1
|
Furrer V, Froemelt A, Singer H, Ort C. Source-specific dynamics of organic micropollutants in combined sewer overflows. WATER RESEARCH 2025; 279:123416. [PMID: 40088684 DOI: 10.1016/j.watres.2025.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Combined sewer overflows (CSOs) discharge organic micropollutants (MPs) into open water bodies, posing potential environmental threats. Knowledge of the numbers, sources, and dynamics of MPs during CSOs is scarce but crucial for assessing their impact and developing mitigation strategies. To shed light on the dynamics of dissolved organic MPs in CSOs, we conducted high-temporal-resolution sampling (10 min composite samples) followed by liquid chromatography high-resolution mass spectrometry analysis, both target (60 substances) and nontarget, at two CSO sites in a small [17 hectares reduced (hared)] and a large (368 hared) catchment for over 10 events each. We observe similar patterns among indoor substances in the large catchment and among tire-associated compounds in both catchments, indicating source-specific behavior. Due to high and diverse concentration variability, no temporal correlations were found among indoor substances in the small catchment or among pesticides in either catchment. A random forest classifier was applied to assign nontarget time series to indoor and road sources in the large catchment. The results indicate that CSOs discharge several thousand substances from indoor sources, followed by a few hundred from outdoor sources with continuous leaching. These high numbers substantially surpass the scope of traditional target lists and underscore the importance of broad-spectrum screening methods when assessing MP contamination.
Collapse
Affiliation(s)
- Viviane Furrer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zurich, Switzerland
| | - Andreas Froemelt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
2
|
Xia D, Pan G, Liu Y, Liu H, Zhao B, Wu J, Tang T, Lu G, Wang R. Unlocking the future potential of SWATH-MS: Advancing non-target screening workflow for the qualitative and quantitative analysis of emerging contaminants. WATER RESEARCH 2025; 277:123323. [PMID: 40020354 DOI: 10.1016/j.watres.2025.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
SWATH-MS offers a robust data-independent acquisition method for complex proteomics and metabolomics. This study presents a detailed non-target screening workflow utilizing SWATH-MS to detect and analyze emerging contaminants (ECs) in aquatic environments. Our workflow, covering peak picking, alignment, prioritization, structure identification, and quantification, effectively identified all qualifying peaks from 298 standard compounds with different concentrations, discarding any that did not meet the criteria. In extracts of real water samples spiked at 100 and 10 ng/mL, our workflow prioritized 2083 and 1328 features, respectively. Following structure identification, these features were assigned confidence levels ranging from 1 to 5. Of these, 215 and 92 spiked standards achieved level 1. The remaining standards were not recognized as level 1 due to low intensities or poor peak shapes that failed to meet certain criteria. Additionally, using fragment ion peak areas for quantification significantly improved the linearity of standard curves, enhancing R2 values for ∼63 % of the standards. Incorporating fragment ion data improved quantification accuracy, increasing compounds within the 80 %-120 % range from 78 % to 90 % at 100 ng/mL and within the 50 %-150 % range from 36 % to 69 % at 10 ng/mL. These findings underscore SWATH-MS's potential to enhance monitoring of ECs and ecological risk assessments, providing critical insights for environmental management.
