1
|
Jiang J, Zhang Y, Liu Y, Liu S, Sun T, Zhao B, Wang R, Zhang C, Huo M, Zhou D, Dong S. Selective activation of peroxymonosulfate through gating heteronuclear diatomic distance for flexible generation of high-valent cobalt-oxo species or sulfate radicals. WATER RESEARCH 2025; 279:123488. [PMID: 40106863 DOI: 10.1016/j.watres.2025.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Heteronuclear diatomic engineering has been widely applied to generate selective or nonselective active species in Fenton-like system for wastewater treatment. However, active species adapted to diverse wastewater were different, and flexible control of active species has remained elusive, often necessitating complex and repetitive atom modifications. Here, we proposed a diatomic distance gating strategy that adjusted the spintronic structure of cobalt site for flexible transformation of high-valent cobalt-oxo and sulfate radical for adapted wastewater treatment. Electron paramagnetic resonance spectra, magnetic susceptibility-temperatur curve and partial density of states revealed electron transfer from dx2-y2, dz2 and dyz orbitals of high-spin cobalt to peroxymonosulfate for high-valent cobalt-oxo generation at 3.8 nm, and from dz2 orbital of medium-spin cobalt to peroxymonosulfate for sulfate radical generation at 2.5 nm. The Fenton-like system with 3.8 nm of diatomic distance preferentially degraded contaminants with low n-octanol/water partition constant and high ionization potential, while Fenton-like system with 2.5 nm of diatomic distance readily degraded contaminants with high Hammett substituent constant and low dissociation constant. This study elucidated the effect of diatomic distance on Fenton-like chemistry and provided a blueprint for the design of intelligent Fenton-like system for treating diverse wastewater treatment scenarios.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanan Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yansong Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Shengda Liu
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, Jilin, China
| | - Tongze Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Bowen Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Ruixin Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Chongqing Research Institute, Jilin University, 401120, Chongqing, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Li Y, Pu H, Hong C, Gong X, Chen Y, Zhang Y, Qian H, Gao J, Wan C, Yang D. CoSn(OH) 6 nanocubes: Hydroxyl perovskite catalyst for efficient peroxymonosulfate activation in acetamiprid degradation. ENVIRONMENTAL RESEARCH 2025; 272:121149. [PMID: 39983956 DOI: 10.1016/j.envres.2025.121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
This study presents the synthesis of a nano-cubic metal hydroxide with a perovskite structure, CoSn(OH)6, for the efficient activation of peroxymonosulfate (PMS) towards the degradation of acetamiprid (ACE) in water treatment. The CoSn(OH)6/PMS system achieved complete degradation of ACE within only 12 min and exhibited outstanding catalytic stability. Our findings indicate that the non-radical mechanism, featuring singlet oxygen (1O2) and Co(IV)=O, is the primary contributor to the degradation process, while the role of radical species such as sulfate radical (SO4·-) and hydroxyl radicals (·OH) is subordinate. These insights were confirmed through trapping experiments, electron paramagnetic resonance (EPR), in situ Raman spectroscopy and steady-state model. This work offers novel perspectives on the application of cobalt-based hydroxide catalysts in PMS activation for the remediation of emerging contaminants in water.
Collapse
Affiliation(s)
- Yuanyuan Li
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China.
| | - Hongzheng Pu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing, 400054, People's Republic of China
| | - Chuanbing Hong
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing, 401331, People's Republic of China
| | - Yaoyu Chen
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yan Zhang
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Hong Qian
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Jie Gao
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Caiwen Wan
- Oil Resources Utilization and Innovative Engineering Technology Center, Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China.
| | - Dingfeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing, 400054, People's Republic of China.
| |
Collapse
|
3
|
Zhao X, Zhang Z. Heterogeneous Peroxymonosulfate-Based Advanced Oxidation Mechanisms: New Wine in Old Bottles? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5913-5924. [PMID: 40101212 DOI: 10.1021/acs.est.4c11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Heterogeneous persulfate-based advanced oxidation processes (PS-AOPs) have been gaining significant attention in water/wastewater treatment; however, the elucidation of mechanisms in PS-AOPs has become increasingly complex as the understanding of potential reactive pathways expands and the rigor of corresponding characterizations intensifies. As such, accurately illustrating system mechanisms with a robust and convincing methodology is crucial, while the influence of substrates must not be overlooked. In this Perspective, established techniques and critical issues are systematically compiled to serve as practical guidelines. Additionally, a newly proposed pathway, the direct oxidation transfer process (DOTP), is discussed in comparison to conventional mineralization processes by reactive oxidative species (ROS) in PS-AOPs. Overall, the investigation of PS-AOP mechanisms across various heterogeneous systems remains contentious and calls for standardization, for which this work aims to serve as a valuable reference.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Ren Y, Li J, Liu C, Zhang W, Lai B. Switchable surface Fe II/III sites for water/sediment remediation through enhanced selective oxidation and ROS regulation: Performance, mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136799. [PMID: 39675082 DOI: 10.1016/j.jhazmat.2024.136799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Selective oxidation relying on high-valent iron-oxo species (Fe(IV/V)) is a promising way of effective organic decontamination. However, Fe(IV/V) formation and further purposeful reinforcement production are commonly insufficient and unsustainable. Herein, cerium (Ce) modification strategy was adopted for efficient micropollutants removal through boosting Fe(IV/V) generation. Kinetic rate of sulfamethoxazole (SMX) removal through peracetic acid (PAA) activation by FeCe-O-CN is 4.1-fold of that without Ce doping. Ce modification lowered energy barrier of the key reaction pathway (*OH→*O) during Fe(IV/V) formation and accelerated the exposure of the surface FeII site for Fe(IV) production. Steady-state concentration of Fe(IV) and Fe(V) in FeCe-O-CN/PAA process is 2.5 × 10-8 and 9.7 × 10-11 M with its corresponding contribution to SMX removal as 64 % and 36 %. Not only intensified SMX removal, Ce modification significantly reduced the toxicity of transformation products. Furthermore, FeCe-O-CN/PAA system satisfies favorable decontaminant in long-term runs, anti-interference, and significantly alleviated bioaccumulation in plants. This study provides a new insight into the association between Ce modification and Fe(IV/V) generation in PAA activation and offered a feasible way for enhanced selective oxidation.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Wang Y, Li L, Zhou P, Gan Y, Liu W, Wang Y, Deng Y, Li H, Xie M, Xu Y. Aeration-Free Photo-Fenton-Like Reaction Mediated by Heterojunction Photocatalyst toward Efficient Degradation of Organic Pollutants. Angew Chem Int Ed Engl 2025; 64:e202419680. [PMID: 39543982 DOI: 10.1002/anie.202419680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
