1
|
Di Y, Li W, Huo R, Wu C, Zhao Y, Shi K, Zhou S, Liu C. Response of aerobic denitrification system to long-term stress of sulfamethoxazole, erythromycin and ofloxacin in oligotrophic water. BIORESOURCE TECHNOLOGY 2025; 428:132458. [PMID: 40169101 DOI: 10.1016/j.biortech.2025.132458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
The responses of aerobic denitrification system to long-term stress of sulfamethoxazole (SMX), erythromycin (ERY) and ofloxacin (OFL) were investigated under low, middle, and high antibiotics stress. Findings showed that the aerobic denitrification performance was enhanced by antibiotics, and was higher than control system. Meanwhile, nitrate removal efficiency reached 43.01 ∼ 53.82 %, 29.48 ∼ 47.83 %, and 19.53 ∼ 34.08 % from low to high antibiotics stress in low carbon/nitrogen (C/N) ratio water. The α-diversity (ACE, Chao, and Shannon index) tended to increase for middle and high antibiotic stress. The PCoA and NMDS indicated that communities exhibited significantly difference (P < 0.001) under different antibiotics stress, which were agreement with the results of Adonis and ANOSIM. Acidovorax, Zoogloea, Bdellovibrio, Paracoccus, Piscinibacter, Pseudomonas, and Rhizobacter dominated the aerobic denitrification bacteria. Moreover, stochastic processes decreased gradually with increasing antibiotics. Furthermore, the results of network demonstrated that increase of antibiotics concentration could obviously reduce the microbial stability.
Collapse
Affiliation(s)
- Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chenbin Wu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Chun Liu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
2
|
Fan Y, Xiang T, Dai Z, Wei Q, Li Y, Wang F, Yang S, Liu L, Xu W, Cao W. Cascade effects of nutrient input on river microeukaryotic stability: habitat heterogeneity-driven assembly mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125626. [PMID: 40334416 DOI: 10.1016/j.jenvman.2025.125626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The assembly process and stability mechanism of microeukaryotes can reflect the health and sustainability of river ecosystems, and changes in land use types can alter biodiversity and affect ecosystem functions. Here, we used 18S rDNA amplicon sequencing technology to explore the effects of land use and dry and wet season changes on microeukaryotic species composition, community assembly, co-occurrence networks, and network stability, as well as the mechanisms driving observed changes. The total phosphorus concentration was 13.3 and 7.8 times higher and the total nitrogen concentration was 6.3 and 3.8 times higher in agricultural and urban river sections, respectively, than in forest river sections. Differences in land use types have created heterogeneity on river habitats and altered the distribution and species composition of microeukaryotes, reducing the number and diversity of endemic species in communities and simplifying the food web. High nitrogen and phosphorus inputs promoted the abundance of low-trophic-level species; ecosystem stability and population sizes were maintained by high trophic levels, which controlled the abundance of low trophic levels through predation and promoted nitrogen transformation. The high-nutrient environment reduced the niche breadth of species (>70 % dry season niche breadth contraction), thus promoting specialization; given that this placed these species at a disadvantage in the competition for resources, community stability decreased (60 %/40 % wet/dry season robustness reductions). The physical dilution effect of the river in the dry season was weakened, and the input of domestic sewage and agricultural return water promoted deterministic processes (71.43 % increased |βNTI|>2 in dry season). The environmental filtration effect in the wet season was still stronger than the physical dilution effect caused by the increase in river flow (neutral model R2 = 33.5 %). The input of large amounts of nutrients was the main driver of the decline in the stability of microeukaryotes (Total Effect = -0.62).
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tao Xiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiqi Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yujie Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, 361102, Fujian, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, 361102, Fujian, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
3
|
Wang H, Liu S, Li Y, Li X, Li L, Yuan S, Dai X. Enhancing simultaneous nitrogen and phosphorus removal from municipal wastewater using micron zeolite powder carrier and hydrocyclone separator: Microbial distribution and correlation analysis. BIORESOURCE TECHNOLOGY 2025; 431:132598. [PMID: 40306343 DOI: 10.1016/j.biortech.2025.132598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
This study developed a novel wastewater treatment process for efficient nitrogen and phosphorus removal using micron zeolite powder carriers and hydrocyclone separator. Under anaerobic/intermittent aeration, the total nitrogen and phosphorus removal efficiencies reached 85.2 ± 1.9 % and 78.9 ± 3.4 %, respectively, significantly outperforming conventional activated sludge system. High specific surface area and porosity of zeolite powder facilitated microbial aggregation and biofilm formation, resulting in an average sludge size of 125.3 ± 5.3 μm. The combination of powder carriers and hydrocyclone separators resulted in the differentiated distribution of functional microorganisms. Denitrifying bacteria, such as norank_Comamonadaceae (4.34 %), norank_AKYH767 (1.90 %), and Candidatus_Microthrix (2.61 %), were enriched in biofilm, while nitrifying bacteria and polyphosphate-accumulating organisms predominated in floc. Functional gene abundance related to denitrification and phosphorus removal was significantly upregulated. Correlation network analysis revealed enhanced microbial cooperation, improving the functionality and stability of community. This study offers the potential pathway for efficient nitrogen and phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanzeng Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore.
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Jiang BN, Zhang YY, Wang Y, Liu HQ, Zhang ZY, Yang YJ, Song HL. Microbial biomass stoichiometry and proportion of Fe organic complexes separately shape the heterogeneity of mixotrophic denitrification and net N 2O sinks in iron-carbon amended ecological ditch. WATER RESEARCH 2025; 272:122945. [PMID: 39674145 DOI: 10.1016/j.watres.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net N2O sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis. Surprisingly, unamened eco-ditch became net N2O sink while exhibiting a significant increase in total nitrogen (TN) removal rate of 319 % (P < 0.001) compared to soil ditch. The integration of MW pyrolyzed IH-derived biochar with sFe to amend eco-ditch achieved synchronous enhancement in net N2O sinks (P < 0.01) and TN removal rate (P < 0.001), whereas the remaining amended eco-ditches that significantly intensified TN removal performance, were N2O emitters. Such heterogeneity primarily depends on Fe organic complexes (Fep) / the total reactive Fe oxides (Fed) ratio, rather than the prevailing nosZ gene, underscoring that low density metastable reactive iron plays a more important role than biological reactions during the mixotrophic denitrification process. As such, iron oxides are not necessarily a bottleneck for denitrification and contribute to N2O sinks. Conversely, microbial biomass C:(C + N), together with nirK and nosZ genes, mainly explain the TN removal heterogeneity of sFe-biochar eco-ditch. This study revisits the discrepant resilience of iron-carbon coupling to N abatement and N2O sink-induced cooling and has significant practical implications for better understanding the cascading effects of mixotrophic denitrification driven by iron-carbon interactions.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Yan Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Hai-Qin Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China.
