1
|
Duan R, Ma S, Ma Y, Xu S, Li G, Fu H, Wu X, Du J, Zhao P. Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138182. [PMID: 40203758 DOI: 10.1016/j.jhazmat.2025.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination.
Collapse
Affiliation(s)
- Ran Duan
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Quality & Safety and Processing for Agro-Products, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shuanglong Ma
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanbing Ma
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Guangxin Li
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Haichao Fu
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Xujin Wu
- Henan Key Laboratory of Quality & Safety and Processing for Agro-Products, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jinge Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Zhao
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Pan Q, Zhang Y, Zhang X, Yang Y, Huang K, Liu C. Co-exposure of pyraclostrobin and biochar promoted antibiotic resistance genes transfer from soil to lettuce. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137756. [PMID: 40015044 DOI: 10.1016/j.jhazmat.2025.137756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The widespread presence of antibiotic resistance genes (ARGs) threatens ecological security and human health. In agricultural production, the simultaneous presence of non-antibiotic substances fungicides and biochar utilized for soil remediation has unclear effects on the spread of ARGs in the soil-vegetable systems. Herein, this study conducted a pots experiment and found that biochar significantly reduced pyraclostrobin accumulation in the soil and lettuce roots. Simultaneously, the co-exposure of pyraclostrobin and biochar increased the microbial community alpha diversity and the abundance of ARGs in soil, while promoting the transfer of ARGs from soil to lettuce. Proteobacteria were identified as potential primary carriers of ARGs. Planting lettuce mitigated the effects of pyraclostrobin or/and biochar on ARGs accumulation in soil. Furthermore, MGEs and bacterial community abundance were the most important direct factors increasing ARGs in soil and lettuce. Overall, these findings evaluated the combined effects of non-antibiotic substances fungicides and soil remediation materials biochar on the generation and transmission of ARGs, providing potential strategies for controlling ARGs transfer in soil-vegetable systems.
Collapse
Affiliation(s)
- Qianhui Pan
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiangyu Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yi Yang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kecheng Huang
- Shenzhen Noposion Crop Science CO., Ltd, Shenzhen 518102, China.
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Wang H, Wu X, Xu J, Lu Z, Hu B, Zhu L, Lu H. Proline mitigates antibiotic resistance evolution induced by ciprofloxacin at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137561. [PMID: 39938368 DOI: 10.1016/j.jhazmat.2025.137561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Antibiotics-induced resistance development in the environment has emerged as a critical issue under the 'one health' framework. Although there have been approaches to control antibiotic resistance evolution in clinical settings, they are rarely applicable in environmental contexts. Amino acids can affect the metabolic states of bacteria and potentially influence their resistance evolution. In this study, we screened 18 amino acids and identified proline as an efficient agent capable of mitigating ciprofloxacin-induced resistance of a soil-isolated Escherichia coli by over 50 % during a 24-day evolutionary experiment. Using transcriptomics and 13C metabolic flux analysis, we revealed the evolution mitigation mechanism of proline, which mainly involves down-regulated gene expressions and reduced metabolic flux of the TCA cycle, thereby decreasing NADH production, proton motive force, and uptake of ciprofloxacin. Based on single-cell RNA-seq, proline also reduced the size of resistant subgroups in the evolved E. coli population. Based on soil microcosm experiments, proline not only reduced the overall antibiotic resistance but also increased community diversity and robustness (optimal dosage: 5 mg/kg). Moreover, proline's evolution mitigation potentials likely extend to other antibiotics (e.g., streptomycin) and populations (e.g., Pseudomonas and Serratia spp.). Overall, proline addition holds promising potentials for mitigating antibiotic resistance in diverse antibiotics-polluted environments.
Collapse
Affiliation(s)
- Hanqing Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiujing Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China; Academy of Ecological Civilization, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Hossein M, Ripanda AS. Pollution by antimicrobials and antibiotic resistance genes in East Africa: Occurrence, sources, and potential environmental implications. Toxicol Rep 2025; 14:101969. [PMID: 40104048 PMCID: PMC11919419 DOI: 10.1016/j.toxrep.2025.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The escalating burden of antimicrobial pollution in East Africa poses severe threats to public health, environmental integrity, and economic stability. Environmental compartments such as soil and water serve as reservoirs for these pollutants such as antimicrobials and antibiotic resistance genes, creating selective pressure that accelerates the emergence of antimicrobial resistance (AMR). These dynamic fosters the proliferation of multidrug-resistant pathogens, or "superbugs," complicating infection management and amplifying health risks in a region already challenged by inadequate healthcare and sanitation infrastructure. Furthermore, pollution by antimicrobials and antibiotic resistance genes critically disrupts ecological processes, such as nutrient cycling and organic matter degradation, diminishing soil fertility, water quality, and agricultural productivity, thereby threatening food security and overall ecological health. Current surveillance efforts, including the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the East Africa Public Health Laboratory Networking Project (EAPHLNP), have made strides in tracking AMR trends and guiding policy decisions. However, these efforts remain insufficient to address the growing crisis. This study highlights the urgent need for integrated strategies, including stringent antibiotic usage regulations, advanced wastewater treatment technologies, and comprehensive environmental surveillance. Therefore, there is a need to address the intersections of health, agriculture, and environment, to mitigate AMR and its far-reaching consequences to ensure public health safety and sustainability.
Collapse
Affiliation(s)
- Miraji Hossein
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, PO Box 338, Dodoma, Tanzania
| | - Asha Shabani Ripanda
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, PO Box 338, Dodoma, Tanzania
| |
Collapse
|
5
|
Liu Y, Shan X, Liu C, Chen H. Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137398. [PMID: 39874760 DOI: 10.1016/j.jhazmat.2025.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025]
Abstract
Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water.