The regulation of peroxymonosulfate (PMS) activation by photo-assisted heterogeneous catalysis is under in-depth investigation with potential as a replaceable advanced oxidation process in water purification, yet it remains a significant challenge. Herein, we demonstrate a strategy to construct polyethylene glycol (PEG) well-coupled dual-defect VO-M-Co3O4@CNx S-scheme heterojunction to degrade organic pollutants without aeration, which dramatically provides abundant active sites, excellent photo-thermal property, and distinct charge transport pathway for PMS activation. The degradation rate of VO-M-Co3O4@CNx in anaerobic conditions shows a higher efficient rate (4.58 min-1 g-2) than in aerobic conditions (1.67 min-1 g-2). Experimental evidence reveals that VO-M-Co3O4@CNx promotes more rapid redox conversion of photoexcited electrons induced by defects with PMS under anaerobic conditions compared to aerobic conditions. Additionally, in situ experiments and DFT provide mechanistic insights into the regulation pathway of PMS activation via synergistic defect-induced electron, revealing the competitive effect between O2 and PMS over VO-M-Co3O4@CNx during the reaction process. The continuous flow reactor and flow cytometry results demonstrated that the VO-M-Co3O4@CNx/PMS/Vis system has remarkably enhanced stability and purification capability for removing organic pollutants. This work provides valuable insights into regulating the heterologous catalysis oxidation process without aeration through the photoexcitation synergistic PMS activation.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Puyang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yu Gan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weipeng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yiwen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hongping Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
6
|
Jiang J, Liu S, Zhao B, Sun T, Zhang Y, Wang R, Huo M, Zhou D, Zhou C, Dong S. Angstrom Confinement-Triggered Adaptive Spin State Transition of CoMn Dual Single Atoms for Efficient Singlet Oxygen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417834. [PMID: 39901371 DOI: 10.1002/adma.202417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/11/2025] [Indexed: 02/05/2025]
Abstract
To achieve high selectivity in the transformation from peroxymonosulfate to singlet oxygen, adaptive tuning of atomic spin state as the peroxymonosulfate structure varied is crucial. The angstrom confinement can effectively tune spin state, but developing an adaptive angstrom-confined atomic system is challenging. Angstrom-confined cobalt (Co) manganese (Mn) dual single atoms within flexible 2D carbon nitride interlayer are constructed to drive adaptive tuning of spin state by changing atomic coordination under angstrom confinement. The in situ characterizations and density functional theory calculations showed that medium-spin Co in Co─N4 absorbed electrons after the adsorption of peroxymonosulfate on CoMn dual single-atom sites and then cleaved O─H of peroxymonosulfate to facilitate *SO5 generation, while the introduction of *SO5 increased interlayer distance and then cleaved Co─N and Mn─N, resulting in the spin state transition from medium to high. Subsequently, the high-spin Co and Mn in Co─N2 and Mn─N2 desorbed the *O2 from *SO5, restoring the initial medium spin state. The adaptive spin state transition enhanced 38.6-fold singlet oxygen yield compared to the unconfined control. The proposed angstrom-confined diatomic strategy is applicable to serial diatomic catalysts, providing an efficient and universal design scheme for singlet oxygen-mediated selective wastewater treatment technology at the atomic level.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Shengda Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Bowen Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Tongze Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Yanan Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Ruixin Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Chen Zhou
- Institute for the Environment and Health, Nanjing University, Suzhou Campus, Suzhou, 215163, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
7
|
Li X, Zhang X, Lang J, Zhou B, Alvarez PJJ, Zhang L, Long M. Support work-function dependent Fenton-like catalytic activity of Co single atoms for selective cobalt(IV)=O generation. Sci Bull (Beijing) 2024; 69:3867-3875. [PMID: 39419667 DOI: 10.1016/j.scib.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
In Fenton-like reactions, high-valent cobalt-oxo (CoIV=O) has attracted increasing interests due to high redox potential, long lifetime, and anti-interference properties, but its generation is hindered by the electron repulsion between the electron rich oxo- and cobalt centers. Here, we demonstrate CoIV=O generation from peroxymonosulfate (PMS) activation over cobalt single-atom catalysts (Co-SACs) using in-situ Co K-edge X-ray absorption spectra, and discern that CoIV=O generation is dependent on the support work-function (WF) due to the strong electronic metal-support interaction (EMSI). Supports with a high WF value like anatase-TiO2 facilitate the binding of PMS-terminal oxo-ligand to Co sites by extracting Co-d electrons, thus decreasing the generation barrier for the critical intermediate (Co-OOSO32-). The Co atoms anchored on anatase-TiO2 (Co-TiO2) exhibited enhanced CoIV=O generation and superior activity for sulfamethoxazole (SMX) degradation during PMS activation. The normalized steady-state concentration of CoIV=O in Co-TiO2/PMS system was three orders of magnitude higher than that of free radicals, and 1.3- to 11-fold higher than that generated in other Co-SACs/PMS systems. Co-TiO2/PMS sustained efficient removal of SMX with minimal Co2+ leaching under continuous flow operation, suggesting its attractive water purification potential. Overall, these results underscore the significance of support selection for enhanced generation of high-valent metal-oxo species and efficient PMS activation in supported metal SACs.