| | - Yi-Jing Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Xiang Z, Chen X, Li H, Zhu B, Bai J, Huang X. Iron-carbon micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification treating low carbon/nitrogen mariculture wastewater. ENVIRONMENTAL RESEARCH 2025; 269:120796. [PMID: 39800298 DOI: 10.1016/j.envres.2025.120796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.3% compared to filter packed with ceramsite (R-C). Fe-C micro-electrolysis reaction led to the decrease of microbial diversity and richness, the enrichment of heterotrophic nitrification aerobic denitrification bacteria (HNADB) and HNAD genes (napA and napB) by 7.3 times and 56.3%. Besides, a synergistic effect existed that Fe-C substances not only further accumulated main functional genes associated with the transformation of N, carbon (C) and iron (Fe), but also indirectly enhanced electron transport system activity and ATP generation, thus resulting in elevating TN removal.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Hui Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Baoxing Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
6
|
Zhang Y, Gu X, Sun S, Yan P, Fan Y, Xi Y, He S. Trade-off between electrochemical and microbial nutrient eliminations in iron anode-assisted constructed wetlands: The specificity of voltage level. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124623. [PMID: 39983578 DOI: 10.1016/j.jenvman.2025.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Holistic understanding of electrocatalytic behaviors and microbiological mechanisms respond to voltage level (VL) benefits constructing performance-pathway-community linkages in iron anode-assisted constructed wetlands (IACWs). Herein, five solar-driven IACWs at 0, 1, 5, 10, and 15 V were established to treat secondary effluent for 109 days across moderate to low water temperatures (WTs). Results showed that total nitrogen (TN) (4.87-54.42%) and total phosphorus (TP) (20.66-97.35%) removals both ascended as VL raised, which primarily occurred in the cathodic regions and anodic upstream, respectively. More sustainable nitrogen elimination was achieved at lower VLs (≤ 5 V). Electrochemical contribution quantification revealed that electrochemical denitrogenation strengthened as VL improved (144.3-965.7 mg m-2 d-1), whereas severe anodic hardening and cathodic clogging in later operation impaired the dominant electrochemical denitrification at higher VLs (≥ 10 V). In contrast, microbial denitrogenation followed hump-shaped variational pattern with rising VL (peaked at 5 V). Microbial community and function analyses further clarified that despite VL elevation induced denitrifying microbiota evolution and up-regulated functional gene abundance, microbial denitrification function was significantly constrained at higher VLs. Particularly, the highest network complexity (at 1 V) and modularity (at 5 V) bred IACWs to better withstand low WT and high iron concentration. Overall, 5 V balanced electrochemical and microbial denitrogenation to obtain persistently effective TN removal. Additionally, intensified electro-coagulation dephosphorization was verified to remove most TP via adsorption and co-precipitation. This work provided a preferred VL regulation strategy to facilitate in situ sustainable nutrient purification of low-polluted wastewater in IACWs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang Xi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
7
|
Xiang Z, Chen X, Li H, Zhu B, Bai J, Huang X. Insight into enhanced adaptability of iron-carbon biofilter in treating low-carbon nitrogen mariculture wastewater for nitrogen removal and carbon reduction. BIORESOURCE TECHNOLOGY 2025; 419:132103. [PMID: 39855576 DOI: 10.1016/j.biortech.2025.132103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO3--N removal efficiency (65.1-96.0 %) compared to the control filter (-12.1-76.9 %) across all tested C/N ratios. Furthermore, the N2O emission proportion in R-Fe was reduced by 37.4-42.4 % compared to the control. Increasing the influent C/N ratio enhanced N removal efficiency while reducing the proportion of N2O emissions. This improvement correlated with enhanced electron transfer activity and an increased abundance of heterotrophic nitrifying-aerobic denitrifying bacteria (HNADB) and heterotrophic denitrifying bacteria (DNB), while the abundance of autotrophic denitrifying bacteria declined. Strong correlations were observed among microbial electron transfer activity, denitrifying microbial communities, Fe transport genes, denitrification-related functional genes, N removal efficiency, and N2O emission proportion, highlighting the critical role of electron transfer activity in microbial N removal processes.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003 China
| | - Hui Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Baoxing Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China.
| |
Collapse
|
8
|
Zhang L, Luo Y, Lv S, Liu Y, Wang R, Wang Y, Lin K, Liu L. Performance of electro-assisted ecological floating bed in antibiotics and conventional pollutants degradation: Mechanisms and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124393. [PMID: 39919574 DOI: 10.1016/j.jenvman.2025.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Electro-assisted technology is promising for enhancing plant activity, optimizing functional microbial communities, and significantly strengthening pollutant removal efficiency. In this study, four reactors were designed as control group (CG), Hydrocotyle vulgaris L. ecological floating bed (PEFB), microbial fuel cell (MFC), and Hydrocotyle vulgaris L. ecological floating bed-microbial fuel cell (PEFB-MFC) to investigate the efficiency and mechanisms for the synchronous removal of conventional and antibiotic contaminants. Results showed that PEFB-MFC hold superior removal performance for sulfamethoxazole (61%), tetracycline (61%), CODCr (65%), NH4+-N (86%), TN (41%), and TP (51%). High-throughput sequencing indicated that Pseudomonadota and Actinomycetota were the predominant phyla in the different reactors. Metagenomic sequencing results showed that pollutant degradation-related metabolic functions, such as those involved in carbohydrate and amino acid metabolism in PEFB-MFC exhibited superior abundance compared to the other reactors. LC-MS analysis revealed sulfamethoxazole degradation occurred through active-site cleavage, and tetracycline underwent demethylation, aldehyde formation, dehydroxylation. This study offers a deeper insight into electro-enhanced PEFB on decontamination performance and functional microbial communities.
Collapse
Affiliation(s)
- Liangjing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yan Luo
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315012, China
| | - Shucong Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Yunlong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Rui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Yu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Kuixuan Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Lusan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Liu X, Zhang H, Pei T, Huang T, Ma B, Wang T, Liu X, Ma W. Algal organic matter triggers re-assembly of bacterial community in plumbing system. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136713. [PMID: 39615381 DOI: 10.1016/j.jhazmat.2024.136713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 01/28/2025]
Abstract
Algal bloom outbreaks in upstream drinking water reservoirs inevitably lead to algal organic matter (AOM) pollution in downstream drinking water plants and distribution systems. However, the responses of indoor piped drinking water quality and microbial community to AOM remain to be well studied. In this study, we investigated the effects of low and high concentrations of Chlorella organic matters on pipe-based drinking water. We found that AOM introduced nitrogen and phosphorus contamination into drinking water and promoted massive regeneration of bacteria during stagnation, along with increased bacterial metabolic activity. Compared to the Control group, the utilization capacity of alcohols, acids, esters, and amino acids increased under the influence of AOM. In addition, AOM intrusion reduced the bacterial community diversity in drinking water. The bacterial communities became more saturated, interspecific relationships became more complex, and interspecific competition increased. Bacteria with the ability to denitrification, such as Pseudomonas putida, Sphingobium amiense, Delftia tsuruhatensis, and Acidovorax temperans, were the most abundant. Residual chlorine, ammonium, nitrite, and iron had notable effects on the bacterial community under the influence of AOM. The results help elucidate the response mechanism of microbial community to AOM contamination in indoor drinking water pipes and provide a scientific basis for drinking water safety risk management.
Collapse
Affiliation(s)
- Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Tingting Pei
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tuanwei Wang
- Xi'an Secondary Water Supply Management Center, Xi'an, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Wenpeng Ma
- Shaanxi Environmental Monitoring Center, Xi'an, China
| |
Collapse
|
10
|
Ni J, Hu Y, Liang D, Cheng J, Chen Y, Zhu X, Wang G, Xie J. Performance and mechanisms of nitrogen removal from low-carbon source wastewater in an iron-carbon coupled biofilm airlift internal circulation sequencing batch reactor. BIORESOURCE TECHNOLOGY 2025; 418:131925. [PMID: 39631547 DOI: 10.1016/j.biortech.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
An iron-carbon coupled biofilm airlift internal circulation sequencing batch reactor (IC-SBR) was constructed to treat low-carbon source wastewater. Single-factor experiments were used to determine the optimal operating conditions for the IC-SBR, with a hydraulic retention time (HRT) of 10 h, a dissolved oxygen (DO) concentration of 3 mg/L, a C/N ratio of 3, and an influent NH4+-N concentration of 50 mg/L, with average removal efficiencies of total nitrogen (TN) and total organic carbon (TOC) of 78.06% and 97.15%, respectively. Mechanistic studies of the IC-SBR indicated that iron-carbon selectively enriched nitrogen removal microorganisms and promoted nitrogen removal efficiency. Carbon sources affected the secretion of extracellular polymeric substances (EPS), enzyme activities, electron transport system activity, nitrogen removal gene abundance, and community structure of microorganisms in the IC-SBR. Microorganisms use EPS as a supplementary carbon source to ensure nitrogen removal efficiency when the carbon source is insufficient.
