1
|
Lu W, Guo X, Wu Y, Sun S, Wang Q, Guo J, Zhao HP, Lai CY. Particulate methane monooxygenase and cytochrome P450-induced reactive oxygen species facilitate 17β-estradiol biodegradation in a methane-fed biofilm. WATER RESEARCH 2025; 280:123501. [PMID: 40107213 DOI: 10.1016/j.watres.2025.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Methane-fed biosystems have shown great potential for degrading various organic micropollutants, yet underlying molecular degradation mechanisms remain largely unexplored. In this study, we uncover the critical role of biogenic reactive oxygen species (ROS) in driving the degradation of 17β-estradiol (E2) within a methane-fed biofilm reactor. Metagenomic analyses confirm that aerobic methanotrophs, specifically Methylococcus and Methylomonas, are responsible for the efficient degradation of E2, achieving a degradation rate of 367.7 ± 8.3 μg/L/d. ROS scavenging in conjunction with enzyme inhibition experiments indicate that particulate methane monooxygenase (pMMO) and cytochrome P450 monooxygenase (CYP450) could generate hydroxyl radicals (•OH), which are the primary ROS involved in E2 degradation. Molecular dynamics simulations suggest that E2 can enter the active catalytic site of pMMO through electrostatic attraction. Four amino acid residues are found to form stable hydrogen bonds with E2, with a high binding free energy, indicating a high affinity for the substrate. Additionally, density functional theory calculations combined with transformation product analysis reveal that •OH targets carbon atoms on the benzene ring and the hydroxyl group attaches to the cyclopentane ring, primarily through hydrogen abstraction and hydroxylation reactions. This work provides critical insights into the mechanisms of E2 biodegradation in methane-fed systems and highlights the potential for optimizing microbial pathways to enhance the degradation of organic micropollutants from contaminated water.
Collapse
Affiliation(s)
- Wenkang Lu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xu Guo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yunshuo Wu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Shengjie Sun
- Department of Biomedical Informatic, School of Life Sciences, Central South University, Changsha 410083, China
| | - Qingqing Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wang WM, Wang WL, Gan L, Huang Y, Shuai D, Lee MY, Wu QY. Self-replenishing neutral Fenton-like treatment for emerging contaminants through single Fe atom electron configuration regulation. WATER RESEARCH 2025; 276:123251. [PMID: 39952075 DOI: 10.1016/j.watres.2025.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Fenton technology is promising for removing recalcitrant and toxic organic contaminants for wastewater purification. Neutral Fenton technology is preferred for its reduced acid usage and improved operational convenience. However, the challenges are the low production of reactive species and the limited conversion of high-valent iron (Fe) to low-valent Fe. This study introduced a new cycle employing high-valent iron-oxo species [Fe(IV)=O], which directly participates in degradation, facilitating Fe regeneration. To achieve it, we developed an O-doped single Fe atom catalyst (SACs, Fe-N3O1) to promote the efficient Fe(IV)=O generation. The O-doping improved the acetaminophen degradation rate constant and turnover frequency of Fe-N3O1 by approximately tenfold, and elevated the steady-state concentration of Fe(IV)=O 65 times over. The normalized degradation rate constant of Fe-N3O1/H2O2 was superior to other reported catalysts. Density functional theory calculations indicated that O-doping decreased the charge density of Fe site, enhanced the metal-oxygen bond strength, and reduced the energy barrier for the key reaction intermediate (*O + *H2O), facilitating the efficient and selective formation of Fe(IV)=O. Fe-N3O1/H2O2 demonstrated wide pH tolerance, high resistance to complex water matrices, and excellent stability, making it promising for practical applications. This study provides a new perspective on controlling the selective generation of reactive species to achieve sustainable neutral Fenton-like reactions.
Collapse
Affiliation(s)
- Wen-Min Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Lin Gan
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuxiong Huang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Tu J, Huang Q, Chen Q, Zhou Y, Yi X, Qiu Y, Wang X, Bai X, Zhang C, Huang M. Characterization and metabolic analysis of domesticated anaerobic bacteria for effective thiamethoxam bioremediation: Enzymatic, genetic, and pathway insights. ENVIRONMENTAL RESEARCH 2025; 279:121813. [PMID: 40350010 DOI: 10.1016/j.envres.2025.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The extensive use of neonicotinoid insecticides (NEOs), particularly thiamethoxam (THM), poses significant risks to both the ecological environment and human health, emerging as a critical environmental issue that requires immediate attention. In this study, anaerobic bacteria were successfully domesticated under THM stress. The results showed that anaerobic bacteria could effectively degrade THM within 7 days, with the degradation efficiency reaching 20.0-32.3 % under different conditions. Bacterial community analysis identified Escherichia-Shigella, Acinetobacter, Delftia, Enterobacter, and Pseudomonas as the dominant genera at the genus level. During the THM degradation process, a decline in bacterial urease activity was observed, accompanied by a rise in catalase (CAT) activity, while β-galactosidase activity remained stable. Functional gene analysis of the macro-transcriptome revealed significant upregulation of genes related to the citrate cycle (TCA), oxidative phosphorylation, protein translocation, nitrogen metabolism, and the bacterial secretion system. Density functional theory (DFT) calculations and LC-MS/MS analyses identified three potential degradation pathways for THM, with nine characterized intermediates. In conclusion, the degradation performance and mechanism of THM by anaerobic bacteria were investigated for the first time. This study provides a theoretical basis for the biological treatment and ecological remediation of neonicotinoid pesticide wastewater.
Collapse
Affiliation(s)
- Jun Tu
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Qihang Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Qiuru Chen
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Yuhan Zhou
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xiaohui Yi
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Yiquan Qiu
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xinzhi Wang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xiaotong Bai
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Chao Zhang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, PR China; Huashi (Fujian) Environment Technology Co., Ltd, Quanzhou, 362001, PR China.
| |
Collapse
|
4
|
Li Y, Pu H, Hong C, Gong X, Chen Y, Zhang Y, Qian H, Gao J, Wan C, Yang D. CoSn(OH) 6 nanocubes: Hydroxyl perovskite catalyst for efficient peroxymonosulfate activation in acetamiprid degradation. ENVIRONMENTAL RESEARCH 2025; 272:121149. [PMID: 39983956 DOI: 10.1016/j.envres.2025.121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
This study presents the synthesis of a nano-cubic metal hydroxide with a perovskite structure, CoSn(OH)6, for the efficient activation of peroxymonosulfate (PMS) towards the degradation of acetamiprid (ACE) in water treatment. The CoSn(OH)6/PMS system achieved complete degradation of ACE within only 12 min and exhibited outstanding catalytic stability. Our findings indicate that the non-radical mechanism, featuring singlet oxygen (1O2) and Co(IV)=O, is the primary contributor to the degradation process, while the role of radical species such as sulfate radical (SO4·-) and hydroxyl radicals (·OH) is subordinate. These insights were confirmed through trapping experiments, electron paramagnetic resonance (EPR), in situ Raman spectroscopy and steady-state model. This work offers novel perspectives on the application of cobalt-based hydroxide catalysts in PMS activation for the remediation of emerging contaminants in water.
Collapse
Affiliation(s)
- Yuanyuan Li
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China.
| | - Hongzheng Pu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing, 400054, People's Republic of China
| | - Chuanbing Hong
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing, 401331, People's Republic of China
| | - Yaoyu Chen
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yan Zhang
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Hong Qian
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Jie Gao
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Caiwen Wan
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China.
| | - Dingfeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing, 400054, People's Republic of China.
| |
Collapse
|
5
|
Qi J, Bai Q, Bai X, Gu H, Lu S, Chen S, Li Q, Yang X, Wang J, Wang L. Amorphous Engineering Driving d-Orbital High Spin Configuration for Almost 100% 1O 2-Mediated Fenton-Like Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503665. [PMID: 40285583 DOI: 10.1002/advs.202503665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Indexed: 04/29/2025]
Abstract
The inherent atomic disorder in amorphous materials leads to unsaturated atomic sites or dangling bonds, effectively modulating the material's electronic states and rendering it an ideal platform for the growth of single atoms. Herein, the electronic structure of isolated cobalt atoms anchored on amorphous carbon nitride (Co-ACN) is modulated through a substrate amorphization engineering, enabling the thorough removal of pazufloxacin (PZF) in 1 min with a high reaction rate constant (k1) of 3.504 min-1 by peroxymonosulfate (PMS) activation. Experiments and theoretical calculations reveal that Co-ACN exhibited a higher coordination environment (Co-N3) compared to crystalline Co-CCN (Co-N2). Meanwhile, the t2g energy level enhancement of Co 3d orbital promotes electron transition from t2g to eg, inducing more unpaired electrons and thereby driving the transition from a low-spin state (LS, t2g 6eg 1) to a high-spin state (HS, t2g 5eg 2). The HS Co-ACN optimized the d-band center, boosted the electronic transfer, and weakened the interaction between Co 3d and O 2p orbitals of HSO5 -, thereby enabling nearly 100% selective singlet oxygen (1O2) generation, whereas Co-CCN yielded coexisting reactive oxygen species (ROS). This work opens up a new paradigm for regulating the electronic structure of single-atom catalysts at the atomic scale.
