1
|
Cheng Y, Yu Q, Zhang W, Liu Z, Ding J, Pan H, Li Y, Wu D, Zhu M, Xie X, Zhu N. Diet dependent trophic transfer of nanoparticles (ZnO and TiO 2) along the "photic biofilm-snail" food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137657. [PMID: 40010214 DOI: 10.1016/j.jhazmat.2025.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Multispecies biofilm exhibited high resistance to nanotoxicity by secreting extracellular polymeric substances (EPS) and undergoing alterations in the community composition. Scarce information was available to assess how these changes could further influence the transfer of nanoparticles (NPs) through the biofilm-based food chain. Photic biofilm was exposed to two distinct NPs (ZnO and TiO2) and subsequently grazed by snails. Exposure to different NPs led to variations in biomass, chlorophyll content, EPS productivity, alpha diversity, and community composition of the photic biofilm. The presence of ZnO NPs facilitated the growth of phylum Cyanobacteria while TiO2 promoted EPS productivity of photic biofilm. EPS were capable of embedding NPs (TiO2 and ZnO) within its matrix, thereby mitigating their aggregation within the biofilm matrix. These alterations were subsequently confirmed to have an impact on the trophic transfer factors (TTF) of NPs through the constructed biofilm-snail food chain. The TTF of ZnO was lower than that of TiO2 in feeding scenario 1 (only fed on TiO2 or ZnO biofilm) but higher than that of TiO2 in feeding scenario 2 (fed on TiO2 and ZnO biofilm simultaneously), which was attributed to the shifts in the algae composition and a smaller size of ZnO NPs in EPS. This study demonstrated that the response of photic biofilm to NPs further affected the TTFs of NPs through the food chain.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Quanbo Yu
- Shanghai Engineering Research Center of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Weihua Zhang
- Management Service Center of Yuncheng Chemical Industry Park, Heze 274700, China
| | - Zhiqiang Liu
- Jiangsu Changhuan Environment Technology Co. Ltd., Changzhou 213002, China
| | - Jue Ding
- School of Geographical Sciences, Jiangsu Second Normal University, Nanjing 211200, China
| | - Hongzhe Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dan Wu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing, China
| | - Minghua Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
2
|
Zhang L, Wu C, Wang Q. Toxicity of Engineered Nanoparticles in Food: Sources, Mechanisms, Contributing Factors, and Assessment Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40418745 DOI: 10.1021/acs.jafc.5c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The increasing prevalence of engineered nanoparticles (ENPs) in food systems has raised concerns about their toxicity and potential health risks. To provide a comprehensive evaluation, a structured literature search was conducted using databases such as Web of Science and PubMed, focusing on studies published in the past ten years that examine ENP exposure pathways, toxicity mechanisms, contributing factors, and risk assessment strategies. This review first explores the diverse sources of ENPs, including food additives, nanocarriers, packaging, agricultural practices, and environmental contamination. Upon ingestion, ENPs undergo complex transformations within the human gastrointestinal tract (GIT), causing oxidative stress, cellular dysfunction, inflammation, and gut microbiota dysbiosis, potentially leading to systemic toxicity in vital organs. The toxicity of ENPs is influenced by their physicochemical properties, food matrix effects, GIT conditions, and host-specific factors. This review further discusses current toxicity assessment methodologies, including in silico, in vitro, in vivo, and emerging technologies. Finally, we identify critical research gaps, such as the lack of long-term exposure studies and limited evaluations of organic ENPs. By providing a comprehensive analysis of ingested ENP toxicity, this review aims to guide safer ENP applications and mitigate potential health risks.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Alamri AA, Ayyad MA, Mohamedbakr HG, Soliman UA, Almashnowi MY, Pan JH, Helmy ET. Green magnetically separable molluscicide Ba-Ce-Cu ferrite/TiO 2 nanocomposite for controlling terrestrial gastropods Monacha Cartusiana. Sci Rep 2025; 15:2888. [PMID: 39843605 PMCID: PMC11754440 DOI: 10.1038/s41598-025-85730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
The increasing economic damage caused by terrestrial gastropods, especially the Monacha cartusiana (M. cartusiana) land snail, to the agricultural sector requires a diligent and continuous search for new materials and alternatives for the control operations. In this piece of work, a magnetically separable molluscicide with high effectiveness green Barium-Cerium-Copper ferrite/TiO2 (Ba-Ce-CuFO/TiO2) nanocomposite was greenly prepared using Eichhornia plant aqueous extract and characterized using different techniques. The green Ba-Ce-CuFO/TiO2 nanocomposite was applied as an aspect of the attempts to search for new active substances that would have a potential toxic effect against M. cartusiana. Laboratory toxicity evaluations by leaf dipping and contact methods showed LC50 values of 1218.79 and 289.19 ppm, respectively. Analysis of biochemical variables as a bio response indicator showed a noticeable increase in the values of aspartate transaminase (AST) and alanine transaminase (ALT) relative to the control, while the decrease was characteristic for alkaline phosphatase (ALP) and total protein (TP) other variables when the animals were treated with LC50 value. The histopathological examination was performed on both the muscular foot and the digestive gland, or what is known as the hepatopancreas, which showed enlarged lumens and damaged digestive cells, in addition to destructed digestive tubes, the existence of pyknotic nuclei, and hematocyte infiltration. Foot histopathology showed ruptured epithelial cells, deep folds, and empty spaces when animals were treated with our target nanocomposite LC50 value. Application under natural field conditions through the bait technique showed a significant satisfactory population diminution after 14 days of exposure, as the mean percentage of diminution was 72.2% compared to the recommended pesticide Neomyl SL 20%, which poses a 74.27% reduction. Built on the above, we recommend further studies of the usage of green Ba-Ce-CuFO/TiO2 nanocomposite, and the introduction of such nanocomposite in gastropod control operations to reduce losses in the agricultural sector in general.
