1
|
Zhao H, Yin K, Yue Q, Yin W, Gao B, Gao Y. Layered clay confined single-atom catalyst for enhanced radical pathway to achieve ultrafast degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137971. [PMID: 40127521 DOI: 10.1016/j.jhazmat.2025.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025]
Abstract
Seeking a technically promising method and cost-effective material to synthesize carrier-supported single-atom catalysts has attracted on-going research interests to overcome the low productivity and high costs for their industrial application. Montmorillonite (MT), a natural silicate clay mineral, has specific two-dimensional layered structure, and could be an excellent carrier, which creates a unique microenvironment to enhance molecule adsorption and interfacial reactions within the single atoms, free radicals and pollutants in the heterogeneous catalytic system. We synthesized cobalt single-atom catalyst (Co-SAC) by ball milling MT and cobalt salt using surface and spatial confinement strategy. Co-SAC/MT catalyst was used to activate peroxymonosulfate for degrading emerging contaminants bisphenol A (BPA). Characterization results revealed that Co single atoms were confined in the interlayer of MT as Co-O6-Si. Co-SAC/MT catalyst demonstrated remarkable molecular interaction capabilities to shorten mass transfer distance of free radical diffusion to the target pollutants, enhance the utilization rate of free radicals, and thus improve the efficiency of oxidation reaction. The BPA solution was completely degraded in 3 min, with a mineralization rate of 75.7 % in 10 min. This study provides a simple and efficient method for the preparation of single-atom catalysts, which is expected to achieve large-scale production of single-atom catalysts.
Collapse
Affiliation(s)
- Han Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Kexin Yin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Yang Z, Xu X, Li Z, Liu C, Jiang J, Zhang S, Miao J, Liu W, Liu W, Zou Z, Li Z. Leveraging Polaron Effect for Solar-Driven Efficient Peroxymonosulfate Activation in Water Purification. Angew Chem Int Ed Engl 2025; 64:e202503901. [PMID: 40139965 DOI: 10.1002/anie.202503901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Peroxymonosulfate (PMS) represents a promising advanced oxidation technique for the treatment of refractory pollutants; however, its application is limited by high costs resulting from excessive usage due to low activation efficiency. In this study, we formulated a sunlight-driven Cu1-Ov/TiO2 catalyst with surface electron polaron sites to activate PMS for the degradation of contaminants, achieving a record reaction rate of k = 2.998 min-1 even with a low PMS dosage of 0.3 mM. The adsorption process and electron transfer kinetics were significantly enhanced with surface polaron sites in Cu1-Ov/TiO2, which facilitated the activation of PMS and increased the reaction rate constant k by 29.1 times compared with that of TiO2/PMS under illumination. Additionally, we verified that light irradiation promotes transfer from the non-free-radical pathway to the efficient free-radical pathway in mechanism of PMS activation. Our designed sunlight-driven flow-through PMS setup achieves a removal rate exceeding 90% for 7 days of outdoor operation at 3.2 × 102 L m-2 h-1, the feasibility of which is further proven in regions around the world by analysis of solar intensity. This study presents a demonstration of economical PMS application in water purification worldwide, with an estimated cost of 0.135 $ m-3.
Collapse
Affiliation(s)
- Zhetong Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Xiaoming Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhonghua Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Changhao Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Jingwen Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Shiyu Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Jiaming Miao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Wei Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Wangxi Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhaosheng Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P.R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
3
|
Kang H, Chen Y, Cheng M, Guo H, Zhang G, Shi Q, Zhou W, Zhao C, Zou B, Lv X, Yuan Z, Zeng G. State-Of-The-Art Structural Regulation Methods and Quantum Chemistry for Carbon-Based Single-Atom Catalysts in Advanced Oxidation Process: Critical Perspectives into Molecular Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505128. [PMID: 40401577 DOI: 10.1002/adma.202505128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advanced oxidation processes (AOPs) by carbon-based single-atom catalysts (SACs) are recognized as an attractive scientific frontier for water treatment, with the outstanding benefits of ultra-effective and anti-interference capability. However, most of the research has paid more attention to the performance of SACs, while the in-depth understanding of catalytic regulation by molecular interaction is relatively deficient. This critical review delves into deciphering the catalytic mechanism through a micro-level, which makes it more convenient to interpret apparent catalytic phenomena. It first summarizes basic theories of quantum chemistry, which provide mechanism interpretation and prediction for molecular-oxidation systems. Additionally, corresponding oxidation pathways of common oxidants are underscored. Following the oxidants, state-of-the-art regulation methods are discussed with special attention to involved molecular interactions and pollutants. Particularly, the preliminary insights into the "oxidant-catalyst-pollutants" internal relationships are provided to help construct the SAC-AOP system from a molecular standpoint. Meanwhile, some cutting-edge laboratory devices and pilot-scale engineering are presented to illustrate the ultimate purpose of scientific molecular exploration. Eventually, relative challenges of SACs-AOPs upon the design of catalytic systems and investigation methods are provided. This review aims to promote the large-scale potential of SACs-based AOPs in practical water treatment by emphasizing the pivotal role of micro-insights.
Collapse
Affiliation(s)
- Huayue Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingkai Shi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wencheng Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bin Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xinyue Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ziyue Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
4
|
Zhao H, Xu X, Cui W, Geng L, Peng X, Yang J, Shao X, Liu Y. Synchronization Strategy for Activity and Stability in Fenton-Like Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503217. [PMID: 40317533 DOI: 10.1002/adma.202503217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Indexed: 05/07/2025]
Abstract
Single-atom catalysts (SACs) have garnered significant attention in the applications of environmental remediation based on Fenton-like systems. Current research on Fenton-like single-atom catalysis often emphasizes catalytic activity and mechanism regulation, while paying limited attention to the simultaneous enhancement of both activity and stability-a critical factor for the practical and scale-up applications of SACs. This review systematically summarizes recent advances in synchronization strategies for improving the activity and stability of Fenton-like single-atom catalysis, with a focus on the design principles and mechanisms of four key strategies: coordination engineering, confinement effects, carrier substitution, and catalytic module design. To the best of knowledge, this represents the first comprehensive review of Fenton-like single-atom catalysis from the perspective of concurrent optimization of activity and stability. Additionally, the auxiliary role of machine learning and lifecycle assessment (LCA) is evaluated in advancing these synchronization strategies. By investigating the interplay among different support materials, coordination configurations, and reaction environments, as well as enlarged modules, key factors governing the stability/activity of SACs are highlighted, and future directions are proposed for developing next-generation catalysts with high efficiency and long-term durability for practical environmental remediation.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, P. R. China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wenquan Cui
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, P. R. China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, P. R. China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Xianzhao Shao
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, P. R. China
| | - Yanbiao Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
5
|
Zhao Y, Chen L, Tang F, Zhang L, Yang Q, Yang X. Boosting peroxymonosulfate activation for complete removal of gatifloxacin by a bead-chain zeolitic imidazolate framework composite. J Colloid Interface Sci 2025; 685:116-128. [PMID: 39837247 DOI: 10.1016/j.jcis.2025.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO2) nanowires. The prepared catalyst MnO2@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO2@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased. Furthermore, the removal efficiency was maintained above 90 % throughout a wide pH range (3-11) and in the coexistence of anions ( [Formula: see text] , Cl-, SO42-). The main mechanism of the MnO2@ZIF-2/PMS system involves the synergistic effect of radicals and non-radicals (single linear oxygen and electron-mediated transfer), making the system highly resistant to interference from environmental matrices. Moreover, the GAT degradation pathway was elucidated through intermediate analysis and theoretical calculations. In particular, MnO2@ZIF-2 was well dispersed on a microporous filter membrane to create an immobilized membrane reactor that displayed excellent catalytic performance for the continuous degradation of GAT for 300 min. This work offers an avenue for the design of catalysts with good catalytic activity, particularly for PMS activation in antibiotic wastewater remediation.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Lianfang Chen
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China.