Collapse
Affiliation(s)
- Juanjuan Qi
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Qian Bai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiuhui Bai
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, P. R. China
| | - Hongfei Gu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, P. R. China
| | - Siyue Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Siyang Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Qiangwei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xudong Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jianhui Wang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, 050081, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
6
|
Ning Y, Fu X, Liang M, Hou J, Yu D, Zhang Y, Wang Y, Li C, Feng N, Sun X, Cui J. Regulating the Electronegativity Difference and Piezoelectric Strain of the S-Mo-S Structure via Introducing Mo Vacancies for Boosting Piezo-Photoelectric Activity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23848-23859. [PMID: 40228087 DOI: 10.1021/acsami.4c22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Recently, piezoelectric and photocatalytic processes have shown excellent synergistic effect addressing environmental remediation challenges. Herein, a nanoflower-like Mo vacancy-modulated MoS2 (VMo-MoS2) piezo-photocatalyst with different VMo densities has been successfully synthesized using a one-step hydrothermal method. The high VMo density (12%) facilitates the enhancement of the photocatalytic activity but compromises its structural stability, resulting in unsatisfactory piezoelectric activity. Among all VMo-MoS2 piezo-photocatalysts, VMo-MoS2 with 6% VMo density exhibits the highest piezo-photocurrent density (15.50 μA cm-2), the largest potential difference (0.188 V), and the best carbamazepine (CBZ) degradation efficiency (95.81%) in only 10 min under light-ultrasound action, exhibiting a remarkable synergistic effect of the piezoelectric and photocatalytic processes. The synergistic performance originates from the simultaneous modulation of the charge distribution and the self-polarization capability of the S-Mo-S structure by VMo, as confirmed by the molecular theory calculations and finite-element simulation results. This work provides a defect engineering strategy for achieving the synergistic effect of the piezoelectric and photocatalytic processes, which opens a new research avenue for the design and application of the piezo-photocatalyst.
Collapse
Affiliation(s)
- Yuting Ning
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xinping Fu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mingxing Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Dayang Yu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yinjie Zhang
- Zhongke Yunjing Environmental Technology Co., Ltd., Wuxi 214000, P. R. China
| | - Yajing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Chenghao Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Nan Feng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xueting Sun
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Lin Q, Fu X, Jia W, Lu G, Chen X, Huang K, Zhou X, Ma Y. Photochemical transformation of benzalkonium chloride in seawater. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138312. [PMID: 40252323 DOI: 10.1016/j.jhazmat.2025.138312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/10/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
The fate and risks of quaternary ammonium compounds (QACs) have gained increasing attention due to their widespread use during and after the COVID-19 pandemic. This study investigates the photodegradation of benzalkonium chloride (BAC C12) in seawater, revealing that its degradation rate (0.0928 h-1) is slower compared to pure water, where the rate is 0.132 h-1. Chloride (Cl-) and bromide (Br-) ions promote degradation by generating halogen radicals (Cl·, Br· and ClBr·-), nitrate ions (NO3-) can generate reactive oxygen species (ROS) and nitrogen-containing free radicals (e.g., ·NO2) via direct photolysis or indirect photosensitization reactions, while Fe3+, Mn2+ and Cu2+ accelerate the reaction by promoting ROS production to accelerate the reaction. The effect of dissolved organic matter (DOM) on degradation is concentration-dependent: at low concentrations, it inhibits degradation through photocompetition, while at high concentrations, it promotes degradation via photosensitization and electron transfer. Quenching reactions and probe experiments indicate that ·OH is the dominant species (contributing over 50 %), followed by ¹O₂ (more than 10 %) and halogen radicals (over 5 %), all of which play significant roles in degradation. Quantum chemical calculations and mass spectrometry identify key degradation pathways, including alkyl chain cleavage, benzene ring substitution (primarily at C2 and C5), and N-demethylation. ECOSAR simulations indicate that the chlorine and hydroxyl substitution products are more toxic. These findings provide a scientific basis for the environmental risk assessment and mitigation strategies of QACs.
Collapse
Affiliation(s)
- Quan Lin
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Xiaokun Fu
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Wenhao Jia
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Guining Lu
- The Ministry of Education Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xingcai Chen
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Kaibo Huang
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China.
| | - Xueqing Zhou
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Yini Ma
- Key Laboratory of Agro - Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, and Analytical & Testing Center, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
8
|
Wang ZH, Huang GX, Zhang YJ, Hua TW, Chen JJ, Yu HQ. Molecular Descriptor for Catalytic Direct Oxidative Transfer Process Based on Thermodynamic State Changes during Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6097-6105. [PMID: 40106586 DOI: 10.1021/acs.est.4c13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The direct oxidative transfer process (DOTP) in heterogeneous catalytic persulfate oxidation (HCPO) systems has gained increasing attention. In this process, the reaction rate is linked to pollutant properties, and identifying this correlation through descriptors offers insights into reaction mechanisms and water treatment strategies. However, most of the existing descriptors are based on static molecular properties and show limited correlation with reactivity and mechanisms. In this work, we proposed descriptors based on molecular thermodynamic state changes during reactions. The descriptor reflecting the energy change associated with losing two electrons and one proton (ΔE2e1p) proves most effective, exhibiting a strong correlation (R2 = 0.938) with the reaction rate of phenolic and amine pollutants in carbon nanotube/peroxydisulfate system. Multiscale characterizations elucidate the DOTP mechanism in this system, explaining ΔE2e1p's superior performance and highlighting the critical role of pollutant proton transfer. A comprehensive analysis of the new and existing descriptors reveals the limitations of previous descriptors and the influence of the substrate range on applicability. Additionally, ΔE2e1p demonstrates broad applicability across diverse HCPO systems and practicality in real water matrices. This work provides insights for developing molecular descriptors for catalytic oxidation processes.
Collapse
Affiliation(s)
- Zhao-Hua Wang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Gui-Xiang Huang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying-Jie Zhang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Wei Hua
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie-Jie Chen
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Abdelkrim Y, Wu J, Jiao FZ, Wang ZH, Hou SX, Zhang TT, Yu ZZ, Qu J. Cobalt germanium hydroxides with asymmetric electron distribution and surface hydroxyl groups for superb catalytic degradation performances. J Colloid Interface Sci 2025; 677:282-293. [PMID: 39094489 DOI: 10.1016/j.jcis.2024.07.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are attractive approaches for solving the global problem of water pollution, due to the generation of highly-active reactive oxygen species (ROS). Therefore, highly-efficient PMS activation is crucial for promoting the catalytic degradation of environmental pollutants. Here, bimetallic CoGeO2(OH)2 nanosheets with abundant surface hydroxyl groups (CGH) were synthesized via a simple hydrothermal route for PMS activation and degradation of various organic contaminants for the first time. The abundant surface hydroxyl groups (≡Co-OH/≡Ge-OH) could promptly initiate PMS to generate highly-active species: singlet oxygen (1O2), sulfate radicals (SO4·-) and hydroxyl radicals (HO•), while the asymmetric electron distribution among Co-O-Ge bonds derived from the higher electronegativity of Ge than Co further enhances the quick electron transfer to promote the redox cycle of Co2+/Co3+ and Ge2+/Ge4+, thereby achieving an outstanding catalytic capability. The optimal catalyst exhibits nearly 100 % catalytic degradation performance of dyes (Methylene blue, Rhodamine B, Methyl orange, Orange II, Methyl green) and antibiotics (Norfloxacin, Bisphenol A, Tetracycline) over a wide pH range of 3-11 and under different coexisting anion conditions (Cl-, HCO3-, NO3-, HA), suggesting the excellent adaptability for practical usage. This study could potentially lead to novel perspectives on the remediation of water areas such as groundwater and deep-water areas.
Collapse
Affiliation(s)
- Yasmine Abdelkrim
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fan-Zhen Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Hao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng-Xing Hou
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting-Ting Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Yang L, Jin X, Chen Z. Intrinsic structure-function connections of carbon-encapsulated nanoscale zero-valent-iron using various pyrolysis atmospheres. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123768. [PMID: 39705997 DOI: 10.1016/j.jenvman.2024.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Carbon-encapsulated nanoscale zero-valent-iron (C@Fe0) derived from plant-based extracts has been the subject of growing interest due to its environmental friendliness. However, the effects of various pyrolysis atmospheres on the structure-function connections of C@Fe0 are still unclear. In this study, three pyrolytic atmospheres, namely Air, N2, and 5% H2/Ar were selected to fabricate X-C@Fe0 (X represented as A, N, H) for removing 2,4,6-Trichlorophenol (TCP), and the relationships between their structures and functions were demonstrated. The N-C@Fe0 with improved hydrophobicity exhibited superior TCP adsorptive performance compared to H-C@Fe0 and A-C@Fe0. Apart from this, N-C@Fe0 effectively reduced TCP through dechlorination, this process achieved 25.9% dichlorination efficiency, and in turn alleviated products toxicity. Electrochemical tests and density functional theory calculations showed that the substitution of nitrogen with carbon in N-C@Fe0 elevated the Fe-d band center and enhanced the hybridization between Fe-3d and C-2p orbital, which collectively promoted the dichlorination of TCP. This study will provide practical guideline for improving the intrinsic activity of iron-carbon materials using pyrolytic atmosphere engineering.
Collapse
Affiliation(s)
- Lu Yang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| |
Collapse
|
11
|
Liu F, Li P, Du Z, Lan L, Xie H, Dan Y, Huang Y, Jiang L. Polarization-Induced Internal Electric Field-Dominated S-Scheme KNbO 3-CuO Heterojunction for Photoreduction of CO 2 with High CH 4 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69418-69429. [PMID: 39631897 DOI: 10.1021/acsami.4c16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The polarization-induced internal electric field (IEF) in ferroelectric materials could promote photogenerated charge transfer across the heterojunction interface, but the effect of polarization-induced IEF on the mechanism of photogenerated charge transfer is ambiguous. In this study, a KNbO3-CuO heterojunction was synthesized by depositing copper oxide (CuO) onto KNbO3. Incorporating CuO broadens the light absorption of KNbO3, thereby enhancing the dissociation of the photogenerated charges. The results show that the polarization-induced IEF in KNbO3 determines that the charge transport mechanism in the KNbO3-CuO heterojunction follows the S-scheme. Owing to the S-scheme heterojunctions and efficient CO2 capture and activation by CuO, the CH4 production rate of KNbO3-CuO increased by nearly 26 times compared to KNbO3. Additionally, the CH4 selectivity of KNbO3-CuO could reach up to 97.80%. This research offers valuable insights into enhancing the photogenerated charge separation and constructing heterojunctions.
