1
|
Zhong H, Chen J, Hu Y, Chen J, Shao T, Liao J. Probing photoreactions of individual suspended carbonaceous aerosols by multi-wavelength OT-SERS. Phys Chem Chem Phys 2025. [PMID: 40424028 DOI: 10.1039/d5cp01319d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
This work reports the first application of multi-wavelength optical trapping surface-enhanced Raman spectroscopy (OT-SERS) for in situ probing of photochemical reactions on individual suspended aerosol particles. A composite aerosol model (4-MBA/silver nanoparticles/activated carbon) with a size ranging from 2 to 10 μm, comparable to the particle sizes of PM2.5 and PM10, was designed to validate the ability of OT-SERS to probe interfacial photoreactions on aerosols. By integrating non-contact optical trapping with SERS detection, we directly monitored the interfacial photoreactions occurring on suspended composite particles under laser irradiation at wavelengths of 473, 589 and 671 nm. Under 473 nm irradiation, the temporal OT-SERS spectra showed dynamic intermediate formation and aromatic ring cleavage, which were attributed to the photooxidations induced by activated carbon. In the experiments involving 589 nm irradiation, relatively weak photooxidations were observed compared to those under 473 nm irradiation. Among the three wavelengths (473, 589 and 671 nm), the irradiation at 671 nm resulted in the weakest photooxidation. OT-SERS was successfully employed for in situ detection of the photooxidation process on the composite particles, which confirmed the formation of hydroxylated intermediates and the cleavage of benzene rings caused by photooxidation.
Collapse
Affiliation(s)
- Hang Zhong
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China.
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China.
| | - Yi Hu
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China.
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China.
| | - Tao Shao
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China.
| | - Junsheng Liao
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
2
|
Wang C, Chen R, Liu W, Yu J, Liu Q, Liu J, Zhu J, Lin C, Li Y, Wang J. Electron-Withdrawing Effects for Tailoring Oxidative-Stress-Mediated Coating in Marine Antifouling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20438-20451. [PMID: 40123055 DOI: 10.1021/acsami.5c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Oxidative stress derived from excess reactive oxygen radicals (ROS) induces cellular damage, apoptosis, and necrosis, thus effective biofouling control by directly inhibiting primary membrane formation. However, the oxidative stress produced that does not rely on additional energy still is a challenge. Herein, an oxidative-stress-mediated marine antifouling polyurea coating is prepared leveraging the strong electron absorption effect of C═N. Given the structure of the urethane bond, the reversible reaction energy barrier of the dynamic urethane bond can be reduced, thereby enabling the urethane bond to be broken without the need for additional energy. The alkyl radical (R·) originating from the oxime-urethane bond can mediate the induction of oxidative stress in cells and microbial death, thus preserving exceptional antifouling properties and resisting most of the organism to adhere on the substrates. Notably, the coating indicates satisfactory antibacterial and antialgae performance and exhibits 8 months of marine field antifouling performance. In addition, the electron structure is investigated by theoretical calculation, and the interface behavior is investigated by molecular dynamics simulation. This work presents a pioneering example of the construction of oxidative-stress-mediated coating, which might be a judicious design strategy for an environmentally friendly marine antifouling coating.