Collapse
Affiliation(s)
- Jing Ni
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| |
Collapse
|
11
|
Deng S, Cun D, Lin R, Peng D, Du Y, Wang A, Guan B, Tan R, Chang J. Enhanced remediation of real agricultural runoff in surface-flow constructed wetlands by coupling composite substrate-packed bio-balls, submerged plants and functional bacteria: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2024; 263:120124. [PMID: 39395554 DOI: 10.1016/j.envres.2024.120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Import of agricultural runoff containing nutrients considerably contributes to eutrophication of receiving water bodies. Surface-flow constructed wetlands (SFCWs) are commonly applied for agricultural runoff purification, but the performance is usually unsatisfactory. In this study, suspended bio-balls filled with zeolite and iron-carbon (Fe-C) composite substrates, submerged macrophyte (Ceratophyllum demersum) and functional denitrifying bacteria were collectively added into SFCW microcosms to enhance the remediation efficiency for real agricultural runoff with high nutrient concentrations and low content of bioavailable organic matter. The bio-ball added SFCWs achieved notably higher pollutant removal efficiencies (21.1%, 80.2% and 47.5% for chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), respectively) than the control (COD: 6.9%, TN: 64.4%, TP: 27.9%), because of the versatile functions of filling materials for pollutant removal. C. demersum plantation (COD: 44.2%, TN: 82.8% and TP: 53.7%) and functional bacteria inoculation (COD: 51.8%, TN: 85.8% and TP: 55.1%) further enhanced the efficiency of the SFCWs for agricultural runoff remediation. Bio-ball addition and C. demersum plantation significantly increased the humification degree and reduced the molecular weight of dissolved organic matter (DOM) in the agricultural runoff. Moreover, the two intensification measures also notably reduced organic and nitrogen contents in the wetland sediment. Remarkable distinction in bacterial community distribution patterns was observed in the SFCW sediment and filling substrates in bio-balls. Keystone genera including Clostridium_sensu_stricto_1 and Bacillus in the zeolite, Sphingomonas and Exiguobacterium in the Fe-C substrates and Sediminibacterium in the sediment might be critical for agricultural runoff remediation in the SFCW microcosms. The study highlights a high potential of the intensified SFCWs by these coupling measures for agricultural runoff remediation.
Collapse
Affiliation(s)
- Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming, 650091, China
| | - Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Dongliang Peng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; China Construction Third Bureau Green Industry Investment Co., Ltd, Chongqing, 430074, China
| | - Yanduo Du
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Aoxue Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Bowen Guan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Rong Tan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Shi X, Ma Z, Evlashin SA, Fedorov FS, Shi J, Liu Y, Zhu W, Guo P, Huang T, Wen G. Hydrogen generated by electrochemical water splitting as electron donor for nitrate removal from micro-polluted reservoir water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135964. [PMID: 39342843 DOI: 10.1016/j.jhazmat.2024.135964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Extremely limited organic carbon sources and aerobic environment in micro-polluted reservoir water make conventional denitrification exceptionally challenging. As a result, total nitrogen (TN) concentration in most reservoir waters exceeds standard value year-round. In this study, for the first time, we constructed a mini water-lifting and aeration system (mini-WLAS) to remove nitrate in actual reservoir water. In the mini-WLAS, H2 was produced through electrolysis of reservoir water without adding any electrolyte, and the ascending water flow carried the generated H2 from lower layer to upper bacteria layer. The maximum denitrification rate reached 0.29 mg (L·d)-1 under dissolved oxygen (DO) concentration of 6-8 mg L-1, 6.04 times higher than that of the control group. There is almost no accumulation of NH4+-N, NO2--N, and N2O, and the concentration of CODMn decreased by 55.2 %. More importantly, the pH stayed near-neutral steadily throughout the whole process. Microbial community analysis showed that the abundances of hydrogenotrophic denitrifying bacteria (HDB) were 2 orders higher than those in the control system. Some HDB could work under aerobic conditions, providing an explanation for the excellent denitrification performance under high DO. This study provides a novel perspective for TN removal from reservoir water.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhuolin Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd., Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
13
|
Guo H, Li R, Xue S, Zhangsun X, Huang D, Li Y, Li N, Su Y, Zhang H, Huang T. Considerable declines in odor in a drinking water reservoir: Variations of odorous community, precursor enzymes abundance, distribution, and environmental dominant factors. WATER RESEARCH 2024; 268:122767. [PMID: 39541849 DOI: 10.1016/j.watres.2024.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The presence of 2-methylisoborneol (2-MIB) is acknowledged as a prevalent source of odor-related challenges in drinking water reservoirs. Among the three in situ experiments conducted in drinking water reservoir, the water-lifting aerator with bio-filling system exhibited the most pronounced overall effects. It achieved a remarkable 98.70 % removal of 2-MIB and a 99.30 % reduction in the abundance of the mic gene. Metagenomic sequencing identified key genes including methyl transferase gene (mtf), 2-MIB cyclase gene (mic), cyclic nucleotide-binding protein gene (cnb), underscoring the potential role of Actinobacteria, Cyanobacteria, and Proteobacteria communities in contributing to odor occurrences in the reservoir. Furthermore, the abundance of odorous precursor enzymes in the MVA pathway and MEP/DOXP pathway were inhibited in the systems with bio-filling. Total nitrogen (TN) and nitrate (NO3--N) were identified as pivotal factors influencing the presence of 2-MIB odor-producing microorganisms. Effective management of odor-producing species in reservoir water was closely related to the efficient removal of pollutants. These findings will provide valuable insights for the development of odor removal techniques in reservoirs and offer researchers deeper understanding into the mechanisms underlying odor processes.
Collapse
Affiliation(s)
- Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Rong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shuhong Xue
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, China
| | - Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Daojun Huang
- Shaanxi Xian New Area Water Affairs Grp Co LTD, Xianyang, 712000, China
| | - Yongchao Li
- Shaanxi Xian New Area Water Affairs Grp Co LTD, Xianyang, 712000, China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuhang Su
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
14
|
Zhangsun X, Guo H, Du Q, Li N, Xue S, Li R, Ma W, Liu X, Zhang H, Huang T. Spatial and temporal dynamics of microbes and genes in drinking water reservoirs: Distribution and potential for taste and odor generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135708. [PMID: 39217936 DOI: 10.1016/j.jhazmat.2024.135708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Numerous reservoirs encounter challenges related to taste and odor issues, often attributed to odorous compounds such as geosmin (GSM) and 2-methylisoborneol (2-MIB). In this study, two large reservoirs located in northern and southern China were investigated. The Jinpen (JP) reservoir had 45.99 % Actinomycetes and 14.82 % Cyanobacteria, while the Xikeng (XK) reservoir contained 37.55 % Actinomycetes and 48.27 % Cyanobacteria. Most of the 2-MIB produced in surface layers of the two reservoirs in summer originated from Cyanobacteria, most of the 2-MIB produced in winter and in the bottom water originated from Actinomycetes. Mic gene abundance in the XK reservoir reached 5.42 × 104 copies/L in winter. The abundance of GSM synthase was notably high in the bottom layer and sediment of both reservoirs, while 2-MIB synthase was abundant in the surface layer of the XK reservoir, echoing the patterns observed in mic gene abundance. The abundance of odor-producing enzymes in the two reservoirs was inhibited by total nitrogen, temperature significantly influenced Actinomycetes abundance in the JP reservoir, whereas dissolved oxygen had a greater impact in the XK reservoir. Overall, this study elucidates the molecular mechanisms underlying odor compounding, providing essential guidance for water quality management strategies and the improvement of urban water reservoir quality.
Collapse
Affiliation(s)
- Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Quanjie Du
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuhong Xue
- Power China Northwest Engineering Corporation Limited, Xi'an 710065, PR China
| | - Rong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Wenrui Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
15
|
Wang T, Han X, Cheng Y, Yang J, Bai L, Zeng W, Wang H, Cheng N, Zhang H, Li G, Liang H. Insights into the azo dye decolourisation and denitrogenation in micro-electrolysis enhanced counter-diffusion biofilm system. BIORESOURCE TECHNOLOGY 2024; 411:131333. [PMID: 39181514 DOI: 10.1016/j.biortech.2024.131333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In this study, electron transport pathways were activated and diversified by coupling counter-diffusion biofilms with micro-electrolysis for Alizarin yellow R (AYR) denitrogenation. Due to the binding of AYR to two residues of EC 4.1.3.36 with higher binding energy, the expression of EC 4.1.3.36 was down-regulated, causing the EC 3.1.2.28 and EC 2.5.1.74 for menaquinone synthesis (redox mediator) undetectable in Membrane aerated biofilm reactors (MABR). Spontaneous electron generation in the micro electrolysis-coupled MABR (ME-MABR) significantly activated two enzymes. Activated menaquinone up-regulated decolourisation related genes expression in ME-MABR, including azoR (2.12 log2), NQO1 (2.97 log2), wrbA (0.45 log2), and ndh (0.47 log2). The diversified electron flow pathways also promoted the nitrogen metabolism coding genes up-regulation, accelerating further inorganic nitrogen denitrogenation after AYR mineralisation. Compared to MABR, the decolourisation, mineralisation, and denitrogenation in ME-MABR increased by 25.80 %, 16.53 %, and 13.32 %, respectively. This study provides new insights into micro-electrolysis enhanced removal of AYR.