Collapse
Affiliation(s)
- Fei Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, China
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Pengfei Li
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zoufei Du
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, Second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu, Hangzhou, Zhejiang 310003, China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Li S, Yang Y, Niu J, Zheng H, Zhang W, Leong YK, Chang JS, Lai B. Activation of PAA at the Fe-N x Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21871-21881. [PMID: 39606938 PMCID: PMC11709145 DOI: 10.1021/acs.est.4c08224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-C3N4) nanomaterials were used to construct Fe-Nx sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-C3N4 catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min-1, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-Nx sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.
Collapse
Affiliation(s)
- Shuo Li
- College
of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Yalun Yang
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junfeng Niu
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Heshan Zheng
- College
of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yoong Kit Leong
- Department
of Chemical and Materials Engineering, Tunghai
University, Taichung 407, Taiwan
- Research
Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department
of Chemical and Materials Engineering, Tunghai
University, Taichung 407, Taiwan
- Research
Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department
of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320 Taiwan
| | - Bo Lai
- Department
of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Shi W, Zhang C, Zhao H, Zhang B, Tang H, Liu Y, Zhang B. Picolinic acid-mediated Mn(II) activated periodate for ultrafast and selective degradation of emerging contaminants: Key role of high-valent Mn-oxo species. WATER RESEARCH 2024; 266:122428. [PMID: 39265211 DOI: 10.1016/j.watres.2024.122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The utilization of periodate (PI, IO4-) in metal-based advanced oxidation processes (AOPs) for the elimination of emerging contaminants (ECs) have garnered significant attention. However, the commonly used homogeneous metal catalyst Mn(II) performs inadequately in activating PI. Herein, we exploited a novel AOP technology by employing the complex of Mn(II) with the biodegradable picolinic acid (PICA) to activate PI for the degradation of electron-rich pollutants. The performance of the Mn(II)-PICA complex surpassed that of ligand-free Mn(II) and other Mn(II) complexes with common aminopolycarboxylate ligands. Through scavenger, sulfoxide-probe transformation, and 18O isotope-labeling experiments, we confirmed that the dominant reactive oxidant generated in the Mn(II)-PICA/PI system was high-valent manganese-oxo species (Mn(V)=O). Due to its reliance on Mn(V)=O, the Mn(II)-PICA/PI process exhibited remarkable selectivity and strong anti-interference during EC oxidation in complex water matrices. Nine structurally diverse pollutants were selected for evaluation, and their lnkobs values in the Mn(II)-PICA/PI system correlated well with their electrophilic/nucleophilic indexes, EHOMO, and vertical IP (R2 = 0.79-0.94). Additionally, IO4- was converted into non-toxic iodate (IO3-) without producing undesired iodine species such as HOI, I2, and I3-. This study provides a novel protocol for metal-based AOPs using PI in combination with chelating agents and high-valent metal-oxo species formation during water purification.
Collapse
Affiliation(s)
- Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - He Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Heli Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 200051, China
| | - Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China.
| |
Collapse
|
14
|
Li H, Jin X, Owens G, Chen Z. Reconstructing the electron and spin structures of nanoscale iron sulfide through a biosurfactant layer towards radical-nonradical co-dominant regime. J Colloid Interface Sci 2024; 672:299-310. [PMID: 38843682 DOI: 10.1016/j.jcis.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Radical-nonradical co-dominant pathways have become a hot topic in advanced oxidation, but achieving this on transition metal sulfides (TMS) remains challenging because their inherently higher electron and spin densities always induce radicals rather than nonradicals. Herein, a biosurfactant layer (BLR) was introduced to redistribute the electron and spin structure of nanoscale iron sulfide (FeS), which allowed both radical and nonradical to co-dominate the catalytic reaction. The resulting BLR-encased FeS hybrid (BLR@FeS) exhibited satisfactory removal efficiency (98.5 %) for hydrogen peroxide (H2O2) activation, outperforming both the constituent components [FeS (70.9 %) and BLR (86.2 %)]. Advanced characterizations showed that C, O, N-related sites (-CO and -NC) in BLR attracted electrons in FeS due to their strong electronegativity and electron-withdrawing capacity, which not only decreased electron density in FeS, but also resulted in a shift of the Fe/S sites from the high-spin to the medium-spin state. The reaction routes established by the BLR@FeS/H2O2 system maintained desirable stability against environmental interferences such as common inorganic anions, humic acid and changes in pH. Our study provides a state-of-the-art, molecule-level understanding of tunable co-dominant pathways and expands the targeted applications in the field of advanced oxidation.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
15
|
Fang Z, Zhou Z, Zeng Z, Xia YG, Liu J, Hu B, Li K, Li JH, Lu Q. Revealing the Synergistic Effect of Cation and Anion Vacancies on Enhanced Fenton-Like Reaction: The Electron Density Modulation of O 2p-Co 3d Bands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402748. [PMID: 38898734 DOI: 10.1002/smll.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.
Collapse
Affiliation(s)
- Zhimo Fang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zhou Zhou
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zepeng Zeng
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Yuan-Gu Xia
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji Liu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Bin Hu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Kai Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji-Hong Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
16
|
Wang Y, Zhou J, Pei W, Zheng Y, Gao J, Lei J, Liu Y, Zhou L, Zhang J. Hierarchical Anion Exchange and Reverse Electron Transfer in Layered Double Hydroxides/Peroxymonosulfate System for Roxarsone Elimination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18683-18694. [PMID: 39161116 DOI: 10.1021/acs.langmuir.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Roxarsone (ROX) is the main form of arsenic pollution in the world, and developing effective methods for its elimination is beneficial to human health and the ecological environment. Herein, we report glutaraldehyde cross-linked chitosan-encapsulated CoCe-LDH (layered double hydroxides) as an outstanding catalyst for the advanced oxidation of ROX and the efficient adsorption of inorganic arsenic. 100% of ROX and more than 98.5% of As(III)/As(V) were eliminated, and over 99.3% of remaining inorganic arsenic was oxidized to low-toxicity As(V) in the peroxymonosulfate (PMS) activation system, and some specific properties of LDH are considered the main reasons. The hierarchical anion exchange has been confirmed to be beneficial for constructing a high-concentration PMS interlayer microenvironment. The unique reverse electron transfer process induced 100% selective production of singlet oxygen. This work not only develops an advanced ROX removal method but also provides a new understanding of the LDH-based advanced oxidation process.
Collapse
Affiliation(s)
- Yu Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wenkai Pei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yifan Zheng
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jianyu Gao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, P. R. China
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Hu J, Gong H, Fu K, Jia J, Zhu N. Overcoming metals redox rate limitations in spinel oxide-driven Fenton-like reactions via synergistic heteroatom doping and carbon anchoring for efficient micropollutant removal. WATER RESEARCH 2024; 261:122020. [PMID: 38971079 DOI: 10.1016/j.watres.2024.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The transition metals redox rate limitations of spinel oxides during Fenton-like reactions hinder its efficient and sustainable treatment of actual wastewater. Herein, we propose to optimize the electronic structure of Co-Mn spinel oxide (CM) via sulfur doping and carbon matrix anchoring synergistically, enhancing the radicals-nonradicals Fenton-like processes for efficient water decontamination. Activating peroxymonosulfate (PMS) with optimised spinel oxide (CMSAC) achieved near-complete removal of ofloxacin (10 mg/L) within 6 min, showing 8.4 times higher efficiency than CM group. Significantly higher yields of SO4·- and high-valent metal species in CMSAC/PMS system provided exceptional resistance to co-existing anions, enabling efficient removal of various emerging contaminants in high salinity leachate. Specifically, sulfur coordination and carbon anchoring-induced oxygen vacancy synergistically improved the electronic structure and electron transfer efficiency of CMSAC, thus forming highly reactive Co sites and significantly reducing the energy barrier for Co(IV)=O generation. The reductive sulfur species facilitated the conversion of Co(III) to Co(II), thereby maintaining the stability of the catalytic activity of CMSAC. This work developed a synergistic optimization strategy to overcome the metals redox rate limitations of spinel oxides in Fenton-like reactions, providing deep mechanistic insights for designing Fenton-like catalysts suitable for practical applications.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kaixing Fu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
18
|
Liang J, Li K, Shi F, Li J, Gu JN, Xue Y, Bao C, Guo M, Jia J, Fan M, Sun T. Constructing High-Performance Cobalt-Based Environmental Catalysts from Spent Lithium-Ion Batteries: Unveiling Overlooked Roles of Copper and Aluminum from Current Collectors. Angew Chem Int Ed Engl 2024; 63:e202407870. [PMID: 38748475 DOI: 10.1002/anie.202407870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 07/21/2024]
Abstract
Converting spent lithium-ion batteries (LIBs) cathode materials into environmental catalysts has drawn more and more attention. Herein, we fabricated a Co3O4-based catalyst from spent LiCoO2 LIBs (Co3O4-LIBs) and found that the role of Al and Cu from current collectors on its performance is nonnegligible. The density functional theory calculations confirmed that the doping of Al and/or Cu upshifts the d-band center of Co. A Fenton-like reaction based on peroxymonosulfate (PMS) activation was adopted to evaluate its activity. Interestingly, Al doping strengthened chemisorption for PMS (from -2.615 eV to -2.623 eV) and shortened Co-O bond length (from 2.540 Å to 2.344 Å) between them, whereas Cu doping reduced interfacial charge-transfer resistance (from 28.347 kΩ to 6.689 kΩ) excepting for the enhancement of the above characteristics. As expected, the degradation activity toward bisphenol A of Co3O4-LIBs (0.523 min-1) was superior to that of Co3O4 prepared from commercial CoC2O4 (0.287 min-1). Simultaneously, the reasons for improved activity were further verified by comparing activity with catalysts doped Al and/or Cu into Co3O4. This work reveals the role of elements from current collectors on the performance of functional materials from spent LIBs, which is beneficial to the sustainable utilization of spent LIBs.