Collapse
Affiliation(s)
- Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangcheng Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Wang Y, Huang Y, Chen Y, Dou L, Ren Y, Li N, Lai B, Tan B. Cobalt doped g-C 3N 4 activated peroxymonosulfate for organic pollutant degradation: Alterations in cobalt species and reactive oxygen species. CHEMOSPHERE 2024; 369:143763. [PMID: 39581441 DOI: 10.1016/j.chemosphere.2024.143763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Cobalt-based materials are promising catalysts for activating peroxymonosulfate (PMS) to degrade organic pollutants. Among various cobalt-based catalysts, the alteration in cobalt species and the reactive species produced are not fully understood. Herein, four materials were synthesized by controlling synthesis methods and doping of g-C3N4 to regulate cobalt species. Through two methods, ZIF/Co and Co3O4, whose main cobalt species are Co-O/Co-N and CoO/O-CoO, were synthesized. On this basis, ZIF/Co-CN and Co3O4-CN were synthesized by adding g-C3N4. Then, the four materials were used to activate PMS for carbamazepine (CBZ) degradation, focusing on the correlation between active sites and reactive species. CoO/O-CoO mainly led to the formation of free radicals, while Co-N tended to produce non-free radicals. The addition of g-C3N4 would facilitate non-free radical catalysis by promoting the conversion of Co-O to Co-N and enhancing the catalytic role of C and N. Finally, the systems with a high proportion of non-free radicals showed better degradation performance when multiple pollutants co-existed, and reactive species may be selective to different pollutants. The findings have significance for the synthesis design of cobalt-based catalysts and the regulation of reactive species to degrade different pollutants practically.
Collapse
Affiliation(s)
- Yuesen Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yanchun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yi Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Luming Dou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Shen Y, Pan Y, Zhu C, Zhang H, Wang J, Liu R, Fang Q, Song S, Chen B. Synergistic Coordination in Cu Single-Atom Catalysts Enhances High-Valent Copper-Oxo Species for Efficient PMS Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406319. [PMID: 39221550 DOI: 10.1002/smll.202406319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
In the domain of heterogeneous catalytic activation of peroxymonosulfate (PMS), high-valent metal-oxo (HVMO) species are widely recognized as potent oxidants for the abatement of organic pollutants. However, the generation selectivity and efficiency of HVMO are often constrained by stringent requirements for catalyst adsorption sites and electron transfer efficiency. In this study, a single-atom catalyst, CuSA/CNP&S, is synthesized featuring multiple types (planar/axial) of heteroatom coordination via an H-bond-assisted self-assembly strategy. It is confirmed that CuN3 active centers with axial S coordination are uniformly distributed in a carbon matrix modified by planar P atoms. CuSA/CNP&S activated PMS to selectively generate Cu(III)═OH species as the primary reactive oxygen species (ROS). The pseudo-first-order kinetic rate for bisphenol A degradation reached 1.51 min-1, a 17.57-fold increase compared to the unmodified CuSA/CN catalyst. Additionally, the CuSA/CNP&S catalyst demonstrates high efficiency and durability in removing contaminants from various aqueous matrices. Theoretical calculations and experimental results indicate that the intrinsic electric field generated by distal planar P atoms enhances electron transfer efficiency within the carbon matrix. Meanwhile, axial S coordination elevates the d-band center and tunes the eg * band broadening of Cu, thereby enhancing the adsorption selectivity for the terminal oxygen of PMS. This multitype coordination synergistically mitigates the issues of low selectivity and yield of HVMO species.