Collapse
Affiliation(s)
- Yiyi Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Xin Shan
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| |
Collapse
|
6
|
Liu W, Lau HCH, Ding X, Yin X, Wu WKK, Wong SH, Sung JJY, Zhang T, Yu J. Transmission of antimicrobial resistance genes from the environment to human gut is more pronounced in colorectal cancer patients than in healthy subjects. IMETA 2025; 4:e70008. [PMID: 40236771 PMCID: PMC11995172 DOI: 10.1002/imt2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 04/17/2025]
Abstract
Antimicrobial resistance is a major global health concern. However, the source of gut resistome remains unsolved. We aimed to analyze the contribution of environmental antimicrobial resistance genes (ARGs) to colorectal cancer (CRC) patients. Here, we collected metagenomic data from 1,605 human stool samples (CRC = 748; healthy = 857) and 1,035 city-matched environmental samples, in which 110 CRC, 112 healthy, and 56 environmental samples were newly collected. Compared to healthy subjects, CRC patients had significantly higher ARG burden (p < 0.01) with increased levels of multidrug-resistant ARGs. Gut ARGs in CRC also had a closer similarity to environmental ARGs (p < 0.001). By comparing environmental and gut ARGs, 28 environmental ARGs were identified as CRC-specific ARGs, including SUL2 and MEXE, which were not identified in healthy subjects. Meanwhile, more mobile ARGs (mARGs) from the environment were observed in CRC patients compared to healthy subjects (p < 0.05). The hosts of mARGs were mainly pathogenic bacteria (e.g., Escherichia coli (E. coli) and Clostridium symbiosum (C. symbiosum)). Compared to healthy subjects, CRC patients showed elevated horizontal gene transfer efficiency from the environment to gut. Consistently, the abundance of pathobionts carrying specific mARGs (e.g., E. coli-SUL2 and C. symbiosum-SUL2) were significantly increased in CRC patients compared to healthy subjects (p < 0.05). We thus reveal a route of ARG dissemination from the environment into the gut of CRC patients.
Collapse
Affiliation(s)
- Weixin Liu
- Institute of Digestive Disease and The Department of Medicine and TherapeuticsState Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong KongHong Kong SARChina
| | - Harry C. H. Lau
- Institute of Digestive Disease and The Department of Medicine and TherapeuticsState Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong KongHong Kong SARChina
| | - Xiao Ding
- Institute of Digestive Disease and The Department of Medicine and TherapeuticsState Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong KongHong Kong SARChina
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongHong Kong SARChina
| | - William Ka Kei Wu
- Institute of Digestive Disease and The Department of Medicine and TherapeuticsState Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong KongHong Kong SARChina
| | - Sunny Hei Wong
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Joseph J. Y. Sung
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongHong Kong SARChina
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and TherapeuticsState Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
Oltean HN, Lipton B, Black A, Snekvik K, Haman K, Buswell M, Baines AE, Rabinowitz PM, Russell SL, Shadomy S, Ghai RR, Rekant S, Lindquist S, Baseman JG. Developing a one health data integration framework focused on real-time pathogen surveillance and applied genomic epidemiology. ONE HEALTH OUTLOOK 2025; 7:9. [PMID: 39972521 PMCID: PMC11841253 DOI: 10.1186/s42522-024-00133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The One Health approach aims to balance and optimize the health of humans, animals, and ecosystems, recognizing that shared health outcomes are interdependent. A One Health approach to disease surveillance, control, and prevention requires infrastructure for coordinating, collecting, integrating, and analyzing data across sectors, incorporating human, animal, and environmental surveillance data, as well as pathogen genomic data. However, unlike data interoperability problems faced within a single organization or sector, data coordination and integration across One Health sectors requires engagement among partners to develop shared goals and capacity at the response level. Successful examples are rare; as such, we sought to develop a framework for local One Health practitioners to utilize in support of such efforts. METHODS We conducted a systematic scientific and gray literature review to inform development of a One Health data integration framework. We discussed a draft framework with 17 One Health and informatics experts during semi-structured interviews. Approaches to genomic data integration were identified. RESULTS In total, 57 records were included in the final study, representing 13 pre-defined frameworks for health systems, One Health, or data integration. These frameworks, included articles, and expert feedback were incorporated into a novel framework for One Health data integration. Two scenarios for genomic data integration were identified in the literature and outlined. CONCLUSIONS Frameworks currently exist for One Health data integration and separately for general informatics processes; however, their integration and application to real-time disease surveillance raises unique considerations. The framework developed herein considers common challenges of limited resource settings, including lack of informatics support during planning, and the need to move beyond scoping and planning to system development, production, and joint analyses. Several important considerations separate this One Health framework from more generalized informatics frameworks; these include complex partner identification, requirements for engagement and co-development of system scope, complex data governance, and a requirement for joint data analysis, reporting, and interpretation across sectors for success. This framework will support operationalization of data integration at the response level, providing early warning for impending One Health events, promoting identification of novel hypotheses and insights, and allowing for integrated One Health solutions.
Collapse
Affiliation(s)
- Hanna N Oltean
- Washington State Department of Health, 1610 NE 150th St, Shoreline, WA, 98155, USA.
- University of Washington, 1410 NE Campus Parkway, 98195, Seattle, Washington, USA.