Collapse
Affiliation(s)
- Jianxing Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Feng Shi
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., 201620, Shanghai, P. R. China
| | - Jingdong Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Yixin Xue
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Mingming Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, 82071, Laramie, WY, USA
- College of Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Tonghua Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
19
|
Shang D, Wang S, Li J, Zhan S, Hu W, Li Y. Constructing Nano-Heterostructure with Dual-Site to Boost H 2O 2 Activation and Regulate the Transformation of Free Radicals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311984. [PMID: 38461526 DOI: 10.1002/smll.202311984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Indexed: 03/12/2024]
Abstract
A major issue with Fenton-like reaction is the excessive consumption of H2O2 caused by the sluggish regeneration rate of low-valent metal, and how to improve the activation efficiency of H2O2 has become a key in current research. Herein, a nano-heterostructure catalyst (1.0-MnCu/C) based on nano-interface engineering is constructed by supporting Cu and MnO on carbon skeleton, and its kinetic rate for the degradation of tetracycline hydrochloride is 0.0436 min-1, which is 2.9 times higher than that of Cu/C system (0.0151 min-1). The enhancement of removal rate results from the introduced Mn species can aggregate and transfer electrons to Cu sites through the electron bridge Mn-N/O-Cu, thus preventing Cu2+ from oxidizing H2O2 to form O2 •-, and facilitating the reduction of Cu2+ and generating more reactive oxygen species (1O2 and ·OH) with stronger oxidation ability, resulting in H2O2 utilization efficiency is 1.9 times as much as that of Cu/C. Additionally, the good and stable practical application capacity in different bodies demonstrates that it has great potential for practical environmental remediation.
Collapse
Affiliation(s)
- Denghui Shang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jialu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
20
|
Ren Y, Liu C, Ji C, Lai B, Zhang W, Li J. Selective oxidation decontamination in cobalt molybdate activated Fenton-like oxidation via synergic effect of cobalt and molybdenum. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134639. [PMID: 38772113 DOI: 10.1016/j.jhazmat.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
In this study, cobalt molybdate (CoMoO4) activated peracetic acid (PAA) was developed for water purification. CoMoO4/PAA system could remove 95% SMX with pseudo-first-order reaction rate constant of 0.15410 min-1, which was much higher than CoFe2O4/PAA, FeMoO4/PAA, and CoMoO4/persulfate systems. CoMoO4/PAA system follows a non-radical species pathway dominated by the high-valent cobalt (Co(IV)), and CH3C(O)OO• shows a minor contribution to decontamination. Density functional theory (DFT) calculation indicates that the generation of Co(IV) is thermodynamically more favorable than CH3C(O)OO• generation. The abundant Co(IV) generation was attributed to the special structure of CoMoO4 and effect of molybdenum on redox cycle of Co(II)/Co(III). DFT calculation showed that the atoms of SMX with higher ƒ0 and ƒ- values are the main attack sites, which are in accordance with the results of degradation byproducts. CoMoO4/PAA system can effectively reduce biological toxicity after the reaction. Benefiting from the selective of Co(IV) and CH3C(O)OO•, the established CoMoO4/PAA system exhibits excellent anti-interference capacity and satisfactory decontamination performance under actual water conditions. Furthermore, the system was capable of good potential practical application for efficient removal of various organics and favorable reuse. Overall, this study provides a new strategy by CoMoO4 activated PAA for decontamination with high efficiency, high selectivity and favorable anti-interference.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Formation of halonitromethanes from different nitrophenol compounds during UV/post-chlorination: Impact factors, DFT calculation, reaction mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174718. [PMID: 38997025 DOI: 10.1016/j.scitotenv.2024.174718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
22
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Reaction mechanisms of chlorinated disinfection byproducts formed from nitrophenol compounds with different structures during chlor(am)ination and UV/post-chlor(am)ination. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134544. [PMID: 38733788 DOI: 10.1016/j.jhazmat.2024.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
23
|
Wang T, Deng L, Tan C, Hu J, Singh RP. Comparative analysis of chlorinated disinfection byproducts formation from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172200. [PMID: 38575027 DOI: 10.1016/j.scitotenv.2024.172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Nitrophenol compounds (NCs) are widely distributed in water environments and regarded as important precursors of disinfection byproducts (DBPs). Herein, 4-nitrophenol and 2-amino-4-nitrophenol were selected as representative NCs to explore chlorinated DBPs (Cl-DBPs) formation during UV/post-chlorination. Dichloronitromethane (DCNM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), and trichloromethane (TCM) were formed from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination, and the yields of individual Cl-DBPs from 2-amino-4-nitrophenol were higher than those from 4-nitrophenol. Meantime, increasing chlorine contact time, UV fluence, and free chlorine dose could enhance Cl-DBPs formation, while much higher values of the three factors might decrease the yields of Cl-DBPs. Besides, alkaline pH could decrease the yields of halonitromethane (HNMs) and DCAN but increase the yields of TCM. Also, higher concentrations of 4-nitrophenol and 2-amino-4-nitrophenol would induce more Cl-DBPs formation. Subsequently, the possible formation pathways of DCNM, TCNM, DCAN, and TCM form 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination were proposed according to transformation products (TPs) and density functional theory (DFT) calculation. Notably, Cl-DBPs formed from 2-amino-4-nitrophenol presented higher toxicity than those from 4-nitrophenol. Among these generated Cl-DBPs, DCAN and TCNM posed higher cytotoxicity and genotoxicity, respectively. Furthermore, 4-nitrophenol, 2-amino-4-nitrophenol, and their TPs exhibited ecotoxicity. Finally, 4-nitrophenol and 2-amino-4-nitrophenol presented a high potential to produce DCNM, TCNM, DCAN, and TCM in actual waters during UV/post-chlorination, but the Cl-DBPs yields were markedly different from those in simulated waters. This work can help better understand Cl-DBPs formation from different NCs during UV/post-chlorination and is conducive to controlling Cl-DBPs formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
24
|
Xue Y, Gao R, Lin S, Zhong Q, Zhang Q, Hong J. Regulating the interface electron distribution of iron-based MOFs through ligand functionalization enables efficient peroxymonosulfate utilization and catalytic performance. J Colloid Interface Sci 2024; 663:358-368. [PMID: 38412721 DOI: 10.1016/j.jcis.2024.02.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Ligand functionalization is an effective way to endow Metal-organic frameworks (MOF) with versatility for multiple applications by introducing or displaying substituents without changing the origin framework. In this work, the original MIL-101(Fe) was modified by functional groups, including -NH2, -NO2, -CH3, and -Cl substituents. The Bader charge results and electron localization function (ELF) quantitatively indicated that the functional ligands with different properties can regulate the electron structure of transition-metal centers through interface-charge redistribution. Accompanying the higher adsorption and utilization rate of peroxymonosulfate (PMS), more than 96% of acetaminophen (APAP) was degraded with a mineralization rate of 40.17% under the NH2-BDC/PMS system. In terms of mechanism, the amino group not only accelerated the regeneration of Fe(II) via the NCFe electron-transfer path, but also stimulated the appearance of high-valent Fe species. Meanwhile, the degradation pathways of APAP were proposed by integrating the results of liquid chromatograph-mass spectrometry (LC-MS) and Frontier molecular-orbital theory. Finally, the NH2-BDC/PMS system reveals long-term stability, nonselectivity, low biotoxicity as well as secondary pollution for pollutant degradation, which is a considered candidate for further environmental applications.
Collapse
Affiliation(s)
- Yuwei Xue
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Ran Gao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Shuangjie Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Qing Zhong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
25
|
Huang T, An R, Li J, Liu W, Zhu X, Ji H, Wang T. Encapsulate Co 3O 4 within ultrathin graphene sheets to enhance peroxymonosulfate activation by tuning surface electronic structures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171872. [PMID: 38521253 DOI: 10.1016/j.scitotenv.2024.171872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Heterojunctions composed of cobalt-based materials and carbon materials have been recognized as the efficient catalysts for peroxymonosulfate (PMS) activation to generate reactive oxygen species for the removal of environmental contaminants. However, the role of carbon materials in promoting the heterojunction systems has not been fully understood. This study synthesized a heterojunction material of graphene sheets encapsulating Co3O4 (GCO-500) through the pyrolysis of cobalt MOF and applied it to activate PMS for the removal of lomefloxacin. The results showed a high removal rate of 93.59 % with a degradation rate of k1 = 0.0156 min-1. Co3O4 clusters was encapsulated within ultrathin graphene sheets (<2 nm). DFT calculations revealed that graphene layers improve the electron transfer ability of Co3O4 and increased the d-band center of Co3O4 (-1.61 eV) that promote the adsorption of PMS on GCO-500 (-1.32 eV). In the meanwhile, organic pollutant was enriched in graphene layers with high adsorption energy (-13.08 eV), which greatly enhanced the degradation efficiency of pharmaceuticals. This study provides an effective catalyst for PMS activation and sheds light on the fundamental electronic-level understanding of cobalt-based and carbon heterojunction catalysts in PMS activation.