Collapse
Affiliation(s)
- Abdullah A Alamri
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Hossameldin G Mohamedbakr
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Usama A Soliman
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Majed Y Almashnowi
- Chemistry Division, Department of Physical Sciences, College of Science, Jazan University, , P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Jia Hong Pan
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Elsayed T Helmy
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, People's Republic of China.
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
4
|
Liu ZL, Wang YF, Zhu D, Quintela-Baluja M, Graham DW, Zhu YG, Qiao M. Increased Transmission of Antibiotic Resistance Occurs in a Soil Food Chain under Pesticide Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21989-22001. [PMID: 39647168 DOI: 10.1021/acs.est.4c07822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The rising spread of antibiotic resistance is a global concern, but the pathways of dissemination within soil ecosystems remain poorly understood. Here, we quantified the occurrence of antibiotic resistance genes (ARGs) in gut microbiomes of soil collembolans (Folsomia candida) under pesticide stress (zinc thiazole, ZT) and analyzed the trophic transfer of ARGs to the microbiomes of predatory mites (Hypoaspis aculeifer), natural predators of collembolans. High throughput quantitative PCR was used to quantify ARGs, whereas gut microbiomes of collembolans and mites were characterized using 16S rRNA gene amplicon sequencing, and potential pathogens were identified. Our results revealed that ZT exposure significantly elevated the abundance of ARGs (e.g., AAC(6')-Ir) in soil collembolan microbiomes. With the increase of ARGs in prey collembolan microbiomes, an increase of ARGs in predatory mite microbiomes was observed through trophic transfer. Mobile genetic elements (MGEs) significantly contribute to the transmission of ARGs within this food chain. Additionally, co-occurrence analysis indicated a strong association between gut resistomes and pathogens, such as Brevundimonas diminuta, in the collembolans and predatory mites. Overall, our study provides evidence for the dissemination of ARGs through the collembolan-predatory mite food chain following pesticide exposure, which is important for understanding the broader dynamics of antibiotic resistance spreading in soil ecosystems.
Collapse
Affiliation(s)
- Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | | | - David W Graham
- Department of Biosciences, Durham University, Durham DH1 3LE, U.K
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zantis LJ, Kazour M, Borchi C, Agati R, Colpaert R, Gimbert F, Vijver MG, Peijnenburg W, Bosker T. Quantitative tracking of nanoplastics along the food chain from lettuce (Lactuca sativa) to snails (Cantareus aspersus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176848. [PMID: 39393690 DOI: 10.1016/j.scitotenv.2024.176848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Terrestrial systems are a significant sink for plastic contamination, including nano- and microplastics (NMPs). To date, limited information is available about the transfer of NMPs up the food web via trophic transfer, however, concerns about this exposure pathway for invertebrates and higher-level organisms have been raised. We aim to examine and quantify the trophic transfer of europium doped polystyrene nanoplastics (Eu-PS; NPs) within a terrestrial food chain. The uptake of 100 nm spherical Eu-PS particles from water through the roots of the plants to the leaves and finally to garden snails (Cantareus aspersus) was assessed. Lettuce (Lactuca sativa) was cultivated in Hoagland solution spiked with different concentrations of Eu-PS (15, 150 and 1500 μg/L) for three weeks. Then, lettuce shoots were used as food for snails for 19 days at a rate of 1 g of shoots per day. The Eu-PS primarily accumulated in the lettuce roots for all treatments, with a limited transfer to the shoots (only quantifiable in the highest treatment; translocation factor: TF < 1). No detectable levels of Eu-PS were found in the snails' digestive gland; however, the Eu-PS particles were detected in their feces (trophic transfer factor: TFF > 1). Moreover, only limited effects were observed on lettuce biomass by NPs treatments. No effects of the Eu-PS particles on snails were observed, with the exception of a consistent decrease in the shell diameter. Overall, our research illustrates that NPs can be absorbed by plants through their roots, subsequently transported to the shoots. However, our findings show limited transfer of NPs into snail tissues, but direct excretion into their feces. We provide an important insight into the potential transfer within the human food chain.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Maria Kazour
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Caterina Borchi
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Rebecca Agati
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Romain Colpaert
- UMR 6249 Chrono-Environnement CNRS - Université de Franche-Comté Usc INRAE, 16 route de Gray, 25030 cedex Besançon, France.