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Qiang Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China.
| |
Collapse
|
6
|
Ge L, Guo Y, Xie Q, Yang Y, Zhang P, Wang J, Zhu Y. Aquatic photochemistry for different dissociation forms of cephalosporin antibiotics: Degradation kinetics, products and photo-modified toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125926. [PMID: 40010586 DOI: 10.1016/j.envpol.2025.125926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Cephalosporin antibiotics (CFs) with ionizable groups (-COOH and -NHn) are widely detected as emerging micropollutants that pose potential environmental risks to aquatic systems, but few studies have revealed their multivariate photochemical transformation behavior in sunlight-irradiated surface waters. In this study, the apparent photodegradation, photo-oxidation towards reactive oxygen species (ROS, •OH and 1O2), and photo-modified toxicity were investigated for the four ionizable CFs: cefoxitin (CFX), cephalothin (CEF), cefoperazone (CFP) and cefazolin (CFZ). Under simulated sunlight irradiation (λ > 290 nm), their multivariate photo-transformation kinetics varied as a function of pHs and the dominant protonated states of the CF in question (H2CFs+, HCFs0 and CFs-). Based on competition kinetics and matrix deconvolution methods, the apparent photolytic rate constants (ki) of different dissociation forms were found to decrease gradually from H2CFs+ to CFs- then to HCFs0, which was dominated by the changing cumulative light absorption (∑(Lλελ,i)) for the different dissociated forms. Interestingly, it was observed that the H2CFs+ or CFs- exhibited higher reactivities towards •OH, while CFs- demonstrated the fastest reaction with 1O2. Using the theoretical derivation, the determined environmental half-lives of the CFs in sunlight-irradiated surface waters were closely dependent on the water pHs and multiple photochemical reaction types. In most cases, apparent photodegradation contributes more than ROS mediated photooxidation to the overall photo-transformation of CFs. The product identification using HPLC-MS/MS indicated that the photodegradation pathways mainly involved photoinduced hydrolysis of the β-lactam ring, cleavage of the side-chain, and decarboxylation. Based on the bioassay to Vibrio fischeri, the most CFs showed photo-enhanced toxicity, which was verified by the ECOSAR assessment, raising concerns about the formation and accumulation of more toxic intermediates. These results are of significance to better assessing the photochemical persistence and risk of the CFs in the aquatic systems and wastewater treatment.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yadi Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jiahong Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
7
|
Wang Z, Zhang M, Wang J, Kakavandi B, Niu J, Li WW, Bao Y. ZIF-Derived Catalyst with Co-Co/Co-N Dual Active Sites for Boosting Mixed Pathway Decontamination in Fenton-like Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7389-7398. [PMID: 40179016 DOI: 10.1021/acs.est.4c12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Pollutant degradation via radical-nonradical mixed pathways offers opportunities to break the reactivity-stability trade-off in heterogeneous Fenton-like catalysis for water treatment; however, a precise catalyst design to enforce such mixed pathways remains challenging. Herein, by using bimetallic ZIFs as the precursor, we fabricated a cobalt (Co)-based catalyst (Co0.75Zn0.25-NC) with dual active sites for peroxymonosulfate (PMS) activation, where the Co-Co site and Co-N site preferentially catalyze the sulfate radicals and single oxygen generation, respectively. The system exhibited superior pollutant degradation activity, especially for the lectron-rich pollutants like tetracycline, high PMS utilization efficiency, negligible interference by the complicated water matrix, and good adaptation to broad pH and water quality conditions. A stable operation of the corresponding catalytic ceramic membrane was also demonstrated, achieving ∼70% pollutant removal during the long-term continuous-flow operation. This work offers valuable references to guide the Fenton-like catalyst design toward sustainable and low-carbon water purification applications.
Collapse
Affiliation(s)
- Zhengkun Wang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Menglu Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Jingfang Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Babak Kakavandi
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj 3198764653, Iran
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wen-Wei Li
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Li S, Zhang Y, Zhou J, Qiao S. Enhancing 1O 2 Generation Performance by Regulating C and N Coordination for Efficient Fenton-Like Catalytic Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411230. [PMID: 40091301 DOI: 10.1002/smll.202411230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Indexed: 03/19/2025]
Abstract
Singlet oxygen (1O2), a vital reactive species, exhibits excellent organic pollutant degradation selectivity in Fenton-like reactions. Recognizing and controlling the structure-activity relationship of single-atom catalysts (SACs) is essential to achieving the highly efficient and selective generation of 1O2 for various practical applications. Here, three iron single-atom catalysts with different coordination configurations (FeSAC─N4, FeSAC─N3-C1, and FeSAC─N2─C2) are prepared to modulate the selective generation of 1O2 by activating peroxymonosulfate (PMS). Replacing N coordinated to Fe atoms with C increases 1O2 selective generation thus enhancing the Fenton-like reaction activity. Specifically, FeSAC─N2─C2 presents the optimal catalytic activity, high stability, and environmental tolerance. Moreover, the 1O2 selectivity increases as the N coordination number decreases, which is in the order of FeSAC─N4 (73%) < FeSAC─N3─C1 (82%) < FeSAC─N2─C2 (90%). DFT calculations demonstrate that replacing N with C enhances the electrophilicity and electron transfer capacity, optimizes the d-band center, facilitates reactant adsorption, and reduces the energy barrier, thus facilitating 1O2 production and enhancing the Fenton-like reaction activity. This study reveals the underlying catalytic trends and mechanisms of catalyst structure-activity relationships for high selective generation of 1O2 by PMS activation, thus providing guidance for developing catalysts capable of highly selective organic pollutant degradation.
Collapse
Affiliation(s)
- Shuangli Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Chen T, Zhang G, Sun H, Hua Y, Yang S, Zhou D, Di H, Xiong Y, Hou S, Xu H, Zhang L. Robust Fe-N 4-C 6O 2 single atom sites for efficient PMS activation and enhanced Fe IV = O reactivity. Nat Commun 2025; 16:2402. [PMID: 40064929 PMCID: PMC11894199 DOI: 10.1038/s41467-025-57643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The microenvironment regulation of Fe-N4 single atom catalysts (SACs) critically governs peroxymonosulfate (PMS) activation. Although conventional heteroatom substitution in primary coordination enhances activity, it disrupts Fe-N4 symmetry and compromises stability. Herein, we propose oxygen doping in the secondary coordination shell to construct Fe-N4-C6O2 SAC, which amplifies the localized electric field while preserving the pristine coordination symmetry, thus trading off its activity and stability. This approach suppresses Fe-N bond structural deformation (bond amplitude reduced from 0.875-3.175 Å to 0.925-2.975 Å) during PMS activation by lowering Fe center electron density to strengthen Fe-N bond, achieving extended catalytic durability (>240 h). Simultaneously, the weakened coordination field lowers the Fe=O σ* orbital energy, promoting electrophilic σ-attack of high-valent iron-oxo towards bisphenol A, and increasing its degradation rate by 41.6-fold. This work demonstrates secondary coordination engineering as a viable strategy to resolve the activity-stability trade-off in SAC design, offering promising perspectives for developing environmental catalysts.
Collapse
Affiliation(s)
- Tiantian Chen
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Ganbing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry; Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules; College of Chemistry and Chemical Engineering, Hubei University, Wuhan, PR China.
| | - Hongwei Sun
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yetong Hua
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Shu Yang
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Dandan Zhou
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Haoxin Di
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yiling Xiong
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Shenghuai Hou
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Hui Xu
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, National observation and Research Station of Erhai Lake Ecosystem in Yunnan, Yunnan Dali Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
10
|
Wang X, Li T, Fan Z, Duan P, Wang L, Pan J, Gao B. Redox potentials of sulfonamide antibiotics mediating the electron transfer process in single-atom Cu catalyst/peroxymonosulfate system: Selective removal mechanisms for sulfonamides. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136880. [PMID: 39673949 DOI: 10.1016/j.jhazmat.2024.136880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
The oxidative behaviors of target pollutants in single-atom catalysts-activated peroxymonosulfate (SACs/PMS) system has mostly been studied from the loaded metal and coordination structure of SACs. However, the origin of the altered degradation behavior caused by the specific properties of pollutants has been neglected. Herein, Cu atoms coordinated with four N atoms embedded in biochar (CuSA30@C) was prepared to establish the relationship between the selective degradation behavior of sulfonamide antibiotics in CuSA30@C/PMS system and their own properties. Four representative sulfonamide pollutants (SAs) were selected and their redox potentials were determined by measuring half-wave potentials (φ1/2). Results showed that a good correlation (R2=0.916) between the φ1/2 values of different SAs and their corresponding degradation rate constants (kobs) in CuSA30@C/PMS system was established. Additionally, the φ1/2 values of SAs correlate well with the energy gap between SAs and the CuSA30@C/PMS complexes, further proving that the redox potential of SAs played a crucial role for electron-transfer oxidation in CuSA30@C/PMS system. This work contributes to the understanding of the selective degradation activity of sulfonamide antibiotics in Fenton-like systems from the perspective of pollutants properties, and provides new ideas for the efficient treatment of sulfonamide antibiotic wastewater.
