1
|
Zhuo T, Zhang S, Zhang Z, Cai Y. Differential effects of environmentally relevant concentrations of ibuprofen on denitrification and nitrous oxide emissions in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138326. [PMID: 40300517 DOI: 10.1016/j.jhazmat.2025.138326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
The increasing presence of ibuprofen in aquatic ecosystems poses significant challenges to their biogeochemical functions, including nitrogen transformations. In this study, we employed 15N-labeling techniques to investigate the effects of environmentally relevant concentrations of ibuprofen (0-10,000 ng L-1) on denitrification and the associated nitrous oxide (N2O) emissions in river sediments over a 60-day period. The results revealed a hump-shaped response in denitrification rates to ibuprofen addition across a range of nitrate concentrations (1-60 mg N L-1), with rates peaking near 200 ng L-1 ibuprofen, followed by inhibition at certain higher concentrations, leading to a reduction of up to 25.8 % compared to the treatment without ibuprofen. Kinetic analysis showed that the maximum denitrification rate followed the same hump-shaped trend, despite a decrease in nitrate affinity with increasing ibuprofen concentrations. The abundance of denitrifying bacteria mirrored the pattern observed in denitrification rates across different ibuprofen concentrations. However, increasing ibuprofen concentrations consistently accelerated N2O production rates. Microbial analysis suggests that the increase in N2O production genes was faster than for reduction genes, while the decrease was slower with increasing ibuprofen concentrations. This study highlights the hump-shaped response of denitrification rates and the consistent increase in N2O emissions induced by ibuprofen, offering insights for developing environmental management strategies to mitigate ibuprofen and nitrogen pollution, as well as reducing N2O emissions.
Collapse
Affiliation(s)
- Tongyue Zhuo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhong Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Jiang BN, Zhang YY, Wang Y, Liu HQ, Zhang ZY, Yang YJ, Song HL. Microbial biomass stoichiometry and proportion of Fe organic complexes separately shape the heterogeneity of mixotrophic denitrification and net N 2O sinks in iron-carbon amended ecological ditch. WATER RESEARCH 2025; 272:122945. [PMID: 39674145 DOI: 10.1016/j.watres.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net N2O sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis. Surprisingly, unamened eco-ditch became net N2O sink while exhibiting a significant increase in total nitrogen (TN) removal rate of 319 % (P < 0.001) compared to soil ditch. The integration of MW pyrolyzed IH-derived biochar with sFe to amend eco-ditch achieved synchronous enhancement in net N2O sinks (P < 0.01) and TN removal rate (P < 0.001), whereas the remaining amended eco-ditches that significantly intensified TN removal performance, were N2O emitters. Such heterogeneity primarily depends on Fe organic complexes (Fep) / the total reactive Fe oxides (Fed) ratio, rather than the prevailing nosZ gene, underscoring that low density metastable reactive iron plays a more important role than biological reactions during the mixotrophic denitrification process. As such, iron oxides are not necessarily a bottleneck for denitrification and contribute to N2O sinks. Conversely, microbial biomass C:(C + N), together with nirK and nosZ genes, mainly explain the TN removal heterogeneity of sFe-biochar eco-ditch. This study revisits the discrepant resilience of iron-carbon coupling to N abatement and N2O sink-induced cooling and has significant practical implications for better understanding the cascading effects of mixotrophic denitrification driven by iron-carbon interactions.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Yan Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Hai-Qin Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China.