Collapse
Affiliation(s)
- Chao Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Wenbin Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
3
|
Zhu J, Wu S, Yue H, Gao E, Wang W, Li J, Wu Z, Yao S. Enhanced oxidative potential and SO 2 heterogeneous oxidation on candle soot after photochemical aging: Influencing mechanisms of different irradiation wavelengths. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125583. [PMID: 39725206 DOI: 10.1016/j.envpol.2024.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Photochemistry plays a significant role in the atmospheric aging processes of soot. However, the physicochemical properties and changes in environmental and health effects of soot particles from sacrificial sources after photochemical aging remain unclear. The reaction mechanisms of soot under different irradiation wavelengths require further investigation. In this study, candle soot from sacrificial sources was subjected to photochemical aging using ultraviolet (UV) and visible light. The experimental results of oxidation potential (OP) and heterogeneous oxidation of sulfur dioxide (SO2) indicated that both UV and visible light promoted the photooxidation of candle soot, leading to significant increases in oxygen-containing functional groups, environmentally persistent free radicals, and negative charges on soot surfaces. After photochemical aging, candle soot exhibited higher OP values and enhanced SO2 oxidation and sulfate formation. UV light had a stronger photooxidation ability on candle soot than visible light. Mechanistic analysis revealed that the photochemical aging mechanisms driven by reactive oxygen species were different under these two wavelengths. Photosensitive aging induced by organic carbon under UV light was stronger than the photocatalytic oxidation induced by element carbon under visible light. Our research findings provided new insights into the photochemical aging mechanisms and health impacts of soot.
Collapse
Affiliation(s)
- Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China.
| | - Shuang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China
| | - Hongxing Yue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China.
| |
Collapse
|
4
|
Chen X, Wu D, Tan Y, Song X, Chen J, Li Q. Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:668-678. [PMID: 39730302 DOI: 10.1021/acs.est.4c11256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM2.5) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion. EC contributes approximately 1 order of magnitude less to PM2.5 toxicity than PAHs, despite its positive associations with PM2.5-induced toxic potency (p < 0.0001). Furthermore, PAHs contribute 71.9 ± 12.2% and 61.9 ± 32.8% of the overall toxic potency of PM2.5 emitted from typical incomplete burning of solid and liquid fuels, respectively, while the PM2.5 toxicity significantly correlates with PAHs content (r = 0.94, p = 0.002). Hence, EC is not a cause of inducing acute toxicity, likely attributed to coemitted PAHs. These findings provide causal evidence for understanding the respiratory health risks associated with exposure to PM2.5 and further benefit to establishing efficient air pollution control policies.
Collapse
Affiliation(s)
- Xiu Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yifei Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiwen Song
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Zhang Q, Wang S, Chen X, Song X, Wu D, Qian J, Qin Z, Zhang H, Li Q, Chen J. Unequal toxic effects of size-segregated single particles emitted from typical industrial plants, vehicles, and road dust. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136419. [PMID: 39522209 DOI: 10.1016/j.jhazmat.2024.136419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The health risks of particulate matters (PMs) associated with their chemical components and sizes have attracted increasing attention. However, the toxic effect of critical toxic components in size-segregated PMs from specific emission source remains unclear. We present the toxicity of size-segregated elements in PMs via integrating toxic analysis and online single-particle measurements of real-world industrial plants, vehicles, and road dust. The number fractions of elemental carbon (EC)- and Fe-containing particles were 5-11 and 3-12 folds greater than those of other metal-containing particles, respectively. A unimodal distribution with the peak at 0.4 µm was observed for the toxic metals emitted from industrial plants and road dust, while the distribution was relatively flat for vehicles. When integrating the abundance with toxicity of metals, especially Mn, Cu, V, and Fe, the peak for PM toxicity occurred at 0.4 µm for road dust, 0.4-0.7 µm for industrial plants, and 0.8 µm for vehicle-emitted PM. The inhalation risk in the alveolar region increased for these source-emitted PMs due to the efficient deposition of toxic PMs within 0.4-0.8 µm. These results reveal the complex coupling of health risks and size distributions of PMs, and further highlight that the health-oriented control of air pollution should consider PM1.