| | - Frédéric Gimbert
- UMR 6249 Chrono-Environnement CNRS - Université de Franche-Comté Usc INRAE, 16 route de Gray, 25030 cedex Besançon, France.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
6
|
Chen Y, He E, Peijnenburg WJGM, Jiang X, Qiu H. Differential Leaf-to-Root Movement, Trophic Transfer, and Tissue-Specific Biodistribution of Metal-Based and Polymer-Based Nanoparticles When Present Singly and in Mixture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21025-21036. [PMID: 39531361 DOI: 10.1021/acs.est.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The transfer of nanoparticles (NPs) through the terrestrial food chain via foliar uptake presents poorly understood risks, especially in scenarios involving copollution and plant translocation. Herein, we exposed the radishes to single and mixed foliar doses of CeO2 NPs and deuterated polystyrene (DPS), investigating the trophic transfer of NPs from radish shoots/roots to snails. Compared to single treatments, mixture treatments increased Ce uptake by plants but had no effect on DPS uptake. Additionally, mixture treatments did not affect the movement of Ce and DPS from shoots to roots. Under NP mixture exposure, trophic transfer efficiencies (TTF) for Ce (2.09 × 10-2) and DPS (2.54 × 10-2) significantly decreased in shoot-feeding snails. In root-feeding snails, TTF for Ce (3.32 × 10-1) also showed a significant decrease, while TTF for DPS remained unchanged. Mixture treatments exhibited differential impacts on different snail body parts, particularly leading to biomagnification of DPS in the digestive glands and soft tissues (TTF > 1) of snails consuming roots exposed to mixtures. Both CeO2 and DPS displayed a sudden increase in assimilation efficiency following translocation to the roots. This study provides insights into changes during trophic transfer due to coexposure and plant translocation processes associated with nanoparticles, enhancing our comprehension regarding their environmental risks.
Collapse
Affiliation(s)
- Yingxin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Wang Z, Fan N, Li X, Yue L, Wang X, Liao H, Xiao Z. Trophic Transfer of Metal Oxide Nanoparticles in the Tomato- Helicoverpa armigera Food Chain: Effects on Phyllosphere Microbiota, Insect Oxidative Stress, and Gut Microbiome. ACS NANO 2024; 18:26631-26642. [PMID: 39297401 DOI: 10.1021/acsnano.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding the trophic transfer and ecological cascade effects of nanofertilizers and nanopesticides in terrestrial food chains is crucial for assessing their nanotoxicity and environmental risks. Herein, the trophic transfer of La2O3 (nLa2O3) and CuO (nCuO) nanoparticles from tomato leaves to Helicoverpa armigera (Lepidoptera: Noctuidae) caterpillars and their subsequent effects on caterpillar growth and intestinal health were investigated. We found that 50 mg/L foliar nLa2O3 and nCuO were transferred from tomato leaves to H. armigera, with particulate trophic transfer factors of 1.47 and 0.99, respectively. While nCuO exposure reduced larval weight gain more (34.7%) than nLa2O3 (11.3%), owing to higher oxidative stress (e.g., MDA and H2O2) and more serious intestinal pathological damage (i.e., crumpled columnar cell and disintegrated goblet cell) by nCuO. Moreover, nCuO exposure led to a more compact antagonism between the phyllosphere and gut microbiomes compared to nLa2O3. Specifically, nCuO exposure resulted in a greater increase in pathogenic bacteria (e.g., Mycobacterium, Bacillus, and Ralstonia) and a more significant decrease in probiotics (e.g., Streptomyces and Arthrobacter) than nLa2O3, ultimately destroying larval intestinal immunity. Altogether, our findings systematically revealed the cascade effect of metal oxide nanomaterials on higher trophic consumers through alteration in the phyllosphere and insect gut microbiome interaction, thus providing insights into nanotoxicity and environmental risk assessment of nanomaterials applied in agroecosystems.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huimin Liao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Yan X, White JC, He E, Peijnenburg WJGM, Zhang P, Qiu H. Temporal Dynamics of Copper-Based Nanopesticide Transfer and Subsequent Modulation of the Interplay Between Host and Microbiota Across Trophic Levels. ACS NANO 2024; 18:25552-25564. [PMID: 39171664 DOI: 10.1021/acsnano.4c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
During agricultural production, significant quantities of copper-based nanopesticides (CBNPs) may be released into terrestrial ecosystems through foliar spraying, thereby posing a potential risk of biological transmission via food chains. Consequently, we investigated the trophic transfer of two commonly available commercial CBNPs, Reap2000 (RP) and HolyCu (HC), in a plant-caterpillar terrestrial food chain and evaluated impacts on host microbiota. Upon foliar exposure (with 4 rounds of spraying, totaling 6.0 mg CBNPs per plant), leaf Cu accumulation levels were 726 ± 180 and 571 ± 121 mg kg-1 for RP and HC, respectively. HC exhibited less penetration through the cuticle compared to RP (RP: 55.5%; HC: 32.8%), possibly due to size exclusion limitations. While caterpillars accumulated higher amounts of RP, HC exhibited a slightly higher trophic transfer factor (TTF; RP: 0.69 ± 0.20; HC: 0.74 ± 0.17, p > 0.05) and was more likely to be transferred through the food chain. The application of RP promoted the dispersal of phyllosphere microbes and perturbed the original host intestinal microbiota, whereas the HC group was largely host-modulated (control: 65%; RP: 94%; HC: 34%). Integrating multiomics analyses and modeling approaches, we elucidated two pathways by which plants exert bottom-up control over caterpillar health. Beyond the direct transmission of phyllosphere microbes, the leaf microbiome recruited upon exposure to CBNPs further influenced the ingestion behavior and intestinal microbiota of caterpillars via altered leaf metabolites. Elevated Proteobacteria abundance benefited caterpillar growth with RP, while the reduction of Proteobacteria with HC increased the risk of lipid metabolism issues and gut disease. The recruited Bacteroidota in the RP phyllosphere proliferated more extensively into the caterpillar gut to enhance stress resistance. Overall, the gut microbes reshaped in RP caterpillars exerted a strong regulatory effect on host health. These findings expand our understanding of the dynamic transmission of host-microbiota interactions with foliar CBNPs exposure, and provide critical insight necessary to ensure the safety and sustainability of nanoenabled agricultural strategies.