Collapse
Affiliation(s)
- Tianyi Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaohang Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yufei Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Weichen Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Nuo Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
16
|
Wang H, Hua Y, Xu H, Liu H, Yang D, Dai X. Illuminating the role of powder carrier materials in shaping sludge aggregation in wastewater treatment: Insights from extended operation performance to microbial response mechanism. BIORESOURCE TECHNOLOGY 2024; 410:131268. [PMID: 39142416 DOI: 10.1016/j.biortech.2024.131268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
This study uncovered the response of novel micro-granule wastewater treatment technology to different powder carrier materials. Characteristics and distinctions among different systems were assessed based on process performance, sludge aggregation capacity, and microbial metabolism. Zeolite carrier system exhibited remarkable nitrogen removal efficiency of 89.6 ± 0.9 %, while diatomite carriers, in conjunction with intermittent aeration, enhanced simultaneous nitrification and denitrification from 2.6 % to 27.1 %. Iron-based carriers demonstrated efficient phosphorus removal (94.7 ± 1.2 %) through both chemical and microbial pathways. Specific surface area, pore structure and biocompatibility of powder carriers determined the formation and size of micro-granules. Tryptophan-like substances, C-(C/H), and Npr in extracellular polymeric substances strongly correlated with sludge hydrophobicity and granulation. Significant enrichment in norank_Comamonadaceae and Nitrosomonas in zeolite powder carrier system promoted partial nitrification and endogenous denitrification. Differences in metabolic pathways elucidated the up-regulation of amino acid synthesis, energy metabolism, and membrane transport as potential mechanisms driving micro-granule formation and efficient treatment performance.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
17
|
Lin Y, Chen Y, Wang H, Yu Y, Wang Y, Ma S, Wang L, Ren H, Xu K. Weak magnetic field promotes denitrification by stimulating ferromagnetic ion-containing metalloprotein expression. WATER RESEARCH 2024; 262:122116. [PMID: 39032337 DOI: 10.1016/j.watres.2024.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Weak magnetic field (WMF) has been recognized to promote biological denitrification processes; however, the underlying mechanisms remain largely unexplored, hindering the optimization of its effectiveness. Here, we systematically investigated the effects of WMF on denitrification performance, enzyme activity, microbial community, and metaproteome in packed bed bioreactors treating high nitrate wastewater under different WMF intensities and C:N ratios. Results showed that WMFs significantly promoted denitrification by consistently stimulating the activities of denitrifying reductases and NAD+/NADH biosynthesis across decreasing C:N ratios. Reductases and electron transfer enzymes involved in denitrification were overproduced due to the significantly enriched overexpression of ferromagnetic ion-containing (FIC) metalloproteins. We also observed WMFs' intensity-dependent selective pressure on microbial community structures despite the effects being limited compared to those caused by changing C:N ratios. By coupling genome-centric metaproteomics and structure prediction, we found the dominant denitrifier, Halomonas, was outcompeted by Pseudomonas and Azoarcus under WMFs, likely due to its structural deficiencies in iron uptake, suggesting that advantageous ferromagnetic ion acquisition capacity was necessary to satisfy the substrate demand for FIC metalloprotein overproduction. This study advances our understanding of the biomagnetic effects in the context of complex communities and highlights WMF's potential for manipulating FIC protein-associated metabolism and fine-tuning community structure.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yanting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yuexin Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Laichun Wang
- Yixing Environmental Research Institute of Nanjing University, Yixing, 214200, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
18
|
Huang F, Graham NJD, Su Z, Xu L, Yu W. Capabilities of Microbial Consortia from Disparate Environment Matrices in the Decomposition of Nature Organic Matter by Biofiltration. WATER RESEARCH 2024; 262:122047. [PMID: 39003956 DOI: 10.1016/j.watres.2024.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.
Collapse
Affiliation(s)
- Fan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
19
|
Ma B, Chu M, Zhang H, Chen K, Li F, Liu X, Kosolapov DB, Zhi W, Chen Z, Yang J, Deng Y, Sekar R, Liu T, Liu X, Huang T. Mixotrophic aerobic denitrification facilitated by denitrifying bacterial-fungal communities assisted with iron in micro-polluted water: Performance, metabolic activity, functional genes abundance, and community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135057. [PMID: 38943884 DOI: 10.1016/j.jhazmat.2024.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Low-dosage nitrate pollutants can contribute to eutrophication in surface water bodies, such as lakes and reservoirs. This study employed assembled denitrifying bacterial-fungal communities as bio-denitrifiers, in combination with zero-valent iron (ZVI), to treat micro-polluted water. Immobilized bacterial-fungal mixed communities (IBFMC) reactors demonstrated their ability to reduce nitrate and organic carbon by over 43.2 % and 53.7 %, respectively. Compared to IBFMC reactors, IBFMC combined with ZVI (IBFMC@ZVI) reactors exhibited enhanced removal efficiencies for nitrate and organic carbon, reaching the highest of 31.55 % and 17.66 %, respectively. The presence of ZVI in the IBFMC@ZVI reactors stimulated various aspects of microbial activity, including the metabolic processes, electron transfer system activities, abundance of functional genes and enzymes, and diversity and richness of microbial communities. The contents of adenosine triphosphate and electron transfer system activities enhanced more than 5.6 and 1.43 folds in the IBFMC@ZVI reactors compared with IBFMC reactors. Furthermore, significant improvement of crucial genes and enzyme denitrification chains was observed in the IBFMC@ZVI reactors. Iron played a central role in enhancing microbial diversity and activity, and promoting the supply, and transfer of inorganic electron donors. This study presents an innovative approach for applying denitrifying bacterial-fungal communities combined with iron enhancing efficient denitrification in micro-polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fengrui Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha 16500, Czech Republic
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Ye Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Wei J, Hong Z, Li W, Yang X, Fu Z, Chen X, Hu J, Jin Z, Long B, Chang X, Qian Y. Norfloxacin affects inorganic nitrogen compound transformation in tailwater containing Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135116. [PMID: 39013323 DOI: 10.1016/j.jhazmat.2024.135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
The Asian clam, Corbicula fluminea, commonly used in engineered wetlands receiving tailwater, affects nitrogen compound transformation in water. This study investigates how a commonly observed antibiotic in tailwater, norfloxacin, impact nitrogen compound transformation in tailwater containing C. fluminea. The clam was exposed to artificial tailwater with norfloxacin (0, 0.2, 20, and 2000 μg/L) for 15 days. Water properties, C. fluminea ecotoxicity responses, microorganism composition and nitrification- or denitrification-related enzyme activities were measured. Results revealed norfloxacin-induced increases and reductions in tailwater NH4+ and NO2- concentrations, respectively, along with antioxidant system inhibition, organ histopathological damage and disruption of water filtering and digestion system. Microorganism composition, especially biodiversity indices, varied with medium (clam organs and exposure water) and norfloxacin concentrations. Norfloxacin reduced NO2- content by lowering the ratio between microbial nitrifying enzyme (decreased hydroxylamine oxidoreductase and nitrite oxidoreductase activity) and denitrifying enzyme (increased nitrate reductase and nitrite reductase activity) in tailwater. Elevated NH4+ content resulted from upregulated ammonification and inhibited nitrification of microorganisms in tailwater, as well as increased ammonia emission from C. fluminea due to organ damage and metabolic disruption of the digestion system. Overall, this study offers insights into using benthic organisms to treat tailwater with antibiotic residues, especially regarding nitrogen treatment.
Collapse
Affiliation(s)
- Junling Wei
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zijin Hong
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Wei Li
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xiufang Yang
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zihao Fu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xinyu Chen
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Junxiang Hu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zhangnan Jin
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Bojiang Long
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Yu Qian
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| |
Collapse
|
21
|
Wei H, Xu L, Su J, Liu S, Zhou Z, Li X. Simultaneous removal of nitrogen, phosphorus, and organic matter from oligotrophic water in a system containing biochar and construction waste iron: Performances and biotic community analysis. ENVIRONMENTAL RESEARCH 2024; 255:119187. [PMID: 38777295 DOI: 10.1016/j.envres.2024.119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.