| | - Beth Lipton
- Washington State Department of Health, 1610 NE 150th St, Shoreline, WA, 98155, USA
| | - Allison Black
- Washington State Department of Health, 1610 NE 150th St, Shoreline, WA, 98155, USA
| | - Kevin Snekvik
- Washington Animal Disease Diagnostic Laboratory, Washington State University, 1940 Olympia Ave, 99164, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, 1845 Ott Rd, Pullman, WA, 99163, USA
| | - Katie Haman
- Washington Department of Fish and Wildlife, Wildlife Program, 1111 Washington St SE, 98501, Olympia, Washington, USA
| | - Minden Buswell
- Washington State Department of Agriculture, 1111 Washington St SE, 98501, Olympia, Washington, USA
| | - Anna E Baines
- University of Washington, 1410 NE Campus Parkway, 98195, Seattle, Washington, USA
| | - Peter M Rabinowitz
- University of Washington, 1410 NE Campus Parkway, 98195, Seattle, Washington, USA
| | - Shannon L Russell
- British Columbia Center for Disease Control, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada
| | - Sean Shadomy
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, US
| | - Ria R Ghai
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, US
| | - Steven Rekant
- Department of Agriculture Animal and Plant Health Inspection Service, United States, 4700 River Road, 1610 NE 150th St, Riverdale, Shoreline, MD, WA, 20737, 418- 5428, 98155, USA
| | - Scott Lindquist
- Washington State Department of Health, 1610 NE 150th St, Shoreline, WA, 98155, USA
| | - Janet G Baseman
- University of Washington, 1410 NE Campus Parkway, 98195, Seattle, Washington, USA
| |
Collapse
|
8
|
Gao FZ, Jia WL, Li B, Zhang M, He LY, Bai H, Liu YS, Ying GG. Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. ENVIRONMENT INTERNATIONAL 2025; 195:109239. [PMID: 39729867 DOI: 10.1016/j.envint.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood. Here, we collected metagenomic datasets of 32 raw leachate and 45 solid waste samples in 22 municipal landfills of China. The antibiotic resistome, antibiotic-resistant bacteria and contaminant-degrading bacteria were explored, and were then compared with other environmental types. Results showed that the antibiotic resistome in landfills contained 1,403 ARG subtypes, with the total abundance over the levels in natural environments and reaching the levels in human feces and sewage. Therein, 49 subtypes were listed as top priority ARGs for future surveillance based on the criteria of enrichment in landfills, mobilizable and present in pathogens. By comparing to those in less contaminated river environments, we elucidated an enrichment of antibiotic-resistant bacteria with contaminant-degrading potentials in landfills. Bacteria in Pseudomonadaceae, Moraxellaceae, Xanthomonadaceae and Enterobacteriaceae deserved the most concerns since 72.2 % of ARG hosts were classified to them. Klebsiella pneumoniae, Acinetobacter nosocomialis and Escherichia coli were abundant multidrug-resistant pathogenic species in raw leachate (∼10.2 % of total microbiomes), but they rarely carried contaminant-degradation genes. Notably, several bacterial genera belonging to Pseudomonadaceae had the most antibiotic-resistant, pathogenic, and contaminant-degrading potentials than other bacteria. Overall, the findings highlight environmental selection for contaminant-degrading antibiotic-resistant pathogens, and provide significant insights into AMR risks in municipal landfills.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China; Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
9
|
Shi Y, Liang M, Zeng J, Wang Z, Zhang L, He Z, Li M, Shu L, Ying G. Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21475-21488. [PMID: 39584452 DOI: 10.1021/acs.est.4c10455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Antibiotic resistance poses a significant threat to human health. While most studies focus on bacteria, interactions between antibiotics and other crucial microbial groups like protists remain uncertain. This study investigates how protists interact with antibiotics and examines how these interactions impact the fate of resistance genes. It reveals that amoebae exhibit high resistance to eight high-risk environmental antibiotics, accumulating significant quantities within their cells. Wild amoeboid strains from distant locations carry substantial antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), with significant heterogeneity within a single species. Amoeboid symbionts and pathogens predominantly carry these genes. Paraburkholderia symbionts have reduced genomes and fewer resistance genes compared to free-living strains, while amoeba-endogenous Stenotrophomonas maltophilia does not exhibit a significantly reduced genome size. This suggests that the amoeboid hosts serve as a temporary medium facilitating its transmission. In summary, the study unveils that soil amoebae represent unexpected hotspots for antibiotics and resistance genes. Future research should assess the effects of antibiotics on often-overlooked protists and explore their role in spreading ARGs and MRGs in ecosystems. Incorporating protists into broader antibiotic resistance research is recommended, highlighting their significance within a One Health perspective.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Minxi Liang
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyuan Li
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
10
|
Gilbert JA, Hartmann EM. The indoors microbiome and human health. Nat Rev Microbiol 2024; 22:742-755. [PMID: 39030408 DOI: 10.1038/s41579-024-01077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Indoor environments serve as habitat for humans and are replete with various reservoirs and niches for microorganisms. Microorganisms enter indoor spaces with their human and non-human hosts, as well as via exchange with outdoor sources, such as ventilation and plumbing. Once inside, many microorganisms do not survive, especially on dry, barren surfaces. Even reduced, this microbial biomass has critical implications for the health of human occupants. As urbanization escalates, exploring the intersection of the indoor environment with the human microbiome and health is increasingly vital. The indoor microbiome, a complex ecosystem of microorganisms influenced by human activities and environmental factors, plays a pivotal role in modulating infectious diseases and fostering healthy immune development. Recent advancements in microbiome research shed light on this unique ecological system, highlighting the need for innovative approaches in creating health-promoting living spaces. In this Review, we explore the microbial ecology of built environments - places where humans spend most of their lives - and its implications for immune, endocrine and neurological health. We further propose strategies to harness the indoor microbiome for better health outcomes.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
11
|
Wang P, Li L, Zhang Y, Ren D, Feng Y, Li X, Wu D, Xie B, Ma J. Triclosan facilitates the dissemination of antibiotic resistance genes during anaerobic digestion: Focusing on horizontal transfer and microbial response. BIORESOURCE TECHNOLOGY 2024; 413:131522. [PMID: 39321940 DOI: 10.1016/j.biortech.2024.131522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The present study aims to investigate the mechanism by which triclosan influences the dissemination of antibiotic resistance genes (ARGs) during the whole anaerobic digestion process. qPCR and metagenomic analyses revealed that triclosan facilitated ARGs dissemination in a dose- and time-dependent manner. Furthermore, integrons exhibited a significant correlation with the majority of quantified ARGs, and various ARGs were frequently linked on integron gene cassettes. Microbial community and redundancy analyses indicated that triclosan altered the components of dominant ARGs hosts Firmicutes, Synergistetes and Bacteroidetes. Path modeling analysis confirmed integrons were the main driving force for facilitating ARGs dissemination. The promoted ARGs dissemination may be associated with the increased reactive oxygen species generation, cell membrane permeability, close-connected the ARGs transfer related regulatory proteins induced by triclosan. This study broadens the understanding of triclosan facilitates ARGs dissemination through anaerobic treatment, the strategies for preventing potential risks should be proposed in practice.