Collapse
Affiliation(s)
- Taobo Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Rui An
- China Institute of Geo-Environmental Monitoring, Beijing 100081, China
| | - Jie Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haodong Ji
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ting Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Yang L, Zhao J, Xu D, Luo X, Han Y, Tang X, Liang H. Rational design of a hydrophilic nanoarray-structured electro-Fenton membrane for antibiotics removal and fouling mitigation: An intensified catalysis process in an oxygen vacancy-mediated cathodic microreactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134138. [PMID: 38574657 DOI: 10.1016/j.jhazmat.2024.134138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Electro-Fenton membranes (EFMs) can synchronously realize organic micropollutants destruction and fouling mitigation in a single filtration process with the assistance of hydroxyl radicals (•OH). Herein, a nanoarray-structured EFM (NS-EFM) was designed by assembling Fenton reactive CoFe-LDH nanowires using a low-temperature hydrothermal method. Combined with a defect-engineering strategy, the oxygen vacancies (OVac) in the CoFe-LDH nanoarrays were tailored by manipulating the stoichiometry of cations to optimize the Fenton reactivity of NS-EFMs. The optimized NS-EFM demonstrated exceptional sulfamethoxazole (SMX) removal (99.4%) and fast degradation kinetics (0.0846 min-1), but lower energy consumption (0.22 kWh m-3 per log removal of SMX). In-depth mechanism analysis revealed that the intrinsic electronic properties of OVac endowed NS-EFM with enhanced reactivity and charge transferability at metallic active sites of CoFe-LDH, thereby intensifying •OH generation. Besides, the nanoarray-structured NS-EFM built a confined microreactor space, leading to expedited •OH microflow to SMX. Meanwhile, the hydrophilic nature of CoFe-LDH nanoarrays synergistically contributed to the high flux recovery (95.0%) and minimal irreversible membrane fouling (5.0%), effectively alleviating membrane fouling within pores and on surfaces. This study offers insights into the potential of defect engineering as a foundational strategy in the design of EFMs, significantly advancing the treatment of organic pollutants and control of membrane fouling.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Zhao
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Daliang Xu
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yonghui Han
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaobin Tang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
27
|
Du M, Sun Z, Liu Y, Wang A, Zhang Y, Chen Z, Wang W, Li A, Ma J. Selective Phosphate Adsorption Using Topologically Regulated Binary-Defect Metal-Organic Frameworks: Essential Role of Interfacial Electron Mobility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14333-14344. [PMID: 38449445 DOI: 10.1021/acsami.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Metal-organic framework (MOF)-modified biochars (BC) have gained recognition as potent adsorbents for phosphate. However, essential insights into the electronic interfacial state of the MOFs remain lacking. In this study, we propose a novel topological transformation strategy to directionally regulate the interfacial electronic states of BC/MOFs composites. The optimized BC/MOFs exhibited an excellent selective phosphate adsorption capacity of 188.68 mg·g-1, coupled with rapid sorption kinetics of 6.81 mg·(g·min0.5)-1 in simulated P-laden wastewater. When challenged with real bioeffluent, such efficacy was still maintained (5 mg·L-1, 25.92 mg·g-1). This superior performance was due to the Fe(III) → Fe(II) transition, promoting electron mobility and leading to the anchoring of Mg(II) to form specific coordination unsaturated sites (Mg-CUS) for phosphate adsorption. Importantly, the simultaneous regulation of binary defects further enhances electron mobility, resulting in the formation of sp3 unequal hybrid orbitals with a stronger internal coupling capability between Mg 3s in Mg-CUS and O 2p in phosphate. Furthermore, the high electron affinity of Mg effectively promotes electron cycling, endowing BC/MOFs with a distinct self-healing capability to facilitate phosphate desorption. The outcomes of this study provide novel perspectives for electronic regulated phosphate adsorption.
Collapse
Affiliation(s)
- Meng Du
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yueyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Zhao X, Long M, Li Z, Zhang Z. A two dimensional Co(OH) 2 catalytic gravity-driven membrane for water purification: a green and facile fabrication strategy and excellent water decontamination performance. MATERIALS HORIZONS 2024; 11:1435-1447. [PMID: 38189551 DOI: 10.1039/d3mh01924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cobalt-based materials are reported to be the most efficient catalysts in sulfate radical advanced oxidation processes (SR-AOPs). A green and facile method was developed in this work to prepare uniform Co(OH)2 hexagonal nanosheets, which was void of any organic solvents via mere ambient temperature stirring. The obtained nanosheets were assembled into a catalytic gravity-driven membrane, through which the removal efficiency of a typical pharmaceutical contaminant, ranitidine (RNTD), could reach ∼100% within 20 min. Meanwhile, the catalytic membrane also demonstrated effective removal performance towards various pollutants. In order to augment the long-term stability of catalytic membranes, Co(OH)2/rGO composites were fabricated using the same strategy, and a Co(OH)2/rGO catalytic membrane was prepared correspondingly. The Co(OH)2/rGO membrane could maintain a ∼100% removal of RNTD over a constant reaction period lasting for up to 165 hours, which was approximately 11 times that of the sole Co(OH)2 membrane (15 h). Analysis of element chemical states, metal ion concentration in filtrates, and quenching experiments suggested that the combination with rGO could promote the electron transfer to accelerate the Co(II) regeneration, restrain the cobalt dissolution to alleviate the active site loss, and contribute to the production of 1O2via synergistic effects of oxygen-containing groups in rGO. Toxicity assessment was performed on RNTD and its degradation intermediates to confirm the reduction in ecotoxicity of the treated feed. Overall, this work not only offered guidance for the application of nanosheets in AOP membranes, but also had implications for the environmentally-friendly preparation protocol to obtain functional metal hydroxides.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Long
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhixing Li
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Li D, Zhang X, Sun Y, Bu Y, Li H, Qian J. Investigating the evolution of reactive species in the CuO-mediated peroxymonosulfate activation process. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133425. [PMID: 38198860 DOI: 10.1016/j.jhazmat.2024.133425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The utilization of copper oxide (CuO) as a catalyst in the peroxymonosulfate (PMS) activation process holds great promise for effectively degrading aqueous organic pollutants, while the relevant mechanism remains inadequately understood. In this study, we delve into the evolution pathways of reactive species in the CuO/PMS system through a comprehensive series of experimental analyses. Our findings indicate that various reactive species are generated in the CuO/PMS system with the specific sequence, where the decomposition of surface Cu(II)-OOSO3- leads to the formation of surface Cu(III) species, which are responsible for the subsequent generation of HO•. The reactivity of these reactive species and the sequence of their generation explain the distinct oxidation behaviors of pollutants with different values of ionization potential (IP). In addition, singlet oxygen (1O2) may be produced during the PMS activation process, while its involvement in the oxidation of substrates is deemed negligible. This investigation presents a novel perspective, enhancing our comprehension of the mechanism underlying transition metal-mediated PMS activation processes. ENVIRONMENTAL IMPLICATION: The removal of refractory organic contaminations in water constitutes a fundamental concern within the realm of environmental pollution management. Peroxymonosulfate activation induced by transition metal oxides has garnered significant recognition as a promising technological approach for the degradation of aqueous organic contaminants, while the underlying mechanism remains enigmatic. In this study, we systematically investigate the evolution pathways of reactive species in the CuO/peroxymonosulfate system to reveal the mystery of the reaction mechanism between CuO and peroxymonosulfate. The outcomes of our study contribute to enhancing the practical applicability of transition metal-triggered PMS activation processes.
Collapse
Affiliation(s)
- Dawei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yuanqing Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, China.
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China; School of Environmental Engineering, Wuxi University, Jiangsu 214105, China
| |
Collapse
|
30
|
Wang X, Cui L, Liu M, Qi Z, Luo H, Huang H, Tu T, Qin X, Wang Y, Zhang J, Wang Y, Yao B, Bai Y, Su X. Theoretical insights into the mechanism underlying aflatoxin B 1 transformation by the BsCotA-methyl syringate system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116049. [PMID: 38301584 DOI: 10.1016/j.ecoenv.2024.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Global concern exists regarding the contamination of food and animal feed with aflatoxin B1 (AFB1), which poses a threat to the health of both humans and animals. Previously, we found that a laccase from Bacillus subtilis (BsCotA) effectively detoxified AFB1 in a reaction mediated by methyl syringate (MS), although the underlying mechanism has not been determined. Therefore, our primary objective of this study was to explore the detoxification mechanism employed by BsCotA. First, the enzyme and mediator dependence of AFB1 transformation were studied using the BsCotA-MS system, which revealed the importance of MS radical formation during the oxidation process. Aflatoxin Q1 (AFQ1) resulting from the direct oxidation of AFB1 by BsCotA, was identified using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results of UPLC-MS/MS and density functional theory calculations indicated that the products included AFQ1, AFB1-, and AFD1-MS-coupled products in the BsCotA-MS system. The toxicity evaluations revealed that the substances derived from the transformation of AFB1 through the BsCotA-MS mechanism exhibited markedly reduced toxicity compared to AFB1. Finally, we proposed a set of different AFB1-transformation pathways generated by the BsCotA-MS system based on the identified products. These findings greatly enhance the understanding of the AFB1-transformation mechanism of the laccase-mediator system.
Collapse
Affiliation(s)
- Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Cui
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zheng Qi
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
31
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
32
|
Sheng X, Mei Z, Jing Q, Zou X, Wang L, Xu Q, Guo H. Revealing the Orbital Interactions between Dissimilar Metal Sites during Oxygen Reduction Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305390. [PMID: 37797192 DOI: 10.1002/smll.202305390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Indexed: 10/07/2023]
Abstract
A FeCo/DA@NC catalyst with the well-defined FeCoN6 moiety is customized through a novel and ultrafast Joule heating technique. This catalyst demonstrates superior oxygen reduction reaction activity and stability in an alkaline environment. The power density and charge-discharge cycling of znic-air batteries driven by FeCo/DA@NC also surpass those of Pt/C catalyst. The source of the excellent oxygen reduction reaction activity of FeCo/DA@NC originates from the significantly changed charge environment and 3d orbital spin state. These not only improve the bonding strength between active sites and oxygen-containing intermediates, but also provide spare reaction sites for oxygen-containing intermediates. Moreover, various in situ detection techniques reveal that the rate-determining step in the four-electron oxygen reduction reaction is *O2 protonation. This work provides strong support for the precise design and rapid preparation of bimetallic catalysts and opens up new ideas for understanding orbital interactions during oxygen reduction reactions.
Collapse
Affiliation(s)
- Xuelin Sheng
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Zhiyuan Mei
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qi Jing
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Xiaoxiao Zou
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Lilian Wang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qijun Xu
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
33
|
Jiang X, Zhou B, Yang W, Chen J, Miao C, Guo Z, Li H, Hou Y, Xu X, Zhu L, Lin D, Xu J. Precise coordination of high-loading Fe single atoms with sulfur boosts selective generation of nonradicals. Proc Natl Acad Sci U S A 2024; 121:e2309102121. [PMID: 38232287 PMCID: PMC10823248 DOI: 10.1073/pnas.2309102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.
