1
|
Yang X, Song C, Ren M, Kong Y, Cui X. Distribution patterns and influencing factors of PFAS in soils: A meta-analysis. ENVIRONMENTAL RESEARCH 2025; 279:121806. [PMID: 40350011 DOI: 10.1016/j.envres.2025.121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Due to their high emission and persistence, per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the environment, with soil increasingly serving as a major medium for PFAS. Currently, research on the environmental distribution of PFAS primarily focuses on surface water and groundwater, while systematic global investigations into PFAS distribution in soil remain limited. In this study, we collected PFAS concentrations data from literatures published in 2006-2024 and Map of Forever Pollution in Europe. PFAS concentrations in global soil exhibited spatial heterogeneity (n.d. - 1838 ng/g), with relatively higher levels in Europe, the U.S., and Eastern China. For temporal trend, PFOA, PFHxS, and PFOS generally decreased in the time span of 2005-2019, but the declining trend was relatively sharper in the U.S. compared with China. The meta-analysis indicated that soil properties, including soil texture, organic carbon content, total nitrogen content, and pH, as well as socioeconomic levels such as GDP per capita, per capita consumption expenditure, population density, and industrial proportions, were key factors affecting the distribution of PFAS in soil. Emerging PFAS showed regional differences in detection frequencies, with HFPO-DA (63.84 %-100 %) and 6:2 Cl-PFESA (69.38 %-100 %) predominating in China, 6:2 FTAB (78 %) in the U.S, PreFOSs and PAPs (90 %-100 %) in Europe. This study provides information on the current status of PFAS pollution in soil and key factors affecting its regional distribution, which is beneficial for strengthening the investigation of PFAS soil pollution in areas with less research and developing control and management strategies for high pollution areas.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chenzhuo Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Mingxue Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Cao Y, Cao Z, Wang P, Zhao L, Zhang S, Shi Y, Liu L, Zhu H, Wang L, Cheng Z, Sun H. Source and bioavailability of quaternary ammonium compounds (QACs) in dust: Implications for Nationwide Exposure in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136268. [PMID: 39471614 DOI: 10.1016/j.jhazmat.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19. Herein, analysis of QACs in household products, including personal care (n = 27), cleaning (n = 6) and disinfection products (n = 11) from different manufacturing companies further confirmed there are extensive application of QACs in household products, raising their potential exposure to humans. QACs were frequently detected in indoor dust samples (n = 370) from 111 cities of 31 provinces/municipalities across China, with median concentration of 6778 ng/g. Benzalkyldimethylammonium compounds (BACs) and alkyltrimethylammonium compounds (ATMACs) were identified as the dominant QACs in dust samples, with the proportions of 44 % and 46 %, respectively. The in vivo bioavailability experiment (C57BL/6 male mice) showed that the relative bioavailability (RBA) of QACs through dust ingestion ranged from 5.08 % to 66.3 % and 60.3 % to 118 % in the low and high-dose group, respectively. Compared to the pre-adjustment scenario of RBA values, the exposure risk of QACs was overestimated by 2.23 - 5.14 times.
Collapse
Affiliation(s)
- Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
4
|
Zhu Y, Yang X, Song X, Jia Y, Zhang Y, Zhu L. Insights into the Enhanced Bioavailability of Per- and Polyfluoroalkyl Substances in Food Caused by Chronic Inflammatory Bowel Disease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11912-11922. [PMID: 38934536 DOI: 10.1021/acs.est.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Understanding the bioavailability of per- and polyfluoroalkyl substances (PFAS) in food is essential for accurate human health risk assessment. Given the rising incidence of inflammatory bowel disease (IBD), this study aimed to investigate the impacts of IBD on the bioavailability of PFAS in food using mice models. The relative bioavailability (RBA) of PFAS was the highest in the chronic IBD mice (64.3-144%), followed by the healthy (60.8-133%) and acute IBD mice (41.5-121%), suggesting that chronic IBD enhanced the PFAS exposure risk. In vitro tests showed that the intestinal micelle stability increased as a result of reduced content of short-chain fatty acids, thus promoting the PFAS bioaccessibility in the digestive fluid of chronic IBD. Additionally, increased pathogenic and decreased beneficial bacteria in the gut of IBD groups facilitated the intestinal permeability, thus enhancing PFAS absorption. These together explained the higher RBA of PFAS in the chronic IBD. However, remarkably lower enzymatic activities suggested severely impaired digestive ability in the acute IBD, which facilitated the excretion of PFAS from feces, thus lowering the RBA. Conversely, PFAS exposure might exacerbate IBD by changing the gut microbiota structures. This study hints that individuals with chronic intestinal inflammation might have higher PFAS exposure risk than the healthy population.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