Collapse
Affiliation(s)
- Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Liuying Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yufei Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dayang Ren
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
12
|
Ortiz-Severín J, Hodar C, Stuardo C, Aguado-Norese C, Maza F, González M, Cambiazo V. Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. Biol Res 2024; 57:84. [PMID: 39523335 PMCID: PMC11552226 DOI: 10.1186/s40659-024-00556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Laboratorio de Bioinformática y Bioestadística del Genoma, INTA, Universidad de Chile, Santiago, Chile
| | - Camila Stuardo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Constanza Aguado-Norese
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile.
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
13
|
Rajput S, Mitra S, Mondal AH, Kumari H, Mukhopadhyay K. Prevalence and molecular characterization of multidrug-resistant coagulase negative staphylococci from urban wastewater in Delhi-NCR, India. Arch Microbiol 2024; 206:399. [PMID: 39254720 DOI: 10.1007/s00203-024-04124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Antimicrobial resistance (AMR) is global health concern escalating rapidly in both clinical settings and environment. The effluent from pharmaceuticals and hospitals may contain diverse antibiotics, exerting selective pressure to develop AMR. To study the aquatic prevalence of drug-resistant staphylococci, sampling was done from river Yamuna (3 sites) and wastewater (7 sites) near pharmaceutical industries in Delhi-NCR, India. 59.25% (224/378) were considered presumptive staphylococci while, methicillin resistance was noted in 25% (56/224) isolates. Further, 23 methicillin-resistant coagulase negative staphylococci (MR-CoNS) of 8 different species were identified via 16S rRNA gene sequencing. Multidrug resistance (MDR) was noted in 60.87% (14/23) isolates. PCR based detection of antibiotic resistance genes revealed the number of isolates containing mecA (7/23), blaZ (6/23), msrA (10/23), aac(6')aph (2") (2/23), aph(3')-IIIa (2/23), ant(4')-Ia (1/23), dfrG (4/23), dfrA(drfS1) (3/23), tetK (1/23) and tetM (1/23). The current research highlights the concerning prevalence of MDR-CoNS in aquatic environment in Delhi.
Collapse
Affiliation(s)
- Sonali Rajput
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sayani Mitra
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aftab Hossain Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himani Kumari
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Fang Z, Tu S, Huang J. A bibliometric analysis of One Health approach in research on antimicrobial resistance. SCIENCE IN ONE HEALTH 2024; 3:100077. [PMID: 39350920 PMCID: PMC11440798 DOI: 10.1016/j.soh.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024]
Abstract
Background Antimicrobial resistance (AMR) is a global public health threat that requires actions through One Health intervention. This study aims to trace the historical development of One Health research on AMR to provide evidence supporting future research and actions. Methods A bibliometric analysis is conducted with One Health articles in the field of antimicrobial resistance (AMR-OH articles) retrieved from the Web of Science Core Collection (WoSCC). AMR-OH articles refer to articles in the field of AMR that simultaneously involve elements from human health and at least one other domain, including animals, environment, or plants. Three research periods were identified based on the development of global actions in combating AMR. Descriptive analysis of publications, keyword cluster analysis, annual trending topic analysis, and co-authorship analysis were conducted using R software, V OSV iewer, and Pajek. Results The results indicated that the percentage of AMR-OH articles among all AMR articles increased from 5.21% in 1990 to 20.01% in 2023. Key topics in the current AMR-OH articles included the mechanism of AMR, AMR epidemiology, and public health control strategies. Epidemiological research initially focused on human and animal health and then shifted to environmental factors in the third period. Research at the molecular level focused on the mechanisms of AMR transmission in various domains, along with the dynamics and diversity of antibiotic resistance genes (ARGs). The co-authorship analysis suggested a significant increase in cooperation among low- and middle-income countries in the third period. Conclusion The scope of epidemiological research on AMR has expanded by including human, animal, and environmental areas. Moreover, genetic and molecular level research represents the forefront of this field, offering innovative tools to combat AMR in the future. This study suggests further research to translate existing findings into practical implementation of the One Health strategy, and to support globally consistent action in combating AMR.
Collapse
Affiliation(s)
- Zheyi Fang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
- Global Health Institutes, Fudan University, Shanghai 200032, China
| | - Shiyi Tu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
- Global Health Institutes, Fudan University, Shanghai 200032, China
| | - Jiayan Huang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
- Global Health Institutes, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Philo SE, Monteiro S, Fuhrmeister ER, Santos R, Meschke JS. Wastewater surveillance for antibiotic resistance genes during the late 2020 SARS-CoV-2 peak in two different populations. JOURNAL OF WATER AND HEALTH 2024; 22:1683-1694. [PMID: 39340381 DOI: 10.2166/wh.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 09/30/2024]
Abstract
The United States Centers for Disease Control and Prevention reported a rise in resistant infections after the coronavirus disease 2019 (COVID-19) pandemic started. How and if the pandemic contributed to antibiotic resistance in the larger population is not well understood. Wastewater treatment plants are good locations for environmental surveillance because they can sample entire populations. This study aimed to validate methods used for COVID-19 wastewater surveillance for bacterial targets and to understand how rising COVID-19 cases from October 2020 to February 2021 in Portugal (PT) and King County, Washington contributed to antibiotic resistance genes in wastewater. Primary influent wastewater was collected from two treatment plants in King County and five treatment plants in PT, and hospital effluent was collected from three hospitals in PT. Genomic extracts were tested with the quantitative polymerase chain reaction for antibiotic resistance genes conferring resistance against antibiotics under threat. Random-effect models were fit for log-transformed gene abundances to assess temporal trends. All samples collected tested positive for multiple resistance genes. During the sampling period, mecA statistically significantly increased in King County and PT. No statistical evidence exists of correlation between samples collected in the same Portuguese metro area.