| | - Yi-Jing Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Fang L, Deng Y, Lakshmanan P, Liu W, Tang X, Zou W, Zhang T, Wang X, Xiao R, Zhang J, Chen X, Su X. Selective increase of antibiotic-resistant denitrifiers drives N 2O production in ciprofloxacin-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135673. [PMID: 39217949 DOI: 10.1016/j.jhazmat.2024.135673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4067, Australia
| | - Weibing Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Wenxin Zou
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaozhong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Timilsina A, Neupane P, Yao J, Raseduzzaman M, Bizimana F, Pandey B, Feyissa A, Li X, Dong W, Yadav RKP, Gomez-Casanovas N, Hu C. Plants mitigate ecosystem nitrous oxide emissions primarily through reductions in soil nitrate content: Evidence from a meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175115. [PMID: 39084361 DOI: 10.1016/j.scitotenv.2024.175115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and an ozone-depleting substance. The presence of plants in an ecosystem can either increase or decrease N2O emissions, or play a negligible role in driving N2O emissions. Here, we conducted a meta-analysis comparing ecosystem N2O emissions from planted and unplanted systems to evaluate how plant presence influences N2O emissions and examined the mechanisms driving observed responses. Our results indicate that plant presence reduces N2O emissions while it increases dinitrogen (N2) emissions from ecosystems through decreases in soil nitrate concentration as well as increases in complete denitrification and mineral N immobilization. The response of N2O emissions to plant presence was universal across major terrestrial ecosystems - including forests, grassland and cropland - and it did not vary with N fertilization. Further, in light of the potential mechanisms of N2O formation in plant cells, we discussed how plant presence could enhance the emission of N2O from plants themselves. Improving our understanding of the mechanisms driving N2O emissions in response to plant presence could be beneficial for enhancing the robustness for predictions of our GHG sinks and sources and for developing strategies to minimize emissions at the ecosystem scale.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Texas A&M AgriLife Research Center, Vernon 76384, TX, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Urbana-Champaign, IL, USA
| | - Pritika Neupane
- Department of Plant Breeding and Genetics, Institute of Agriculture and Animal Science, Tribhuvan University, Nepal
| | - Jinzhi Yao
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, 19AYuquan Road, Beijing 100049, China
| | - Md Raseduzzaman
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, 19AYuquan Road, Beijing 100049, China
| | - Fiston Bizimana
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, 19AYuquan Road, Beijing 100049, China
| | - Bikram Pandey
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Adugna Feyissa
- Texas A&M AgriLife Research Center, Vernon 76384, TX, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Urbana-Champaign, IL, USA; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Xiaoxin Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Wenxu Dong
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | | | - Nuria Gomez-Casanovas
- Texas A&M AgriLife Research Center, Vernon 76384, TX, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Urbana-Champaign, IL, USA; Rangeland, Wildlife & Fisheries Management Department, Texas A&M, TX, USA.
| | - Chunsheng Hu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, 19AYuquan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Zheng W, Fan X, Chen H, Ye M, Yin C, Wu C, Liang Y. The response patterns of r- and K-strategist bacteria to long-term organic and inorganic fertilization regimes within the microbial food web are closely linked to rice production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173681. [PMID: 38844210 DOI: 10.1016/j.scitotenv.2024.173681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Soil microbial food web is crucial for maintaining crop production, while its community structure varies among fertilization regimes. Currently, the mechanistic understanding of the relationships between microbial food web and crop production under various nutrient fertilizations is poor. This knowledge gap limits our capacity to achieve precision agriculture for ensuring yield stability. In this study, we investigated the abiotic (i.e., soil chemical properties) and biotic factors (i.e., microbial food web, including bacteria, fungi, archaea and nematodes) that were closely associated with rice (Oryza sativa L.) production, using soils from seven fertilization regimes in distinct sampling locations (i.e., bulk vs rhizosphere soil) at a long-term experimental site. Organic manure alone fertilization (M) and integrated fertilization (NPKM) combining manure with inorganic fertilizers increased soil pH by 0.21-0.41 units and organic carbon content by 49.1 %-65.2 % relative to the non-fertilization (CK), which was distinct with inorganic fertilization. The principal coordinate analysis (PCoA) revealed that soil microbial and nematode communities were primarily shaped by fertilization rather than sampling locations. Organic fertilization (M, NPKM) increased the relative abundance of both r-strategist bacteria, specific taxa within the fungal (i.e., Pezizales) and nematode communities (i.e., omnivores-predators), whereas inorganic fertilization increased K-strategist bacteria abundances relative to the CK. Correspondingly, network analysis showed that the keystone taxa in the amplicon sequence variants (ASVs) enriched by organic manure and inorganic fertilization were mainly affiliated with r- and K-strategist bacteria, respectively. Structural equation modeling (SEM) analysis found that r- and K-strategist bacteria were positively correlated with rice production under organic and inorganic fertilization, respectively. Our results demonstrate that the response patterns of r/K-strategists to nutrient fertilization largely regulate rice yield, suggesting that the enhanced soil fertility and r-strategists contribute to the highest crop production in NPKM fertilization.