Collapse
Affiliation(s)
- Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
22
|
Hao Q, Lyu X, Qin D, Du N, Wu S, Bai S, Chen Z, Wang P, Zhao X. Synergistic mechanisms of denitrification in FeS 2-based constructed wetlands: Effects of organic carbon availability under day-night alterations. BIORESOURCE TECHNOLOGY 2024; 406:131066. [PMID: 38969240 DOI: 10.1016/j.biortech.2024.131066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.
Collapse
Affiliation(s)
- Qirui Hao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Lyu
- Beijing Aquatic Technology Extension Station, Beijing 100021, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ningning Du
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shuyan Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Liu Q, Gong S, Zhang H, Su H, Wang J, Ren H. Microbial communities assembly in wastewater treatment plants in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174751. [PMID: 39004372 DOI: 10.1016/j.scitotenv.2024.174751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Community assembly processes determine community structure. Deterministic processes are essential for optimizing activated sludge (AS) bioreactor performance. However, the debate regarding the relative importance of determinism versus stochasticity remains contentious, and the influencing factors are indistinct. This study used large-scale 16S rRNA gene data derived from 252 AS samples collected from 28 cities across China to explore the mechanism of AS community assembly. Results showed that the northern communities possessed lower spatial turnover and more significant dispersal limitation than those in the south, whereas the latter had more substantial deterministic processes than the former (14.46 % v.s. 9.12 %). Meanwhile, the communities in the south exhibited lower network complexity and stability. We utilized a structural equation model to explore the drivers of deterministic processes. Results revealed that low network complexity (r = -0.56, P < 0.05) and high quorum sensing bacteria abundance (r = 0.25, P < 0.001) promoted deterministic assembly, which clarifies why determinism was stronger in southern communities than northern ones. Furthermore, total phosphorus and hydraulic retention time were found to be the primary abiotic drivers. These findings provide evidence to understand the community deterministic assembly, which is crucial for resolving community structure and improving bioreactor performance.
Collapse
Affiliation(s)
- Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Sai Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Han Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Han Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
24
|
Wang Y, Guo H, Li X, Chen X, Peng L, Zhu T, Sun P, Liu Y. Peracetic acid (PAA)-based pretreatment effectively improves medium-chain fatty acids (MCFAs) production from sewage sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100355. [PMID: 38192428 PMCID: PMC10772567 DOI: 10.1016/j.ese.2023.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate. However, such a hypothesis has rarely been proved. Here we reveal that PAA-based pretreatment leads to significant exfoliation of extracellular polymeric substances (EPS) from sludge flocs and disruption of proteinic secondary structures, through inducing highly active free radicals and singlet oxygen. The production of MCFAs increases substantially to 11,265.6 mg COD L-1, while the undesired byproducts, specifically long-chain alcohols (LCAs), decrease to 723.5 mg COD L-1. Microbial activity tests further demonstrate that PAA pretreatment stimulates the CE process, attributed to the up-regulation of functional genes involved in fatty acid biosynthesis pathway. These comprehensive findings provide insights into the effectiveness and mechanisms behind enhanced MCFAs production through PAA-based technology, advancing our understanding of sustainable resource recovery from sewage sludge.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian, 350116, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
25
|
Shao B, Niu L, Xie YG, Zhang R, Wang W, Xu X, Sun J, Xing D, Lee DJ, Ren N, Hua ZS, Chen C. Overlooked in-situ sulfur disproportionation fuels dissimilatory nitrate reduction to ammonium in sulfur-based system: Novel insight of nitrogen recovery. WATER RESEARCH 2024; 257:121700. [PMID: 38705068 DOI: 10.1016/j.watres.2024.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Li Niu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuan-Guo Xie
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, PR China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, PR China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
26
|
Wang B, Zhang C, Li K, Huang J, Sun J. Induced domestication of humic reduction-denitrification coupled bacteria improved treatment of sediment: Performance, remediation effect, and metabolic mechanisms. ENVIRONMENTAL RESEARCH 2024; 251:118761. [PMID: 38518914 DOI: 10.1016/j.envres.2024.118761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The high organic matter in river sediment primarily induces black and odorous rebound. Traditional humic-reducing bacteria demonstrate relatively single metabolic functions and restrain the remediation within complex sediment environments. In addition, Ca(NO3)2 is commonly utilized in synergistic with bioremediation to improve the reducing environment of sediments. In this study, a multifunctional bacterial community with humic reduction-denitrification coupled bacteria was domesticated by the step-feeding strategy in an anaerobic baffle reactor (ABR). The performance, remediation effect, and metabolic mechanisms were analyzed. The results indicated that humic-reducing bacteria (HRB) and denitrifying-humic-reducing bacteria (DF/HRB) have quinone-reduction and denitrification capabilities. The synergistic effect of DF/HRBs and Ca(NO3)2 was superior to HRBs and Ca(NO3)2 on the removal of total organic matter(TOM). Microbial community structure analysis revealed an enhanced relative abundance of denitrification and humic-reducing bacteria (e.g., Thauera, Pseudomonas, Sulfurospirillum, Desulfovibrio, Geobacter) in the DF/HRB, resulting in a superior synergistic effect of DF/HRBs with Ca(NO3)2. This work helps to present an innovative approach to domesticate humic-reducing bacteria suited for the remediation environment effectively. It also expands the application of humic-reducing bacteria for in-situ anaerobic remediation of river sediments.
Collapse
Affiliation(s)
- Bin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin, 300191, PR China
| | - Ketong Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jingmei Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
27
|
Ma B, Li A, Chen S, Guo H, Li N, Pan S, Chen K, Liu H, Kosolapov DB, Liu X, Zhi W, Chen Z, Mo Y, Sekar R, Huang T, Zhang H. Algicidal activity synchronized with nitrogen removal by actinomycetes: Algicidal mechanism, stress response of algal cells, denitrification performance, and indigenous bacterial community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134117. [PMID: 38554519 DOI: 10.1016/j.jhazmat.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS) 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
28
|
Liu X, Song Y, Ni T, Yang Y, Ma B, Huang T, Chen S, Zhang H. Ecological evolution of algae in connected reservoirs under the influence of water transfer: Algal density, community structure, and assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170086. [PMID: 38232825 DOI: 10.1016/j.scitotenv.2024.170086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Reservoir connectivity provides a solution for regional water shortages. Understanding the water quality of reservoirs and the response of algal communities to water transfer could provide the basis for a long-term evolutionary model of reservoirs. In this study, a water-algal community model was established to study the effects of water transfer on water quality and algal communities in reservoirs. The results showed that water transfer significantly decreased total nitrogen and nitrate concentrations. However, the water transfer resulted in an increase in the CODMn concentration and conductivity in the receiving reservoir. Additionally, the algal density and chlorophyll-a (chl-a) concentration showed an increase with water transfer. Bacillariophyta, Cyanophyta, and Chlorophyta were the dominant algal phyllum in all three reservoirs. Water transfer induced the evolution of the algal community by driving changes in the chemical parameters of the receiving reservoir and led to more complex relationships within the algal community. The effects of stochastic processes on algal communities were also enhanced in the receiving reservoirs. These results provide specific information for water quality safety management and eutrophication prevention in connected reservoirs.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yutong Song
- School of Future Technology, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tongchao Ni
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yansong Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shengnan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| |
Collapse
|
29
|
Fang Y, Chen C, Cui B, Zhou D. Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133238. [PMID: 38134694 DOI: 10.1016/j.jhazmat.2023.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO3--N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.