Collapse
Affiliation(s)
- Qi Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shuibing Wang
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Xiu Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiwen Song
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St, Toronto, Ontario M3H 5T4, Canada
| | - Jing Qian
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Zhiyong Qin
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Hong Zhang
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Tang R, Cao J, Shang J, Kuang Y, Geng H, Qiu X. Coupling Effect of Elemental Carbon and Organic Carbon on the Changes of Optical Properties and Oxidative Potential of Soot Particles under Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19832-19842. [PMID: 39431524 DOI: 10.1021/acs.est.4c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Soot particles, coming from the incomplete combustion of fossil or biomass fuels, feature a core-shell structure with inner elemental carbon (EC) and outer organic carbon (OC). Both EC and OC are known to be photoactive under solar radiation. However, research on their coupling effect during photochemical aging remains limited. This study examines how the optical properties and oxidative potential (OP) of wood, coal, and diesel soot particles with varying EC and OC levels are affected by exposure to visible light. Wood soot, which has the highest OC content, showed the most significant changes in both optical properties and OP, indicating its highest sensitivity to visible light aging. Molecular composition analysis revealed that the reduction of polycyclic aromatic hydrocarbons (PAHs) and methyl-PAHs primarily affects the optical properties, while oxygenated PAHs play a major role in OP. Combined with the results from reactive oxygen species detection, it is suggested that EC initiates photoreactions by generating superoxide anions, while OC undergoes compositional changes that result in subsequent atmospheric effects. These findings enhance our understanding of the photochemical aging process of soot particles and their implications for climate and health.
Collapse
Affiliation(s)
- Rui Tang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jiong Cao
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yu Kuang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xinghua Qiu
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Wang Q, Chen Q, Lin H, Ding J, Sha T, Han Y. Investigation of the Mechanism of Oxidative Potential Increase in Atmospheric Particulate Matter during Photoaging: Important Role of Aromatic Nitrogenous Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19818-19831. [PMID: 39436324 DOI: 10.1021/acs.est.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Particulate matter (PM) undergoing various aging processes in the atmosphere changes its toxicity. However, the mechanism of toxicity evolution is not fully clarified currently. This study demonstrates that photoaging promotes an increase in the oxidative potential (OP) of atmospheric PM by about 30%, and the increased OP is mainly attributed to the production of secondary organic compounds, while water-soluble metal ions contribute only 11%. The OP of nonextractable matters (NEMs) of atmospheric PM was mostly increased after photoaging, followed by water-soluble matters (WSMs). NEM can produce quinone-like functional groups and secondary persistent free radicals during photoaging, which are most likely to produce reactive oxygen species (ROS). For WSM, the conversion of low-oxidation humic-like substances (HULIS) to high-oxidation HULIS is the main reason for the increase in OP. Quinones, nitrophenols, and N-containing heterocycles are the OP contributors produced during the conversion process. Among them, quinones are the main secondary oxidizing active compounds, while nitro-phenolic compounds and N-containing heterocyclic compounds may play a catalyst-like role, facilitating the production of oxidizing active compounds and ROS in the newly converted high-oxidation HULIS. This study clarifies the secondary OP generation mechanism and provides new insights into the uncertainty of PM toxicity during atmospheric aging.
Collapse
Affiliation(s)
- Qingwen Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hao Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiale Ding
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuemei Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
8
|
Lian F, Xing B. From Bulk to Nano: Formation, Features, and Functions of Nano-Black Carbon in Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15910-15925. [PMID: 39189123 DOI: 10.1021/acs.est.4c07027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Globally increasing wildfires and widespread applications of biochar have led to a growing amount of black carbon (BC) entering terrestrial ecosystems. The significance of BC in carbon sequestration, environmental remediation, and the agricultural industry has long been recognized. However, the formation, features, and environmental functions of nanosized BC, which is one of the most active fractions in the BC continuum during global climate change, are poorly understood. This review highlights the formation, surface reactivity (sorption, redox, and heteroaggregation), biotic, and abiotic transformations of nano-BC, and its major differences compared to other fractions of BC and engineered carbon nanomaterials. Potential applications of nano-BC including suspending agent, soil amendment, and nanofertilizer are elucidated based on its unique properties and functions. Future studies are suggested to develop more reliable detection techniques to provide multidimensional information on nano-BC in environmental samples, explore the critical role of nano-BC in promoting soil and planetary health from a one health perspective, and extend the multifield applications of nano-BC with a lower environmental footprint but higher efficiency.