Collapse
Affiliation(s)
- Xinyuan Wang
- College of Environment and Safety Engineering, Key Laboratory of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Taozhen Li
- College of Environment and Safety Engineering, Key Laboratory of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zihao Fan
- College of Environment and Safety Engineering, Key Laboratory of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Pijun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lei Wang
- College of Environment and Safety Engineering, Key Laboratory of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingwen Pan
- College of Environment and Safety Engineering, Key Laboratory of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
11
|
Sun Q, Deng H, Zhao N, You J, Pan Z, Xing B, Ye Y, Lai B, Yang X, Wang X, Lu Y, Li J, Fu Y, Liu X. N-doped carbon nanotubes encapsulated Ni 3ZnC 0.7 nanoparticles catalyst for peroxymonosulfate activation: Heterojunction structure and N-doping enhance electron transfer capability. CHEMOSPHERE 2025; 373:144110. [PMID: 39908849 DOI: 10.1016/j.chemosphere.2025.144110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
In this paper, a type of N-doped carbon nanotube-coated Ni3ZnC0.7 metal nanoparticle heterostructure catalyst (NZC-C-700) was prepared by two-step roasting method and applied to depredate bisphenol A (BPA) with peroxymonosulfate (PMS) activation. Characterizations and first principles calculation (DFT) reveal that the heterostructure formed by the graphite carbon layer and Ni3ZnC0.7 metal nanoparticles, coupled with various N doping, can effectively modulate surface charge distribution, which could improve charge transfer capability between the catalyst and PMS. Meanwhile, the results of quenching experiments, electron paramagnetic resonance (EPR) and chronoamperometry proposed that the system is a typical singlet oxygen (1O2) -dominated non-radical pathway. Moreover, the NZC-C-700/PMS system has strong salt tolerance, high selectivity, and good practical application prospects. Finally, the results of LC-QTOF-MS/MS analysis proposed two possible paths of BPA degradation in the system. This work will provide a novel treatment process for organic wastewater purification.
Collapse
Affiliation(s)
- Qihao Sun
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Huiyuan Deng
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Na Zhao
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Junjie You
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Zhicheng Pan
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group Co.,Ltd, Chengdu, 610041, China
| | - Bo Xing
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yuling Ye
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Xinye Yang
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xinjie Wang
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yunhui Lu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Jian Li
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yi Fu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xiaonan Liu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, China; Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, China.
| |
Collapse
|
12
|
Pei J, Liu J, Fu K, Fu Y, Yin K, Luo S, Yu D, Xing M, Luo J. Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions. Nat Commun 2025; 16:800. [PMID: 39824821 PMCID: PMC11742696 DOI: 10.1038/s41467-025-56246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon. This electron transfer is followed by a deprotonation process that generates the peroxymonosulfate radical (SO5•-). Subsequently, the SO5•- radical undergoes a disproportionation reaction, leading to the production of singlet oxygen (1O2). Furthermore, the energy barrier for the rate-limiting step of SO5•- generation in I-NC is significantly lower at 1.45 eV, compared to 1.65 eV in the NC scaffold. This reduction in energy barrier effectively overcomes kinetic obstacles, thereby facilitating an enhanced generation of 1O2. Consequently, the I-NC catalyst exhibits remarkable catalytic efficiency and unmatched reactivity for PMS activation. This leads to a significantly accelerated degradation of pollutants, evidenced by a relatively high observed kinetic rate constant (kobs ~ 0.436 min-1) compared to other metallic SACs. This study offers valuable insights into the rational design of effective non-metallic SACs, showcasing their promising potential for Fenton-like reactions in water treatment applications.
Collapse
Affiliation(s)
- Junjun Pei
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, P.R. China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Shenglian Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
13
|
Xu H, Cao L, Yu Y, Li Y, Liu X, Mao C, Zhang L. Phosphate modified nanoarchitectonics for promoted photocatalytic singlet oxygen generation and carbamazepine degradation of (010) facet-exposed BiOCl. J Colloid Interface Sci 2025; 678:1012-1021. [PMID: 39326162 DOI: 10.1016/j.jcis.2024.09.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
1O2 generation over (001) or (010) facet exposed BiOCl (B001 or B010) with/without phosphate modification were studied from the aspects of excitons involved energy transfer route, the O2- oxidation based charge transfer route and the H2O2 oxidation by HClO. Phosphate modification not only enhance charge separation thus result in H2O2 oxidation by HClO to release 1O2 but also weaken excitonic effect in the confined layer of BiOCl accordingly affect 1O2 generation via energy transfer. Considering [001] orientation favors the formation of excitons than that of [010] direction over BiOCl, excitons loss was hardly compensated by the H2O2 oxidation by HClO for 1O2 generation over phosphate modified B001. Nevertheless, limited excitonic effect makes the O2- oxidation by h+ via charge transfer as dominant route for 1O2 yielding over B010, the extra H2O2 oxidation with HClO after phosphate modification significantly enhance 1O2 generation over B010 followed with 2.2 times higher carbamazepine photodegradation activity. The initial attack of CC bond via 1O2 to form epoxide played important roles on carbamazepine degradation. This study demonstrated that the facet-specific phosphate modification of photocatalysts can finely tune reactive 1O2 species for superior pharmaceuticals degradations.
Collapse
Affiliation(s)
- Hua Xu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Liling Cao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yi Yu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiangming Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Liu YQ, Tian L, Huang M, Liu HZ, Guo ZY, Ding J, Xia WQ, Teng L, Yu HQ, Li WW. Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:880-891. [PMID: 39719864 DOI: 10.1021/acs.est.4c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions. Through fine-tuning the Cu atom steric location from lattice-embedding to surface-loading, the system exhibited a fundamental transition in the catalytic pathways toward the PT process and drastically improved decontamination efficiency. The catalytic pathway change was mainly ascribed to a downshifted d-band center of the Cu atoms. The optimized catalyst achieved complete, rapid removal of phenolic compounds from water via nearly 100% PT pathway, accompanied by high oxidant utilization efficiency surpassing most state-of-the-art SACs. Moreover, it showed excellent structural stability and environmental robustness and was successfully used for the treatment of lake water and industrial coking wastewater. The adaptability of the spatial engineering strategy to other MgO-supported single atoms, including Fe, Co, and Ni SACs, was also demonstrated. Our work lays a foundation for further advancing SACs-based advanced oxidation technologies toward sustainable water purification applications.
Collapse
Affiliation(s)
- Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Lixin Tian
- School Environmental Science and Engineering, Huazhong University Science & Technology, Wuhan 430074, China
| | - Mingjie Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- School Environmental Science and Engineering, Huazhong University Science & Technology, Wuhan 430074, China
| | - Hong-Zhi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Jian Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Lang Teng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| |
Collapse
|
15
|
Tian Q, Jiang Y, Duan X, Li Q, Gao Y, Xu X. Low-peroxide-consumption fenton-like systems: The future of advanced oxidation processes. WATER RESEARCH 2025; 268:122621. [PMID: 39426044 DOI: 10.1016/j.watres.2024.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Conventional heterogeneous Fenton-like systems employing different peroxides have been developed for water/wastewater remediation. However, a large population of peroxides consumed during various Fenton-like systems with low utilization efficiency and associated secondary contamination have become the bottlenecks for their actual applications. Recent strategies for lowering the peroxide consumptions to develop economic Fenton-like systems are primarily devoted to the effective radical generation and subsequent high-efficiency radical utilization through catalysts/systems engineering, leveraging emerging nonradical oxidation pathways with higher selectivity and longer life of the reactive intermediate, as well as reactor designs for promoting the mass transfer and peroxides decomposition to improve the yield of radicals/nonradicals. However, a comparative review summarizing the mechanisms and pathways of these strategies has not yet been published. In this review, we endeavor to showcase the designated systems achieving the reduction of peroxides while ensuring high catalytic activity from the perspective of the above strategic mechanisms. An in-depth understanding of these aspects will help elucidate the key mechanisms for achieving economic peroxide consumption. Finally, the existing problems of these strategies are put forward, and new ideas and research directions for lowering peroxide consumption are proposed to promote the application of various Fenton-like systems in actual wastewater purification.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
16
|
Zhu D, Huang Y, Shi X, Li R, Wang Z, Peng W, Cao J, Lee S. Enhancing molecular oxygen activation by nitrogen-doped carbon encapsulating FeNi alloys with ultra-low Pt loading. PNAS NEXUS 2025; 4:pgae594. [PMID: 39831155 PMCID: PMC11740729 DOI: 10.1093/pnasnexus/pgae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized. This catalyst demonstrated exceptional catalytic activity (92%), recyclability, and water tolerance for the deep oxidation of formaldehyde at room temperature. Structural analyses and theoretical calculations revealed a directional electron transfer from FeNi alloy to Pt, even there is no direct contact between them. This electron penetration effect, mediated by carbon, conferred electron-rich properties to Pt, leading to the activation of molecular oxygen by elongating O-O bond length (1.405 Å). Consequently, efficient formaldehyde removal was achieved with an ultra-low Pt loading. This investigation offers a novel perspective on modulating the electronic structure of Pt by engineering a unique EMSI effect between a nonoxide support and active species, thereby enabling efficient oxygen activation for air purification.