Collapse
Affiliation(s)
- Di Xia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guofang Pan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yaxiong Liu
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangzhou 510663, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
3
|
Zhu L, Ma Y, Goonetilleke A. Fingerprinting to trace sources of suspended solids in the transport of heavy metals in urban stormwater runoff. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125088. [PMID: 39383989 DOI: 10.1016/j.envpol.2024.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Suspended solids are an important pollutant in urban stormwater runoff. Past studies have mainly focused on a single transport stage of pollutants, constraining source identification of suspended solids at the catchment scale. Therefore, identifying the sources of suspended solids in stormwater runoff for the formulation of effective pollution mitigation measures is an effective way to manage suspended solids pollution in receiving waters. Sediment source fingerprinting is a widely used technique to trace the sources of river sediments, which can accurately identify the source of sediment through widely used tracers. This study used six heavy metals including Cd, Cr, Ni, Cu, Zn and Pb as tracers to quantify the sources of suspended solids in stormwater runoff from urban catchments. The spatial and temporal distribution characteristics of suspended solids during stormwater transport were investigated. The study results showed that the concentration of suspended solids was the highest in road runoff and sewer flow, especially particles <44 μm. In addition, relatively large rainfall depth, high rainfall intensity and long antecedent dry periods can lead to higher concentrations of suspended solids in roof and road runoff whereas longer rainfall duration can result in more suspended solids in sewer runoff. Sediment source fingerprinting and principal component analysis confirmed that coarse (>105 μm) particles primarily originate from road deposited sediments (63.80%), while fine (<105 μm) particles primarily originate from stormwater grate sediments and soil. The outcomes derived can help to comprehensively understand the sources of suspended solids and provide guidance for the management of urban stormwater particulate pollution, as well as being a technical reference for pollutant source traceability in urban stormwater runoff.
Collapse
Affiliation(s)
- Ling Zhu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China
| | - Yukun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China.
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland, 4001, Australia
| |
Collapse
|
4
|
Peter KT, Gilbreath A, Gonzalez M, Tian Z, Wong A, Yee D, Miller EL, Avellaneda PM, Chen D, Patterson A, Fitzgerald N, Higgins CP, Kolodziej EP, Sutton R. Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1760-1779. [PMID: 39291694 DOI: 10.1039/d4em00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | | | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Adam Wong
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Don Yee
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | | | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | | | - Nicole Fitzgerald
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| |
Collapse
|
5
|
Jiang JR, Cai WX, Chen ZF, Liao XL, Cai Z. Prediction of acute toxicity for Chlorella vulgaris caused by tire wear particle-derived compounds using quantitative structure-activity relationship models. WATER RESEARCH 2024; 256:121643. [PMID: 38663211 DOI: 10.1016/j.watres.2024.121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Tire wear particles (TWPs) enter aquatic ecosystems through various pathways, such as rainwater and urban runoff. Additives in TWPs can harm aquatic organisms in these ecosystems. Therefore, it is essential to investigate their toxicity to aquatic organisms. In our study, we initially recorded the median effective concentrations of 21 TWP-derived compounds on Chlorella vulgaris growth, ranging from 0.04 to 8.60 mg/L. Subsequently, through an extensive review of the literature, we incorporated 112 compounds with specific toxicity endpoints to construct the QSAR model using genetic algorithm and multiple linear regression techniques, followed by the construction of the consensus model and the quantitative read-across structure-activity relationship (q-RASAR) model. Meanwhile, we employed rigorous internal and external validation measures to assess the performance of the model. The results indicated that the developed q-RASAR model exhibited strong adaptation, robustness, and reliable prediction, with q-RASAR indicators of Q2LOO = 0.7673, R2tr = 0.8079, R2test = 0.8610, Q2Fn = 0.8285-0.8614, and CCCtest = 0.9222. Based on an external dataset containing 128 emerging TWP-derived compounds, the model's applicability domain coverage was 90.6 %. The q-RASAR model predicted that the structure of diphenylamine was associated with higher toxicity, possibly liked to the SpMax2_Bhm and LogBCF descriptors. The established model reliably provides prediction and fills a critical data gap. These findings highlight the potential risks posed by emerging TWP-derived compounds to aquatic organisms.
Collapse
Affiliation(s)
- Jie-Ru Jiang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen-Xi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
6
|
Su H, Li J, Ye L, Su G. Establishment of compound database of emerging antioxidants and high-resolution mass spectrometry screening in lake sediment from Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28341-28352. [PMID: 38532220 DOI: 10.1007/s11356-024-32855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.
Collapse
Affiliation(s)
- Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Rodgers TFM, Spraakman S, Wang Y, Johannessen C, Scholes RC, Giang A. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5500-5511. [PMID: 38483320 DOI: 10.1021/acs.est.3c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.