Collapse
Affiliation(s)
- Sarah E Philo
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sílvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Erica R Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA E-mail:
| |
Collapse
|
16
|
Liu ZT, Ma RA, Zhu D, Konstantinidis KT, Zhu YG, Zhang SY. Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nat Commun 2024; 15:5168. [PMID: 38886447 PMCID: PMC11183072 DOI: 10.1038/s41467-024-49165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) coexist in organic fertilized agroecosystems based on their correlations in abundance, yet evidence for the genetic linkage of ARG-MRGs co-selected by organic fertilization remains elusive. Here, an analysis of 511 global agricultural soil metagenomes reveals that organic fertilization correlates with a threefold increase in the number of diverse types of ARG-MRG-carrying contigs (AMCCs) in the microbiome (63 types) compared to non-organic fertilized soils (22 types). Metatranscriptomic data indicates increased expression of AMCCs under higher arsenic stress, with co-regulation of the ARG-MRG pairs. Organic fertilization heightens the coexistence of ARG-MRG in genomic elements through impacting soil properties and ARG and MRG abundances. Accordingly, a comprehensive global map was constructed to delineate the distribution of coexistent ARG-MRGs with virulence factors and mobile genes in metagenome-assembled genomes from agricultural lands. The map unveils a heightened relative abundance and potential pathogenicity risks (range of 4-6) for the spread of coexistent ARG-MRGs in Central North America, Eastern Europe, Western Asia, and Northeast China compared to other regions, which acquire a risk range of 1-3. Our findings highlight that organic fertilization co-selects genetically linked ARGs and MRGs in the global soil microbiome, and underscore the need to mitigate the spread of these co-resistant genes to safeguard public health.
Collapse
Affiliation(s)
- Zi-Teng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui-Ao Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Konstantinos T Konstantinidis
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Si-Yu Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
17
|
Tian L, Fang G, Li G, Li L, Zhang T, Mao Y. Metagenomic approach revealed the mobility and co-occurrence of antibiotic resistomes between non-intensive aquaculture environment and human. MICROBIOME 2024; 12:107. [PMID: 38877573 PMCID: PMC11179227 DOI: 10.1186/s40168-024-01824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Aquaculture is an important food source worldwide. The extensive use of antibiotics in intensive large-scale farms has resulted in resistance development. Non-intensive aquaculture is another aquatic feeding model that is conducive to ecological protection and closely related to the natural environment. However, the transmission of resistomes in non-intensive aquaculture has not been well characterized. Moreover, the influence of aquaculture resistomes on human health needs to be further understood. Here, metagenomic approach was employed to identify the mobility of aquaculture resistomes and estimate the potential risks to human health. RESULTS The results demonstrated that antibiotic resistance genes (ARGs) were widely present in non-intensive aquaculture systems and the multidrug type was most abundant accounting for 34%. ARGs of non-intensive aquaculture environments were mainly shaped by microbial communities accounting for 51%. Seventy-seven genera and 36 mobile genetic elements (MGEs) were significantly associated with 23 ARG types (p < 0.05) according to network analysis. Six ARGs were defined as core ARGs (top 3% most abundant with occurrence frequency > 80%) which occupied 40% of ARG abundance in fish gut samples. Seventy-one ARG-carrying contigs were identified and 75% of them carried MGEs simultaneously. The qacEdelta1 and sul1 formed a stable combination and were detected simultaneously in aquaculture environments and humans. Additionally, 475 high-quality metagenomic-assembled genomes (MAGs) were recovered and 81 MAGs carried ARGs. The multidrug and bacitracin resistance genes were the most abundant ARG types carried by MAGs. Strikingly, Fusobacterium_A (opportunistic human pathogen) carrying ARGs and MGEs were identified in both the aquaculture system and human guts, which indicated the potential risks of ARG transfer. CONCLUSIONS The mobility and pathogenicity of aquaculture resistomes were explored by a metagenomic approach. Given the observed co-occurrence of resistomes between the aquaculture environment and human, more stringent regulation of resistomes in non-intensive aquaculture systems may be required. Video Abstract.
Collapse
Affiliation(s)
- Li Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Guimei Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Guijie Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Liguan Li
- The University of Hong Kong Shenzhen Institute of Research and Innovation, HKU SIRI, Shenzhen, Guangdong, 518057, China
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Zhang
- The University of Hong Kong Shenzhen Institute of Research and Innovation, HKU SIRI, Shenzhen, Guangdong, 518057, China
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong SAR, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China.