Collapse
Affiliation(s)
- Dandan Zhu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Xianjin Shi
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Rong Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Zhenyu Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Wei Peng
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuncheng Lee
- Thrust of Earth, Ocean and Atmospheric Sciences Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| |
Collapse
|
17
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
18
|
Baye AF, Abebe MW, Kim H. Boron-Nitrogen-Edged Biomass-Derived Carbon: A Multifunctional Approach for Colorimetric Detection of H 2O 2, Flame Retardancy, and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402449. [PMID: 38804870 DOI: 10.1002/smll.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the concentration and type of nitrogen (N) dopants within the Sp2-carbon domain of carbon recycled from biomass sources is an efficient approach to mimic CNT, GO, and rGO to activate oxidants such as H2O2, excluding toxic chemicals and limiting reaction steps. However, monitoring the kind and concentration of N species in the Sp2-C domain is unlikely with thermal treatments only. A high temperature for graphitization reduces N moieties, leading to low electron density. This inhibits H2O2 adsorption and activation on catalyst surfaces. In this study, coffee waste (CW) is converted into B, N-doped biochar (BXNbY) using boric acid-assisted pyrolysis (H3BO3 mass = X and carbonization temperature = Y) under N2 to overcome the challenge. The B dopant regulates the concentration and type of N, provides Lewis's acid sites, and converts graphitic-N to pyridine-N in BXNbY. The optimized B3Nb900 exhibits excellent colorimetric sensing performance toward H2O2 with a low detection limit (36.9 nM) and high selectivity in the presence of many interferences and milk samples due to high pyridinic-N and Sp2 domain sizes. Interestingly, B enhances other properties of N-containing CW-derived carbon and introduces self-extinguishing and tribopositive properties. Hence, BXNbY-coated polyurethane foam shows excellent flame retardancy and energy harvesting performance.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
19
|
Li J, Lan Y, Yi C, Liu Z. Cobalt and nitrogen co-doped hollow periodic mesoporous organosilica spheres activated by potassium chloride for selective oxidation of ethylbenzene. NANOSCALE 2024; 16:17426-17432. [PMID: 39206958 DOI: 10.1039/d4nr02927e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enhancing the exposure of metal active sites and maximizing metal atom utilization are critical challenges in heterogeneous catalysis. To solve these issues, heterogeneous catalysts are usually activated by chemicals. Herein, potassium chloride (KCl) was used as an activator to prepare cobalt-nitrogen co-doped (Co-Nx) hollow periodic mesoporous organosilica spheres (Co-Nx/HPMOs-KCl). Co-Nx/HPMOs-KCl showed outstanding catalytic activity for the selective oxidation of ethylbenzene to acetophenone, with a conversion of up to 94.0% for ethylbenzene and a high selectivity of 98.4% towards acetophenone. Additionally, Co-Nx/HPMOs-KCl maintained excellent catalytic performance for the oxidation of ethylbenzene after six cycles. The excellent performance of Co-Nx/HPMOs-KCl was attributed to the activation of KCl, which increased the specific surface area of the catalyst and thus facilitated the exposure of more metal active sites. After the removal of unstable metal species through further acid treatment, the remaining metal active sites were thus fully exposed and stably embedded in the framework of the hollow periodic mesoporous organosilica spheres (HMPOs). This work presents an efficient catalyst and offers new insights for the improvement of heterogeneous catalysts.
Collapse
Affiliation(s)
- Jingwen Li
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yingying Lan
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Chengfeng Yi
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zhigang Liu
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
20
|
Tao Y, Hou Y, Yang H, Gong Z, Yu J, Zhong H, Fu Q, Wang J, Zhu F, Ouyang G. Interlayer synergistic reaction of radical precursors for ultraefficient 1O 2 generation via quinone-based covalent organic framework. Proc Natl Acad Sci U S A 2024; 121:e2401175121. [PMID: 39250664 PMCID: PMC11420197 DOI: 10.1073/pnas.2401175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/28/2024] [Indexed: 09/11/2024] Open
Abstract
Singlet oxygen (1O2) is important in the environmental remediation field, however, its efficient production has been severely hindered by the ultrafast self-quenching of the as-generated radical precursors in the Fenton-like reactions. Herein, we elaborately designed lamellar anthraquinone-based covalent organic frameworks (DAQ-COF) with sequential localization of the active sites (C═O) at molecular levels for visible-light-assisted peroxymonosulfate (PMS) activation. Theoretical and experimental results revealed that the radical precursors (SO5·-) were formed in the nearby layers with the migration distance less than 0.34 nm, via PMS donating electrons to the photogenerated holes. This interlayer synergistic effect eventually led to ultraefficient 1O2 production (14.8 μM s-1), which is 12 times that of the highest reported catalyst. As an outcome, DAQ-COF enabled the complete degradation of bisphenol A in 5 min with PMS under natural sunlight irradiation. This interlayer synergistic concept represents an innovative and effective strategy to increase the utilization efficiency of ultrashort-lived radical precursors, providing inspirations for subtle structural construction of Fenton-like catalysts.
Collapse
Affiliation(s)
- Yuan Tao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Yu Hou
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Huangsheng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Jiaxing Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Huajie Zhong
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Qi Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Junhui Wang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Fang Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
| | - Gangfeng Ouyang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemistry, Sun Yat-Sen University, Guangzhou510006, China
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
- College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Academy of Science, Guangzhou510070, China
| |
Collapse
|
21
|
Wang G, Huang D, Cheng M, Du L, Chen S, Zhou W, Li R, Li S, Huang H, Xu W, Tang L. The Surface Confinement of FeO Assists in the Generation of Singlet Oxygen and High-Valent Metal-Oxo Species for Enhanced Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401970. [PMID: 38770987 DOI: 10.1002/smll.202401970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.
Collapse
Affiliation(s)
- Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Sha Chen
- College of Materials Science and Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
22
|
Mo F, Hou Z, Zhou Q, Chen X, Liu W, Xue W, Wang Q, Wang J, Zheng T, Tao Z. Cu-optimized long-range interaction between Co nanoparticles and Co single atoms: Improved Fenton-like reaction activity. Sci Bull (Beijing) 2024; 69:2529-2542. [PMID: 38789326 DOI: 10.1016/j.scib.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
The interplay between multi-atom assembly configurations and single atoms (SAs) has been gaining attention in research. However, the effect of long-term range interactions between SAs and multi-atom assemblies on the orbital filling characteristics has yet to be investigated. In this context, we introduced copper (Cu) doping to strengthen the interaction between cobalt (Co) nanoparticles (NPs) and Co SAs by promoting the spontaneous formation of Co-Cu alloy NPs that tends toward aggregation owing to its negative cohesive energy (-0.06454), instead of forming Cu SAs. The incorporation of Cu within the Co-Cu alloy NPs, compared to the pure Co NPs, significantly expedites the kinetics of peroxymonosulfate (PMS) oxidation processes on Co SAs. Unlike Co NPs, Co-Cu NPs facilitate electron rearrangement in the d orbitals (especially dz2 and dxz) near the Fermi level in Co SAs, thereby optimizing the dz2-O (PMS) and dxz-O (SO5-) orbital interaction. Eventually, the Co-Cu alloy NPs embedded in nitrogen-doped carbon (CC@CNC) catalysts rapidly eliminated 80.67% of 20 mg L-1 carbamazepine (CBZ) within 5 min. This performance significantly surpasses that of catalysts consisting solely of Co NPs in a similar matrix (C@CNC), which achieved a 58.99% reduction in 5 min. The quasi in situ characterization suggested that PMS acts as an electron donor and will transfer electrons to Co SAs, generating 1O2 for contaminant abatement. This study offers valuable insights into the mechanisms by which composite active sites formed through multi-atom assembly interact at the atomic orbital level to achieve high-efficiency PMS-based advanced oxidation processes at the atomic orbital level.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zelin Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xixi Chen
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wendan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Yan X, Yao Y, Xiao C, Zhang H, Xie J, Zhang S, Qi J, Zhu Z, Sun X, Li J. Shaping Phenolic Resin-Coated ZIF-67 to Millimeter-Scale Co/N Carbon Beads for Efficient Peroxymonosulfate Activation. Molecules 2024; 29:4059. [PMID: 39274907 PMCID: PMC11397324 DOI: 10.3390/molecules29174059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol-formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min-1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications.