Collapse
Affiliation(s)
- Timothy F M Rodgers
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Sylvie Spraakman
- Green Infrastructure Design Team, City of Vancouver Engineering Services, Vancouver, British Columbia V5Z0B4, Canada
| | - Yanru Wang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Cassandra Johannessen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Amanda Giang
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
8
|
Halama JJ, McKane RB, Barnhart BL, Pettus PP, Brookes AF, Adams AK, Gockel CK, Djang KS, Phan V, Chokshi SM, Graham JJ, Tian Z, Peter KT, Kolodziej EP. Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model. FRONTIERS IN ENVIRONMENTAL SCIENCE 2024; 12:1-12. [PMID: 38845698 PMCID: PMC11151736 DOI: 10.3389/fenvs.2024.1364673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Coho salmon (Oncorhynchus kisutch) are highly sensitive to 6PPD-Quinone (6PPD-Q). Details of the hydrological and biogeochemical processes controlling spatial and temporal dynamics of 6PPD-Q fate and transport from points of deposition to receiving waters (e.g., streams, estuaries) are poorly understood. To understand the fate and transport of 6PPD and mechanisms leading to salmon mortality Visualizing Ecosystem Land Management Assessments (VELMA), an ecohydrological model developed by US Environmental Protection Agency (EPA), was enhanced to better understand and inform stormwater management planning by municipal, state, and federal partners seeking to reduce stormwater contaminant loads in urban streams draining to the Puget Sound National Estuary. This work focuses on the 5.5 km2 Longfellow Creek upper watershed (Seattle, Washington, United States), which has long exhibited high rates of acute urban runoff mortality syndrome in coho salmon. We present VELMA model results to elucidate these processes for the Longfellow Creek watershed across multiple scales-from 5-m grid cells to the entire watershed. Our results highlight hydrological and biogeochemical controls on 6PPD-Q flow paths, and hotspots within the watershed and its stormwater infrastructure, that ultimately impact contaminant transport to Longfellow Creek and Puget Sound. Simulated daily average 6PPD-Q and available observed 6PPD-Q peak in-stream grab sample concentrations (ng/L) corresponds within plus or minus 10 ng/L. Most importantly, VELMA's high-resolution spatial and temporal analysis of 6PPD-Q hotspots provides a tool for prioritizing the locations, amounts, and types of green infrastructure that can most effectively reduce 6PPD-Q stream concentrations to levels protective of coho salmon and other aquatic species.
Collapse
Affiliation(s)
| | - Robert B. McKane
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | | | - Paul P. Pettus
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | - Allen F. Brookes
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | - Angela K. Adams
- U.S. Environmental Protection Agency, Seattle, WA, United States
| | | | | | - Vivian Phan
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | | | | | - Zhenyu Tian
- Northeastern University, Boston, MA, United States
- Center for Urban Waters, Tacoma, WA, United States
| | - Katherine T. Peter
- Center for Urban Waters, Tacoma, WA, United States
- University of Washington Tacoma, Tacoma, WA, United States
| | - Edward P. Kolodziej
- Center for Urban Waters, Tacoma, WA, United States
- University of Washington Tacoma, Tacoma, WA, United States
- University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Kang D, Yun D, Cho KH, Baek SS, Jeon J. Profiling emerging micropollutants in urban stormwater runoff using suspect and non-target screening via high-resolution mass spectrometry. CHEMOSPHERE 2024; 352:141402. [PMID: 38346509 DOI: 10.1016/j.chemosphere.2024.141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Urban surface runoff contains chemicals that can negatively affect water quality. Urban runoff studies have determined the transport dynamics of many legacy pollutants. However, less attention has been paid to determining the first-flush effects (FFE) of emerging micropollutants using suspect and non-target screening (SNTS). Therefore, this study employed suspect and non-target analyses using liquid chromatography-high resolution mass spectrometry to detect emerging pollutants in urban receiving waters during stormwater events. Time-interval sampling was used to determine occurrence trends during stormwater events. Suspect screening tentatively identified 65 substances, then, their occurrence trend was grouped using correlation analysis. Non-target peaks were prioritized through hierarchical cluster analysis, focusing on the first flush-concentrated peaks. This approach revealed 38 substances using in silico identification. Simultaneously, substances identified through homologous series observation were evaluated for their observed trends in individual events using network analysis. The results of SNTS were normalized through internal standards to assess the FFE, and the most of tentatively identified substances showed observed FFE. Our findings suggested that diverse pollutants that could not be covered by target screening alone entered urban water through stormwater runoff during the first flush. This study showcases the applicability of the SNTS in evaluating the FFE of urban pollutants, offering insights for first-flush stormwater monitoring and management.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Daeun Yun
- Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, South Korea
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
10
|
Hou Y, Wang S, Ma Y, Shen Z, Goonetilleke A. Influence of landscape patterns on nitrate and particulate organic nitrogen inputs to urban stormwater runoff. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119190. [PMID: 37837768 DOI: 10.1016/j.jenvman.2023.119190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
This study investigated the effect of the landscape pattern of permeable/impermeable patches on NO3--N and particulate organic nitrogen (PON) concentrations during stormwater runoff transport and their source contributions. Six landscape pattern indices, namely, mean proximity index (MPI), largest patch index (LPI), mean shape index (MSI), landscape shape index (LSI), connect index (CONNECT), and splitting index (SPLIT), were selected to reflect the fragmentation, complexity, and connectivity of permeable patches in urban catchments. The results show that lower fragmentation, higher complexity, and greater connectivity can reduce NO3--N concentrations in road runoff and drainage flow (i.e., the flow in the stormwater drainage network), as well as PON concentrations in road runoff. Further, the above landscape pattern is effective for mitigating the contributions of NO3--N and PON from road runoff. Low impact development (LID) can be incorporated with the landscape pattern of permeable/impermeable patches to mitigate nitrogen pollution in urban stormwater at the catchment scale by optimizing the spatial arrangement.
Collapse
Affiliation(s)
- Yifan Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China
| | - Shihui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China
| | - Yukun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China.
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland 4001, Australia
| |
Collapse
|
11
|
McIntyre JK, Spromberg J, Cameron J, Incardona JP, Davis JW, Scholz NL. Bioretention filtration prevents acute mortality and reduces chronic toxicity for early life stage coho salmon (Oncorhynchus kisutch) episodically exposed to urban stormwater runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165759. [PMID: 37495136 DOI: 10.1016/j.scitotenv.2023.165759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the human population of western North America continues to expand, widespread patterns of urban growth pose increasingly existential threats to certain wild stocks of Pacific salmon and steelhead (Oncorhynchus sp.). Rainfall previously absorbed into the soils of forests and grasslands falls instead on pavement and other hardened surfaces. This creates stormwater runoff that carries toxic metals, oil, and many other contaminants into salmon-bearing habitats. These include freshwater streams where coho salmon (O. kisutch) spawn in gravel beds. Coho salmon embryos develop within a thick eggshell (chorion) for weeks to months before hatching as alevins and ultimately emerging from the gravel as fry. Untreated urban runoff is highly toxic to older coho salmon (freshwater-resident juveniles and adult spawners), but the vulnerability of the earliest life stages remains poorly understood. To address this uncertainty, we fertilized eggs and raised them under an episodic stormwater exposure regimen, using runoff collected from a high-traffic arterial roadway from 15 discrete storm events. We monitored survival and morphological development, as well as molecular markers for contaminant exposure and cardiovascular stress. We also evaluated the benefit of treating runoff with green infrastructure (bioretention filtration) on coho salmon health and survival. Untreated runoff caused subtle sublethal toxicity in pre-hatch embryos with no mortality, followed by high rates of mortality from exposure at hatch. Bioretention filtration removed most measured contaminants (bacteria, dissolved metals, and polycyclic aromatic hydrocarbons), and the treated effluent was considerably less toxic - notably preventing mortality at the alevin stage. Our findings indicate that untreated urban runoff poses an important threat to early life stage coho salmon, in terms of both acute and delayed-in-time mortality. Moreover, while inexpensive management strategies involving bioinfiltration are promising, future green infrastructure effectiveness research should emphasize sublethal metrics for contaminant exposure and adverse health outcomes in salmonids.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA 98371, USA.