Collapse
Affiliation(s)
- Yi Shen
- Key LaboraStory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
- Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, P. R. China
| | - Yongliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Haizhong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Jun Wang
- Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
10
|
Wang K, Zhao T, Ren NQ, Ho SH. Asymmetric defective sites-mediated high-valent cobalt-oxo species in self-suspension aerogel platform for efficient peroxymonosulfate activation. WATER RESEARCH 2024; 265:122304. [PMID: 39197391 DOI: 10.1016/j.watres.2024.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
The main pressing problems should be solved for heterogeneous catalysts in activation of peroxymonosulfate (PMS) are sluggish mass transfer kinetics and low intrinsic activity. Here, oxygen vacancies (Vo)-rich of Co3O4 nanosheets were anchored on the superficies of spirulina-based reduced graphene oxide-konjac glucomannan (KGM) aerogel (R-Co3O4-x/SRGA). The porous structure and superhydrophilicity conferred by KGM maximized the diffusion and transport of reactant. More interestingly, R-Co3O4-x/SRGA came true self-suspension rather than conventional self-floating without the aid of external force, maximizing space utilization and facilitating catalysts recovery. Anchored R-Co3O4-x nanosheets acted as "engines" to drive the reaction. Density functional theory (DFT) manifested Vo was capable of breaking the symmetry of the electronic structure of Co3O4. The formation of asymmetric active sites (Vo) was revealed to modulate the d-band center, enhanced affinity for PMS, and promoted evolution of high-valent cobalt-oxo (Co(IV)=O) species. R-Co3O4-x/SRGA achieved complete removal of sulfamethoxazole (SMX) within 12 min. Furthermore, R-Co3O4-x/SRGA demonstrated exceptional stability in the presence of various environmental interference factors and continuous flow device. This insightful work cleverly integrates the macroscopic design of structure, and the microscopic regulation of active sites is expected to open up new opportunities for the development of water treatment.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
11
|
Oh H, Kim JY, Chae KH, Kim J, Yun ET, Lee Y, Lee C, Moon GH, Lee J. Oxyanion-Sensitive Catalytic Activity of Ni(II)/Oxyanion Systems for Heterogeneous Organic Degradation: Differential Oxidizing Capacity of Ni(III) and Ni(IV) as High-Valent Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16642-16655. [PMID: 39226236 DOI: 10.1021/acs.est.4c07457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study demonstrated that NiO and Ni(OH)2 as Ni(II) catalysts exhibited significant activity for organic oxidation in the presence of various oxyanions, such as hypochlorous acid (HOCl), peroxymonosulfate (PMS), and peroxydisulfate (PDS), which markedly contrasted with Co-based counterparts exclusively activating PMS to yield sulfate radicals. The oxidizing capacity of the Ni catalyst/oxyanion varied depending on the oxyanion type. Ni catalyst/PMS (or HOCl) degraded a broad spectrum of organics, whereas PDS enabled selective phenol oxidation. This stemmed from the differential reactivity of two high-valent Ni intermediates, Ni(III) and Ni(IV). A high similarity with Ni(III)OOH in a substrate-specific reactivity indicated the role of Ni(III) as the primary oxidant of Ni-activated PDS. With the minor progress of redox reactions with radical probes and multiple spectroscopic evidence on moderate Ni(III) accumulation, the significant elimination of non-phenolic contaminants by NiOOH/PMS (or HOCl) suggested the involvement of Ni(IV) in the substrate-insensitive treatment capability of Ni catalyst/PMS (or HOCl). Since the electron-transfer oxidation of organics by high-valent Ni species involved Ni(II) regeneration, the loss of the treatment efficiency of Ni/oxyanion was marginal over multiple catalytic cycles.
Collapse
Affiliation(s)
- Hoon Oh
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Ji-Young Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jaesung Kim
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Eun-Tae Yun
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Yunho Lee
- Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Changha Lee
- Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| | - Gun-Hee Moon
- Extreme Materials Research Center & Climate and Environmental Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Nanoscience and Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
12
|
Guo Q, Yan C, Huang Z, Liu Y, Cheng D, Lu C, Ran J, Yang Y. g-C 3N 4 nanosheet supported NiCo 2O 4 nanoparticles for boosting degradation of tetracycline under visible light and ultrasonic irradiation. NANOSCALE 2024; 16:12957-12966. [PMID: 38898817 DOI: 10.1039/d4nr01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The doping of semiconductor materials through some facile and appropriate methods holds significant promise in enhancing the catalytic performance of catalysts. Herein, NiCo2O4/g-C3N4 composite catalysts were synthesized via a high-energy ball milling method. The microstructure and physicochemical characterization of the as-prepared composites confirmed the successful loading of NiCo2O4 nanoparticles onto the g-C3N4 nanosheets. The NiCo2O4/g-C3N4 composites showed excellent catalytic effect under visible light/ultrasonic irradiation, and the efficiency of tetracycline hydrochloride (TCH) degradation reached 90% within 15 min. The optical properties of g-C3N4 nanosheets were improved by doping, and the diffusion of active materials and carrier migration rate were improved by ultrasonic assistance. Possible catalytic mechanisms and potential pathways of the NiCo2O4/g-C3N4 composites for the degradation of TCH triggered by visible light/ultrasonic irradiation were proposed. This study provides a new strategy for energy-assisted photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Qingfeng Guo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Changwang Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Zhenqian Huang
- Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430020, China.
| | - Yujie Liu
- Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430020, China.