Collapse
Affiliation(s)
- Fei Lian
- Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Edwards KC, Kapur S, Fang T, Cesler-Maloney M, Yang Y, Holen AL, Wu J, Robinson ES, DeCarlo PF, Pratt KA, Weber RJ, Simpson WR, Shiraiwa M. Residential Wood Burning and Vehicle Emissions as Major Sources of Environmentally Persistent Free Radicals in Fairbanks, Alaska. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14293-14305. [PMID: 39093591 PMCID: PMC11325652 DOI: 10.1021/acs.est.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Environmentally persistent free radicals (EPFRs) play an important role in aerosol effects on air quality and public health, but their atmospheric abundance and sources are poorly understood. We measured EPFRs contained in PM2.5 collected in Fairbanks, Alaska, in winter 2022. We find that EPFR concentrations were enhanced during surface-based inversion and correlate strongly with incomplete combustion markers, including carbon monoxide and elemental carbon (R2 > 0.75). EPFRs exhibit moderately good correlations with PAHs, biomass burning organic aerosols, and potassium (R2 > 0.4). We also observe strong correlations of EPFRs with hydrocarbon-like organic aerosols, Fe and Ti (R2 > 0.6), and single-particle mass spectrometry measurements reveal internal mixing of PAHs, with potassium and iron. These results suggest that residential wood burning and vehicle tailpipes are major sources of EPFRs and nontailpipe emissions, such as brake wear and road dust, may contribute to the stabilization of EPFRs. Exposure to the observed EPFR concentrations (18 ± 12 pmol m-3) would be equivalent to smoking ∼0.4-1 cigarette daily. Very strong correlations (R2 > 0.8) of EPFR with hydroxyl radical formation in surrogate lung fluid indicate that exposure to EPFRs may induce oxidative stress in the human respiratory tract.
Collapse
Affiliation(s)
- Kasey C Edwards
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sukriti Kapur
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Meeta Cesler-Maloney
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Fairbanks, Alaska 99775, United States
| | - Yuhan Yang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew L Holen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Judy Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ellis S Robinson
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Kerri A Pratt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William R Simpson
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Fairbanks, Alaska 99775, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
10
|
Sun P, Guo X, Ding E, Li C, Ren H, Xu Y, Qian J, Deng F, Shi W, Dong H, Lin EZ, Guo P, Fang J, Zhang Q, Zhao W, Tong S, Lu X, Pollitt KJG, Shi X, Tang S. Association between Personal Abiotic Airborne Exposures and Body Composition Changes among Healthy Adults (60-69 Years Old): A Combined Exposome-Wide and Lipidome Mediation Approach from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77005. [PMID: 39028628 PMCID: PMC11259245 DOI: 10.1289/ehp13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/25/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Evidence suggested that abiotic airborne exposures may be associated with changes in body composition. However, more evidence is needed to identify key pollutants linked to adverse health effects and their underlying biomolecular mechanisms, particularly in sensitive older adults. OBJECTIVES Our research aimed to systematically assess the relationship between abiotic airborne exposures and changes in body composition among healthy older adults, as well as the potential mediating mechanisms through the serum lipidome. METHODS From September 2018 to January 2019, we conducted a monthly survey among 76 healthy adults (60-69 years old) in the China Biomarkers of Air Pollutant Exposure (BAPE) study, measuring their personal exposures to 632 abiotic airborne pollutions using MicroPEM and the Fresh Air wristband, 18 body composition indicators from the InBody 770 device, and lipidomics from venous blood samples. We used an exposome-wide association study (ExWAS) and deletion/substitution/addition (DSA) model to unravel complex associations between exposure to contaminant mixtures and body composition, a Bayesian kernel machine regression (BKMR) model to assess the overall effect of key exposures on body composition, and mediation analysis