Collapse
Affiliation(s)
- Wanning Zheng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunyan Wu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Huang YH, Yang YJ, Li JY, Lü H, Zhao HM, Xiang L, Li H, Mo CH, Li YW, Cai QY, Li QX. Root-associated bacteria strengthen their community stability against disturbance of antibiotics on structure and functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133317. [PMID: 38218031 DOI: 10.1016/j.jhazmat.2023.133317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Antibiotics affect bacterial community structure and functions in soil. However, the response and adaptation of root-associated bacterial communities to antibiotic stress remains poorly understood. Here, rhizobox experiments were conducted with maize (Zea mays L.) upon exposure to antibiotics ciprofloxacin or tetracycline. High-throughput sequencing analysis of bacterial community and quantitative PCR analysis of nitrogen cycling genes show that ciprofloxacin and tetracycline significantly shift bacterial community structure in bulk soil, whereas plant host may mitigate the disturbances of antibiotics on bacterial communities in root-associated niches (i.e., rhizosphere and rhizoplane) through the community stabilization. Deterministic assembly, microbial interaction, and keystone species (e.g., Rhizobium and Massilia) of root-associated bacterial communities benefit the community stability compared with those in bulk soil. Meanwhile, the rhizosphere increases antibiotic dissipation, potentially reducing the impacts of antibiotics on root-associated bacterial communities. Furthermore, rhizospheric effects deriving from root exudates alleviate the impacts of antibiotics on the nitrogen cycle (i.e., nitrification, organic nitrogen conversion and denitrification) as confirmed by functional gene quantification, which is largely attributed to the bacterial community stability in rhizosphere. The present study enhances the understanding on the response and adaptation of root-associated bacterial community to antibiotic pollution.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Yu Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
7
|
Jiang BN, Zhang YY, Zhang ZY, Yang YL, Song HL. Tree-structured parzen estimator optimized-automated machine learning assisted by meta-analysis for predicting biochar-driven N 2O mitigation effect in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120335. [PMID: 38368804 DOI: 10.1016/j.jenvman.2024.120335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Biochar is a carbon-neutral tool for combating climate change. Artificial intelligence applications to estimate the biochar mitigation effect on greenhouse gases (GHGs) can assist scientists in making more informed solutions. However, there is also evidence indicating that biochar promotes, rather than reduces, N2O emissions. Thus, the effect of biochar on N2O remains uncertain in constructed wetlands (CWs), and there is not a characterization metric for this effect, which increases the difficulty and inaccuracy of biochar-driven alleviation effect projections. Here, we provide new insight by utilizing machine learning-based, tree-structured Parzen Estimator (TPE) optimization assisted by a meta-analysis to estimate the potency of biochar-driven N2O mitigation. We first synthesized datasets that contained 80 studies on global biochar-amended CWs. The mitigation effect size was then calculated and further introduced as a new metric. TPE optimization was then applied to automatically tune the hyperparameters of the built extreme gradient boosting (XGBoost) and random forest (RF), and the optimum TPE-XGBoost obtained adequately achieved a satisfactory prediction accuracy for N2O flux (R2 = 91.90%, RPD = 3.57) and the effect size (R2 = 92.61%, RPD = 3.59). Results indicated that a high influent chemical oxygen demand/total nitrogen (COD/TN) ratio and the COD removal efficiency interpreted by the Shapley value significantly enhanced the effect size contribution. COD/TN ratio made the most and the second greatest positive contributions among 22 input variables to N2O flux and to the effect size that were up to 18% and 14%, respectively. By combining with a structural equation model analysis, NH4+-N removal rate had significant negative direct effects on the N2O flux. This study implied that the application of granulated biochar derived from C-rich feedstocks would maximize the net climate benefit of N2O mitigation driven by biochar for future biochar-based CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China.