| | - Julann Spromberg
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James Cameron
- Saltwater Inc, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - John P Incardona
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jay W Davis
- United States Fish and Wildlife Service, Environmental Contaminants Program, 510 Desmond Dr. SE, Lacey, WA 98503, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
12
|
Shi C, Mahadwar G, Dávila-Santiago E, Bambakidis T, Crump BC, Jones GD. Nontarget Chemical Composition of Surface Waters May Reflect Ecosystem Processes More than Discrete Source Contributions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18296-18305. [PMID: 37235730 DOI: 10.1021/acs.est.2c08540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigated environmental, landscape, and microbial factors that could structure the spatiotemporal variability in the nontarget chemical composition of four riverine systems in the Oregon Coast Range, USA. We hypothesized that the nontarget chemical composition in river water would be structured by broad-scale landscape gradients in each watershed. Instead, only a weak relationship existed between the nontarget chemical composition and land cover gradients. Overall, the effects of microbial communities and environmental variables on chemical composition were nearly twice as large as those of the landscape, and much of the influence of environmental variables on the chemical composition was mediated through the microbial community (i.e., environment affects microbes, which affect chemicals). Therefore, we found little evidence to support our hypothesis that chemical spatiotemporal variability was related to broad-scale landscape gradients. Instead, we found qualitative and quantitative evidence to suggest that chemical spatiotemporal variability of these rivers is controlled by changes in microbial and seasonal hydrologic processes. While the contributions of discrete chemical sources are undeniable, water chemistry is undoubtedly impacted by broad-scale continuous sources. Our results suggest that diagnostic chemical signatures can be developed to monitor ecosystem processes, which are otherwise challenging or impossible to study with existing off-the-shelf sensors.
Collapse
Affiliation(s)
- Cheng Shi
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon 97331-4501, United States
| | - Gouri Mahadwar
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon 97331-4501, United States
| | - Emmanuel Dávila-Santiago
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon 97331-4501, United States
| | - Ted Bambakidis
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Gerrad D Jones
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon 97331-4501, United States
| |
Collapse
|
13
|
Cai L, Yao Q, Du X, Zhong J, Lu H, Tao X, Zhou J, Dang Z, Lu G. Validation of quenching effectiveness and pollutant degradation ability of singlet oxygen through model reaction system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132488. [PMID: 37696208 DOI: 10.1016/j.jhazmat.2023.132488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Quenching method is widely used to assess the contribution of specified reactive species through the probe inhibition efficiency (IE) caused by adding excessive quencher. However, for reactive species with weak ability such as singlet oxygen (1O2), the quenching results are prone to ambiguity. In this study, an 1O2 system using furfuryl alcohol (FFA) as a probe was successfully constructed by methylene-blue-N vis-photosensitization, to discuss the quenching, interference elimination and pollutant degradation ability of 1O2. Inhibition of FFA transformation caused by both quenching and interrupting of 1O2 production was found. The quenching is affected by quencher dosage and ability, which depends on the second-order-rate constant (k). A high k means a strong ability, and less dosage is required to achieve the same IE. Comparison between the calculated ratio of reactive species consumed by quencher and experimental IE helps to judge the interruption of 1O2 production. None of the organic-solvents (methanol, ethanol, iso-propanol, n-butanol, iso-butanol, tert-butanol, tetrahydrofuran, acetonitrile, acetone and chloroform) scavenged 1O2, which would be used as screening-agent for other reactive species (e.g., hydroxyl radicals) that would interrupt 1O2 contribution assessment. Besides, 1O2 was powerless to degrade most selected pollutants. These results encourage proper use of quenchers and better experimental design.