Collapse
Affiliation(s)
- Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
24
|
Lan MY, Li YH, Wang CC, Li XJ, Cao J, Meng L, Gao S, Ma Y, Ji H, Xing M. Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation. Nat Commun 2024; 15:7208. [PMID: 39174565 PMCID: PMC11341957 DOI: 10.1038/s41467-024-51525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Catalytic peroxymonosulfate (PMS) activation processes don't solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4- cluster, Co2(V4O12)(bpy)2 (bpy = 4,4'-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4- electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.
Collapse
Affiliation(s)
- Ming-Yan Lan
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Yu-Hang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China.
| | - Xin-Jie Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Jiazhen Cao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Linghui Meng
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, PR China
| | - Shuai Gao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, PR China
| | - Haodong Ji
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, PR China.
| | - Mingyang Xing
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
25
|
Wang Y, Yan C, Bingliang Y, Yang Y, Wang N, Yang J, Li B, Li Y, Xu X. Synchronously enhanced dual oxidation pathways via engineered Co-N x/Co 3O 4 for high-efficiency degradation of versatile antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134835. [PMID: 38878429 DOI: 10.1016/j.jhazmat.2024.134835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Developing efficient and eco-friendly technologies for treating the antibiotic wastewaters is crucial. At present, the catalysts with metal-nitrogen (M-Nx) coordination showed excellent Fenton-like performance but were always difficult to realize practical antibiotics degradation because of their complicated preparation methods and inferior stability. In this work, the Co-Nx configuration was facilely reconstructed on the surface of Co3O4 (Co-Nx/Co3O4), which exhibited superior catalytic activity and stability towards various antibiotics. DFT results indicated that stronger ETP oxidation will be triggered by the electron-donating pollutants since more electrons can be easily migrated from these pollutants to the Co-Nx/Co3O4/PMS complex. The Co-Nx/Co3O4/PMS system could maintain superior oxidation capacity, high catalytic stability and anti-interference due to (i) the strong nonradical ETP oxidation with superior degradation selectivity in Co-Nx/Co3O4/PMS system, and (ii) the synchronously enhanced radical oxidation with high populations of non-selective radicals generated via activating PMS by the Co-Nx/Co3O4. As a result, the synergies of synchronously enhanced dual oxidation pathways guaranteed the self-cleaning properties, maintaining 98 % of activity after eight cycles and stability across a wide pH range. Basically, these findings have significant implications for developing technologies for purifying antibiotic wastewater.
Collapse
Affiliation(s)
- Yujie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen Yan
- Taishan College, Shandong University, Qingdao 266237, China
| | - Yu Bingliang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yaru Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ningru Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
26
|
Yang Z, Yang X, Zhang W, Wang D. Asymmetrically Coordinated Mn-S 1N 3 Configuration Induces Localized Electric Field-Driven Peroxymonosulfate Activation for Remarkably Efficient Generation of 1O 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311642. [PMID: 38497490 DOI: 10.1002/smll.202311642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Singlet oxygen (1O2) species generated in peroxymonosulfate (PMS)-based advanced oxidation processes offer opportunities to overcome the low efficiency and secondary pollution limitations of existing AOPs, but efficient production of 1O2 via tuning the coordination environment of metal active sites remains challenging due to insufficient understanding of their catalytic mechanisms. Herein, an asymmetrical configuration characterized by a manganese single atom coordinated is established with one S atom and three N atoms (denoted as Mn-S1N3), which offer a strong local electric field to promote the cleavage of O─H and S─O bonds, serving as the crucial driver of its high 1O2 production. Strikingly, an enhanced the local electric field caused by the dynamic inter-transformation of the Mn coordination structure (Mn-S1N3 ↔ Mn-N3) can further downshift the 1O2 production energy barrier. Mn-S1N3 demonstrates 100% selective product 1O2 by activation of PMS at unprecedented utilization efficiency, and efficiently oxidize electron-rich pollutants. This work provides an atomic-level understanding of the catalytic selectivity and is expected to guide the design of smart 1O2-AOPs catalysts for more selective and efficient decontamination applications.
Collapse
Affiliation(s)
- Zhaoyi Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weijun Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
27
|
Ren Y, Liu C, Ji C, Lai B, Zhang W, Li J. Selective oxidation decontamination in cobalt molybdate activated Fenton-like oxidation via synergic effect of cobalt and molybdenum. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134639. [PMID: 38772113 DOI: 10.1016/j.jhazmat.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
In this study, cobalt molybdate (CoMoO4) activated peracetic acid (PAA) was developed for water purification. CoMoO4/PAA system could remove 95% SMX with pseudo-first-order reaction rate constant of 0.15410 min-1, which was much higher than CoFe2O4/PAA, FeMoO4/PAA, and CoMoO4/persulfate systems. CoMoO4/PAA system follows a non-radical species pathway dominated by the high-valent cobalt (Co(IV)), and CH3C(O)OO• shows a minor contribution to decontamination. Density functional theory (DFT) calculation indicates that the generation of Co(IV) is thermodynamically more favorable than CH3C(O)OO• generation. The abundant Co(IV) generation was attributed to the special structure of CoMoO4 and effect of molybdenum on redox cycle of Co(II)/Co(III). DFT calculation showed that the atoms of SMX with higher ƒ0 and ƒ- values are the main attack sites, which are in accordance with the results of degradation byproducts. CoMoO4/PAA system can effectively reduce biological toxicity after the reaction. Benefiting from the selective of Co(IV) and CH3C(O)OO•, the established CoMoO4/PAA system exhibits excellent anti-interference capacity and satisfactory decontamination performance under actual water conditions. Furthermore, the system was capable of good potential practical application for efficient removal of various organics and favorable reuse. Overall, this study provides a new strategy by CoMoO4 activated PAA for decontamination with high efficiency, high selectivity and favorable anti-interference.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Song J, Hou N, Liu X, Bi G, Wang Y, Mu Y. Directional Formation of Reactive Oxygen Species Via a Non-Redox Catalysis Strategy That Bypasses Electron Transfer Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405832. [PMID: 38759109 DOI: 10.1002/adma.202405832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 05/19/2024]
Abstract
A broad range of chemical transformations driven by catalytic processes necessitates the electron transfer between catalyst and substrate. The redox cycle limitation arising from the inequivalent electron donation and acceptance of the involved catalysts, however, generally leads to their deactivation, causing substantial economic losses and environmental risks. Here, a "non-redox catalysis" strategy is provided, wherein the catalytic units are constructed by atomic Fe and B as dual active sites to create tensile force and electric field, which allows directional self-decomposition of peroxymonosulfate (PMS) molecules through internal electron transfer to form singlet oxygen, bypassing the need of electron transfer between catalyst and PMS. The proposed catalytic approach with non-redox cycling of catalyst contributes to excellent stability of the active centers while the generated reactive oxygen species find high efficiency in long-term catalytic pollutant degradation and selective organic oxidation synthesis in aqueous phase. This work offers a new avenue for directional substrate conversion, which holds promise to advance the design of alternative catalytic pathways for sustainable energy conversion and valuable chemical production.