| |
Collapse
|
18
|
Zhuang X, Fan H, Li X, Dong Y, Wang S, Zhao B, Wu S. Transfer and accumulation of antibiotic resistance genes and bacterial pathogens in the mice gut due to consumption of organic foods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169842. [PMID: 38215844 DOI: 10.1016/j.scitotenv.2023.169842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Over the last few decades, organic food demand has grown largely because of increasing personal health concerns. Organic farming introduces antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) into foods. However, potential effects of organic foods on the gut microbiome and ARGs have been overlooked. Using high-throughput quantitative PCR and 16S rRNA high-throughput sequencing technology, we examined 132 ARGs from major classes, eight transposase genes, universal class I integron-integrase gene (intI), clinical class I integron-integrase gene (cintI), and the bacterial community in mouse gut after 8 weeks with an either organic or inorganic lettuce and wheat diet. A total of 8 types of major ARGs and 10 mobile genetic elements (MGEs) were detected in mice gut, including tetracycline, multidrug, sulfonamide, aminoglycoside, beta-lactamase, chloramphenicol, MLSB and vancomycin resistance genes. We found that abundance and diversity of ARGs, mobile gene elements, and potential ARB in the gut increased with time after consumption of organic foods, whereas no significant changes were observed in inorganic treated groups. Moreover, MGEs, including IS613, Tp614 and tnpA_03 were found to play an important role in regulating ARG profiles in the gut microbiome following consumption of organic foods. Importantly, feeding organic food increased the relative abundance of the potentially antibiotic-resistant pathogens, Bacteroides and Streptococcus. Our results confirm that there is an increasing risk of ARGs and ARB in the gut microbiome, which highlights the importance of organic food industries taking into account the potential accumulation and transmission of ARGs as a risk factor.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Ohore OE, Zhang J, Ifon BE, Kumwimba MN, Mu X, Kuang D, Wang Z, Gu JD, Yang G. Microbial phylogenetic divergence between surface-water and sedimentary ecosystems drove the resistome profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170122. [PMID: 38232840 DOI: 10.1016/j.scitotenv.2024.170122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Antibiotic pollution and the evolution of antibiotic resistance genes (ARGs) are increasingly viewed as major threats to both ecosystem security and human health, and have drawn attention. This study investigated the fate of antibiotics in aqueous and sedimentary substrates and the impact of ecosystem shifts between water and sedimentary phases on resistome profiles. The findings indicated notable variations in the concentration and distribution patterns of antibiotics across various environmental phases. Based on the partition coefficient (Kd), the total antibiotic concentration was significantly greater in the surface water (1405.45 ng/L; 49.5 %) compared to the suspended particulate matter (Kd = 0.64; 892.59 ng/g; 31.4 %) and sediment (Kd = 0.4; 542.64 ng/g; 19.1 %). However, the relative abundance of ARGs in surface water and sediment was disproportionate to the abundance of antibiotics concentration, and sediments were the predominant ARGs reservoirs. Phylogenetic divergence of the microbial communities between the surface water and the sedimentary ecosystems potentially played important roles in driving the ARGs profiles between the two distinctive ecosystems. ARGs of Clinical importance; including blaGES, MCR-7.1, ermB, tet(34), tet36, tetG-01, and sul2 were significantly increased in the surface water, while blaCTX-M-01, blaTEM, blaOXA10-01, blaVIM, tet(W/N/W), tetM02, and ermX were amplified in the sediments. cfxA was an endemic ARG in surface-water ecosystems while the endemic ARGs of the sedimentary ecosystems included aacC4, aadA9-02, blaCTX-M-04, blaIMP-01, blaIMP-02, bla-L1, penA, erm(36), ermC, ermT-01, msrA-01, pikR2, vgb-01, mexA, oprD, ttgB, and aac. These findings offer a valuable information for the identification of ARGs-specific high-risk reservoirs.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Key Laboratory of Tropical Diseases Control, National Health Commission, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Jingli Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Binessi Edouard Ifon
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China; Laboratory of Physical Chemistry, University of Abomey-Calavi, Cotonou 01 BP 4521, Benin
| | - Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoying Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dai Kuang
- Key Laboratory of Tropical Diseases Control, National Health Commission, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China
| | - Guojing Yang
- Key Laboratory of Tropical Diseases Control, National Health Commission, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
20
|
Gao FZ, He LY, He LX, Bai H, Zhang M, Chen ZY, Qiao LK, Liu YS, Ying GG. Swine farming shifted the gut antibiotic resistome of local people. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133082. [PMID: 38016315 DOI: 10.1016/j.jhazmat.2023.133082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Antibiotic resistance genes (ARGs) are prevalent in the livestock environment, but little is known about impacts of animal farming on the gut antibiotic resistome of local people. Here we conducted metagenomic sequencing to investigate gut microbiome and resistome of residents in a swine farming village as well as environmental relevance by comparing with a nearby non-farming village. Results showed a shift of gut microbiome towards unhealthy status in the residents of swine farming village, with an increased abundance and diversity in pathogens and ARGs. The resistome composition in human guts was more similar with that in swine feces and air than that in soil and water. Mobile gene elements were closely associated with the prevalence of gut resistome. Some plasmid-borne ARGs were colocalized in similar genetic contexts in gut and environmental samples. Metagenomic binning obtained 47 ARGs-carrying families in human guts, and therein Enterobacteriaceae posed the highest threats in antibiotic resistance and virulence. Several ARGs-carrying families were shared by gut and environmental samples (mainly in swine feces and air), and the ARGs were evolutionarily conservative within genera. The findings highlight that swine farming can shape gut resistome of local people with close linkage to farm environmental exposures.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China.
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Liu L, Sun Y, Du S, Li Y, Wang J. Nanoplastics promote the dissemination of antibiotic resistance genes and diversify their bacterial hosts in soil. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:1-10. [PMID: 38187015 PMCID: PMC10767152 DOI: 10.1016/j.eehl.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 01/09/2024]
Abstract