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
8
|
Liu N, Liu Z, Wang K, Zhao J, Fang J, Liu G, Yao H, Pan J. Comparison analysis of microbial agent and different compost material on microbial community and nitrogen transformation genes dynamic changes during pig manure compost. BIORESOURCE TECHNOLOGY 2024; 395:130359. [PMID: 38272144 DOI: 10.1016/j.biortech.2024.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to assess the impact of microbial agent and different compost material, on physicochemical parameters dynamic change, nitrogen-transfer gene/bacterial community interaction network during the pig manure composting. Incorporating a microbial agent into rice straw-mushroom compost reduced the NH3 and total ammonia emissions by 25.52 % and 14.41 %, respectively. Notably, rice straw-mushroom with a microbial agent reduced the total ammonia emissions by 37.67 %. NH4+-N and pH emerged as primary factors of phylum-level and genus-level microorganisms. Microbial agent increased the expression of narG, nirK, and nosZ genes. Rice straw-mushroom elevated the content of amoA, nirK, nirS, and nosZ genes. Alcanivorax, Luteimonas, Pusillimonas, Lactobacillus, Aequorivita, Clostridium, Moheibacter and Truepera were identified as eight core microbial genera during the nitrogen conversion process. This study provides a strategy for reducing ammonia emissions and analyzes the potential mechanisms underlying compost processes.
Collapse
Affiliation(s)
- Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Wu C, Peng J, Song T. An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease. Microorganisms 2024; 12:337. [PMID: 38399741 PMCID: PMC10892819 DOI: 10.3390/microorganisms12020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Chrysanthemum wilt is a plant disease that exerts a substantial influence on the cultivation of Chrysanthemum zawadskii (Herb.) for tea and beverage production. The rhizosphere microbial population exhibits a direct correlation with the overall health of plants. Therefore, studying the rhizosphere microbial community of Chrysanthemum zawadskii (Herb.) Tzvel. is of great significance for finding methods to control this disease. This study obtained rhizosphere soil samples from both diseased and healthy plant individuals and utilized high-throughput sequencing technology to analyze their microbial composition. The results showed that the rhizosphere microbial diversity decreased significantly, and the microbial community structure changed significantly. In the affected soil, the relative abundance of pathogenic microorganisms such as rhizospora and Phytophthora was greatly increased, while the relative abundance of beneficial microorganisms such as antagonistic fungi and actinomyces was greatly decreased. In addition, this study also found that soil environmental variables have an important impact on plant resistance; the environmental factors mainly include soil properties, content of major microorganisms, and resistance characteristics of samples. Redundancy analysis showed that the drug-resistant population had a greater impact on the 10 species with the highest abundance, and the environmental factors were more closely related to the sensitive population. In the fungal community, the resistant sample group was more sensitive to the influence of environmental factors and high-abundance fungi. These findings provide a theoretical basis for improving microbial community structure by optimizing fertilization structure, thus affecting the distribution of bacteria and fungi, and thus improving the disease resistance of chrysanthemum. In addition, by regulating and optimizing microbial community structure, new ideas and methods can be provided for the prevention and control of chrysanthemum wilt disease.