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Chaoyang Lu
- Qianshui (Hubei) Environmental Technology Co., Ltd, Tianmen 431700, China
| | - Jianhua Ran
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
- Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430020, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
13
|
Zhong Y, Ma S, Chen D, Feng Y, Zhang W, Sun S, Lv G, Zhang W, Zhang JZ, Ding H. Ultrathin BiOCl-OV/CoAl-LDH S-scheme heterojunction for efficient photocatalytic peroxymonosulfate activation to boost Co (IV)=O generation. WATER RESEARCH 2024; 258:121774. [PMID: 38772316 DOI: 10.1016/j.watres.2024.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.
Collapse
Affiliation(s)
- Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China; Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wenyang Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Sijia Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Weibin Zhang
- College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China.
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
14
|
Meng Y, Liu YQ, Wang C, Si Y, Wang YJ, Xia WQ, Liu T, Cao X, Guo ZY, Chen JJ, Li WW. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat Commun 2024; 15:5314. [PMID: 38906879 PMCID: PMC11192908 DOI: 10.1038/s41467-024-49605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, China
| | - Yang Si
- Kunming Institute of Physics, Kunming, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Tian Liu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Xu Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| |
Collapse
|
15
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
16
|
Chen H, Meng F, Feng X, Zhao Y, Xie T, Wang D, Lin Y. Efficient Photocatalytic Activation of Peroxymonosulfate by Cobalt-Doped Oxygen-Vacancies-Rich BiVO 4 for Rapid Tetracycline Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12778-12791. [PMID: 38843811 DOI: 10.1021/acs.langmuir.4c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
In this work, cobalt-doped oxygen-vacancies-rich BiVO4 (Co/BiVO4-Vo) was successfully synthesized for the degradation of tetracycline (TC) by activated peroxymonosulfate (PMS) under visible light. The morphologies, microstructures, and optical properties of the photocatalysts were analyzed in detail. Co/BiVO4-Vo exhibited significantly enhanced degradation, removing 92.3% of TC within 10 min, which was greater than those of pure BiVO4 (62.2%) and oxygen-vacancies-rich BiVO4 (BiVO4-Vo) (72.0%), respectively. The photogenerated charge separation and transport properties were explored through surface photovoltage (SPV), photoluminescence spectrum (PL), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) measurements. Additionally, an in-depth investigation was conducted on the photocatalytically assisted advanced oxidation processes based on SO4•- (SR-AOPs) for the degradation of organic pollutants. The experimental results showed that the introduction of oxygen vacancies and Co doping achieved an effective separation of photogenerated carriers, which could accelerate the cycling between Co3+ and Co2+ and further activate PMS. The results of free radical capture experiments and electron spin resonance (ESR) experiments showed that reactive oxygen species (ROSs) such as 1O2, •O2-, and SO4•- played a dominant role in the removal of pollutants. This work provides a novel insight into the further development of efficient and rapid PMS photoactivators for environmental remediation of water bodies.
Collapse
Affiliation(s)
- Hao Chen
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Fanyu Meng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiao Feng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yunhong Zhao
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Dejun Wang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yanhong Lin
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
17
|
Liu C, Li J, He X, Yue J, Chen M, Chen JP. The "4 + 1" strategy fabrication of iron single-atom catalysts with selective high-valent iron-oxo species generation. Proc Natl Acad Sci U S A 2024; 121:e2322283121. [PMID: 38814873 PMCID: PMC11161760 DOI: 10.1073/pnas.2322283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Single-atom catalysts (SACs) with atomic dispersion active sites have exhibited huge potentials in peroxymonosulfate (PMS)-based Fenton-like chemistry in water purification. However, four-N coordination metal (MN4) moieties often suffer from such problems as low selectivity and narrow workable pH. How to construct SACs in a controllable strategy with optimized electronic structures is of great challenge. Herein, an innovative strategy (i.e., the "4 + 1" fabrication) was devised to precisely modulate the first-shell coordinated microenvironment of FeN4 SAC using an additional N (SA-FeN5). This leads to almost 100% selective formation of high-valent iron-oxo [Fe(IV)═O] (steady-state concentration: 2.00 × 10-8 M) in the SA-FeN5/PMS system. In-depth theoretical calculations unveil that FeN5 configuration optimizes the electron distribution of monatomic Fe sites, which thus fosters PMS adsorption and reduces the energy barrier for Fe(IV)═O generation. SA-FeN5 was then attached to polyvinylidene difluoride membrane for a continuous flow device, showing long-term abatement of the microcontaminant. This work furnishes a general strategy for effective PMS activation and selective high-valent metal-oxo species generation by high N-coordination number regulation in SACs, which would provide guidance in the rational design of superior environmental catalysts for water purification.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - J. Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore117576, Singapore
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
18
|
Ning R, Dong Y, Yang SR, Yang S, Zhou P, Xiong Z, Pan ZC, He CS, Lai B. Fe-N co-doped biochar derived from biomass waste triggers peracetic acid activation for efficient water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134139. [PMID: 38555674 DOI: 10.1016/j.jhazmat.2024.134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.