to identify lipid intermediators. RESULTS The ExWAS and DSA model identified that 2,4,5-T methyl ester (2,4,5-TME), 9,10-Anthracenedione (ATQ), 4b,8-dimethyl-2-isopropylphenanthrene, and 4b,5,6,7,8,8a,9,10-octahydro-(DMIP) were associated with increased body fat mass (BFM), fat mass indicators (FMI), percent body fat (PBF), and visceral fat area (VFA) in healthy older adults [Bonferroni-Hochberg false discovery rate ( FD R BH ) < 0.05 ]. The BKMR model demonstrated a positive correlation between contaminants (anthracene, ATQ, copaene, di-epi-α -cedrene, and DMIP) with VFA. Mediation analysis revealed that phosphatidylcholine [PC, PC(16:1e/18:1), PC(16:2e/18:0)] and sphingolipid [SM, SM(d18:2/24:1)] mediated a significant portion, ranging from 12.27% to 26.03% (p-value < 0.05 ), of the observed increase in VFA. DISCUSSION Based on the evidence from multiple model results, ATQ and DMIP were statistically significantly associated with the increased VFA levels of healthy older adults, potentially regulated through lipid intermediators. These findings may have important implications for identifying potentially harmful environmental chemicals and developing targeted strategies for the control and prevention of chronic diseases in the future, particularly as the global population is rapidly aging. https://doi.org/10.1289/EHP13865.
Collapse
Affiliation(s)
- Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jiankun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Elizabeth Z. Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Wenhua Zhao
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Xie J, Latif J, Yang K, Wang Z, Zhu L, Yang H, Qin J, Ni Z, Jia H, Xin W, Li X. A state-of-art review on the redox activity of persistent free radicals in biochar. WATER RESEARCH 2024; 255:121516. [PMID: 38552490 DOI: 10.1016/j.watres.2024.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/24/2024]
Abstract
Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqiang Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lang Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jianjun Qin
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wang Xin
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| | - Xing Li
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| |
Collapse
|
12
|
Li J, Hua C, Ma L, Chen K, Zheng F, Chen Q, Bao X, Sun J, Xie R, Bianchi F, Kerminen VM, Petäjä T, Kulmala M, Liu Y. Key drivers of the oxidative potential of PM 2.5 in Beijing in the context of air quality improvement from 2018 to 2022. ENVIRONMENT INTERNATIONAL 2024; 187:108724. [PMID: 38735076 DOI: 10.1016/j.envint.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
The mass concentration of atmospheric particulate matter (PM) has been continuously decreasing in the Beijing-Tianjin-Hebei region. However, health endpoints do not exhibit a linear correlation with PM mass concentrations. Thus, it is urgent to clarify the prior toxicological components of PM to further improve air quality. In this study, we analyzed the long-term oxidative potential (OP) of water-soluble PM2.5, which is generally considered more effective in assessing hazardous exposure to PM in Beijing from 2018 to 2022 based on the dithiothreitol assay and identified the crucial drivers of the OP of PM2.5 based on online monitoring of air pollutants, receptor model, and random forest (RF) model. Our results indicate that dust, traffic, and biomass combustion are the main sources of the OP of PM2.5 in Beijing. The complex interactions of dust particles, black carbon, and gaseous pollutants (nitrogen dioxide and sulfur dioxide) are the main factors driving the OP evolution, in particular, leading to the abnormal rise of OP in Beijing in 2022. Our data shows that a higher OP is observed in winter and spring compared to summer and autumn. The diurnal variation of the OP is characterized by a declining trend from 0:00 to 14:00 and an increasing trend from 14:00 to 23:00. The spatial variation in OP of PM2.5 was observed as the OP in Beijing is lower than that in Shijiazhuang, while it is higher than that in Zhenjiang and Haikou, which is primarily influenced by the distribution of black carbon. Our results are of significance in identifying the key drivers influencing the OP of PM2.5 and provide new insights for advancing air quality improvement efforts with a focus on safeguarding human health in Beijing.