Collapse
Affiliation(s)
- Chao Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.P.); (T.S.)
| | | | | |
Collapse
|
10
|
Han Z, Leng Y, Sun Z, Li Z, Xu P, Wu S, Liu S, Li S, Wang J, Zou J. Substitution of organic and bio-organic fertilizers for mineral fertilizers to suppress nitrous oxide emissions from intensive vegetable fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119390. [PMID: 37897895 DOI: 10.1016/j.jenvman.2023.119390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
To gain insight into the microbial mechanisms associated with the replacement of chemical fertilizers with organic or bio-organic fertilizers to mitigate soil nitrous oxide (N2O) emissions, we measured N2O emissions from greenhouse vegetable soils through field observations and pot experiments. Results showed that organic substitution suppressed N2O emissions by reducing soil mineral N content and stimulating the abundance of the nosZII gene. The trade-off effect of bio-organic substitution on N2O emissions may be due to the stimulated activity of the AOA-amoA gene, resulting in unfavorable conditions for N2O production and thus reduced N2O loss. We also linked the inhibitory effect of organic and bio-organic substitution on N2O emissions to the increased abundance of key species in bacterial co-occurrence networks represented by Patescibacteria as they were significantly and negatively correlated with N2O emissions. However, the mitigation effect of bio-organic substitution on N2O emissions was conteracted by an increase in Bacillus abundance due to the direct negative effect of Bacillus on the nosZII gene abundance. These findings suggest that conventional or bio-organic substitution is a promising strategy for alleviating the environmental costs of crop production.
Collapse
Affiliation(s)
- Zhaoqiang Han
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Yi Leng
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhirong Sun
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhutao Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Pinshang Xu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuang Wu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Shuwei Liu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Shuqing Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
11
|
Yan JF, Xiang L, Zhang BY, Tang C, Xie YQ, Li YW, Feng NX, Liu BL, Li H, Cai QY, Li QX, Zhao HM, Mo CH. Mechanism and Association between Microbial Nitrogen Transformation in Rhizosphere and Accumulation of Ciprofloxacin in Choysum ( Brassica parachinensis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16053-16064. [PMID: 37824517 DOI: 10.1021/acs.est.3c04709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.
Collapse
Affiliation(s)
- Jian-Fang Yan
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bi-Ying Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - You-Qun Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Fang L, Chen C, Li S, Ye P, Shi Y, Sharma G, Sarkar B, Shaheen SM, Lee SS, Xiao R, Chen X. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115175. [PMID: 37379666 DOI: 10.1016/j.ecoenv.2023.115175] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - ShiYang Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sabry M Shaheen
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
13
|
Chen Z, Zhang S, Li Y, Wang Y. Characteristics of denitrification activity, functional genes, and denitrifying community composition in the composting process of kitchen and garden waste. BIORESOURCE TECHNOLOGY 2023; 381:129137. [PMID: 37164228 DOI: 10.1016/j.biortech.2023.129137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
N2O can be easily produced during the co-composting of kitchen waste (KW) and garden waste (GW). This study investigated the effects of the co-composting of KW and GW at different ratios (1:2, 1:1.5, 1:1, and 1.5:1) on the denitrifying activities, functional genes, and community composition of denitrifiers. The results showed that the denitrification activity of KW and GW at a 1:2 ratio was the lowest. The gene abundances of nirS, nirK, nosZI, and nosZII were high on days 12 and 28 under the four different ratios. Network analysis demonstrated that nosZ-type denitrifiers could construct a complex and reciprocal bacterial network to promote the reduction of N2O to N2. Mantel test results revealed that nirS-, nirK-, nosZI-, and nosZII-type denitrifiers were significantly positively correlated with pH, C/N, and moisture content. These findings demonstrated that composting with appropriate proportions of KW and GW could reduce N2O emissions caused by denitrification.
Collapse
Affiliation(s)
- Zhou Chen
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, People's Republic of China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, People's Republic of China.