Collapse
Affiliation(s)
- Xuchen Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven06511, Connecticut, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300RA, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Fares A, Mahdy A, Ahmed G. Unraveling the mysteries of silver nanoparticles: synthesis, characterization, antimicrobial effects and uptake translocation in plant-a review. PLANTA 2024; 260:7. [PMID: 38789841 PMCID: PMC11126449 DOI: 10.1007/s00425-024-04439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
MAIN CONCLUSION The study thoroughly investigates nanosilver production, properties, and interactions, shedding light on its multifaceted applications. It underscores the importance of characterizing nanosilver for predicting its behavior in complex environments. Particularly, it highlights the agricultural and environmental ramifications of nanosilver uptake by plants. Nowadays, silver nanoparticles (AgNPs) are a very adaptable nanomaterial with many uses, particularly in antibacterial treatments and agricultural operations. Clarification of key elements of nanosilver, such as its synthesis and characterization procedures, antibacterial activity, and intricate interactions with plants, particularly those pertaining to uptake and translocation mechanisms, is the aim of this in-depth investigation. Nanosilver synthesis is a multifaceted process that includes a range of methodologies, including chemical, biological, and sustainable approaches that are also environmentally benign. This section provides a critical evaluation of these methods, considering their impacts on repeatability, scalability, and environmental impact. The physicochemical properties of nanosilver were determined by means of characterization procedures. This review highlights the significance of analytical approaches such as spectroscopy, microscopy, and other state-of the-art methods for fully characterizing nanosilver particles. Although grasp of these properties is necessary in order to predict the behavior and potential impacts of nanosilver in complex biological and environmental systems. The second half of this article delves into the intricate interactions that plants have with nanosilver, emphasizing the mechanisms of absorption and translocation. There are significant ramifications for agricultural and environmental problems from the uptake of nanosilver by plants and its subsequent passage through their tissues. In summary, by summarizing the state-of-the-art information in this field, this study offers a comprehensive overview of the production, characterization, antibacterial capabilities, and interactions of nanosilver with plants. This paper contributes to the ongoing conversation in nanotechnology.
Collapse
Affiliation(s)
- Ahmed Fares
- Plant Research Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Abdou Mahdy
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Gamal Ahmed
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Li Y, Fan W, Yang X, Liu S, Wang Y, Wang WX. Aging effects of titanium dioxide on Cu toxicity to Daphnia magna: Exploring molecular docking and significance of surface properties. WATER RESEARCH 2024; 254:121377. [PMID: 38452524 DOI: 10.1016/j.watres.2024.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Cosmetics and personal care products containing titanium dioxide nanoparticles (TiO2 NPs) may enter aquatic environments, where the surface coatings of TiO2 NPs may change with aging due to environmental factors such as light, and potentially affect their bioaccumulation and toxicity. This study examined how aging impacted the physicochemical properties of three commercially available TiO2 NPs and subsequent influence on the bioaccumulation and toxicity of copper (Cu) in Daphnia magna (D. magna). We demonstrated that aging significantly affected the hydrophobicity of TiO2 NPs, which affected their binding to water molecules and adsorption of Cu. Changes of bioaccumulation of TiO2 NPs and Cu in D. magna ultimately affected the activities of intracellular antioxidant enzymes such as SOD, CAT, GSH-Px, and the transmembrane protein Na+/K+-ATPase. Molecular docking calculations demonstrated that changes of activities of these biological enzymes were due to the interaction between TiO2 NPs, Cu, and amino acid residues near the sites with the lowest binding energy and active center of the enzyme. Such effect was closely related to the hydrophobicity of TiO2 NPs. Our study demonstrated the close relationship between surface properties of TiO2 NPs and their biological effects, providing important evidence for understanding the behavior of nanomaterials in aquatic environments.
Collapse
Affiliation(s)
- Yao Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wenhong Fan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Xiaolong Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Shu Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Li W, Qiu H, van Gestel CAM, Peijnenburg WJGM, He E. Trophic Transfer and Toxic Potency of Rare Earth Elements along a Terrestrial Plant-Herbivore Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5705-5715. [PMID: 38460143 DOI: 10.1021/acs.est.3c09179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.