Collapse
Affiliation(s)
- Junsheng Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, P. R. China
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Nannan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, P. R. China
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Xiaocheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Guangyu Bi
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Yang Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, P. R. China
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
29
|
Meng Y, Liu YQ, Wang C, Si Y, Wang YJ, Xia WQ, Liu T, Cao X, Guo ZY, Chen JJ, Li WW. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat Commun 2024; 15:5314. [PMID: 38906879 PMCID: PMC11192908 DOI: 10.1038/s41467-024-49605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, China
| | - Yang Si
- Kunming Institute of Physics, Kunming, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Tian Liu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Xu Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| |
Collapse
|
30
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Guo X, Zhang H, Chen K, Li X, Yang X, Xiao C, Yao Y, Song M, Qi J, Zhou Y, Yang Y, Zhu Z, Li J. Ultrathin nitrogen-doped carbon Ti 3C 2T x-TiN heterostructure derived from ZIF-8 nanoparticles sandwiched MXene for high-performance capacitive deionization. J Colloid Interface Sci 2024; 661:358-365. [PMID: 38301472 DOI: 10.1016/j.jcis.2024.01.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Rational design of high-performance electrode materials is crucial for enhancing desalination performance of capacitive deionization (CDI). Here, ultrathin nitrogen-doped carbon/Ti3C2Tx-TiN (NC/MX-TiN) heterostructure was developed by pyrolyzing zeolite imidazolate framework-8 (ZIF-8) nanoparticles sandwiched MXene (ZSM), which were formed by assembling ultrafine ZIF-8 nanoparticles with size of 20 nm on both sides of MXene nanosheets. The introduction of ultrasmall ZIF-8 particles allowed for in situ nitridation of the MXene during pyrolysis, forming consecutive TiN layers tightly connected to the internal MXene. The two-dimensional (2D) heterostructure exhibited remarkable properties, including high specific surface area and excellent conductivity. Additionally, the resulting TiN demonstrated exceptional redox capability, which significantly enhanced the performance of CDI and ensured cycling stability. Benefiting from these advantages, the NC/MX-TiN exhibited a maximum adsorption capacity of 45.6 mg g-1 and a steady cycling performance in oxygenated saline water over 50 cycles. This work explores the rational design and construction of MXene-based 2D heterostructure and broadens new horizons for the development of novel CDI electrode materials.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ke Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodie Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuran Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minjie Song
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
32
|
Ma W, Ren X, Li J, Wang S, Wei X, Wang N, Du Y. Advances in Atomically Dispersed Metal and Nitrogen Co-Doped Carbon Catalysts for Advanced Oxidation Technologies and Water Remediation: From Microenvironment Modulation to Non-Radical Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308957. [PMID: 38111984 DOI: 10.1002/smll.202308957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Indexed: 12/20/2023]
Abstract
Atomically dispersed metal and nitrogen co-doped carbon catalysts (M-N-C) have been attracting tremendous attentions thanks to their unique MNx active sites and fantastic catalytic activities in advanced oxidation technologies (AOTs) for water remediation. However, precisely tailoring the microenvironment of active sites at atomic level is still an intricate challenge so far, and understanding of the non-radical mechanisms in persulfate activation exists many uncertainties. In this review, latest developments on the microenvironment modulation strategies of atomically dispersed M-N-C catalysts including regulation of central metal atoms, regulation of coordination numbers, regulation of coordination heteroatoms, and synergy between single-atom catalysts (SACs) with metal species are systematically highlighted and discussed. Afterwards, progress and underlying limitations about the typical non-radical pathways from production of singlet oxygen, electron transfer mechanism to generation of high-valent metal species are well demonstrated to inspire intrinsic insights about the mechanisms of M-N-C/persulfate systems. Lastly, perspectives for the remaining challenges and opportunities about the further development of carbon-based SACs in environment remediation are also pointed out. It is believed that this review will be much valuable for the further design of active sites in M-N-C/persulfate catalytic systems and promote the wide application of SACs in various fields.
Collapse
Affiliation(s)
- Wenjie Ma
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xiaohui Ren
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Jiahao Li
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Shuai Wang
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xinyu Wei
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Na Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
33
|
Xie Y, Zhang T, Wang B, Wang W. The Application of Metal-Organic Frameworks in Water Treatment and Their Large-Scale Preparation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1972. [PMID: 38730779 PMCID: PMC11084628 DOI: 10.3390/ma17091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.
Collapse
Affiliation(s)
- Yuhang Xie
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
34
|
Bi G, Ding R, Song J, Luo M, Zhang H, Liu M, Huang D, Mu Y. Discriminating the Active Ru Species Towards the Selective Generation of Singlet Oxygen from Peroxymonosulfate: Nanoparticles Surpass Single-Atom Catalysts. Angew Chem Int Ed Engl 2024; 63:e202401551. [PMID: 38403815 DOI: 10.1002/anie.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Singlet oxygen (1O2) is an exceptional reactive oxygen species in advanced oxidation processes for environmental remediation. Despite single-atom catalysts (SACs) representing the promising candidate for the selective generation of 1O2 from peroxymonosulfate (PMS), the necessity to meticulously regulate the coordination environment of metal centers poses a significant challenge in the precisely-controlled synthetic method. Another dilemma to SACs is their high surface free energy, which results in an inherent tendency for the surface migration and aggregation of metal atoms. We here for the first time reported that Ru nanoparticles (NPs) synthesized by the facile pyrolysis method behave as robust Fenton-like catalysts, outperforming Ru SACs, towards efficient activation of PMS to produce 1O2 with nearly 100 % selectivity, remarkably improving the degradation efficiency for target pollutants. Density functional theory calculations have unveiled that the boosted PMS activation can be attributed to two aspects: (i) enhanced adsorption of PMS molecules onto Ru NPs, and (ii) decreased energy barriers by offering adjacent sites for promoted dimerization of *O intermediates into adsorbed 1O2. This study deepens the current understanding of PMS chemistry, and sheds light on the design and optimization of Fenton-like catalysts.
Collapse
Affiliation(s)
| | - Rongrong Ding
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junsheng Song
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengjie Luo
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haotian Zhang
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Liu
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dahong Huang
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
35
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
36
|
Zeng Y, Zhuo Q, Pan J, Lan Y, Dai L, Guan B. Switching reactive oxygen species reactions derived from Mn-Pt anchored zeolite for selective catalytic ozonation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123747. [PMID: 38460590 DOI: 10.1016/j.envpol.2024.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Rationally switching reactive oxygen species (ROS) reactions in advanced oxidation processes (AOPs) is urgently needed to improve the adaptability and efficiency for the engineering application. Herein we synthesized bimetallic Mn-Pt catalysts based on zeolite to realize the switching of ROS reactions in catalytic ozonation for sustainable degradation of organic pollutants from water. The ROS reactions switched from singlet oxygen (1O2, 71.01%) to radical-dominated (93.79%) pathway by simply introducing defects and changing Pt/Mn ratios. The oxygen vacancy induced by anchoring Mn-Pt species from zeolite external surface (MnPt/H-Beta) to internal framework (MnPt@Si-Beta) exposes more electron-rich Pt2+/Pt4+ redox sites, accelerating the decomposition of O3 to generate •OH via electron transfer and switching ROS reactions. The Mn site acted as a bridge plays a critical role in conducting electrons from organic pollutants to Pt sites, which solidly solves the electron loss of catalysts, facilitating the efficient degradation of pollutants. A 34.7-fold increase in phenol degradation compared with the non-catalytic ozonation and an excellent catalytic stability are achieved by MnPt@Si-Beta/O3. The 1O2-dominated ROS reaction originated from MnPt/H-Beta/O3 exhibits superior performances in anti-interference for Cl-, HCO3-, NO3-, and SO4-. This work establishes a novel strategy for switching ROS reactions to expand the targeted applications of O3 based AOPs for environmental remediation.