The wide application of plastics has led to the ubiquitous presence of nanoplastics and microplastics in terrestrial environments. However, few studies have focused on the mechanism underlying the effects of plastic particles on soil microbiomes and resistomes, especially the differences between nanoplastics and microplastics. This study investigated the microbiome and resistome in soil exposed to polystyrene microplastics (mPS) or nanoplastics (nPS) through 16S rRNA and shotgun metagenomic sequencing. Distinct microbial communities were observed between mPS and nPS exposure groups, and nPS exposure significantly changed the bacterial composition even at the lowest amended rate (0.01%, w/w). The abundance of antibiotic resistance genes (ARGs) in nPS exposure (1%) was 0.26 copies per cell, significantly higher than that in control (0.21 copies per cell) and mPS exposure groups (0.21 copies per cell). It was observed that nanoplastics, bacterial community, and mobile genetic elements (MGEs) directly affected the ARG abundance in nPS exposure groups, while in mPS exposure groups, only MGEs directly induced the change of ARGs. Streptomyces was the predominant host for multidrug in the control and mPS exposure, whereas the primary host was changed to Bacillus in nPS exposure. Additionally, exposure to nPS induced several bacterial hosts to exhibit possible multi-antibiotic resistance characteristics. Our results indicated that the effects of plastic particles on the soil microbial community were size-dependent, and nano-sized plastic particles exhibited more substantial impacts. Both microplastics and nanoplastics promoted ARG transfer and diversified their bacterial hosts. These findings bear implications for the regulation of plastic waste and ARGs.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Zhang L, Wang B, Su Y, Wu D, Wang Z, Li K, Xie B. Pathogenic Bacteria Are the Primary Determinants Shaping PM 2.5-Borne Resistomes in the Municipal Food Waste Treatment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19965-19978. [PMID: 37972223 DOI: 10.1021/acs.est.3c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bioaerosol pollution poses a substantial threat to human health during municipal food waste (FW) recycling. However, bioaerosol-borne antibiotic-resistant genes (ARGs) have received little attention. Herein, 48 metagenomic data were applied to study the prevalence of PM2.5-borne ARGs in and around full-scale food waste treatment plants (FWTPs). Overall, FWTP PM2.5 (2.82 ± 1.47 copies/16S rRNA gene) harbored comparable total abundance of ARGs to that of municipal wastewater treatment plant PM2.5 (WWTP), but was significantly enriched with the multidrug type (e.g., AdeC/I/J; p < 0.05), especially the abundant multidrug ARGs could serve as effective indicators to define resistome profiles of FWTPs (Random Forest accuracy >92%). FWTP PM2.5 exhibited a decreasing enrichment of total ARGs along the FWTP-downwind-boundary gradient, eventually reaching levels comparable to urban PM2.5 (1.46 ± 0.21 copies/16S rRNA gene, N = 12). The combined analysis of source-tracking, metagenome-assembled genomes (MAGs), and culture-based testing provides strong evidence that Acinetobacter johnsonii-dominated pathogens contributed significantly to shaping and disseminating multidrug ARGs, while abiotic factors (i.e., SO42-) indirectly participated in these processes, which deserves more attention in developing strategies to mitigate airborne ARGs. In addition, the exposure level of FWTP PM2.5-borne resistant pathogens was about 5-11 times higher than those in urban PM2.5, and could be more severe than hospital PM2.5 in certain scenarios (<41.53%). This work highlights the importance of FWTP in disseminating airborne multidrug ARGs and the need for re-evaluating the air pollution induced by municipal FWTP in public health terms.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
Muloi DM, Jauneikaite E, Anjum MF, Essack SY, Singleton DA, Kasudi MR, Wade MJ, Egyir B, Nunn JG, Midega JT, Peacock SJ, Feasey NA, Baker KS, Zadoks RN. Exploiting genomics for antimicrobial resistance surveillance at One Health interfaces. THE LANCET. MICROBE 2023; 4:e1056-e1062. [PMID: 37977165 DOI: 10.1016/s2666-5247(23)00284-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.
Collapse
Affiliation(s)
- Dishon M Muloi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, UK
| | - Sabiha Y Essack
- Antimicrobial Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - David A Singleton
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Mitchelle R Kasudi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya
| | - Matthew J Wade
- Data Analytics and Surveillance Group, UK Health Security Agency, London, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | | | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia; School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Chua AQ, Verma M, Azupardo K, Lota MM, Hsu LY, Legido-Quigley H. A Qualitative Study on the Policy Process and Development of the National Action Plan on Antimicrobial Resistance in Singapore. Antibiotics (Basel) 2023; 12:1322. [PMID: 37627742 PMCID: PMC10451339 DOI: 10.3390/antibiotics12081322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The global public health threat of antimicrobial resistance (AMR) has been accelerated by many interrelated factors spanning across One Health-human health, animal health, and the environment. Singapore launched its own National Strategic Action Plan (NSAP) on AMR in November 2017 with the aim of tackling the growing threat of AMR in Singapore through coordinated approaches. However, little is known about the policy process and development of the NSAP in Singapore. In this study, we analysed these aspects using an AMR governance framework. In-depth interviews were conducted with 20 participants across the One Health spectrum. The interviews were transcribed verbatim and analysed thematically. Areas that were well executed included (1) good coordination across various agencies, (2) a dedicated office to coordinate the work on the NSAP, and (3) a high level of governmental support. Areas that were lacking included (1) a lack of participation from certain sectors, (2) insufficient awareness around the AMR issue, (3) constraints in information sharing, and (4) a lack of ideal indicators to track the progress in addressing AMR. Improvements in these areas will provide a more holistic One Health engagement in support of the effective planning and implementation of the NSAP.
Collapse
Affiliation(s)
- Alvin Qijia Chua
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; (M.V.); (L.Y.H.); (H.L.-Q.)
| | - Monica Verma
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; (M.V.); (L.Y.H.); (H.L.-Q.)
| | - Karen Azupardo
- College of Public Health, University of the Philippines Manila, 625 Pedro Gil St, Ermita, Manila 1000, Philippines; (K.A.); (M.M.L.)
| | - Maria Margarita Lota
- College of Public Health, University of the Philippines Manila, 625 Pedro Gil St, Ermita, Manila 1000, Philippines; (K.A.); (M.M.L.)
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; (M.V.); (L.Y.H.); (H.L.-Q.)
| | - Helena Legido-Quigley
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; (M.V.); (L.Y.H.); (H.L.-Q.)
- The George Institute for Global Health UK, Imperial College London, 80 Wood Lane White City, London W12 0BZ, UK
| |
Collapse
|
25
|
Wang S, He L, Zhang M, Su X, Liu F, Chen Q, Yang J, Tong M. Effects of Antibiotic Resistance Genes and Antibiotics on the Transport and Deposition Behaviors of Bacteria in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37406198 DOI: 10.1021/acs.est.3c03768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Antibiotics present in the natural environment would induce the generation of antibiotic-resistant bacteria (ARB), causing great environmental risks. The effects of antibiotic resistance genes (ARGs) and antibiotics on bacterial transport/deposition in porous media yet are unclear. By using E. coli without ARGs as antibiotic-susceptible bacteria (ASB) and their corresponding isogenic mutants with ARGs in plasmids as ARB, the effects of ARGs and antibiotics on bacterial transport in porous media were examined under different conditions (1-4 m/d flow rates and 5-100 mM NaCl solutions). The transport behaviors of ARB were comparable with those of ASB under antibiotic-free conditions, indicating that ARGs present within cells had negligible influence on bacterial transport in antibiotic-free solutions. Interestingly, antibiotics (5-1000 μg/L gentamicin) present in solutions increased the transport of both ARB and ASB with more significant enhancement for ASB. This changed bacterial transport induced by antibiotics held true in solution with humic acid, in river water and groundwater samples. Antibiotics enhanced the transport of ARB and ASB in porous media via different mechanisms (ARB: competition of deposition sites; ASB: enhanced motility and chemotaxis effects). Clearly, since ASB are likely to escape sites containing antibiotics, these locations are more likely to accumulate ARB and their environmental risks would increase.
