is facilitated by crucial bacterial communities in the wetland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159375. [PMID: 36240933 DOI: 10.1016/j.scitotenv.2022.159375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms play essential roles in nutrient removal and biogeochemical cycling during wastewater treatment. However, little is known about the main roles of key functional bacterial communities in wastewater treatment processes. We collected 18 water samples and 15 sediment samples from the six operational subsystems of the constructed wetland, among which the contact oxidation pond, enhanced hybrid biofilm reactor, and central stabilization pond are the main wastewater treatment units in the constructed wetland, and then investigated the bacterial communities using 16S rRNA gene targeting and sequencing to address this knowledge gap. The results indicated that the composition of the bacterial community is closely related to the efficiency of pollutant removal. The abundant carbon metabolism function increased the removal of nitrate‑nitrogen (NO3--N) and total nitrogen (TN) by the contact oxidation pond by 89.84 % and 38.91 %, respectively. The overlap of ecological niches and the presence of pathogenic bacteria substantially affect effluent wastewater treatment. Second, NO3--N (p < 0.001) was the most important factor driving the bacterial community composition in water and sediments. Furthermore, the positive structure was prevalent in the cooccurrence network of water samples (87.24 %) and sediments (76.53 %) of the wetland, and this positive structure with keystone species was critical for the adaptation of the bacterial community to environmental filtration. In summary, this study reveals the distribution patterns of bacterial communities in different wastewater treatment processes and their driving factors and provides new perspectives on the link between the bacterial community composition and wastewater treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Wenqing Hong
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Zhongling Pan
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Cai
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
50
|
Sun Q, Lin Y, Ping Q, Lu Q, Wang L, Liu M, Li Y. Exploring recycled agricultural wastes for high-rate removal of nitrogen in wastewater: Emphasizing on the investigation of the inner driving force and comparison with conventional liquid carbon sources. WATER RESEARCH 2022; 226:119292. [PMID: 36323215 DOI: 10.1016/j.watres.2022.119292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, four typical recycled agricultural wastes (AWs), corn cob, wheat straw, sawdust and walnut shells (named AW1, AW2, AW3 and AW4, respectively), were selected as external solid carbon sources to enhance the removal of nitrogen in wastewater, and specifically, the driving mechanism was thoroughly investigated. The leaching experiments showed that the dissolved organic carbon (DOC) release capacity followed the order of AW1>AW2>AW3>AW4, ranging from 6.21 to 31.92 mg/g. DOC released from AWs mainly consisted of protein-like substances, fulvic acid-like substances and humic-like substances. AW1 and AW2 achieved comparable NOx--N removal performance with a liquid carbon source of sodium acetate (SA) during the long-term denitrification experiments (>94.2%) but not for the other two AWs (only 16.8%-38.1%). Denitrification performance relied on DOC released from AWs at the beginning, while the enrichment of the functional CAZymes (including glycoside hydrolase and carbohydrate esterase) involved in cellulose and hemicellulose decomposition of AWs and functional genes (GAPDH, gap 2, PK, etc.) related to glycolysis were the inner driving force, which guaranteed the continuous supply of electron donors for denitrification. The relatively high abundances of napAB, narGHI, nirKS, norBC and nosZ, which encode nitrate reductase, nitrite reductase, NO reductase and N2O reductase, assured the better denitrification performance in the SA, AW1 and AW2 groups. In addition to denitrification-related functional genes, the relative abundances of nirBD and nrfAH associated with dissimilatory nitrate reduction were much higher in AW1 and AW2 groups than in SA group, implying that the nitrogen removal mechanism should be different in liquid carbon source and AW-based solid carbon source systems. In addition, GLU, gltBD and glnA, which participate in ammonia assimilation were the highest in the AW2 group, resulting in a large amount of organic nitrogen accumulation (peak concentration of approximately 24.5 mg/L), and this finally ruled it out as an alternative external carbon source. The abovementioned microbial mechanism was verified based on the correlation analysis of nutrient removal and functional genes combined with host bacterial analysis. Our study can provide valuable information for understanding the mechanism of using AWs as alternative external carbon sources to promote the removal of nitrogen in wastewater.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Mingyan Liu
- China Tiegong Investment & Construction Group Co., Ltd, Beijing 101399, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|