Collapse
Affiliation(s)
- Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Bin Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
30
|
Zhang H, Pan S, Ma B, Huang T, Kosolapov DB, Ma M, Liu X, Liu H, Liu X. Multivariate statistical and bioinformatic analyses for the seasonal variations of actinobacterial community structures in a drinking water reservoir. J Environ Sci (China) 2024; 137:1-17. [PMID: 37979999 DOI: 10.1016/j.jes.2023.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 11/20/2023]
Abstract
Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle, but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment. In this study, the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons. The results showed that the highest diversity and abundance of actinobacterial community occurred in winter, with Sporichthya (45.42%) being the most abundant genus and Rhodococcus sp. (29.32%) being the most abundant species. Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were influenced by more factors and Nocardioides sp. SX2R5S2 was the potential keystone species which was negatively correlated with temperature (R = -0.72, P < 0.05). Changes in environmental factors could significantly affect the changes in actinobacterial community, and the dynamics of temperature, dissolved oxygen (DO), and turbidity are potential conspicuous factors influencing seasonal actinobacterial community trends. The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities, while the physiochemical parameters (path coefficient = 1.571, P < 0.05) was strong environmental factors in natural mixture period. These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl, 152742, Russia
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
31
|
Meng J, Di Y, Geng Y, Li W, Huo R, Zhou S. Enhanced nitrate removal efficiency and microbial response of immobilized mixed aerobic denitrifying bacteria through biochar coupled with inorganic electron donors in oligotrophic water. BIORESOURCE TECHNOLOGY 2024; 396:130457. [PMID: 38369080 DOI: 10.1016/j.biortech.2024.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The nitrogen removal characteristics and microbial response of biochar-immobilized mixed aerobic denitrifying bacteria (BIADB) were investigated at 25 °C and 10 °C. BIADB removed 53.51 ± 1.72 % (25 °C) and 39.90 ± 4.28 % (10 °C) nitrate in synthetic oligotrophic water. Even with practical oligotrophic water, BIADB still effectively removed 47.66-53.21 % (25 °C), and 39.26-45.63 % (10 °C) nitrate. The addition of inorganic electron donors increased nitrate removal by approximately 20 % for synthetic and practical water. Bacterial and functional communities exhibited significant temperature and stage differences (P < 0.05), with temperature and total dissolved nitrogen being the main environmental factors. The dominant genera and keystone taxa exhibited significant differences at the two temperatures. Structural equation model analysis showed that dissolved organic matter had the highest direct and indirect effects on diversity and function, respectively. This study provides an innovative pathway for utilizing biochar and inorganic electron donors for nitrate removal from oligotrophic waters.
Collapse
Affiliation(s)
- Jiajing Meng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
32
|
Li Y, Xue Y, Wang J, Zhang D, Zhao Y, Liu JJ. Antibacterial Hydrophilic ZnO Microstructure Film with Underwater Oleophobic and Self-Cleaning Antifouling Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:150. [PMID: 38251115 PMCID: PMC10820557 DOI: 10.3390/nano14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The research of multifunctional ZnO microstructures or nanoarrays thin films with super-hydrophilic, antifouling, and antibacterial properties has not been reported yet. Moreover, the exploration of underwater oleophobic and self-cleaning antifouling properties in ZnO micro/nanostructures is still in its infancy. Here, we prepared ZnO microstructured films on fluorine-doped tin oxide substrates (F-ZMF) for the development of advanced self-cleaning type super-hydrophilic and oleophobic materials. With the increase of the accelerators, the average size of the F-ZMF microstructures decreased. The F-ZMF shows excellent self-cleaning performance and hydrophilic (water contact angle ≤ 10°) and oleophobic characteristics in the underwater antifouling experiment. Under a dark condition, F-ZMF-4 showed good antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with inhibition rates of 99.1% and 99.9%, respectively. This study broadens the application scope of ZnO-based material and provides a novel prospect for the development of self-cleaning super-hydrophilic and oleophobic materials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Zhao
- School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (Y.L.); (Y.X.); (J.W.); (D.Z.)
| | - Jun-Jie Liu
- School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (Y.L.); (Y.X.); (J.W.); (D.Z.)
| |
Collapse
|
33
|
Ma B, Yang W, Li N, Kosolapov DB, Liu X, Pan S, Liu H, Li A, Chu M, Hou L, Zhang Y, Li X, Chen Z, Chen S, Huang T, Cao S, Zhang H. Aerobic Denitrification Promoting by Actinomycetes Coculture: Investigating Performance, Carbon Source Metabolic Characteristic, and Raw Water Restoration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:683-694. [PMID: 38102081 DOI: 10.1021/acs.est.3c05062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Huaqing College, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109 Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, Utah 84322, United States
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500Praha-Suchdol ,Czech Republic
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
34
|
Peng Y, Gu X, Zhang M, Yan P, Sun S, He S. Simultaneously enhanced autotrophic-heterotrophic denitrification in iron-based ecological floating bed by plant biomass: Metagenomics insights into microbial communities, functional genes and nitrogen metabolic pathways. WATER RESEARCH 2024; 248:120868. [PMID: 37979568 DOI: 10.1016/j.watres.2023.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
In this study, the ecological floating bed supporting with zero-valent iron (ZVI) and plant biomass (EFB-IB) was constructed to improve nitrogen removal from low-polluted water. The effects of ZVI coupling with plant biomass on microbial community structure, metabolic pathways and functional genes were analyzed by metagenomic sequencing, and the mechanism for nitrogen removal was revealed. Results showed that compared with mono-ZVI system (EFB-C), the denitrification efficiencies of EFB-IB were effectively enhanced, with the higher average NO3--N removal efficiencies of 22.60-59.19%. Simultaneously, the average NH4+-N removal efficiencies were 73.08-91.10%. Metagenomic analyses showed that EFB-IB enriched microbes that involved in iron cycle, lignocellulosic degradation and nitrogen metabolism. Plant biomass addition simultaneously increased the relative abundances of autotrophic and heterotrophic denitrifying bacteria. Network analysis showed the cooperation between autotrophic and heterotrophic denitrifying bacteria in EFB-IB. Moreover, compared with EFB-C, plant biomass addition increased the relative abundances of genes related to iron cycle, lignocellulose degradation and glycolysis processes, ensuring the production of autotrophic and heterotrophic electron donors. Therefore, the relative abundances of key enzymes and functional genes related to denitrification were higher in EFB-IB, being beneficial to the NO3--N removal. Additionally, the correlation analysis of nitrogen removal and functional genes verified the synergistic mechanism of iron-based autotrophic denitrification and plant biomass-mediated heterotrophic denitrification in EFB-IB. In summary, plant biomass has excellent potential to improve the nitrogen removal of iron-based EFB from low-polluted water.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
36
|
Miao X, Xu J, Yang B, Luo J, Zhi Y, Li W, He Q, Li H. Indigenous mixotrophic aerobic denitrifiers stimulated by oxygen micro/nanobubble-loaded microporous biochar. BIORESOURCE TECHNOLOGY 2024; 391:129997. [PMID: 37952594 DOI: 10.1016/j.biortech.2023.129997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The prevalence of hypoxia in surface sediment inhibits the growth of aerobic denitrifiers in natural waters. A novel oxygen micro/nanobubble-loaded microporous biochar (OMB) was developed to activate indigenous aerobic denitrifiers in this study. The results indicate a thin-layer OMB capping mitigates hypoxia effectively. Following a 30-day microcosm-based incubation, a 60 % decrease in total nitrogen concentration was observed, and the oxygen penetration depth in the sediment was increased from <4.0 mm to 38.4 mm. High-throughput sequencing revealed the stimulation of indigenous mixotrophic aerobic denitrifiers, including autotrophic denitrifiers such as Hydrogenophaga and Thiobacillus, heterotrophic denitrifiers like Limnobacter and unclassified_f_Methylophilaceae, and heterotrophic nitrification aerobic denitrification bacteria, including Shinella and Acidovorax, with total relative abundance reaching up to 38.1 %. Further analysis showed OMB enhanced the overall collaborative relationships among microorganisms and promoted the expression of nitrification- and denitrification-related genes. This study introduces an innovative strategy for stimulating indigenous aerobic denitrifiers in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaojun Miao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiani Xu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Bing Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Junxiao Luo
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wei Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
37
|
Yang S, Huang T, Zhang H, Tang Y, Guo H, Hu R, Cheng Y. Promoting aerobic denitrification in reservoir water with iron-activated carbon: Enhanced nitrogen and organics removal efficiency, and biological mechanisms. ENVIRONMENTAL RESEARCH 2024; 240:117452. [PMID: 37865328 DOI: 10.1016/j.envres.2023.117452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Carbon scarcity limits denitrification in micropolluted water, especially in drinking water reservoirs. Therefore, a Fe-activated carbon (AC) carrier was used in this study to enhance the nitrogen removal capacity of aboriginal denitrification in drinking water reservoirs under aerobic conditions. Following carrier addition, total nitrogen (TN) and permanganate index (CODMn) removal efficiencies reached 81.89% and 72.66%, respectively, and were enhanced by 40.45% and 39.65%. Nitrogen balance analysis indicated that 77.86% of the initial TN was converted into gaseous nitrogen. Biolog analysis suggested that the metabolic activity of denitrifying bacteria was substantially enhanced. 16S rRNA gene sequencing indicated that organic degradation bacteria, hydrogen-consuming, Fe-oxidizing, and Fe-reducing denitrifying bacteria (e.g., Arenimonas, Hydrogenophaga, Zoogloea, Methylibium, and Piscinibacter) evolved into the dominant species. Additionally, napA, nirS, nirK, and nosZ genes were enriched by 3.17, 6.68, 0.40, and 6.70 folds, respectively, which is conducive to complete denitrification. These results provide a novel pathway for the use of Fe-AC to promote aerobic denitrification in micropolluted drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yun Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
38
|
Zhou Z, Ali A, Xu L, Su J, Liu S, Li X. Simultaneous removal of phosphorus, zinc, and lead from oligotrophic ecosystem by iron-driven denitrification: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2023; 238:117139. [PMID: 37716392 DOI: 10.1016/j.envres.2023.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Based on the current situation of complex pollution caused in surface water by oligotrophic condition and heavy metal release from river and lake bottom sediments. This study aimed to achieve the simultaneous removal of nitrate, phosphorus, Zn2+ and Pb2+ through microbial approach. At nitrate concentration of 4.82 mg L-1, carbon to nitrogen ratio of 1.5, pH of 6.0, and Fe2+ concentration of 5.0 mg L-1, the nitrate removal efficiency of Zoogloea sp. FY-6 reached 95.17%. The addition of pollutants under these conditions resulted in 88.76% removal of total phosphorus at 18 h, and 85.46 and 78.59% removal of Zn2+ and Pb2+ respectively, and there was competition for adsorption between Zn2+ and Pb2+. Extracellular polymers and fluorescence excitation-emission substrates confirmed that Fe2+ reduced heavy metal toxicity through promoting bacterial production of secretions and promotes denitrification as a carbon source. Meanwhile, contaminant removal curves and Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy demonstrated the synchronous removal of Zn2+ and Pb2+ mainly through biological action and the formation of nanoscale iron oxides. Biological-iron precipitation also provided adsorption sites for phosphorus. This research provides the theoretical foundation for applying microorganisms to restore oligotrophic source water (rivers and lakes) containing complex pollutants.