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuantao Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
14
|
Lin Y, Hu HW, Deng M, Yang P, Ye G. Microorganisms carrying nosZ I and nosZ II share similar ecological niches in a subtropical coastal wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162008. [PMID: 36739025 DOI: 10.1016/j.scitotenv.2023.162008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Nitrous oxide (N2O) reducers are the only known sink for N2O and pivotal contributors to N2O mitigation in terrestrial and water ecosystems. However, the niche preference of nosZ I and nosZ II carrying microorganisms, two divergent clades of N2O reducers in coastal wetlands, is not yet well documented. In this study, we investigated the abundance, community structure and co-occurrence network of nosZ I and nosZ II carrying microorganisms and their driving factors at three depths in a subtropical coastal wetland with five plant species and a bare tidal flat. The taxonomic identities differed between nosZ I and nosZ II carrying microorganisms, with nosZ I sequences affiliated with Alphaproteobacteria and Betaproteobacteria while nosZ II sequences with Gemmatimonadetes, Verrucomicrobia, Gammaproteobacteria, and Chloroflexi. The abundances of nosZ I and nosZ II decreased with increasing soil depths, and were positively associated with salinity, total carbon (TC) and total nitrogen (TN). Random forest analysis showed that salinity was the strongest predictor for the abundances of nosZ I and nosZ II. Salinity, TC and TN were the major driving forces for the community structure of nosZ I and nosZ II carrying microorganisms. Moreover, co-occurrence analysis showed that 92.2 % of the links between nosZ I and nosZ II were positive, indicating that nosZ I and nosZ II carrying microorganisms likely shared similar ecological niches. Taken together, we provided new evidence that nosZ I and nosZ II carrying microorganisms shared similar ecological niches in a subtropical estuarine wetland, and identified salinity, TC and TN serving as the most important environmental driving forces. This study advances our understanding of the environmental adaptation and niche preference of nosZ I and nosZ II carrying microorganisms in coastal wetlands.
Collapse
Affiliation(s)
- Yongxin Lin
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Milin Deng
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ping Yang
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Guiping Ye
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
15
|
Zeng Q, Wang Y, Zhang Q, Hu J, Wen Y, Wang J, Wang R, Zhao S. Activity and mechanism of vanadium sulfide for organic contaminants oxidation with peroxymonosulfate. J Colloid Interface Sci 2023; 635:358-369. [PMID: 36599235 DOI: 10.1016/j.jcis.2022.12.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Transition metal sulfides have been demonstrated to be effective for peroxymonosulfate (PMS) activation towards wastewater treatment. However, the activity of vanadium sulfide (VS4) and the role of the chemical state of V have not been revealed. Here, three types of VS4 with various morphologies and chemical states of V were synthesized by using methanol (M-VS4, nanosphere composed of nanosheets), ethanol (E-VS4, sea urchin like nanosphere) and ultrapure water (U-VS4, compact nanosphere) as hydrothermal solvent, respectively, and used as heterogeneous catalysts to activate PMS for the degradation of refractory organic pollutants. The effects of PMS concentration, temperature, pH, inorganic ions, and humic acid (HA) on the degradation efficiency of VS4/PMS system were investigated systematically. The results indicated that the highest specific surface area and lowest ratio of V5+ enable E-VS4/PMS system possessed the highest performance in degrading tetracycline hydrochloride (TCH), in which 100% TCH was removed after operating 10 min (0.805 min-1) under a relatively low concentration of PMS (1 mM) and catalyst (100 mg/L). It also revealed that the system exhibited a typical radical process in TCH degradation, which could be attributed to the redox cycles between V5+, V4+ and V3+ in the presence of PMS to generate various radicals. This radical process enabled the E-VS4/PMS system with a high activity in wide reaction conditions and high mineralization ratios in degrading various refractory organic pollutants within 10 min. In addition, the E-VS4/PMS system exhibited favorable reusability and stability with very less V and S ions leaching, and showed excellent performance in real water purification.
Collapse
Affiliation(s)
- Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Yumei Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jiayu Hu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Shuaifei Zhao
- Deakin University, Geelong, Institute for Frontier Materials (IFM), VIC 3216, Australia
| |
Collapse
|