Collapse
Affiliation(s)
- Ruyan Ning
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Shu-Run Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Shuai Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhi-Cheng Pan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Liu S, Liu C, Zhang H, Zhang W, Ding W, Zheng H, Li H. Sulfite induced degradation of sulfamethoxazole by a silica stabilized ZIF-67(Co) catalyst via non-radical pathways: Formation and role of high-valent Co(IV) and singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133888. [PMID: 38412645 DOI: 10.1016/j.jhazmat.2024.133888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
The sulfite (S(IV))-based advanced oxidation process (AOP) has emerged as an appealing alternative to the traditional persulfate-based AOP for the elimination of organic contaminants from diverse water matrices. In this work, a silica reinforced ZIF-67(Co) catalyst (CZS) is fabricated, characterized and tested in the activation of S(IV) for the sulfamethoxazole (SMX) degradation. The prepared CZS demonstrates superior stability and catalytic ability for the degradation of SMX compared to ZIF-67(Co) across a broad pH range. Unlike the conventional radical-dominated oxidation systems, the CZS/S(IV) system for SMX degradation operates through a non-radical mechanism, featuring high-valent Co(IV) and singlet oxygen (1O2) as the predominated reactive species. The hydroxylated Co species exposed on the CZS surface is identified as the pivotal active site, realizing the S(IV) activation through a complexation-electron transfer process, resulting in the production of various reactive intermediates. Co(II) undergoes the conversion to Co(IV) by generated HSO5-, and 1O2 predominantly originates from the intermediate SO4•-. Profiting from the highly selective oxidation capacities of Co(IV) and 1O2, the established oxidative system demonstrates a remarkable interference resistance and exhibits an exceptional decontamination performance under real-world water conditions. In short, this work provides a sustainable S(IV)-based oxidation strategy for environmental remediation via non-radical mechanism.
Collapse
Affiliation(s)
- Shuang Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Chao Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Hejiao Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Weizhen Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hong Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
20
|
Guo Y, Ma C, Gao Z, Wu M, Shen C, Xu Z. Insights into mechanism of peroxymonosufate activation by Mo single-atom catalysts: Singlet oxygen evolution and role of Mo-N coordination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120846. [PMID: 38599079 DOI: 10.1016/j.jenvman.2024.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recently, the Fenton-like reaction using peroxymonosulfate (PMS) has been acknowledged as a potential method for breaking down organic pollutants. In this study, we successfully synthesized a highly efficient and stable single atom molybdenum (Mo) catalyst dispersed on nitrogen-doped carbon (Mo-NC-0.1). This catalyst was then utilized for the first time to activate PMS and degrade bisphenol A (BPA). The Mo-NC-0.1/PMS system demonstrated the ability to completely degrade BPA within just 20 min. Scavenging tests and density functional theory (DFT) calculations have demonstrated that the primary reactive oxygen species was singlet oxygen (1O2) produced by Mo-N4 sites. The self-cycling of Mo facilitated PMS activation and the transition from a free radical activation pathway to a non-radical pathway mediated by 1O2. Simultaneously, the nearby pyridinic N served as adsorption sites to immobilize BPA and PMS molecules. The exceptionally high catalytic activity of Mo-NC-0.1 derived from its unique Mo-N coordination, which markedly reduced the distance for 1O2 to migrate to the BPA molecules. The Mo-NC-0.1/PMS system effectively reduced the acute toxicity of BPA and exhibited excellent cycling stability with minimal leaching. This study presented a new catalyst with high selectivity for 1O2 generation and provided valuable insights for the application of single atom catalysts in PMS-based AOPs.
Collapse
Affiliation(s)
- Yajie Guo
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Chenyang Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Zhiyuan Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Mingzhen Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Changchang Shen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China.
| |
Collapse
|
21
|
Hu J, Tian J, Yang Y, Li S, Lu J. Enhanced antibiotic degradation via photo-assisted peroxymonosulfate over graphitic carbon nitride nanosheets/CuBi 2O 4: Highly efficiency of oxygen activation and interfacial charge transfer. J Colloid Interface Sci 2024; 661:68-82. [PMID: 38295704 DOI: 10.1016/j.jcis.2024.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Improving the activation capacity of peroxymonosulfate (PMS) to increase radical and non-radical production is critical for antibiotic degradation. However, how to boost reactive oxygen species (ROS) and speed interfacial charge transfer remains an essential challenge. We report a coupling system of 10 %CNNS/CuBi2O4 photocatalyst and sulfate radical-based advanced oxidation processes (SO4--AOPs) to enhance the activation of PMS and improve antibiotic degradation. Owing to highly efficient oxygen activation and interfacial charge transfer, the degradation efficiency of the photo-assisted PMS system was as high as 51.6 times and 2.8 times that of photocatalyst and SO4--AOPs alone, respectively. Importantly, the highly efficient oxygen activation resulted in the production of O2-, which in turn could utilize the excess electrons generated through efficient interfacial charge transfer to convert into non-radical 1O2. The total organic carbon (TOC) elimination effectiveness of the photo-assisted PMS system reached 82 % via the synergy of radicals and non-radicals (O2-, OH, 1O2, SO4-, h+). This system also had excellent potential for reducing the generation and toxicity of disinfection by-products (DBPs), as evidenced through significant reductions in concentrations of trichloromethane (TCM), dichloroacetic acid (DCAA), and trichloronitromethane (TCNM) by 76 %, 64 %, and 35 %, respectively, providing an effective and eco-friendly strategy for antibiotic treatment.