Collapse
Affiliation(s)
- Wenxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333 CC, The Netherlands
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Wang Y, Ma C, Dang F, Zhao L, Zhou D, Gu X. Mixed effects and co-transfer of CeO 2 NPs and arsenic in the pakchoi-snail food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132770. [PMID: 37852136 DOI: 10.1016/j.jhazmat.2023.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Nanomaterial application in agriculture offers novel solutions for soil arsenic (As) pollution control, yet safety along the food chain is of concern. We comprehensively assessed CeO2 nanoparticles (NPs) foliar application effects on As uptake by pakchoi and their presence in the pakchoi-snail food chain. CeO2 NPs reduced As transfer from pakchoi roots to shoots by 37.9%, lowered As in snail foot by 39%, and halved human As exposure risk. The NPs alleviated pakchoi shoot As toxicity by regulating antioxidants, enhancing water use efficiency, and photosynthesis. CeO2 +As treatment raised GSH/GSSG ratios by 38.92%- 167.54%, leading to an increased AsIII/AsV ratio and inorganic As detoxification compared to As alone. Metabolomics revealed CeO2's rapid As response via phosphatidylinositol signaling. The enzyme-like activity of CeO2 NPs may drive these effects. While CeO2 foliar application accumulated Ce on pakchoi leaves, > 99% of Ce was excreted following snail consumption. Ce transfer from pakchoi leaves to snail foot was minimal (trophic transfer factor ∼0.00007) due to limited bioavailability. The target hazard quotient of Ce in pakchoi shoot (1.21 ± 0.18) and snails (0.0016 ± 0.0004) indicated low exposure risk, suggesting a 'risk filter' effect for CeO2. Our results contribute to the safe and sustainable application of CeO2 NPs in the future implication.
Collapse
Affiliation(s)
- Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Li Y, Lin X, Wang J, Xu G, Yu Y. Mass-based trophic transfer of polystyrene nanoplastics in the lettuce-snail food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165383. [PMID: 37422223 DOI: 10.1016/j.scitotenv.2023.165383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
To investigate the potential transfer of nanoplastics (NPs) from water to plants and subsequently to a higher trophic level, we established a food chain and evaluated the trophic transfer of polystyrene (PS) NPs based on mass concentrations by pyrolysis gas chromatography-mass spectrometry. Lettuce plants were cultivated in Hoagland solution with varying concentrations of PS-NPs (0.1, 1, 10, 100 and 1000 mg/L) for a period of 60 d and then a total of 7 g lettuce shoot was fed to snails for 27 d. Shoot biomass exposed at 1000 mg/L PS-NPs was reduced by 36.1 %. No significant change in root biomass was observed, however, root volume was reduced by 25.6 % at 100 mg/L. Moreover, PS-NPs were detected in both lettuce roots and shoots across all concentrations. Additionally, PS-NPs were transferred to snails and primarily found in feces (>75 %). Only 28 ng/g of PS-NPs were detected in the soft tissue of snails indirectly exposed at 1000 mg/L. Although PS-NPs were bio-diluted when transferred to species at higher trophic levels, they significantly inhibited the growth of snails, indicating that their potential risk to high trophic levels cannot be ignored. This study provides key information on trophic transfer and patterns of PS-NPs in food chains and helps to evaluate risk of NPs in terrestrial ecosystem.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
14
|
Dang F, Yuan Y, Huang Y, Wang Y, Xing B. Trophic transfer of nanomaterials and their effects on high-trophic-level predators. NANOIMPACT 2023; 32:100489. [PMID: 37993019 DOI: 10.1016/j.impact.2023.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Nanotechnology offers great opportunities for numerous sectors in society. One important challenge in sustainable nanotechnology is the potential of trophic transfer of nanomaterials (NMs), which may lead to unintentional impacts on environmental and human health. Here, we highlight the key advances that have been made in recent 15 years with respect to trophic transfer of heterogeneous NMs, including metal-based NMs, carbon-based NMs and nanoplastics, across various aquatic and terrestrial food chains. Particle number-based trophic transfer factors (TTFs), rather than the variable mass-based TTFs, capture the particle-specific transfer, for which NMs exhibit dynamic and complex biotransformation (e.g., dissolution, sulfidation, reduction, and corona formation). Trophic transfer of NMs has toxicological significance to predators at molecular (e.g., increased oxidative stress and modified metabolites), physiological (e.g., feeding inhibition) and population (e.g., reproduction inhibition) levels. However, linking NM exposure and toxicity remains a challenge, partly due to the dynamic biotransformation along the food chain. Although NMs have been used to increase crop yield in agriculture, they can exert detrimental impacts on crop yield and modify crop quality, depending on NMs type, exposure dose, and crop species, with unknown consequences to human health via crop consumption. Given this information, we describe the challenges and opportunities in understanding the significance of NMs trophic transfer to develop more sustainable, effective and safer nanotechnology.
Collapse
Affiliation(s)
- Fei Dang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
15
|
Wang Y, Qian X, Chen J, Yuan X, Zhu N, Chen Y, Fan T, Li M, Toland H, Feng Z. Co-exposure of polystyrene microplastics influence cadmium trophic transfer along the "lettuce-snail" food chain: Focus on leaf age and the chemical fractionations of Cd in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164799. [PMID: 37302614 DOI: 10.1016/j.scitotenv.2023.164799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and polystyrene microplastics (PS) co-contamination always occurs in environment; however, the trophic transfer of Cd and PS is still poorly understood. A hydroponic experiment was conducted to investigate the behavior of Cd in lettuce, together with the root or foliar exposure of different sized PS. Accumulation and chemical form distributions of Cd in leaves were distinguished into young and mature leaves. Subsequently, a 14-day snail feeding experiment was performed. Data showed that Cd accumulation in roots, rather than in leaves, are significantly affected by PS coexistence. However, mature leaves had a higher Cd content than young leaves under the root exposure of PS, while a reverse effect was observed in the foliar exposure. There existed a positive correlation between the food-chain transfer associated Cd (CdFi+Fii+Fiii) in mature leaves and Cd content in snail soft tissue (r = 0.705, p < 0.001), but not in young leaves. Though no bio-amplification of Cd in food chain was observed, an increase of Cd transfer factor (TF) from lettuce to snail was noted in the root exposure of 5 μm PS and the foliar exposure of 0.2 μm PS. Moreover, we observed a highest increase rate of 36.8 % in TF values from lettuce to snail viscera, and a chronic inflammatory response in snail stomach tissue. Therefore, more attentions should be paid to study the ecological risks of heavy metals and microplastics co-contamination in environment.