Collapse
Affiliation(s)
- Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
39
|
Wang K, Du W, Liu Z, Liu R, Guan Q, He L, Zhou H. Extracellular electron transfer for aerobic denitrification mediated by the bioelectric catalytic system with zero-carbon source. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115691. [PMID: 37979359 DOI: 10.1016/j.ecoenv.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The slow rate of electron transfer and the large consumption of carbon sources are technical bottlenecks in the biological treatment of wastewater. Here, we first proposed to domesticate aerobic denitrifying bacteria (ADB) from heterotrophic to autotrophic by electricity (0.6 V) under zero organic carbon source conditions, to accelerate electron transfer and shorten hydraulic retention time (HRT) while increasing the biodegradation rate. Then we investigated the extracellular electron transfer (EET) mechanism mediated by this process, and additionally examined the integrated nitrogen removal efficiency of this system with composite pollution. It was demonstrated that compared with the traditional membrane bioreactor (MBR), the BEC displayed higher nitrogen removal efficiency. Especially at C/N = 0, the BEC exhibited a NO3--N removal rate of 95.42 ± 2.71 % for 4 h, which was about 6.5 times higher than that of the MBR. Under the compound pollution condition, the BEC still maintained high NO3--N and tetracycline removal (94.52 ± 2.01 % and 91.50 ± 0.001 %), greatly superior to the MBR (10.64 ± 2.01 % and 12.00 ± 0.019 %). In addition, in-situ electrochemical tests showed that the nitrate in the BEC could be directly converted to N2 by reduction using electrons from the cathode, which was successfully demonstrated as a terminal electron acceptor.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Du
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Runhang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
40
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
41
|
Yang S, Huang T, Zhang H, Guo H, Hu R, Lin Z, Li Y, Cheng Y. Activation of indigenous denitrifying bacteria and enhanced nitrogen removal via artificial mixing in a drinking water reservoir: Insights into gene abundance, community structure, and co-existence model. ENVIRONMENTAL RESEARCH 2023; 236:116830. [PMID: 37543131 DOI: 10.1016/j.envres.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zishen Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanqing Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
42
|
Guo H, Zhangsun X, Li N, Liu X, Zhang H, Huang T. Enhanced nitrogen removal of micropolluted source waterbodies using an iron activated carbon system with siliceous materials: Insights into metabolic activity, biodiversity, interactions of core genus and co-existence. BIORESOURCE TECHNOLOGY 2023; 387:129656. [PMID: 37595809 DOI: 10.1016/j.biortech.2023.129656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Aerobic denitrification technology can effectively abate the nitrogen pollution of water source reservoirs. In this study, 40% siliceous material was used as the carrier to replace the activated carbon in Fe/C material to enhance denitrification and purify water. The removal efficiency of new material for target pollutants were nitrate nitrogen (95.68%), total phosphorus (68.23%) and chemical oxygen demand (46.20%). Aerobic denitrification of water samples and anaerobic denitrification of sediments in three systems jointly assisted nitrogen removal. In a reactor with new material, diversity and richness of denitrifying bacterial communities were enhanced, and the symbiotic structure of aerobic denitrifying bacteria was more complex (Bacillus and Mycobacteria as the dominant bacteria); the microbial distribution better matched the Zif and Mandelbrot models. This system significantly increased the abundance of key enzymes in water samples. The new material effectively removed pollutants and represents a promising and innovative in-situ remediation method for reservoirs.
Collapse
Affiliation(s)
- Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
43
|
Zhang H, Zhao D, Ma M, Huang T, Li H, Ni T, Liu X, Ma B, Zhang Y, Li X, Lei X, Jin Y. Actinobacteria produce taste and odor in drinking water reservoir: Community composition dynamics, co-occurrence and inactivation models. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131429. [PMID: 37099929 DOI: 10.1016/j.jhazmat.2023.131429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Taste and odor (T&O) has become a significant concern for drinking water safety. Actinobacteria are believed to produce T&O during the non-algal bloom period; however, this has not been widely investigated. In this study, the seasonal dynamics of the actinobacterial community structure and inactivation of odor-producing actinobacteria were explored. The results indicated that the diversity and community composition of actinobacteria exhibited significant spatiotemporal distribution. Network analysis and structural equation modeling showed that the actinobacterial community occupied a similar environmental niche, and the major environmental attributes exhibited spatiotemporal dynamics, which affected the actinobacterial community. Furthermore, the two genera of odorous actinobacteria were inactivated in drinking water sources using chlorine. Amycolatopsis spp. have a stronger chlorine resistance ability than Streptomyces spp., indicating that chlorine inactivates actinobacteria by first destroying cell membranes and causing the release of intracellular compounds. Finally, we integrated the observed variability in the inactivation rate of actinobacteria into an expanded Chick-Watson model to estimate its effect on inactivation. These findings will deepen our understanding of the seasonal dynamics of actinobacterial community structure in drinking water reservoirs and provide a foundation for reservoir water quality management strategies.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaohui Lei
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
44
|
Guo H, Liu S, Wang Y, Wang Y, Hou J, Zhu T, Liu Y. Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131138. [PMID: 36917912 DOI: 10.1016/j.jhazmat.2023.131138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Although the biocidal effect of calcium peroxide (CaO2) has attracted increasing attention in wastewater and sludge management, its potential in the reduction of sulfide and methane from sewer is not tapped. This study aims to fill this gap through the long-term operated sewer reactors. Results showed one-time dose of 0.2% (w/v) CaO2 with 12-h exposure decreased the average sulfide and methane production by 80% during one week. The electron paramagnetic resonance and free radical quenching tests indicated free radicals from CaO2 decomposing posed a major contribution on sewer biofilms (•OH>•O2->alkali). Mechanistic analysis revealed extracellular polymeric matrix breakdown (e.g., protein secondary structure) and cell membrane damage were caused by the increased lipid peroxidation of cells and exacerbated intracellular reactive oxygen species under CaO2 stress. Moreover, the intracellular metabolic pathways, such as electrons provision and transfer, as well as pivotal enzymatic activities (e.g., APS reductase, sulfite reductase and coenzymes F420) were significantly impaired. RT-qPCR analysis unveiled the absolute abundances of dsrA and mcrA were decreased by 7.53-40.37% and 67.00-74.85%, respectively. Although this study broadens the application scope of CaO2 and provides in-depth understanding of advanced oxidation-based technology in sewer management, the pipe scale risk due to the release of calcium ions warrants further investigation.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Xu Z, Huang J, Chu Z, Meng F, Liu J, Li K, Chen X, Jiang Y, Ban Y. Plant and microbial communities responded to copper and/or tetracyclines in mycorrhizal enhanced vertical flow constructed wetlands microcosms with Canna indica L. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131114. [PMID: 36870129 DOI: 10.1016/j.jhazmat.2023.131114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a significant role in pollutants removal in constructed wetlands (CWs). However, the purification effects of AMF on combined copper (Cu) and tetracycline (TC) pollution in CWs remains unknown. This study investigated the growth, physiological characteristics and AMF colonization of Canna indica L. living in vertical flow CWs (VFCWs) treated for Cu and/or TC pollution, the purification effects of AMF enhanced VFCWs on Cu and TC, and the microbial community structures. The results showed that (1) Cu and TC inhibited plant growth and decreased AMF colonization; (2) the removal rates of TC and Cu by VFCWs were 99.13-99.80% and 93.17-99.64%, respectively; (3) the growth, Cu and TC uptakes of C. indica and Cu removal rates were enhanced by AMF inoculation; (4) TC and Cu stresses reduced and AMF inoculation increased bacterial operational taxonomic units (OTUs) in the VFCWs, Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria were the dominant bacteria, and AMF inoculation decreased the relative abundance of Novosphingobium and Cupriavidus. Therefore, AMF could enhance the pollutants purification in VFCWs by promoting plant growth and altering the microbial community structures.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhenya Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Fake Meng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jianjun Liu