Collapse
Affiliation(s)
- Xunheng Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Binghui Zhou
- Department of Power Engineering, North China Electric Power University, Baoding071003, China
| | - Weijie Yang
- Department of Power Engineering, North China Electric Power University, Baoding071003, China
| | - Jiayi Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310058, China
| | - Chen Miao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Hao Li
- Advanced Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310058, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
34
|
Jiang Z, Wei J, Niu X, Cui X, Li Y, Cui N, Li J, Huo J, Wang L, Ji W, Li J. Highly dispersed Fe 7S 8 anchored on sp 2/sp 3 hybridized carbon boosting peroxymonosulfate activation for enhanced EOCs elimination though singlet oxygen-dominated nonradical pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132607. [PMID: 37757558 DOI: 10.1016/j.jhazmat.2023.132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The synergistic effect of carbon materials with high sp2/sp3 hybridized carbon ratio and metal materials can enhance the efficiency of peroxymonosulfate (PMS) based advanced oxidation processes. In this study, a composite of highly dispersed Fe7S8 anchored on sp2/sp3 hybridized carbon (Fe7S8@HC) was developed by a facile synthesis for PMS activation. Within 10 min, the removal efficiency of the target pollutant doxycycline (DOX) could reach ca. 96 % in optimal Fe7S8@HC/PMS system through a 1O2-dominated non-radical pathway. Correlation mechanism analysis revealed that thiophene S, sp2/sp3 ratio and Fe(II) were critical factors for elongating of the O-O bond of PMS. Moreover, the Fe7S8@HC/PMS system exhibited favorable adaptability to interference such as common inorganic anions, humic acid and pH changes and could effectively remove various organic pollutants with low ionization potential. Moreover, the system maintained high DOX removal efficiency by running 30 cycles in a continuous flow reactor. Finally, susceptible sites of DOX and four degradation pathways were proposed by density functional theory calculation and LC-MS detection. This work not only offered new insights into the design of high-performance catalysts combining metal and biomass-based carbon materials, but also provided technical support for the remediation of water bodies containing emerging organic contaminants.
Collapse
Affiliation(s)
- Zijian Jiang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jia Wei
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Xiruo Niu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xueru Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yanan Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Nan Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiamei Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiangkai Huo
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Linhao Wang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wei Ji
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
35
|
Wang Z, Tan G, Zhang B, Yang Q, Feng S, Liu Y, Liu T, Guo L, Zeng C, Liu W, Xia A, Ren H, Yin L, Fan S. Intrinsic Polarized Electric Field Induces a Storing Mechanism to Achieve Energy Storing Catalysis in V 2 C MXene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307795. [PMID: 37823519 DOI: 10.1002/adma.202307795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Efficient storage and separation of holes and electrons pose significant challenges for catalytic reactions, particularly in the context of single-phase catalysis. Herein, V2 C MXene, with its intrinsic polarized electric field, successfully overcomes this obstacle. To enhance hole storage, a multistep etching process is employed under reducing conditions to control the content of surface termination groups, thus exposing more defective active sites. The intrinsically polarized electric field confines holes to the surface of the layer and free electrons within the layer, leading to a lag in e- release compared to h+ . The quantities of stored holes and electrons are measured to be 18.13 µmol g-1 and 106.37 µmol g-1 , respectively. Under dark, V2 C demonstrates excellent and stable dark-catalytic performance, degrading 57.91% of tetracycline (TC 40 mg L-1 ) and removing 23% of total organic carbon (TOC) after 140 min. In simulated sunlight and near-infrared light, the corresponding degradation rates reach 72.24% and 79.54%, with corresponding TOC removal rates of 49% and 48%, respectively. The hole and electron induced localized surface plasmon resonance (LSPR) effects contribute to a long-lasting and enhanced broad-spectrum mineralization of V2 C MXene. This study provides valuable insights into the research and application of all-weather MXene energy storage catalytic materials.
Collapse
Affiliation(s)
- Zeqiong Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bixin Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qian Yang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuaijun Feng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tian Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Linxin Guo
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chunyan Zeng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenlong Liu
- School of Electronic Information and Artiffcial Intelligence, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ao Xia
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huijun Ren
- School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lixiong Yin
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Sizhe Fan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
36
|
Chen XJ, Bai CW, Sun YJ, Huang XT, Zhang BB, Zhang YS, Yang Q, Wu JH, Chen F. pH-Driven Efficacy of the Ferrate(VI)-Peracetic Acid System in Swift Sulfonamide Antibiotic Degradation: A Deep Dive into Active Species Evolution and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20206-20218. [PMID: 37965750 DOI: 10.1021/acs.est.3c06370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity. Our study delved into the sophisticated oxidation interplay among Fe(VI)-PAA, Fe(VI)-H2O2, and standalone Fe(VI) systems. Notably, at a pH of 9.0, boasting a kinetic constant of ∼0.127 M-1·s-1, the Fe(VI)-PAA system annihilated the pollutant sulfamethoxazole, outpacing its counterparts by a staggering 48.73-fold when compared to the Fe(VI)-H2O2 system and 105.58-fold when using Fe(VI) individually. The behavior of active species─such as the dynamic •OH radicals and high-valent iron species (Fe(IV)/Fe(V))─shifted with pH variations, leading to distinct degradation pathways. Our detailed exploration pinpoints the behaviors of certain species across pH levels from 3.0 to 9.0. In more acidic environments, the •OH species proved indispensable for the system's reactivity. Conversely, as the pH inclined, degradation was increasingly steered by high-valent iron species. This intensive probe demystifies Fe(VI) interactions, deepening our understanding of the capabilities of the Fe(VI)-centered system and guiding us toward cleaner water solutions. Importantly, pH value, often underappreciated, holds the reins in organic wastewater decontamination. Embracing this key player is vital as we strategize for more expansive systems in upcoming ventures.
Collapse
Affiliation(s)
- Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
37
|
Peng Y, Zhang Q, Ren W, Duan X, Ding L, Jing Y, Shao P, Xiao X, Luo X. Thermodynamic and Kinetic Behaviors of Persulfate-Based Electron-Transfer Regime in Carbocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19012-19022. [PMID: 37599507 DOI: 10.1021/acs.est.3c02675] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A carbon-based advanced oxidation process is featured for the nonradical electron-transfer pathway (ETP) from electron-donating organic compounds to activated persulfate complexes, enabling it as a green technology for the selective oxidation of organic pollutants in complex water environments. However, the thermodynamic and kinetic behaviors of the nonradical electron-transfer regime had been ambiguous due to a neglect of the influence of pH on the mechanisms. In this study, three kinds of organic pollutants were divided in the carbon-based ETP regime: (i) physio-adsorption, (ii) adsorption-dominated ETP (oxidation rate slightly surpasses adsorption rate), and (iii) oxidation-dominated ETP (oxidation rate outpaces the adsorption rate). The differential kinetic behaviors were attributed to the physicochemical properties of the organic pollutants. For example, the hydrophobicity, molecular radius, and positive electrostatic potential controlled the mass-transfer process of the adsorption stage of the reactants (peroxydisulfate (PDS) and organics). Meanwhile, other descriptors, including the Fukui index, oxidation potential, and electron cloud density regulated the electron-transfer processes and thus the kinetics of oxidation. Most importantly, the oxidation pathways of these organic pollutants could be altered by adjusting the water chemistry. This study reveals the principles for developing efficient nonradical systems to selectively remove and recycle organic pollutants in wastewater.
Collapse
Affiliation(s)
- Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Qiming Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia SA5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia SA5005, Australia
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Yunpeng Jing
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| |
Collapse
|
38
|
Li F, Wang P, Zhang T, Li M, Yue S, Zhan S, Li Y. Efficient Removal of Antibiotic Resistance Genes through 4f-2p-3d Gradient Orbital Coupling Mediated Fenton-Like Redox Processes. Angew Chem Int Ed Engl 2023; 62:e202313298. [PMID: 37795962 DOI: 10.1002/anie.202313298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Peroxymonosulfate (PMS) mediated radical and nonradical active substances can synergistically achieve the efficient elimination of antibiotic resistance genes (ARGs). However, enhancing interface electron cycling and optimizing the coupling of the oxygen-containing intermediates to improve PMS activation kinetics remains a major challenge. Here, Co doped CeVO4 catalyst (Co-CVO) with asymmetric sites was constructed based on Ce 4f-O 2p-Co 3d gradient orbital coupling. The catalyst achieved approximately 2.51×105 copies/mL of extracellular ARGs (eARGs) removal within 15 minutes, exhibited ultrahigh degradation rate (k=1.24 min-1 ). The effective gradient 4f-2p-3d orbital coupling precisely regulates the electron distribution of Ce-O-Co active center microenvironment, while optimizing the electronic structure of Co 3d states (especially the occupancy of eg ), promoting the adsorption of oxygen-containing intermediates. The generated radical and nonradical generated by interfacial electron cycling enhanced by the reduction reaction of PMS at the Ce site and the oxidation reaction at the Co site achieved a significant mineralization rate of ARGs (83.4 %). The efficient removal of ARGs by a continuous flow reactor for 10 hours significantly reduces the ecological risk of ARGs in actual wastewater treatment.