Collapse
Affiliation(s)
- Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyue Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yudong Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Harry Toland
- Geography & Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, Wales SY23 3DB, United Kingdom
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
16
|
Dang F, Li C, Nunes LM, Tang R, Wang J, Dong S, Peijnenburg WJGM, Wang W, Xing B, Lam SS, Sonne C. Trophic transfer of silver nanoparticles shifts metabolism in snails and reduces food safety. ENVIRONMENT INTERNATIONAL 2023; 176:107990. [PMID: 37247467 DOI: 10.1016/j.envint.2023.107990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Food security and sustainable development of agriculture has been a key challenge for decades. To support this, nanotechnology in the agricultural sectors increases productivity and food security, while leaving complex environmental negative impacts including pollution of the human food chains by nanoparticles. Here we model the effects of silver nanoparticles (Ag-NPs) in a food chain consisting of soil-grown lettuce Lactuca sativa and snail Achatina fulica. Soil-grown lettuce were exposed to sulfurized Ag-NPs via root or metallic Ag-NPs via leaves before fed to snails. We discover an important biomagnification of silver in snails sourced from plant root uptake, with trophic transfer factors of 2.0-5.9 in soft tissues. NPs shifts from original size (55-68 nm) toward much smaller size (17-26 nm) in snails. Trophic transfer of Ag-NPs reprograms the global metabolic profile by down-regulating or up-regulating metabolites for up to 0.25- or 4.20- fold, respectively, relative to the control. These metabolites control osmoregulation, phospholipid, energy, and amino acid metabolism in snails, reflecting molecular pathways of biomagnification and pontential adverse biological effects on lower trophic levels. Consumption of these Ag-NP contaminated snails causes non-carcinogenic effects on human health. Global public health risks decrease by 72% under foliar Ag-NP application in agriculture or through a reduction in the consumption of snails sourced from root application. The latter strategy is at the expense of domestic economic losses in food security of $177.3 and $58.3 million annually for countries such as Nigeria and Cameroon. Foliar Ag-NP application in nano-agriculture has lower hazard quotient risks on public health than root application to ensure global food safety, as brought forward by the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| | - Chengcheng Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Luís M Nunes
- University of Algarve, Civil Engineering Research and Innovation for Sustainability Center, Faro, Portugal
| | - Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuofei Dong
- Agilent Technologies Co. Ltd (China), No.3, Wang Jing Bei Road, Chao Yang District, Beijing 100102, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Wenxiong Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Christian Sonne
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
17
|
Helmy ET, Ayyad MA, Ali MA, Mohamedbakr HG, Pan JH. Biochemical, Histological Changes, Protein Electrophoretic Pattern, and Field Application of CuPb-Ferrite/TiO 2 Nanocomposites for Controlling Terrestrial Gastropod Eobania vermiculata (Müller). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6626-6634. [PMID: 37070858 DOI: 10.1021/acs.jafc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eobania vermiculata is a hazardous snail that can damage ornamental plants and cause significant harm to plant sections in Egyptian areas. Herein, the molluscicidal activity of CuPb-Ferrite/TiO2 and TiO2 nanoparticles (NPs) against E. vermiculata was evaluated using the poisonous bait method. LC50 values were determined using the leaf dipping and contact methods, with values of 631.23 and 1703.49 ppm for CuPb-Ferrite/TiO2 and 193.67 and 574.97 ppm for TiO2. Exposure to both NPs resulted in a significant increase in the biochemical parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), as well as a decrease in total protein (TP) percentage of E. vermiculata. Histological examinations revealed that many digestive cells had ruptured, and their contents had been lost, while the foot's epithelial layer became ruptured. The average reduction was 66.36% for CuPb-Ferrite/TiO2 NPs compared to the recommended molluscicide, Neomyl, with a 70.23% reduction in the field application. Electrophoretic separation of total protein using sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with LC50 concentrations of TiO2 and CuPb-Ferrite/TiO2 demonstrated the potency of these synthetic compounds as molluscicidal agents. Therefore, we recommend the use of CuPb-Ferrite/TiO2 NPs as a novel land snail molluscicide because it is safe to use, and the baits are arranged to not affect irrigation water, with a high molluscicidal effect.