Collapse
Affiliation(s)
- Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qizheng Zhuo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Lan
- Zhejiang Zheda Qiushi Property Management Co., Ltd., Logistics Group, Zhejiang University, Hangzhou, 310058, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Zheng J, Zhang S. Cyanide-Isolated Cobalt Catalyst for Ultraefficient Advanced Oxidation Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6444-6454. [PMID: 38551318 DOI: 10.1021/acs.est.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Shuo Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
38
|
Li X, Wu L, Zhang A, Wu S, Lin Y, Yang C. Cobalt doping amount determines dominant reactive species in peroxymonosulfate activation via porous carbon catalysts co-doped by cobalt and nitrogen. J Environ Sci (China) 2024; 138:212-226. [PMID: 38135390 DOI: 10.1016/j.jes.2023.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 12/24/2023]
Abstract
Switching the reaction routes in peroxymonosulfate (PMS)-based advanced oxidation processes have attracted much attention but remain challenging. Herein, a series of Co-N/C catalysts with different compositions and structures were prepared by using bimetallic zeolitic imidazolate frameworks based on ZIF-8 and ZIF-67 (xZn/Co-ZIFs). Results show that Co doping amount could mediate the transformation of the activation pathway of PMS over Co-N/C. When Co doping amount was less than 10%, the constructed xCo-N/C/PMS system (x ≤ 10%) was singlet oxygen-dominated reaction; however further increasing Co doping amount would lead to the generation and coexistence of sulfate radicals and high-valent cobalt, besides singlet oxygen. Furthermore, the nitrogen-coordinated Co (Co-NX) sites could serve as main catalytically active sites to generate singlet oxygen. While excess Co doping amount caused the formation of Co nanoparticles from which leached Co ions were responsible for the generation of sulfate radicals and high-valent cobalt. Compared to undoped N/C, Co doping could significantly enhance the catalytic performance. The 0.5% Co-N/C could achieve the optimum degradation (0.488 min-1) and mineralization abilities (78.4%) of sulfamethoxazole among the investigated Co-N/C catalysts, which was superior to most of previously reported catalysts. In addition, the application prospects of the two systems in different environmental scenarios (pH, inorganic anions and natural organic matter) were assessed and showed different degradation behaviors. This study provides a strategy to regulate the reactive species in PMS-based advanced oxidation process.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Limeng Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Aiqin Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chunping Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
39
|
Chen C, Wang J, Wang Z, Ren W, Khairunnisa S, Xiao P, Yang L, Chen F, Wu XL, Chen J. Paint sludge derived activated carbon encapsulating with cobalt nanoparticles for non-radical activation of peroxymonosulfate. J Colloid Interface Sci 2024; 658:209-218. [PMID: 38103471 DOI: 10.1016/j.jcis.2023.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Industrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiOx), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation. Compared to pure AC, the Co-AC exhibited significant enhanced performance for degradation of tetracycline hydrochloride (TCH) via PMS activation. Mechanism studies by in situ Raman spectroscopy, Fourier infrared spectroscopy, electrochemical analysis and electron paramagnetic resonance suggested that surface-bonded PMS (PMS*) and singlet oxygen (1O2) are the dominant reactive species for TCH oxidation. The non-radical species can efficiently oxidize electron-rich pollutants with high efficiency, which minimized the consumption of PMS and the catalyst. The removal percentages of TCH reached 97 % within 5 min and ∼ 99 % within 15 min in the Co-AC/PMS system. The Co active sites facilitated PMS adsorption to form the PMS* and the TiAlSiOx impurities provided abundant oxygen vacancy for generation of the 1O2. In addition, the Co-AC/PMS system achieved high efficiency and stability for oxidation of the target pollutants over a long-term continuous operation. This work not only offers a cost-effective approach for recycling industrial waste but also provides new insights into the application of waste-derived catalyst for environmental remediation.
Collapse
Affiliation(s)
- Chaofa Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Juan Wang
- Zhejiang Anammox Environmental Technology Co., Ltd., Hangzhou, 310013, China
| | - Zhixing Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Weiting Ren
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Silva Khairunnisa
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Peiyuan Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lining Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
40
|
Jiang Y, Gao K, Li Y, Chen Y, Cai X, Wang D. Ni introduction induced non-radical degradation of bisphenol A in spinel ferrite/H 2O 2 systems. Chem Commun (Camb) 2024; 60:3158-3161. [PMID: 38407404 DOI: 10.1039/d3cc06100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Herein, we achieved reactive oxygen species manipulation using transition metal spinel ferrites (NixCo1-xFe2O4, x = 0, 0.5, 1) as Fenton-like agents. Specifically, NiFe2O4 mainly produced 1O2 and high-valence metals, while CoFe2O4 mainly produced ˙OH, from H2O2 activation. With bisphenol A as a model pollutant, the NiFe2O4/H2O2 system exhibited good resistance to ion interference.
Collapse
Affiliation(s)
- Yilan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Keyi Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Yingying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Yuanyuan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Xinyang Cai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| |
Collapse
|
41
|
Tang M, Wan J, Wang Y, Ye G, Yan Z, Ma Y, Sun J. Overlooked role of void-nanoconfined effect in emerging pollutant degradation: Modulating the electronic structure of active sites to accelerate catalytic oxidation. WATER RESEARCH 2024; 249:120950. [PMID: 38056201 DOI: 10.1016/j.watres.2023.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The efficient removal of emerging pollutant from water is the ultimate frontiers of advanced oxidation processes (AOPs), yet it is challenging to obtain higher catalytic activity and oxidation rate. Herein, a sustainable solution was proposed by optimizing the curvature of confined structure to modulate the electronic state of the active sites in nanochannels for improving the catalytic activity. In addition, the confined effect can enhance the oxidation rate by shorting the mass transfer of active species and pollutants. A void-nanoconfined nanoreactor was prepared by loading Fe2O3 into the nanochannels (<5 nm) of the hollow carbon sphere. An enhancement of 3 orders of magnitude was obtained in the degradation rate constant of void-nanoconfined catalytic system toward sulfamethoxazole (SMX) (6.25 min-1) compared with the non-confined system. The kinetics enhancement was attributed to the larger electron potential difference between the outer and inner nanochannel caused by the curvature increase of carbon sphere, accelerating the electron transfer, so that the energy barrier of SMX degradation reaction was reduced by 31 kcal/mol with the assistance of confinement energy. Importantly, the NC-IN/PDS system exhibited outstanding removal efficiency for the actual river water using a continuous flow reactor. This work provides a new insight into designing an efficient and stable catalytic nanoreactor, enriching the domain of advanced wastewater treatment strategies.
Collapse
Affiliation(s)
- Min Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Gang Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jian Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
42
|
Sui C, Nie Z, Liu H, Boczkaj G, Liu W, Kong L, Zhan J. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. J Environ Sci (China) 2024; 135:86-96. [PMID: 37778844 DOI: 10.1016/j.jes.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 10/03/2023]
Abstract
Advanced oxidation processes have been widely studied for organic pollutants treatment in water, but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals, especially in high salinity conditions. Here, a singlet oxygen (1O2)-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater, with layered crednerite (CuMnO2) as catalysts and peroxymonosulfate (PMS) as oxidant. Based on the experiments and density functional theory calculations, 1O2 was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of 1O2. The rapid degradation of bisphenol A (BPA) was achieved by CuMnO2/PMS system, which was 5-fold and 21-fold higher than that in Mn2O3/PMS system and Cu2O/PMS system. The CuMnO2/PMS system shown prominent BPA removal performance under high salinity conditions, prominent PMS utilization efficiency, outstanding total organic carbon removal rate, wide range of applicable pH and good stability. This work unveiled that the 1O2-dominated non-radical process of CuMnO2/PMS system overcame the inhibitory effect of anions in high salinity conditions, which provided a promising technique to remove organic pollutants from high saline wastewater.
Collapse
Affiliation(s)
- Chengji Sui
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Zixuan Nie
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Huan Liu
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Lingshuai Kong
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China.
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China.
| |
Collapse
|
43
|
Wu Z, Xiong Z, Liu W, Liu R, Feng X, Huang B, Wang X, Gao Y, Chen H, Yao G, Lai B. Active Center Size-Dependent Fenton-Like Chemistry for Sustainable Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21416-21427. [PMID: 38064647 DOI: 10.1021/acs.est.3c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Accurately controlling catalytic activity and mechanism as well as identifying structure-activity-selectivity correlations in Fenton-like chemistry is essential for designing high-performance catalysts for sustainable water decontamination. Herein, active center size-dependent catalysts with single cobalt atoms (CoSA), atomic clusters (CoAC), and nanoparticles (CoNP) were fabricated to realize the changeover of catalytic activity and mechanism in peroxymonosulfate (PMS)-based Fenton-like chemistry. Catalytic activity and durability vary with the change in metal active center sizes. Besides, reducing the metal size from nanoparticles to single atoms significantly modulates contributions of radical and nonradical mechanisms, thus achieving selective/nonselective degradation. Density functional theory calculations reveal evolutions in catalytic mechanisms of size-dependent catalytic systems over different Gibbs free energies for reactive oxygen species generation. Single-atom site contact with PMS is preferred to induce nonradical mechanisms, while PMS dissociates and generates radicals on clusters and nanoparticles. Differences originating from reaction mechanisms endow developed systems with size-dependent selectivity and mineralization for treating actual hospital wastewater in column reactors. This work brings an in-depth understanding of metal size effects in Fenton-like chemistry and guides the design of intelligent catalysts to fulfill the demand of specific scenes for water purification.