Collapse
Affiliation(s)
- Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Mingmei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, P. R. China
| |
Collapse
|
39
|
Wang A, Du M, Ni J, Liu D, Pan Y, Liang X, Liu D, Ma J, Wang J, Wang W. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field. Nat Commun 2023; 14:6733. [PMID: 37872207 PMCID: PMC10593843 DOI: 10.1038/s41467-023-42542-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
The regulation of heterogeneous material properties to enhance the peroxymonosulfate (PMS) activation to degrade emerging organic pollutants remains a challenge. To solve this problem, we synthesize S-scheme heterojunction PBA/MoS2@chitosan hydrogel to achieve photoexcitation synergistic PMS activation. The constructed heterojunction photoexcited carriers undergo redox conversion with PMS through S-scheme transfer pathway driven by the directional interface electric field. Multiple synergistic pathways greatly enhance the reactive oxygen species generation, leading to a significant increase in doxycycline degradation rate. Meanwhile, the 3D polymer chain spatial structure of chitosan hydrogel is conducive to rapid PMS capture and electron transport in advanced oxidation process, reducing the use of transition metal activator and limiting the leaching of metal ions. There is reason to believe that the synergistic activation of PMS by S-scheme heterojunction regulated by photoexcitation will provide a new perspective for future material design and research on enhancing heterologous catalysis oxidation process.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Meng Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
40
|
Su C, Zhang N, Zhu X, Sun Z, Hu X. pH adjustable MgAl@LDH-coated MOFs-derived Co 2.25Mn 0.75O 4 for SMX degradation in PMS activated system. CHEMOSPHERE 2023; 339:139672. [PMID: 37517665 DOI: 10.1016/j.chemosphere.2023.139672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) is considered as one of the most promising technologies for antibiotic pollution. In this study, a core-shell catalyst of cobalt-manganese oxide derived from CoMn-MOFs coating by MgAl-LDH (Co/Mn@LDH) was synthesized for peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX). Degradation efficiency of nearly 100% and a mineralization efficiency of 68.3% for SMX were achieved in Co/Mn@LDH/PMS system. Mn species and out shell MgAl-LDH greatly suppressed the cobalt ions leaching, which only 23 μg/L Co ions were detected by ICP after the reaction. SO4·- was identified as dominant reactive species in the system. Furthermore, the possible reactive sites of SMX were predicted by the density functional theory (DFT) calculations. And the intermediates of SMX were detected by LC-MS and the degradation pathway was proposed based on the results above. The ECOSAR results suggested the intermediates of SMX showed a relatively low toxicity compared to SMX, indicating huge potential of utilization of Co/Mn@LDH in SR-AOPs system.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Nizi Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaobiao Zhu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
41
|
Mou Y, Wu X, Qin C, Chen J, Zhao Y, Jiang L, Zhang C, Yuan X, Huixiang Ang E, Wang H. Linkage Microenvironment of Azoles-Related Covalent Organic Frameworks Precisely Regulates Photocatalytic Generation of Hydrogen Peroxide. Angew Chem Int Ed Engl 2023; 62:e202309480. [PMID: 37462327 DOI: 10.1002/anie.202309480] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Artificial H2 O2 photosynthesis by covalent organic frameworks (COFs) photocatalysts is promising for wastewater treatment. The effect of linkage chemistry of COFs as functional basis to photoelectrochemical properties and photocatalysis remains a significant challenge. In this study, three kinds of azoles-linked COFs including thiazole-linked TZ-COF, oxazole-linked OZ-COF and imidazole-linked IZ-COF were successfully synthesized. More accessible channels of charge transfer were constructed in TZ-COF via the donor-π-acceptor structure between thiazole linkage and pyrene linker, leading to efficient suppression of photoexcited charge recombination. Density functional theory calculations support the experimental studies, demonstrating that the thiazole linkage is more favorable for the formation of *O2 intermediate in H2 O2 production than that of the oxazole and imidazole linkages. The real active sites in COFs located at the benzene ring fragment between pyrene unit and azole linkage.
Collapse
Affiliation(s)
- Yi Mou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Chencheng Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Junying Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Chen Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Hou Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
42
|
Hou Y, Liu F, Nie C, Li Z, Tong M. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11675-11686. [PMID: 37486062 DOI: 10.1021/acs.est.3c03711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As novel photocatalysts, covalent organic frameworks (COFs) have potential for water purification. Insufficient exciton dissociation and low charge mobility in COFs yet restricted their photocatalytic activity. Excitonic dissociation and charge transfer in COFs could be optimized via regulating the donor-acceptor (D-A) interactions through adjusting the number of donor units within COFs, yet relevant research is lacking. By integrating the 1,2,4-triazole or bis-1,2,4-triazole unit with quinone, we fabricated COF-DT (with a single donor unit) and COF-DBT (with double donor units) via a facile sonochemical method and used to decontaminate emerging contaminants. Due to the stronger D-A interactions than COF-DT, the exciton binding energy was lower for COF-DBT, facilitating the intermolecular charge transfer process. The degradation kinetics of tetracycline (model contaminant) by COF-DBT (k = (12.21 ± 1.29) × 10-2 min-1) was higher than that by COF-DT (k = (5.11 ± 0.59) × 10-2 min-1) under visible-light irradiation. COF-DBT could efficiently photodegrade tetracycline under complex water chemistry conditions and four real water samples. Moreover, six other emerging contaminants, both Gram-negative and Gram-positive strains, could also be effectively eliminated by COF-DBT. High tetracycline degradation performance achieved in a continuous-flow system and in five reused cycles in both laboratory and outdoor experiments with sunlight irradiation showed the stability and the potential for the practical application of COF-DBT.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
43
|
Zhou Z, Zhang C, Xi M, Ma H, Jia H. Multi-scale modeling of natural organic matter-heavy metal cations interactions: Aggregation and stabilization mechanisms. WATER RESEARCH 2023; 238:120007. [PMID: 37121201 DOI: 10.1016/j.watres.2023.120007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Interaction between natural organic matters (NOM) and heavy metal cations in aqueous environment are of great significance for maintaining stability of organic carbon and restraining transport of heavy metal contaminants in (bio)geochemical processes. We systematically explore the aggregation process and complexation between NOM and heavy metal cations (Ag+, Cd2+, Pb2+, Zn2+, Eu3+) under different pH condition by molecular dynamics (MD) simulations, umbrella sampling method, and quantum chemistry calculations. The character of molecular structures NOM-heavy metal complexes and association are quantified. In acidic pH condition, aggregation proceeds via H-bonding and π-π interactions between NOM fragments. In neutral condition, Ag+, Cd2+, Pb2+, and Eu3+ can form inner-sphere complexes with the surface carboxylic groups and therefore reduce intermolecular charge repulsion, eventually leading to NOM aggregation, and it shows that even without direct binding, the outer-sphere adsorbed Zn2+ can also result in the formation of NOM assemble through H-bonding. Consequently, these heavy metals are capable of promoting NOM aggregation regardless of the complexing ways. Complexing free energy calculations characterized the dynamic processes of cations binding to the carboxylic groups of NOM fragment and the related energy landscape. This study provides quantitative insights for understanding the environmental processes of heavy metals and cycle of C in aquatic ecosystem, and contributes to developing environment-friendly strategies for controlling heavy metal contaminants.
Collapse
Affiliation(s)
- Zhiyu Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, P.R. China.
| | - Mengning Xi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China
| | - Haonan Ma
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
44
|
Wang X, Liu X, Tong Y, Liu C, Ding Y, Gao J, Fang G, Zha X, Wang Y, Zhou D. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO 3-x for pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131798. [PMID: 37336112 DOI: 10.1016/j.jhazmat.2023.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Interface oxygen vacancies (OVs) are commonly used to improve the catalytic performance of activators in persulfate-based advanced oxidation processes, but the underlying mechanism was not fully explored. This work reports a facile heat treatment method to regulate OVs in MoO3-x to elucidate the mechanism of peroxymonosulfate (PMS) activated by OVs to degrade 2,4,4-Trichlorobiphenyl (PCB28). Electron spin resonance, free radical quenching, X-ray photoelectron spectroscopy, and Raman spectroscopy confirmed that both reducing Mo species and OVs of MoO3-x surface were responsible for PMS activation. Further experiments and Density Function Theory (DFT) calculation suggest that OVs in MoO3-x induced the formation of superoxide radical (O2•-), and then O2•- was transformed into singlet oxygen (1O2) or mediated PMS activation to generate radicals, which contritbued to 70.2% of PCB28 degradation. The steady-state concentrations of free radical calculated with the kinetics model show that OVs were more favorable to mediate PMS to generate hydroxyl radicals (•OH) under oxic conditions, while reducing Mo species would like to induce PMS to produce sulfate radicals (SO4•-). Overall, this study is dedicated to a new insight into the in-depth mechanism of PMS activation by OVs-rich catalysts and provides a novel strategy for reactive species regulation in PMS based oxidation process.
Collapse
Affiliation(s)
- Xiaolei Wang
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yunping Tong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yingzhi Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Xianghao Zha
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
45
|
Wang Y, Sun Y, Wang R, Gao M, Xin Y, Zhang G, Xu P, Ma D. Activation of peroxymonosulfate with cobalt embedded in layered δ-MnO 2 for degradation of dimethyl phthalate: Mechanisms, degradation pathway, and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:130901. [PMID: 36881985 DOI: 10.1016/j.jhazmat.2023.130901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The sulfate radical-based advanced oxidation processes (SR-AOPs) offer huge potential for the removal of organic pollutants. In this study, Co(II)-intercalated δ-MnO2 (Co-δ-MnO2) catalyst was successfully prepared by a simple cation exchange reaction. The obtained Co-δ-MnO2 exhibited high catalytic performance for the removal of dimethyl phthalate (DMP) under the activation of peroxymonosulfate (PMS), with the degradation efficiency reaching 100% within 6 h. Experiments and theoretical calculations revealed that interlayer Co(II) provided unique active sites in Co-δ-MnO2. In addition, radical and non-radical pathways were confirmed to play a role in Co-δ-MnO2/PMS system. •OH, SO4• ̶, and 1O2 were identified to be the dominating reactive species in Co-δ-MnO2/PMS system. This study provided new insights into the design of catalysts and laid a foundation for developing modifiable layered heterogeneous catalysts.