Collapse
Affiliation(s)
- Elsayed T Helmy
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria 12345, Egypt
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - Mona A Ali
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - H G Mohamedbakr
- Faculty of Science, Chemistry Department, Jazan University, P.O. Box 2097, Jazan 45142, Kingdom of Saudi Arabia
- Faculty of Science, Chemistry Department, Suez Canal University, Ismailia 41522, Egypt
| | - Jia Hong Pan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
18
|
Zhang S, Ke M, Li L, Chen K, Hicks A, Wu F, You J. UV-dependent freshwater effect factor of nanoscale titanium dioxide for future life cycle assessment application. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:578-585. [PMID: 36111587 DOI: 10.1002/ieam.4686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Environmental impacts of nanoscale titanium dioxide (TiO2 ) should be assessed throughout the lifetime of nanoparticles (NPs) to improve the state of knowledge of the overall sustainability. Life cycle assessment (LCA) has been previously recognized as a promising approach to systematically evaluating environmental impacts of NPs. As a result of their unique nanospecific properties, characterization factors (CF) were previously used for compensating the release and potential impacts of TiO2 NPs. However, because TiO2 NPs are known to generate reactive oxygen species and elicit toxicity to freshwater organisms, the lack of adequate UV-dependent effect factors (EFs) remains a major shortcoming when addressing their life cycle impacts. To complement the LCA of TiO2 -NPs-enabled products under their specific applications, we recapitulated the freshwater toxicity of TiO2 NPs and then modeled in USEtox to determine trophic level EF ranges under UV and non-UV exposure conditions. Results indicate that EFs derived for non-UV exposure were 52 (42.9-65) potentially affected fraction (PAF) m3 /kg, and combined toxicity data derived EFs were 70.1 (55.6-90.5) PAF m3 /kg. When considering only the UV-induced exposure condition, the modeled EF increased to 500 (333-712) PAF m3 /kg. Our work highlights that case-dependent EFs should be considered and applied to reflect more realistic ecological impacts and illustrate comprehensive life cycle environmental impacts for nanoenabled products. Integr Environ Assess Manag 2023;19:578-585. © 2022 SETAC.
Collapse
Affiliation(s)
- Shaoqiong Zhang
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Mingyan Ke
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Liang Li
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Keyan Chen
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Andrea Hicks
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fan Wu
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Zhang Y, Su JQ, Liao H, Breed MF, Yao H, Shangguan H, Li HZ, Sun X, Zhu YG. Increasing Antimicrobial Resistance and Potential Human Bacterial Pathogens in an Invasive Land Snail Driven by Urbanization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7273-7284. [PMID: 37097110 DOI: 10.1021/acs.est.3c01233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our understanding of the role urbanization has in augmenting invasive species that carry human bacterial pathogens and antimicrobial resistance (AMR) remains poorly understood. Here, we investigated the gut bacterial communities, antibiotic resistance genes (ARGs) and potential antibiotic-resistant pathogens in giant African snails (Achatina fulica) collected across an urbanization gradient in Xiamen, China (n = 108). There was a lack of correlation between the microbial profiles of giant African snails and the soils of their habitats, and the resistome and human-associated bacteria were significantly higher than those of native snails as well as soils. We observed high diversity (601 ARG subtypes) and abundance (1.5 copies per 16S rRNA gene) of giant African snail gut resistome. Moreover, giant African snails in more urban areas had greater diversity and abundance of high-risk ARGs and potential human bacterial pathogens (e.g., ESKAPE pathogens). We highlight that urbanization significantly impacted the gut microbiomes and resistomes of these invasive snails, indicating that they harbor greater biological contaminants such as ARGs and potential human bacterial pathogens than native snails and soils. This study advances our understanding of the effect of urbanization on human bacterial pathogens and AMR in a problematic invasive snail and should help combat risks associated with invasive species under the One Health framework.
Collapse
Affiliation(s)
- Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Liao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Wu J, Sun J, Bosker T, Vijver MG, Peijnenburg WJGM. Toxicokinetics and Particle Number-Based Trophic Transfer of a Metallic Nanoparticle Mixture in a Terrestrial Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2792-2803. [PMID: 36747472 DOI: 10.1021/acs.est.2c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we investigated to which extent metallic nanoparticles (MNPs) affect the trophic transfer of other coexisting MNPs from lettuce to terrestrial snails and the associated tissue-specific distribution using toxicokinetic (TK) modeling and single-particle inductively coupled plasma mass spectrometry. During a period of 22 days, snails were fed with lettuce leaves that were root exposed to AgNO3 (0.05 mg/L), AgNPs (0.75 mg/L), TiO2NPs (200 mg/L), and a mixture of AgNPs and TiO2NPs (equivalent doses as for single NPs). The uptake rate constants (ku) were 0.08 and 0.11 kg leaves/kg snail/d for Ag and 1.63 and 1.79 kg leaves/kg snail/d for Ti in snails fed with NPs single- and mixture-exposed lettuce, respectively. The elimination rate constants (ke) of Ag in snails exposed to single AgNPs and mixed AgNPs were comparable to the corresponding ku, while the ke for Ti were lower than the corresponding ku. As a result, single TiO2NP treatments as well as exposure to mixtures containing TiO2NPs induced significant biomagnification from lettuce to snails with kinetic trophic transfer factors (TTFk) of 7.99 and 6.46. The TTFk of Ag in the single AgNPs treatment (1.15 kg leaves/kg snail) was significantly greater than the TTFk in the mixture treatment (0.85 kg leaves/kg snail), while the fraction of Ag remaining in the body of snails after AgNPs exposure (36%) was lower than the Ag fraction remaining after mixture exposure (50%). These results indicated that the presence of TiO2NPs inhibited the trophic transfer of AgNPs from lettuce to snails but enhanced the retention of AgNPs in snails. Biomagnification of AgNPs from lettuce to snails was observed in an AgNPs single treatment using AgNPs number as the dose metric, which was reflected by the particle number-based TTFs of AgNPs in snails (1.67, i.e., higher than 1). The size distribution of AgNPs was shifted across the lettuce-snail food chain. By making use of particle-specific measurements and fitting TK processes, this research provides important implications for potential risks associated with the trophic transfer of MNP mixtures.