Collapse
Affiliation(s)
- Jinwen Li
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaiyun Chen
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolei Bao
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Juan Sun
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210019, China
| | - Rongfu Xie
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Xu Y, Lu X, Su G, Chen X, Meng J, Li Q, Wang C, Shi B. Scientific and regulatory challenges of environmentally persistent free radicals: From formation theory to risk prevention strategies. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131674. [PMID: 37236112 DOI: 10.1016/j.jhazmat.2023.131674] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
EPFRs (Environmentally Persistent Free Radicals) are a class of pollutants that have been identified as potential environmental contaminants due to their persistence and ability to generate reactive oxygen species (ROS) that can cause oxidative stress in living organisms. However, no study has comprehensively summarized the production conditions, influencing factors and toxic mechanisms of EPFRs, impeding exposure toxicity assessments and risk prevention strategies. To bridge the gap between theoretical research and practical application, a thorough literature review to summarize the formation, environmental effects, and biotoxicity of EPFRs are conducted. A total of 470 relevant papers were screened in Web of Science Core collection databases. The transfer of electrons between interfaces and the cleavage of covalent bonds of persistent organic pollutants is crucial to the generation of EPFRs, which is induced by external sources of energy, including thermal energy, light energy, transition metal ions, and others. In the thermal system, the stable covalent bond of organic matter can be destroyed by heat energy at low temperature to form EPFRs, while the formed EPFRs can be destroyed at high temperature. Light can also accelerate the production of free radicals and promote the degradation of organic matter. The persistence and stability of EPFRs are synergistically influenced by individual environmental factors such as environmental humidity, oxygen content, organic matter content, and environmental pH. Studying the formation mechanism of EPFRs and their biotoxicity is essential for fully understanding the hazards posed by these emerging environmental contaminants.
Collapse
Affiliation(s)
- Yulin Xu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Xie L, Zhu K, Jiang W, Lu H, Yang H, Deng Y, Jiang Y, Jia H. Toxic effects and primary source of the aged micro-sized artificial turf fragments and rubber particles: Comparative studies on laboratory photoaging and actual field sampling. ENVIRONMENT INTERNATIONAL 2022; 170:107663. [PMID: 36450210 DOI: 10.1016/j.envint.2022.107663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Numerous micro-sized artificial turf fragments (MATF) and rubber particles (MRP) are generated and accumulated during the use of the artificial playing field. However, attention has rarely been paid to the potential toxic effects of MATF and MRP on sportsmen. In this study, the active components and chemical composition of aged MATF and MRP derived from laboratory photoaging and actual field sampling were detected, and their effects on cytotoxicity were examined correspondingly. Laboratory photoaging significantly increased environmental persistent free radicals (EPFRs), reactive oxygen species (ROS) abundances and oxidative potential (OP) levels on MATF and MRP, but they have limited cytotoxicity. Unfortunately, in the actual field, aged MATF and MRP with higher heavy metals and polycyclic aromatic hydrocarbons (PAHs) contents exhibited markedly higher cytotoxicity with the survival rate of cells of 78 % and 26 % (p < 0.05), although they had lower EPFRs and ROS yields. Correlation analysis revealed that the cell viability was closely linked to heavy metals of MATF (p < 0.05), and to organic hydroperoxide (OHP), PAHs and heavy metals of MRP (p < 0.05). By systematically considering the above results, heavy metals and PAHs enriched on MATF and MRP from the surrounding environment played the important role in the cytotoxicity, which was different from conventional perspectives. Our findings demonstrate that MATF and MRP associated with an artificial turf field contain potent mixtures of pollutants and can, therefore, be relevant yet underestimated factors contributing to the health risks.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haodong Lu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|