Collapse
Affiliation(s)
- Limiao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Yao
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayi Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haijian Lu
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Li J, Xu J, Jiang X. Urban runoff mortality syndrome in zooplankton caused by tire wear particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121721. [PMID: 37116570 DOI: 10.1016/j.envpol.2023.121721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Stormwater runoff from roadways is a global threat to water quality, aquatic organisms, and ecosystems. Tire tread wear particles (TWP) from roadway runoff may lead to urban runoff mortality syndrome (URMS) in some aquatic organisms. We tested the hypothesis that urban runoff from roadways can kill zooplankton. Both roadway runoff and TWP leachate were acutely lethal to a model species, the water flea Daphnia pulex. Life table experiments further revealed the lowered survival rates, intrinsic rate of increase, average life span, and net productive rate of D. pulex when exposed to roadway runoff and TWP leachate. The tire rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) mainly contributed to the TWP toxicity. The toxicity of TWP and 6PPD extracted varied with time in nature. Cladocerans and rotifers were more sensitive to TWP and 6PPD than copepods. These results demonstrate the presence of URMS in zooplankton, which may cascade through food webs and affect aquatic ecosystems.
Collapse
Affiliation(s)
- Jianan Li
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Jiale Xu
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Xiaodong Jiang
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
15
|
French BF, Baldwin DH, Cameron J, Prat J, King K, Davis JW, McIntyre JK, Scholz NL. Urban Roadway Runoff Is Lethal to Juvenile Coho, Steelhead, and Chinook Salmonids, But Not Congeneric Sockeye. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:733-738. [PMID: 36118959 PMCID: PMC9476652 DOI: 10.1021/acs.estlett.2c00467] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 05/13/2023]
Abstract
We compared the sensitivity of closely related Pacific salmon and steelhead (Oncorhynchus spp.) to untreated urban stormwater runoff across three storm events. Juvenile coho, sockeye, steelhead, and Chinook were exposed for 24 h to untreated urban runoff and then transferred to clean water for 48 h. As anticipated from previous studies, coho were highly susceptible to runoff toxicity, with cumulative mortality rates ranging from 92%-100% across the three storms. By contrast, juvenile sockeye were unaffected (100% survival), and cumulative mortality rates were intermediate for steelhead (4%-42%) and Chinook (0%-13%). Furthermore, coho died rapidly following the onset of stormwater exposure (generally <4 h), whereas mortality in Chinook and steelhead was delayed by 1-2 days. Similar to previous findings for coho, steelhead and Chinook did not recover when transferred to clean water. Lastly, significant mortality occurred in coho even when roadway runoff was diluted by 95% in clean water. Our findings extend the urban runoff mortality syndrome in salmonids and point to a near-term need for sublethal studies in steelhead and Chinook to more precisely understand stormwater risks to threatened species recovery efforts in the western United States.
Collapse
Affiliation(s)
- B. F. French
- Northwest
Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - D. H. Baldwin
- Office
of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, United States
| | - J. Cameron
- Saltwater
Inc, under contract to Northwest Fisheries Science Center, National
Marine Fisheries Service, National Oceanic
and Atmospheric Administration, Seattle, Washington 98112, United States
| | - J. Prat
- School
of the Environment, Puyallup Research and Extension Center, Washington State University, Puyallup, Washington 98371, United States
| | - K. King
- Environmental
Contaminants Program, United States Fish
and Wildlife Service, Lacey, Washington 98503, United States
| | - J. W. Davis
- Environmental
Contaminants Program, United States Fish
and Wildlife Service, Lacey, Washington 98503, United States
| | - J. K. McIntyre
- School
of the Environment, Puyallup Research and Extension Center, Washington State University, Puyallup, Washington 98371, United States
| | - N. L. Scholz
- Northwest
Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| |
Collapse
|