Collapse
Affiliation(s)
- Jiaqi Hu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Junli Tian
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Yue Yang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Shanshan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Jinfeng Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300050, China; Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300050, China.
| |
Collapse
|
22
|
Zhang BB, Bai CW, Chen XJ, Sun YJ, Yang Q, Chen F. 2D/2D heterojunctions for rapid and self-cleaning removal of antibiotics via visible light-assisted peroxymonosulfate activation: Efficiency, synergistic effects, and applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133816. [PMID: 38377912 DOI: 10.1016/j.jhazmat.2024.133816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Developing eco-friendly and efficient technologies for treating antibiotic wastewater is crucial. Traditional methods face challenges in incomplete removal, high costs, and secondary pollution. Heterogeneous peroxymonosulfate (PMS) activation assisted by visible light shows promise, but suitable activators remain a huge challenge. Here, we synthesized cost-effective carbon nitride/bismuth bromide oxide (CN/BiOBr) heterojunctions. Such a heterojunction achieved rapid PMS activation, achieving over 90.00% tetracycline (TC) removal only within 1 min (kobs of 2.23 min-1), surpassing previous systems by nearly 1-2 orders of magnitude and even remarkably superior to the popular single-atom catalysts. The system exhibited self-cleaning properties, maintaining activity after 8 cycles and stability across a wide pH range (3.01 to 9.03). Quenching experiments and theoretical calculations elucidated the exclusive •O2- species involvement and removal pathways. Eco-toxicity assessment and total organic carbon results confirmed simultaneous degradation, detoxification, and mineralization. This system also showed excellent resistance to environmental factors, e.g., coexisting anions, varying pH, and water sources, and demonstrated potential in coking and medical wastewater purification. This study presents a novel technique for rapidly decontaminating antibiotic wastewater through visible light-assisted PMS activation and introduces innovative bionic catalytic oxidation combining light and darkness for practical applications.
Collapse
Affiliation(s)
- Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
23
|
Jiang J, Shi D, Niu S, Liu S, Liu Y, Zhao B, Zhang Y, Liu H, Zhao Z, Li M, Huo M, Zhou D, Dong S. Modulating electron density enable efficient cascade conversion from peroxymonosulfate to superoxide radical driven by electron-rich/poor dual sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133749. [PMID: 38383276 DOI: 10.1016/j.jhazmat.2024.133749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The superoxide radical (•O2-)-mediated peroxymonosulfate (PMS)-based photo-Fenton-like reaction enables highly selective water decontamination. Nevertheless, the targeted construction of •O2--mediated photo-Fenton-like system has been challenging. Herein, we developed an electron-rich/-poor dual sites driven •O2--mediated cascade photo-Fenton-like system by modulating electron density. Experimental and theoretical results demonstrated that PMS was preferentially adsorbed on electron-poor Co site. This adsorption promoted O-O bond cleavage of PMS to generate hydrogen peroxide (H2O2), which then migrated to electron-rich O site to extract eg electrons for O-H bond cleavage, rather than competing with PMS for Co site. The developed versatile cascade reaction system could selectively eliminate contaminants with low n-octanol/water partition constants (KOW) and dissociation constants (pKa) and remarkably resist inorganics (Cl-, H2PO4- and NO3-), humic acid (HA) and even real water matrices (tap water and secondary effluent). This finding provided a novel and plausible strategy to accurately and efficiently generate •O2- for the selective water decontamination.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Donglong Shi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Shu Niu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Shengda Liu
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Yansong Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Bowen Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Yanan Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Hongyu Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Zhenhao Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Mingyu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
24
|
Su R, Gao Y, Chen L, Chen Y, Li N, Liu W, Gao B, Li Q. Utilizing the oxygen-atom trapping effect of Co 3O 4 with oxygen vacancies to promote chlorite activation for water decontamination. Proc Natl Acad Sci U S A 2024; 121:e2319427121. [PMID: 38442175 PMCID: PMC10945781 DOI: 10.1073/pnas.2319427121] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Yixuan Gao
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Long Chen
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Yi Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Nan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong266042, People’s Republic of China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| |
Collapse
|
25
|
Li D, Zhang X, Sun Y, Bu Y, Li H, Qian J. Investigating the evolution of reactive species in the CuO-mediated peroxymonosulfate activation process. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133425. [PMID: 38198860 DOI: 10.1016/j.jhazmat.2024.133425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The utilization of copper oxide (CuO) as a catalyst in the peroxymonosulfate (PMS) activation process holds great promise for effectively degrading aqueous organic pollutants, while the relevant mechanism remains inadequately understood. In this study, we delve into the evolution pathways of reactive species in the CuO/PMS system through a comprehensive series of experimental analyses. Our findings indicate that various reactive species are generated in the CuO/PMS system with the specific sequence, where the decomposition of surface Cu(II)-OOSO3- leads to the formation of surface Cu(III) species, which are responsible for the subsequent generation of HO•. The reactivity of these reactive species and the sequence of their generation explain the distinct oxidation behaviors of pollutants with different values of ionization potential (IP). In addition, singlet oxygen (1O2) may be produced during the PMS activation process, while its involvement in the oxidation of substrates is deemed negligible. This investigation presents a novel perspective, enhancing our comprehension of the mechanism underlying transition metal-mediated PMS activation processes. ENVIRONMENTAL IMPLICATION: The removal of refractory organic contaminations in water constitutes a fundamental concern within the realm of environmental pollution management. Peroxymonosulfate activation induced by transition metal oxides has garnered significant recognition as a promising technological approach for the degradation of aqueous organic contaminants, while the underlying mechanism remains enigmatic. In this study, we systematically investigate the evolution pathways of reactive species in the CuO/peroxymonosulfate system to reveal the mystery of the reaction mechanism between CuO and peroxymonosulfate. The outcomes of our study contribute to enhancing the practical applicability of transition metal-triggered PMS activation processes.