5
|
Zhang M, Qiu W, Nie R, Xia Q, Zhang D, Pan X. Macronutrient and PFOS bioavailability manipulated by aeration-driven rhizospheric organic nanocapsular assembly. WATER RESEARCH 2024; 253:121334. [PMID: 38382293 DOI: 10.1016/j.watres.2024.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Ubiquitous presence of the extremely persistent pollutants, per- and polyfluoroalkyl substances, is drawing ever-increasing concerns for their high eco-environmental risks which, however, are insufficiently considered based on the assembly characteristics of those amphiphilic molecules in environment. This study investigated the re-organization and self-assembly of perfluorooctane sulfonate (PFOS) and macronutrient molecules from rhizospheric organic (RhO) matter induced with a common operation of aeration. Atomic force microscopy (AFM) with infrared spectroscopy (IR)-mapping clearly showed that, after aeration and stabilization, RhO nanocapsules (∼ 1000 nm or smaller) with a core of PFOS-protein complexes coated by "lipid-carbohydrate" layers were observed whereas the capsule structure with a lipid core surrounded by "protein-carbohydrate-protein" multilayers was obtained in the absence of PFOS. It is aeration that exerted the disassociation of pristine RhO components, after which the environmental concentration PFOS restructured the self-assembly structure in a conspicuous "disorder-to-order" transition. AFM IR-mapping analysis of faeces combined with quantification of component uptake denoted the decreased ingestion and utilization of both PFOS and proteins compared with lipids and carbohydrates when Daphnia magna were fed with RhO nanocapsules. RhO nanocapsules acted as double-edged swords via simultaneously impeding the bioaccessibility of hazardous PFOS molecules and macronutrient proteins; and the latter might be more significant, which caused a malnutrition status within merely 48 h. Elucidating the assembly structure of natural organic matter and environmental concentration PFOS, the finding of this work could be a crucial supplementation to the high-dose-dependent eco-effect investigations on PFOS.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weifeng Qiu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Nie
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoyun Xia
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Zhou P, Gu Q, Zhou S, Cui X. A novel montmorillonite clay-cetylpyridinium chloride material for reducing PFAS leachability and bioavailability from soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133402. [PMID: 38183937 DOI: 10.1016/j.jhazmat.2023.133402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Soils contaminated by per- and polyfluoroalkyl substances (PFAS) present a significant threat to both ecological and human health. Extensive research efforts are currently underway to develop effective strategies for immobilizing these chemicals in soils. In this study, calcium montmorillonite was modified with cetylpyridinium chloride (CPC-CM) to enhance its electrostatic and hydrophobic interactions with PFAS. CPC-CM exhibited high adsorption for perfluorooctanoate acid (PFOA), perfluorooctane sulfonate (PFOS) and 8:2 fluorotelomer sulfonic acids (8:2 FTSA) across initial concentrations of 50-1000 μg/L, outperforming both the parent CM and L-carnitine modified CM. Soil leaching tests demonstrated the superior immobilization capabilities of the CPC-CM, maintaining an average PFAS leaching rate below 7% after 120-day incubation. In the context of human exposure scenarios, the in vitro bioaccessibility and in vivo bioavailability of PFAS in soils were measured by gastrointestinal extraction and mouse assay. CPC-CM treatment effectively reduced the bioaccessibility (by up to 84%) and bioavailability (by up to 76%) of PFAS in soils. Furthermore, the safety and efficacy of CPC-CM were evaluated using enteric microorganisms of mice. CPC-CM treatment mitigated PFAS-induced changes in the abundance of Bacteroidetes and Firmicutes, thereby reducing PFAS-induced health risks for humans. Overall, CPC-CM synthesized in this study demonstrated superior adsorption performance and application safety, offering a highly promising approach for remediating PFAS-contaminated soil.