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EEThe Hague, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BABilthoven, The Netherlands
| |
Collapse
|
21
|
Zhu D, Ding J, Wang YF, Zhu YG. Effects of Trophic Level and Land Use on the Variation of Animal Antibiotic Resistome in the Soil Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14937-14947. [PMID: 35502923 DOI: 10.1021/acs.est.2c00710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, it has been increasingly recognized that soil animals are hidden reservoirs of antibiotic resistance genes (ARGs) and play a vital role in spreading ARGs in soil ecosystems. However, little is known about the variation of ARGs among different animals in the soil food web and effects of trophic levels and land uses on them. We characterized the antibiotic resistomes of 495 soil animal samples collected from six regions across China, including two different land uses. A total of 265 ARGs were detected in all animal samples, and relative abundances of ARGs in animals were significantly higher than in soils. In addition, significant differences in ARGs were observed among different animal groups. Twelve common ARGs were identified among all animal groups, accounting for 17.4% of total ARGs abundance. A positive and significant correlation was found between δ15N values (trophic level) and total ARGs abundance in animals. The relative abundance of ARGs in the soil food web from arable land was higher than forest land. Changes in soil antibiotics may indirectly affect animal resistome by altering soil ARGs. This study suggests that the risk of ARGs spreading through the food web is greater in arable than in forest ecosystems.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
TiO 2 Nanoparticles and Their Effects on Eukaryotic Cells: A Double-Edged Sword. Int J Mol Sci 2022; 23:ijms232012353. [PMID: 36293217 PMCID: PMC9604286 DOI: 10.3390/ijms232012353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Nanoparticulate TiO2 (TiO2 NPs) is a widely used material, whose potential toxicity towards eukaryotic cells has been addressed by multiple studies. TiO2 NPs are considered toxic due to their production of reactive oxygen species (ROS), which can, among others, lead to cellular damage, inflammatory responses, and differences in gene expression. TiO2 NPs exhibited toxicity in multiple organs in animals, generating potential health risks also in humans, such as developing tumors or progress of preexisting cancer processes. On the other hand, the capability of TiO2 NPs to induce cell death has found application in photodynamic therapy of cancers. In aquatic environments, much has been done in understanding the impact of TiO2 on bivalves, in which an effect on hemocytes, among others, is reported. Adversities are also reported from other aquatic organisms, including primary producers. These are affected also on land and though some potential benefit might exist when it comes to agricultural plants, TiO2 can also lead to cellular damage and should be considered when it comes to transfer along the food chain towards human consumers. In general, much work still needs to be done to unravel the delicate balance between beneficial and detrimental effects of TiO2 NPs on eukaryotic cells.
Collapse
|
23
|
Mohanty S, Patel P, Jha E, Panda PK, Kumari P, Singh S, Sinha A, Saha AK, Kaushik NK, Raina V, Verma SK, Suar M. In vivo intrinsic atomic interaction infer molecular eco-toxicity of industrial TiO 2 nanoparticles via oxidative stress channelized steatosis and apoptosis in Paramecium caudatum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113708. [PMID: 35667312 DOI: 10.1016/j.ecoenv.2022.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The ecotoxicological effect of after-usage released TiO2 nanoparticles in aquatic resources has been a major concern owing to their production and utilization in different applications. Addressing the issue, this study investigates the detailed in vivo molecular toxicity of TiO2 nanoparticles with Paramecium caudatum. TiO2 nanoparticles were synthesized at a lab scale using high energy ball milling technique; characterized for their physicochemical properties and investigated for their ecotoxicological impact on oxidative stress, steatosis, and apoptosis of cells through different biochemical analysis, flow cytometry, and fluorescent microscopy. TiO2 nanoparticles; TiO2 (N15); of size 36 ± 12 nm were synthesized with a zeta potential of - 20.2 ± 8.8 mV and bandgap of 4.6 ± 0.3 eV and exhibited a blue shift in UV-spectrum. Compared to the Bulk TiO2, the TiO2 (N15) exhibited higher cytotoxicity with a 24 h LC50 of 202.4 µg/ml with P. Caudatum. The mechanism was elucidated as the size and charge-dependent internalization of nanoparticles leading to abnormal physiological metabolism in oxidative stress, steatosis, and apoptosis because of their influential effect on the activity of metabolic proteins like SOD, GSH, MDA, and catalase. The study emphasized the controlled usage TiO2 nanoparticles in daily activity with a concern for ecological and biomedical aspects.
Collapse
Affiliation(s)
- Swabhiman Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Brno 60300, Czech Republic; Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Sonal Singh
- Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ashish Kumar Saha
- Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|