- POWERCHINA Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
46
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Niu L, Liu X, Liu H, Pan S, Liu H, Zhang X. Aerobic Denitrification Enhanced by Immobilized Slow-Released Iron/Activated Carbon Aquagel Treatment of Low C/N Micropolluted Water: Denitrification Performance, Denitrifying Bacterial Community Co-occurrence, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5252-5263. [PMID: 36944030 DOI: 10.1021/acs.est.2c08770] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The key limiting factors in the treatment of low C/N micropolluted water bodies are deficient essential electron donors for nitrogen removal processes. An iron/activated carbon aquagel (IACA) was synthesized as a slowly released inorganic electron donor to enhance aerobic denitrification performance in low C/N micropolluted water treatment. The denitrification efficiency in IACA reactors was enhanced by more than 56.72% and the highest of 94.12% was accomplished compared with those of the control reactors. Moreover, the CODMn removal efficiency improved by more than 34.32% in IACA reactors. The Illumina MiSeq sequencing consequence explained that the denitrifying bacteria with facultative denitrification, iron oxidation, and iron reduction function were located in the dominant species niches in the IACA reactors (e.g., Pseudomonas, Leptothrix, and Comamonas). The diversity and richness of the denitrifying bacterial communities were enhanced in the IACA reactors. Network analysis indicated that aerobic denitrifying bacterial consortia in IACA reactors presented a more complicated co-occurrence structure. The IACA reactors presented the potential for long-term denitrification operation. This study affords a pathway to utilize IACA, promoting aerobic denitrification during low C/N micropolluted water body treatment.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
47
|
Zhang H, Niu L, Ma B, Huang T, Liu T, Liu X, Liu X, Shi Y, Liu H, Li H, Yang W. Novel insights into aerobic denitrifying bacterial communities augmented denitrification capacity and mechanisms in lake waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161011. [PMID: 36549517 DOI: 10.1016/j.scitotenv.2022.161011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Scanty attention has been paid to augmenting the denitrification performance of polluted lake water by adding mix-cultured aerobic denitrifying bacterial communities (Mix-CADBCs). In this study, to solve the serious problem of nitrogen pollution in lake water bodies, aerobic denitrifying bacteria were added to lake water to enhance the nitrogen and carbon removal ability. Three Mix-CADBCs were isolated from lake water and they could remove >94 % of total nitrogen and dissolved organic carbon, respectively. The balance of nitrogen analysis shown that >70 % of the initial nitrogen was converted to gaseous nitrogen, and <11 % of the initial nitrogen was converted into microbial biomass. The batch experiments indicated that three Mix-CADBCs could perform denitrification under various conditions. According to the results of nirS-type sequencing, the Hydrogenophaga sp., Prosthecomicrobium sp., and Pseudomonas sp. were dominated genera of three Mix-CADBCs. The analysis of network indicated Pseudomonas I.Bh25.14 and Vogsella LIG4 were correlated with the removal of total nitrogen (TN) and dissolved organic carbon in the Mix-CADBCs. Compared with lake raw water, the addition of three Mix-CADBCs could promote the denitrification capacity (the removal efficiencies of TN > 78.72 %), microbial growth (optical density increased by 0.015-0.138 and the total cell count increased by 2 times), and organic degradation ability (the removal efficiency chemical oxygen demand >38 %) of lake water. In general, the findings of this study demonstrated that Mix-CADBCs could provide a new perspective for biological treatment lake water body.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
48
|
Zhang H, Li H, Ma M, Ma B, Liu H, Niu L, Zhao D, Ni T, Yang W, Yang Y. Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161064. [PMID: 36565869 DOI: 10.1016/j.scitotenv.2022.161064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; An De College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
49
|
Liu H, Chen S, Zhang H, Wang N, Ma B, Liu X, Niu L, Yang F, Xu Y, Zhang X. Effects of copper sulfate algaecide on the cell growth, physiological characteristics, the metabolic activity of Microcystis aeruginosa and raw water application. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130604. [PMID: 37056015 DOI: 10.1016/j.jhazmat.2022.130604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
Harmful cyanobacteria blooms (HCBs) occurred frequently and become a serious scientific challenge. Copper sulfate (CuSO4) is a broad-spectrum chemical algaecide to control algae blooms. Herein, the Microcystis aeruginosa was exposed to different CuSO4 (0.0, 0.2 and 0.5 mg/L) to assess the variations in algal physiological process and metabolic profiles. The results indicated that exposure to CuSO4 of 0.5 mg/L at 72 h could significantly inhibit the cell growth and photosynthetic capacity of M. aeruginosa, including chl-a content and chlorophyll fluorescence parameters. Plasma membrane damage causing cell lysis of M. aeruginosa increased the K+ release. The increase of SOD and CAT suggested that CuSO4 treatment caused oxidative stress in algal cells. Different doses of CuSO4 modified the carbon metabolic potential, algal cells had their unique metabolic mode thereby. Moreover, the research further verified that CuSO4 would also inhibit algal growth and change algal community structure in site-collected water application. Overall, laboratory results of M. aeruginosa to CuSO4 and site-collected water application of algal responses to CuSO4 might be conducive to uncovering the controlling mechanism of algae and the potential effect of carbon cycling in an ecological environment.
Collapse
Affiliation(s)
- Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
50
|
Zhang H, Yang W, Ma B, Liu X, Huang T, Niu L, Zhao K, Yang Y, Li H. Aerobic denitrifying using actinobacterial consortium: Novel denitrifying microbe and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160236. [PMID: 36427714 DOI: 10.1016/j.scitotenv.2022.160236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrifying capacity of actinomycete strain has been investigated recently, while little is known about nitrogen and carbon substrate removal by mix-cultured aerobic denitrifying actinobacteria (Mix-CADA) community. Hence, three Mix-CADA consortiums, named Y23, X21, and Y27, were isolated from urban lakes to investigate their aerobic denitrification capacity, and their removal efficiency for nitrate and dissolved organic carbon were >97 % and 90 %, respectively. Illumina Miseq sequencing revealed that Streptomyces was the most dominant genus in the Mix-CADA consortium. Network analysis indicated that Streptomyces exfoliates, as the core species in the Mix-CADA consortium, majorly contributed to dissolved organic carbon and total nitrogen reduction. Moreover, the three Mix-CADA consortiums could remove 78 % of the total nitrogen and 61 % of the permanganate index from the micro-polluted l water. Meanwhile, humic-like was significantly utilized by three Mix-CADA consortiums, whereas Mix-CADA Y27 could also utilize aromatic protein and soluble microbial by-product-like in the micro-polluted raw water purification. In summary, this study will offer a novel perspective for the purification of micro-polluted raw water using the Mix-CADA consortium.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|