Collapse
Affiliation(s)
- Pengfei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qian Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
7
|
Zhao A, Wang W, Zhang R, He A, Li J, Wang Y. Tracing the Bioaccessibility of Per- and Polyfluoroalkyl Substances in Fish during Cooking Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19066-19077. [PMID: 37984055 DOI: 10.1021/acs.jafc.3c06038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The effect of cooking on the contents of per- and polyfluoroalkyl substances (PFAS) in foods has been widely studied, but whether cooking-induced structural and chemical modifications in foods affect the oral bioaccessibility of PFAS remains largely unknown. In this study, three kinds of fishes with different fat contents were selected, and the bioaccessibility of PFAS during cooking treatment (steaming and frying) was evaluated using in vitro gastrointestinal simulation with gastric lipase addition. The results showed that related to their molecular structures, the bioaccessibility of an individual PFAS varied greatly, ranging from 26.0 to 108.1%. Cooking can reduce the bioaccessibility of PFAS, and steaming is more effective than oil-frying; one of the possible reasons for this result is that the PFAS is trapped in protein aggregates after heat treatment. Fish lipids and cooking oil ingested with meals exert different effects on the bioaccessibility of PFAS, which may be related to the state of the ingested lipid/oil and the degree of unsaturation of fatty acids. Gastric lipase boosted the release of long-chain PFAS during in vitro digestion, indicating that the degree of lipolysis considerably influences the bioaccessibility of hydrophobic PFAS. Estimated weekly PFAS intakes were recalibrated using bioaccessibility data, enabling more accurate and reliable dietary exposure assessments.
Collapse
Affiliation(s)
- Ailin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Anen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
8
|
Zhu Y, Pan X, Jia Y, Yang X, Song X, Ding J, Zhong W, Feng J, Zhu L. Exploring Route-Specific Pharmacokinetics of PFAS in Mice by Coupling in Vivo Tests and Physiologically Based Toxicokinetic Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127012. [PMID: 38088889 PMCID: PMC10718298 DOI: 10.1289/ehp11969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral ingestion, inhalation, and skin contact are important exposure routes for humans to uptake per- and polyfluoroalkyl substances (PFAS). However, nasal and dermal exposure to PFAS remains unclear, and accurately predicting internal body burden of PFAS in humans via multiple exposure pathways is urgently required. OBJECTIVES We aimed to develop multiple physiologically based toxicokinetic (PBTK) models to unveil the route-specific pharmacokinetics and bioavailability of PFAS via respective oral, nasal, and dermal exposure pathways using a mouse model and sought to predict the internal concentrations in various tissues through multiple exposure routes and extrapolate it to humans. METHODS Mice were administered the mixed solution of perfluorohexane sulfonate, perfluorooctane sulfonate, and perfluorooctanoic acid through oral, nasal, and dermal exposure separately or jointly. The time-dependent concentrations of PFAS in plasma and tissues were determined to calibrate and validate the individual and combined PBTK models, which were applied in single- and repeated-dose scenarios. RESULTS The developed route-specific PBTK models successfully simulated the tissue concentrations of PFAS in mice following single or joint exposure routes as well as long-term repeated dose scenarios. The time to peak concentration of PFAS in plasma via dermal exposure was much longer (34.1-83.0 h) than that via nasal exposure (0.960 h). The bioavailability of PFAS via oral exposure was the highest (73.2%-98.0%), followed by nasal (33.9%-66.8%) and dermal exposure (4.59%-7.80%). This model was extrapolated to predict internal levels in human under real environment. DISCUSSION Based on these data, we predict the following: PFAS were absorbed quickly via nasal exposure, whereas a distinct hysteresis effect was observed for dermal exposure. Almost all the PFAS to which mice were exposed via gastrointestinal route were absorbed into plasma, which exhibited the highest bioavailability. Exhalation clearance greatly depressed the bioavailability of PFAS via nasal exposure, whereas the lowest bioavailability in dermal exposure was because of the interception of PFAS within the skin layers. https://doi.org/10.1289/EHP11969.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaoyu Pan
- Beijing Sankuai Online Technology Co., Ltd., Beijing, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jiaqi Ding
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| |
Collapse
|
9
|
Li J, Chang R, Ban X, Yuan GL, Du X, Yin G, Lin T. Aged polycyclic aromatic hydrocarbons as stratigraphic marker in the Anthropocene: Evidence from Tibetan Lake sediments. WATER RESEARCH 2023; 245:120652. [PMID: 37741038 DOI: 10.1016/j.watres.2023.120652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were supposed to serve as combustion marker reflecting the past energy use, but it was unclear whether their sediment records in the Anthropocene were "weathered" due to aging-induced formation of bound residues. In this study, the total concentration of PAHs (the sum of rapid desorption, slow desorption, and bound residue fractions) were determined in four dated sediment cores from eastern to central Tibet using multi-step sequential extraction method. The total 16 PAH concentrations were 11.8, 13.5, 18.9, and 29.4 ng/g dw (in average) in the Co Ngoin, Pung Co, Ahung Co, and Putok lakes, respectively. The stratigraphic records and estimated source contributions of PAHs in different areas of Tibet exhibited a coherent change in the mid-20th century in response to the Holocene-Anthropocene transition. The sediment PAHs also displayed a comparable pattern when the bound residue fraction was not accounted for, suggesting their effective retainability under natural aging conditions. This may be elucidated by the enduring forward and back conversions between slow desorption and bound residue fractions, which manifested similar time-dependent variations across PAH congeners. The distinct conversion tendencies of different congeners were predicted by the binding affinity of congeners to surface/inner regions of organic matter using molecular docking simulations. Our findings demonstrate the persistence of sediment PAH records under natural aging and validate the use of PAH documentary evidence for investigating the Anthropocene.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiyu Ban