Collapse
Affiliation(s)
- Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiangyu Su
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory of Water Resources and Environmental, Engineering, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qian Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
26
|
Dai S, He Q, Han Z, Shen W, Deng Y, Wang Y, Qiao W, Yang M, Zhang Y. Uncovering the diverse hosts of tigecycline resistance gene tet(X4) in anaerobic digestion systems treating swine manure by epicPCR. WATER RESEARCH X 2023; 19:100174. [PMID: 36915394 PMCID: PMC10006855 DOI: 10.1016/j.wroa.2023.100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/01/2023]
Abstract
The tet(X4) gene is a clinically important tigecycline resistance gene and has shown high persistence in livestock-related environments. However, the bacterial hosts of tet(X4) remain unknown due to the lack of appropriate approaches. Herein, a culture-independent and high-throughput epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction) method was developed, optimized, and demonstrated for the identification of bacterial hosts carrying tet(X4) from environmental samples. Considering the high sequence similarity between tet(X4) and other tet(X)-variant genes, specific primers and amplification conditions were screened and optimized to identify tet(X4) accurately and link tet(X4) with the 16S rRNA gene, which were further validated using artificially constructed bacterial communities. The epicPCR targeting tet(X4) was applied for the identification of bacterial hosts carrying this resistance gene in anaerobic digestion systems treating swine manure. A total of 19 genera were identified as tet(X4) hosts, which were distributed in the phyla Proteobacteria, Bacteroidota, Firmicutes, and Caldatribacteriota. Sixteen genera and two phyla that were identified have not been previously reported as tet(X4) bacterial hosts. The results indicated that a far more diverse range of bacteria was involved in harboring tet(X4) than previously realized. Compared with the tet(X4) hosts determined by correlation-based network analysis and metagenomic binning, epicPCR revealed a high diversity of tet(X4) hosts even at the phylum level. The epicPCR method developed in this study could be effectively employed to reveal the presence of tet(X4) bacterial hosts from a holistic viewpoint.
Collapse
Affiliation(s)
- Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Shi B, Zhao R, Su G, Liu B, Liu W, Xu J, Li Q, Meng J. Metagenomic surveillance of antibiotic resistome in influent and effluent of wastewater treatment plants located on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162031. [PMID: 36740063 DOI: 10.1016/j.scitotenv.2023.162031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
As hotspots for the dissemination of antibiotic resistance genes (ARGs), wastewater treatment plants (WWTPs) have attracted global attention. However, there lacks a sufficient metagenomic surveillance of antibiotic resistome in the WWTPs located on the Qinghai-Tibet Plateau. Here, metagenomic approaches were used to comprehensively investigate the occurrence, mobility potential, and bacterial hosts of ARGs in influent and effluent of 18 WWTPs located on the Qinghai-Tibet Plateau. The total ARG relative abundances and diversity were significantly decreased from influent to effluent across the WWTPs. Multidrug, bacitracin, sulfonamide, aminoglycoside, and beta-lactam ARGs generally consisted of the main ARG types in effluent samples, which were distinct from influent samples. A group of 72 core ARGs accounting for 61.8-95.8 % of the total ARG abundances were shared by all samples. Clinically relevant ARGs mainly conferring resistance to beta-lactams were detected in influent (277 ARGs) and effluent (178 ARGs). Metagenomic assembly revealed that the genetic location of an ARG on a plasmid or a chromosome was related to its corresponding ARG type, demonstrating the distinction in the mobility potential of different ARG types. The abundance of plasmid-mediated ARGs accounted for a much higher proportion than that of chromosome-mediated ARGs in both influent and effluent. Moreover, the ARGs co-occurring with diverse mobile genetic elements in the effluent exhibited a comparable mobility potential with the influent. Furthermore, 137 metagenome-assembled genomes (MAGs) assigned to 13 bacterial phyla were identified as the ARG hosts, which could be effectively treated in most WWTPs. Notably, 46 MAGs were found to carry multiple ARG types and the potential pathogens frequently exhibited multi-antibiotic resistance. Some ARG types tended to be carried by certain bacteria, showing a specific host-resistance association pattern. This study highlights the necessity for metagenomic surveillance and will facilitate risk assessment and control of antibiotic resistome in WWTPs located on the vulnerable area.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renxin Zhao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyue Liu
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Kumar M, Silori R, Mazumder P, Shrivastava V, Loge F, Barceló D, Mahlknecht J. Wars and Pandemics: AMR Accelerators of the 21st Century? ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:289-291. [DOI: 10.1021/acs.estlett.3c00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Frank Loge
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
29
|
Moghadam AA, Shuai W, Hartmann EM. Anthropogenic antimicrobial micropollutants and their implications for agriculture. Curr Opin Biotechnol 2023; 80:102902. [PMID: 36812745 DOI: 10.1016/j.copbio.2023.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
Antibiotics and disinfectants have saved millions of human lives and cured uncountable animal diseases, but their activity is not limited to the site of application. Downstream, these chemicals become micropollutants, contaminating water at trace levels, resulting in adverse impacts on soil microbial communities and threatening crop health and productivity in agricultural settings and perpetuating the spread of antimicrobial resistance. Especially as resource scarcity drives increased reuse of water and other waste streams, considerable attention is needed to characterize the fate of antibiotics and disinfectants and to prevent or mitigate environmental and public health impacts. In this review, we hope to provide an overview of why increasing concentrations of micropollutants such as antibiotics are concerning in the environment, how they can pose health risks for humans, and how they can be countered using bioremediation strategies.
Collapse
Affiliation(s)
- Anahid A Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, USA
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| |
Collapse
|