Collapse
Affiliation(s)
- Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yixuan Gao
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- Sino-German Centre for innovative Environmental Technologies (WATCH e.V.), Aachen 52078, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
44
|
Li Z, Zhang W, Liu X, Wang X, Dai H, Chen F, Tang Y, Li J. Iron-Cobalt magnetic porous carbon beads activated peroxymonosulfate for enhanced degradation and Microbial inactivation. J Colloid Interface Sci 2023; 652:1878-1888. [PMID: 37688934 DOI: 10.1016/j.jcis.2023.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Magnetic carbon-based catalysts are promising materials for advanced oxidation processes, offering both high catalytic activity and environmental friendliness, and hold great potential in environmental remediation. In this work, Fe and Co zeolite imidazole frameworks (ZIFs) derived micron-sized magnetic porous carbon beads (MPCBs) were prepared by phase inversion and following the carbonization procedure, and the morphological and structural characteristics of the MPCBs were confirmed. The presence of pores and channels in the MPCBs provides a specific microenvironment for the for the catalysis of the core. Bisphenol A (BPA) was selected for the targeted pollutant, and the catalytic experiments confirmed that the effective catalytic activity of MPCBs in the presence of peroxymonosulfate (PMS), which could almost completely degrade BPA in 20 min with a reaction rate of 0.368 min-1. Furthermore, the MPCBs were used to effectively bacterial inactivation. Intermediate products of the BPA degradation process were validated and the toxicological studies showed a gradual decrease in toxicity, indicating effective reduction of potential hazards. The macroscopic preparation methods we developed for MPCBs that is promising for industrial applications and has the potential to cope with complex environmental remediation.
Collapse
Affiliation(s)
- Zihan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xingyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Fangyan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
45
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
46
|
Li M, Ma M, Zhao Z, Bao M, Zhang N, Zhou Y, Zheng Y. Simultaneous degradation of binary fluoroquinolone antibiotics by B and N in-situ self-doped guar gum hydrogel. CHEMOSPHERE 2023; 342:140197. [PMID: 37717915 DOI: 10.1016/j.chemosphere.2023.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Using guar gum (GG) as the raw material and borax (B) as the cross-linker, zeolitic imidazolate framework-8 (ZIF-8) was in-situ loaded into the 3D network of GG hydrogel, forming a highly efficient catalytic material GG-B-ZIF-8 combined with a subsequent low-temperature calcination process. In GG-B-ZIF-8 activated peroxymonosulfate (PMS) system, binary norfloxacin (NOR) and ciprofloxacin (CIP) could be removed simultaneously, with the degradation efficiency of >99.9% within 1 h. This system was adaptable to a wide pH range of 3.0-9.0, and was also highly resistant to 5-20 mM Cl- and 10-40 mg/L humic acid. The degradation process was dominated by free radical O2•-, non-radical 1O2 and electron transfer, with eleven degradation products identified for NOR and nine for CIP via eight possible degradation pathways. Finally, the potential eco-toxicity of NOR, CIP and degradation intermediates was evaluated using the ECOSAR method.
Collapse
Affiliation(s)
- Mingzhe Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengling Ma
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ziwei Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingkun Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nan Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhou
- Radiation Environmental Monitoring Station of Hainan Province, Haikou, 571126, China.
| | - Yian Zheng
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
47
|
Zhang M, Ruan J, Wang X, Shao W, Chen Z, Chen Z, Gu C, Qiao W, Li J. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: Degradation behavior and mechanism analysis. WATER RESEARCH 2023; 246:120697. [PMID: 37837899 DOI: 10.1016/j.watres.2023.120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
48
|
Liu M, Ye Y, Xu L, Gao T, Zhong A, Song Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2830. [PMID: 37947676 PMCID: PMC10647831 DOI: 10.3390/nano13212830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The fast rise of organic pollution has posed severe health risks to human beings and toxic issues to ecosystems. Proper disposal toward these organic contaminants is significant to maintain a green and sustainable development. Among various techniques for environmental remediation, advanced oxidation processes (AOPs) can non-selectively oxidize and mineralize organic contaminants into CO2, H2O, and inorganic salts using free radicals that are generated from the activation of oxidants, such as persulfate, H2O2, O2, peracetic acid, periodate, percarbonate, etc., while the activation of oxidants using catalysts via Fenton-type reactions is crucial for the production of reactive oxygen species (ROS), i.e., •OH, •SO4-, •O2-, •O3CCH3, •O2CCH3, •IO3, •CO3-, and 1O2. Nanoscale zero-valent iron (nZVI), with a core of Fe0 that performs a sustained activation effect in AOPs by gradually releasing ferrous ions, has been demonstrated as a cost-effective, high reactivity, easy recovery, easy recycling, and environmentally friendly heterogeneous catalyst of AOPs. The combination of nZVI and AOPs, providing an appropriate way for the complete degradation of organic pollutants via indiscriminate oxidation of ROS, is emerging as an important technique for environmental remediation and has received considerable attention in the last decade. The following review comprises a short survey of the most recent reports in the applications of nZVI participating AOPs, their mechanisms, and future prospects. It contains six sections, an introduction into the theme, applications of persulfate, hydrogen peroxide, oxygen, and other oxidants-based AOPs catalyzed with nZVI, and conclusions about the reported research with perspectives for future developments. Elucidation of the applications and mechanisms of nZVI-based AOPs with various oxidants may not only pave the way to more affordable AOP protocols, but may also promote exploration and fabrication of more effective and sustainable nZVI materials applicable in practical applications.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Ting Gao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Aiguo Zhong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Zhenjun Song
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
49
|
Weng Z, Lin Y, Guo S, Zhang X, Guo Q, Luo Y, Ou X, Ma J, Zhou Y, Jiang J, Han B. Site Engineering of Covalent Organic Frameworks for Regulating Peroxymonosulfate Activation to Generate Singlet Oxygen with 100 % Selectivity. Angew Chem Int Ed Engl 2023; 62:e202310934. [PMID: 37668453 DOI: 10.1002/anie.202310934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Singlet oxygen (1 O2 ) is an excellent reactive oxygen species (ROSs) for the selective conversion of organic matter, especially in advanced oxidation processes (AOPs). However, due to the huge dilemma in synthesizing single-site type catalysts, the control and regulation of 1 O2 generation in AOPs is still challenging and the underlying mechanism remains largely obscure. Here, taking advantage of the well-defined and flexibly tunable sites of covalent organic frameworks (COFs), we report the first achievement in precisely regulating ROSs generation in peroxymonosulfate (PMS)-based AOPs by site engineering of COFs. Remarkably, COFs with bipyridine units (BPY-COFs) facilitate PMS activation via a nonradical pathway with 100 % 1 O2 , whereas biphenyl-based COFs (BPD-COFs) with almost identical structures activate PMS to produce radicals (⋅OH and SO4 .- ). The BPY-COFs/PMS system delivers boosted performance for selective degradation of target pollutants from water, which is ca. 9.4 times that of its BPD-COFs counterpart, surpassing most reported PMS-based AOPs systems. Mechanism analysis indicated that highly electronegative pyridine-N atoms on BPY-COFs provide extra sites to adsorb the terminal H atoms of PMS, resulting in simultaneous adsorption of O and H atoms of PMS on one pyridine ring, which facilitates the cleavage of its S-O bond to generate 1 O2 .
Collapse
Affiliation(s)
- Zonglin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yuanfang Lin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Siyuan Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinfei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinwen Ou
- School of Physics, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
50
|
Fang Q, Yang H, Ye S, Zhang P, Dai M, Hu X, Gu Y, Tan X. Generation and identification of 1O 2 in catalysts/peroxymonosulfate systems for water purification. WATER RESEARCH 2023; 245:120614. [PMID: 37717327 DOI: 10.1016/j.watres.2023.120614] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Catalysts for peroxymonosulfate (PMS) activation are appealing in the purification of organic wastewater. Singlet oxygen (1O2) is widely recognized as a crucial reactive species for degrading organic contaminants in catalysts/PMS systems due to its adamant resistance to inorganic anions, high selectivity, and broad pH applicability. With the rapid growth of studies on 1O2 in catalysts/PMS systems, it becomes necessary to provide a comprehensive review of its current state. This review highlights recent advancements concerning 1O2 in catalysts/PMS systems, with a primary focus on generation pathways and identification methods. The generation pathways of 1O2 are summarized based on whether (distinguished by the geometric structures of metal species) or not (distinguished by the active sites) the metal element is included in the catalysts. Furthermore, this review thoroughly discusses the influence of metal valence states and metal species with different geometric structures on 1O2 generation. Various potential strategies are explored to regulate the generation of 1O2 from the perspective of catalyst design. Identification methods of 1O2 primarily include electron paramagnetic resonance (EPR), quenching experiments, reaction in D2O solution, and chemical probe tests in catalysts/PMS systems. The principles and applications of these methods are presented comprehensively along with their applicability, possible disagreements, and corresponding solutions. Besides, an identifying procedure on the combination of main identification methods is provided to evaluate the role of 1O2 in catalysts/PMS systems. Lastly, several perspectives for further studies are proposed to facilitate developments of 1O2 in catalysts/PMS systems.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Mingyang Dai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China.
| |
Collapse
|