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
10
|
Zhao J, Shi X, Wang Z, Xiong S, Lin Y, Wei X, Li Y, Tang X. Hepatotoxicity assessment investigations on PFASs targeting L-FABP using binding affinity data and machine learning-based QSAR model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115310. [PMID: 37523843 DOI: 10.1016/j.ecoenv.2023.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent organic pollutants that have been detected in various environmental media and human serum, but their safety assessment remains challenging. PFASs may accumulate in liver tissues and cause hepatotoxicity by binding to liver fatty acid binding protein (L-FABP). Therefore, evaluating the binding affinity of PFASs to L-FABP is crucial in assessing the potential hepatotoxic effects. In this study, two binding sites of L-FABP were evaluated, results suggested that the outer site possessed high affinity to polyfluoroalkyl sulfates and the inner site preferred perfluoroalkyl sulfonamides, overall, the inner site of L-FABP was more sensitive to PFASs. The binding affinity data of PFASs to L-FABP were used as training set to develop a machine learning model-based quantitative structure-activity relationship (QSAR) for efficient prediction of potentially hazardous PFASs. Further Bayesian Kernel Machine Regression (BKMR) model disclosed flexibility as the determinant molecular property on PFASs-induced hepatotoxicity. It can influence affinity of PFASs to target protein through affecting binding conformations directly (individual effect) as well as integrating with other molecular properties (joint effect). Our present work provided more understanding on hepatotoxicity of PFASs, which could be significative in hepatotoxicity gradation, administration guidance, and safer alternatives development of PFASs.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China; Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoyue Shi
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhiqin Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Sijie Xiong
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
12
|
Zhu Y, Li Y, Liu X, Yang X, Song X, Jia Y, Zhong W, Zhu L. Bioaccessibility of per- and polyfluoroalkyl substances in food and dust: Implication for more accurate risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161739. [PMID: 36690103 DOI: 10.1016/j.scitotenv.2023.161739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Humans are exposed to per- and polyfluoroalkyl substances (PFASs) mainly through oral exposure route, while little is known about their bioaccessibility (BC) in oral matrices. Here, the BC of 13 PFASs in simulated vegetable (VFs) and animal foods (AFs) as well as indoor dust was investigated using a physiology-based extraction test. The BC of PFASs in the AFs (78.5 ± 13.6 %) was distinctly higher than that in the VFs (60.6 ± 13.4 %), because high-saturated and long-chain fatty acids in the animal fat favored formation of more stable micelles. The BC of most long-chain PFASs was positively correlated with the protein content while negatively correlated with the carbohydrate content in the foods. The BC of polyfluoroalkyl phosphate diesters was negatively correlated with the lipid content. The BC of the very long-chain PFASs in the foods was 2.42-6.02 times higher than that in the dust, which might be attributed to their strong sequestration in dust. With the increase in bile salt concentration, the BC of PFASs in food increased and then remained constant, which was related to the changes in fatty acids and stability of the formed micelles. Comparing with the previous results obtained from animal study, the BC obtained in this study has the potential to predict PFAS bioavailability in food.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuqing Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaosong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
13
|
Jia Y, Zhu Y, Wang R, Ye Q, Xu D, Zhang W, Zhang Y, Shan G, Zhu L. Novel insights into the mediating roles of cluster of differentiation 36 in transmembrane transport and tissue partition of per- and polyfluoroalkyl substances in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130129. [PMID: 36303356 DOI: 10.1016/j.jhazmat.2022.130129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Transmembrane transport is important for bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in organisms, but has not yet been well understood. Here, the roles of cluster of differentiation 36 (CD36) in accumulation of PFASs were investigated. CD36 was overexpressed in Escherichia coli to get CD36-BL21 strain, and the binding affinities of 20 PFASs with CD36 were determined by microscale thermophoresis, which grew up to 17.5 μM with increasing carbon chain length. Consequently, the accumulation of most PFASs was remarkably promoted in CD36-BL21 in comparison to the wild strain, and the enhancement was proportional to their binding affinities with CD36 (r = -0.96). However, this effect was depressed greatly as CD36 was inhibited by sulfo-N-succinimidyl oleate (SSO). Additionally, as the mice received SSO pretreatment before they were exposed to perfluorododecanoic acid, its accumulation in the tissues rich in CD36, such as liver, was suppressed, but increased by 1.1 times in the serum. These indicated that CD36 played critical roles in the transmembrane transport and tissue partition of PFASs in organisms. The developed relationship between liver-blood partition of PFASs and their binding affinities with intracellular proteins was distinctly improved by incorporating that with CD36 (r = -0.97).