Collapse
Affiliation(s)
- Yanhao Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yunlong Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruyun Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Ma
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
46
|
Dong J, Li P, Ji X, Kang Y, Yuan X, Tang J, Shen B, Dong H, Lyu H. Electrons of d-orbital (Mn) and p-orbital (N) enhance the photocatalytic degradation of antibiotics by biochar while maintaining biocompatibility: A combined chemical and biological analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131083. [PMID: 36878031 DOI: 10.1016/j.jhazmat.2023.131083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic oxidation technology holds promise for ideal advanced treatment of antibiotic wastewater. Single-atom catalysts (SACs) are a new hotspot in catalytic science, but the photochemical studies on the removal of antibiotics from water and biocompatibility after entering the environment are scarce. In this work, we prepared a single Mn atom immobilized on N-doped biochar (Mn@N-Biochar) by impregnation calcination method for enhancing photocatalytic degradation of sulfanilamide (SNM) in different types of various water systems. Compared with the original biochar, Mn@N-Biochar showed enhanced SNM degradation and TOC removal capacity. DFT calculation concluded that the electrons of d-orbital (Mn) and p-orbital (N) altered the electronic structure of biochar and enhanced the photoelectric performance. It was shown that Mn@N-Biochar caused negligible systemic inflammation and tissue damage when given orally in mice, and also did not alter cell death and ROS production in human lung, kidney, and liver cells, as compared with biochar. We are convinced that Mn@N-Biochar could enhance the photocatalytic degradation of antibiotics while maintaining biocompatibility, which could be a promising strategy for wastewater treatment.
Collapse
Affiliation(s)
- Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Pin Li
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huajiang Dong
- Logistics University of the Chinese People's Armed Police Force, Tianjin 300189, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
47
|
Zhao Y, Chen S, Qie H, Zhu S, Zhang C, Li X, Wang W, Ma J, Sun Z. Selective activation of peroxymonosulfate govern by B-site metal in delafossite for efficient pollutants degradation: Pivotal role of d orbital electronic configuration. WATER RESEARCH 2023; 236:119957. [PMID: 37058917 DOI: 10.1016/j.watres.2023.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Radical and non-radical oxidation pathways have been universally validated in transition metals (TMs) oxides activated peroxymonosulfate (PMS) processes. However, achieving high efficiency and selectivity of PMS activation remains challenging due to the ambiguous tuning mechanism of TMs sites on PMS activation in thermodynamic scope. Herein, we demonstrated that the exclusive PMS oxidation pathways were regulated by d orbital electronic configuration of B-sites in delafossites (CuBO2) for Orange I degradation (CoIII 3d6 for reactive oxygen species (ROSs) vs. CrIII 3d3 for electron transfer pathway). The d orbital electronic configuration was identified to affect the orbital overlap extent between 3d of B-sites and O 2p of PMS, which induced B-sites offering different types of hybrid orbital to coordinate with O 2p of PMS, thereby forming the high-spin complex (CuCoO2@PMS) or the low-spin complex (CuCrO2@PMS), on which basis PMS was selectively dissociated to form ROSs or achieve electron transfer pathway. As indicated by thermodynamic analysis, a general rule was proposed that B-sites of less than half-filled 3d orbital tended to act as electron shuttle, i.e., CrIII (3d3), MnIII (3d4), interacting with PMS to execute an electron transfer pathway for degrading Orange I, while B-sites of between half-filled and full-filled 3d orbital preferred to be electron donator, i.e., CoIII (3d6), FeIII (3d5), activating PMS to generate ROSs. These findings lay a foundation for the oriented design of TMs-based catalysts from the atomic level according to d orbital electronic configuration optimization, as so to facilitate the achievement of PMS-AOPs with highly selective and efficient remediation of contaminants in water purification practice.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shixuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Qie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
48
|
Wang L, Wang Y, Wang Z, Du P, Xing L, Xu W, Ni J, Liu S, Wang Y, Yu G, Dai Q. Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine. WATER RESEARCH 2023; 240:120119. [PMID: 37247441 DOI: 10.1016/j.watres.2023.120119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Removal of low-carbon fatty amines (LCFAs) in wastewater treatment poses a significant technical challenge due to their small molecular size, high polarity, high bond dissociation energy, electron deficiency, and poor biodegradability. Moreover, their low Brønsted acidity deteriorates this issue. To address this problem, we have developed a novel base-induced autocatalytic technique for the highly efficient removal of a model pollutant, dimethylamine (DMA), in a homogeneous peroxymonosulfate (PMS) system. A high reaction rate constant of 0.32 min-1 and almost complete removal of DMA within 12 min are achieved. Multi-scaled characterizations and theoretical calculations reveal that the in situ constructed C=N bond as the crucial active site activates PMS to produce abundant 1O2. Subsequently, 1O2 oxidizes DMA through multiple H-abstractions, accompanied by the generation of another C=N structure, thus achieving the autocatalytic cycle of pollutant. During this process, base-induced proton transfers of pollutant and oxidant are essential prerequisites for C=N fabrication. A relevant mechanism of autocatalytic degradation is unraveled and further supported by DFT calculations at the molecular level. Various assessments indicate that this self-catalytic technique exhibits a reduced toxicity and volatility process, and a low treatment cost (0.47 $/m3). This technology has strong environmental tolerance, especially for the high concentrations of chlorine ion (1775 ppm) and humic acid (50 ppm). Moreover, it not only exhibits excellent degradation performance for different amine organics but also for the coexisting common pollutants including ofloxacin, phenol, and sulforaphane. These results fully demonstrate the superiority of the proposed strategy for practical application in wastewater treatment. Overall, this autocatalysis technology based on the in-situ construction of metal-free active site by regulating proton transfer will provide a brand-new strategy for environmental remediation.
Collapse
Affiliation(s)
- Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yanan Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiang Wang
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Penghui Du
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Lei Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Weichao Xu
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jincheng Ni
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuai Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yihao Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guangfei Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qin Dai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
49
|
Ding C, Lu Y, Xiang M, Wu F, Chen P, Gan W, Guo J, Li J, Ling Q, Zhao Z, Chen L, Zhang M, Sun Z. Internal electric field-assisted copper ions chelated polydopamine/titanium dioxide nano-thin film heterojunctions activate peroxymonosulfate under visible light to catalyze degradation of gatifloxacin: Theoretical calculations and biotoxicity analysis. J Colloid Interface Sci 2023; 646:275-289. [PMID: 37196501 DOI: 10.1016/j.jcis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
The combination of photocatalysis and peroxymonosulfate (PMS) activation is considered effective in treating organic pollutants in water; however, the photocatalysts currently used to activate PMS are primarily in powder form, which cause secondary contamination because they are difficult to recycle. In this study, copper-ion-chelated polydopamine/titanium dioxide (Cu-PDA/TiO2) nanofilm were prepared for PMS activation on fluorine-doped tin oxide substrates using hydrothermal and in-situ self-polymerization methods. The results showed that Cu-PDA/TiO2 + PMS + Vis degraded 94.8% of gatifloxacin (GAT) within 60 min, and the reaction rate constant reached 4.928 × 10-2 min-1, which was 6.25 and 4.04 folds higher than that of TiO2 + PMS + Vis (0.789 × 10-2 min-1) and PDA/TiO2 + PMS + Vis (1.219 × 10-2 min-1), respectively. The Cu-PDA/TiO2 nanofilm is easily recyclable and activates PMS to degrade GAT with no inferior performance, unlike the powder-based photocatalysts, and simultaneously maintains outstanding stability, which is highly suitable for applications in real aqueous environments. Biotoxicity experiments were conducted using E. coli, S. aureus, and mung bean sprouts as experimental subjects, and the results showed that the Cu-PDA/TiO2 + PMS + Vis system had excellent detoxification ability. In addition, a detailed investigation of the formation mechanism of step-scheme (S-scheme) Cu-PDA/TiO2 nanofilm heterojunctions was conducted by density functional theory (DFT) calculations and in-situ X-ray photoelectron spectroscopy (XPS). Finally, a specific process for activating PMS to degrade GAT was proposed, which provides a novel photocatalysts for practical applications in aqueous pollution.
Collapse
Affiliation(s)
- Chunsheng Ding
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Yuqing Lu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Ming Xiang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Fen Wu
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Peng Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Wei Gan
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Jun Guo
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Jianrou Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Qi Ling
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Ziwei Zhao
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Lei Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life sciences, Anhui University, Hefei, Anhui 230601, PR China.
| | - Miao Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China.
| | - Zhaoqi Sun
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
50
|
Cheng C, Chang L, Zhang X, Deng Q, Chai H, Huang Y. Interface engineering-induced perovskite/spinel LaCoO 3/Co 3O 4 heterostructured nanocomposites for efficient peroxymonosulfate activation to degrade levofloxacin. ENVIRONMENTAL RESEARCH 2023; 229:115994. [PMID: 37105283 DOI: 10.1016/j.envres.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Conventional perovskite oxides (ABO3) tend to suffer from their inactive surfaces and limited active sites that reduce their catalytic activity and stability, while interface engineering is a facile modulating technique to boost the catalyst's inherent activity by constructing heterogeneous interfaces. In this study, perovskite/spinel LaCoO3/Co3O4 nanocomposites with heterogeneous interfaces were synthesized via sol-gel and in-situ gradient etching methods to activate peroxymonosulfate (PMS) for degrading levofloxacin (LEV). LaCoO3 on the surface was etched into spinel Co3O4, and LaCoO3/Co3O4 nanocomposites with two crystal structures of perovskite and spinel were successfully formed. The surface-modified LaCoO3/Co3O4 exhibited superior catalytic performance with a reaction rate constant more than 2 times that of the original LaCoO3, as well as excellent pH adaptability (3-11) and reusability (more than 6 recyclings) for LEV degradation. Besides, multiple characterization techniques were carried out to find that LaCoO3/Co3O4 possessed a larger specific surface area and richer oxygen vacancies after surface modification, which provided more active sites and accelerated mass transfer rate. The mechanism of reactive oxygen species involved in the reaction system was proposed that LaCoO3/Co3O4 not only reacted with PMS directly to produce SO4•- and •OH but also its surface hydroxyl group helped to form the [≡Co(Ⅲ)OOSO3]+ reactive complex with PMS to produce O2•- and 1O2. In addition, electrochemical experiments demonstrated that the surface electronic structure of LaCoO3/Co3O4 was effectively regulated, exhibiting a faster electron transfer rate and facilitating the redox process. By detecting and identifying degradation intermediates, three degradation pathways for LEV were proposed. Our work provided profound insights into the design of efficient and long-lasting catalysts for advanced oxidation processes.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lian Chang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qingchen Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|