Collapse
Affiliation(s)
- Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rouyi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qingqing Ye
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dashan Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wei Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
14
|
Chen Q, Yi S, Ye Q, Zhu Y, Zhong W, Zhu L. Insights into the Dermal Absorption, Deposition, and Elimination of Poly- and Perfluoroalkyl Substances in Rats: The Importance of Skin Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16975-16984. [PMID: 36419387 DOI: 10.1021/acs.est.2c03181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Humans are frequently exposed to poly- and perfluoroalkyl substances (PFASs) via direct skin contact with personal care and consumer products containing them. Here, we used a rat model to estimate the dermal penetration efficiency of 15 representative PFASs. After 144 h post-dosing, 4.1-18.0 and 5.3-15.1% of the applied PFASs in the low (L) and high (H) groups, respectively, were absorbed into the rats. PFAS absorption and permeation were parabolically associated with the perfluorinated carbon chain length (CF), peaking for perfluoroheptanoic acid (PFHpA). The lipid-rich stratum corneum of the skin barrier substantially suppressed the penetration of less hydrophobic short-chain PFASs, whereas the water-rich viable epidermis and dermis served as obstacles to hydrophobic long-chain PFAS permeation. However, the renal clearance (CLrenal) of the target PFAS decreased with increasing CF, suggesting that urinary excretion is crucial to eliminate less hydrophobic short-chain PFASs. Notably, the peak times of PFASs in the systemic circulation of rats (8-72 h) were remarkably longer than those after oral administration (1-24 h). These results suggest that dermal penetration can be long-lasting and contribute considerably to the body burden of PFASs, especially for those with moderate hydrophobicity due to their favorable skin permeation and unfavorable urinary excretion.
Collapse
Affiliation(s)
- Qiaoying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, P. R. China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, P. R. China
| | - Qingqing Ye
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, P. R. China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, P. R. China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, P. R. China
| |
Collapse
|
15
|
Jia Y, Zhu Y, Xu D, Feng X, Yu X, Shan G, Zhu L. Insights into the Competitive Mechanisms of Per- and Polyfluoroalkyl Substances Partition in Liver and Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6192-6200. [PMID: 35436088 DOI: 10.1021/acs.est.1c08493] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Some per- and polyfluoroalkyl substances (PFASs) tend to be accumulated in liver and cause hepatotoxicity. However, the difficulty to directly measure liver concentrations of PFASs in humans hampers our understanding of their hepatotoxicity and mechanisms of action. We investigated the partitioning of 11 PFASs between liver and blood in male CD-1 mice. Although accumulation of the perfluoroalkanesulfonic acids (PFSAs) in mice serum was higher than their carboxylic acids (PFCAs) counterparts as expected, the liver-blood partition coefficients (RL/S) of PFSAs were lower than the PFCAs RL/S, implying a competition between liver and blood. The in vitro experiments further indicated that the partitioning was dominantly determined by their competitive binding between human liver fatty acid binding protein (hL-FABP) and serum albumin (HSA). The binding affinities (Kd) of PFASs to both proteins were measured. The correlations between the RL/S and log Kd (hL-FABP)/log Kd (HSA) were stronger than those with log Kd (hL-FABP) alone, magnifying that the partitioning was dominantly controlled by competitive binding between hL-FABP and HSA. Therefore, the liver concentrations of the selected PFASs in humans could be predicted from the available serum concentrations, which is important for assessing their hepatotoxicity.
Collapse
Affiliation(s)
- Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Dashan Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaoyong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|