Collapse
Affiliation(s)
- Dawei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yuanqing Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, China.
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China; School of Environmental Engineering, Wuxi University, Jiangsu 214105, China
| |
Collapse
|
26
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
27
|
Ji Y, Bai X, Tang J, Bai M, Zhu Y, Tang J. Photocathodic Activation of Peroxymonosulfate in a Photofuel Cell: A Synergetic Signal Amplification Strategy for a Self-Powered Photoelectrochemical Sensor. Anal Chem 2024; 96:3470-3479. [PMID: 38336002 DOI: 10.1021/acs.analchem.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A self-powered photoelectrochemical (PEC) sensor has attracted widespread attention in the field of analysis, but it is still a challenge to enhance its response signals with rational strategies. In this work, a novel self-powered PEC sensing platform was developed for the quantitative detection of gatifloxacin (GAT) based on a photofuel cell consisting of two types of ZIF-derived ZnO/Co3O4 heterojunctions as photoactive materials. Peroxymonosulfate (PMS) was first used as an electron acceptor coupled with a photofuel cell to develop a synergetic signal amplification strategy. In a dual-photoelectrode system, the PMS activation on the ZnO@Co3O4 photocathode not only accelerated electron transfer from the Co3O4@ZnO photoanode to achieve strong signal intensity but also improved the sensing sensitivity by the oxidation reaction of generated highly active radicals to GAT. Compared with the absence of electron acceptors, the introduction of PMS produced a 2-fold enhancement in the signal output performance and a more than 72-fold improvement in the signal sensitivity. For the construction of the sensing interface, a molecularly imprinted polymer was assembled on the photocathode to specifically recognize GAT. The proposed sensor exhibited a detection range of 10-1 to 105 pM with a detection limit of 0.065 pM. The proposed sensing method has the advantages of sensitivity, simplicity, reliable stability, and anti-interference ability, which opens the door to the design of high-performance self-powered PEC sensors.
Collapse
Affiliation(s)
- Yetong Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, P. R. China
| | - Jing Tang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ma Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Jiangwen Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| |
Collapse
|
28
|
Zhang Q, Peng Y, Peng Y, Zhang J, Yuan X, Zhang J, Cheng C, Ren W, Duan X, Xiao X, Luo X. Mineralization versus polymerization pathways in heterogeneous Fenton-like reactions. WATER RESEARCH 2024; 249:120931. [PMID: 38101051 DOI: 10.1016/j.watres.2023.120931] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Fenton reaction has been widespread application in water purification due to the excellent oxidation performances. However, the poor cycle efficiency of Fe(III)/Fe(II) is one of the biggest bottlenecks. In this study, graphite (GP) was used as a green carbon catalyst to accelerate Fenton-like (H2O2/Fe3+ and persulfate/Fe3+) reactions by promoting ferric ion reduction and intensifying diverse peroxide activation pathways. Significantly, the carboxyl group on GP anchors iron ions to form GP-COOFe(III) which promote persulfate adsorption to form surface complexes and induce an electron transfer pathway (ETP). While the electron-rich hydroxyl and carbonyl groups will combine to from GP-COFe(II), a reductive intermediate to activate peroxide to generate free radicals (from H2O2 and PDS) or high-value iron [Fe(IV)] (from PMS). Consequently, different pathways lead to distinct degree of oxidation: i) radicals in H2O2/Fe3+/GP prefer to mineralize bisphenol A (BPA) with no selectivity; ii) Fe(IV) in PMS/Fe3+/GP partially oxidizes BPA but cannot open the aromatic ring; iii) ETP in PMS/ or PDS/Fe3+/GP drives coupling reactions to form polymeric products covered on catalyst surface. Thus, rational engineering surface functionality of graphite and selecting proper peroxides can realize on-demand selectivity and oxidation capacity in Fenton-like systems.
Collapse
Affiliation(s)
- Qiming Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yu Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianzhi Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xinkai Yuan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jie Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Cheng Cheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia; Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
29
|
Chen F, Sun YJ, Huang XT, Bai CW, Zhang ZQ, Duan PJ, Chen XJ, Yang Q, Yu HQ. Embedding electronic perpetual motion into single-atom catalysts for persistent Fenton-like reactions. Proc Natl Acad Sci U S A 2024; 121:e2314396121. [PMID: 38236736 PMCID: PMC10823243 DOI: 10.1073/pnas.2314396121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024] Open
Abstract
In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Qi Yang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha410082, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230036, China
| |
Collapse
|
30
|
Yue B, Liu S, Zhang W, Ding W, Zheng H, Li H. Cobalt(II) mediated calcium sulfite activation for efficient oxidative decontamination in waters: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132731. [PMID: 37813035 DOI: 10.1016/j.jhazmat.2023.132731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
To overcome the drawback that excess SO32- from soluble Na2SO3 captures the generated reactive intermediates in sulfite (S(IV))-based advanced oxidation processes (AOP), CaSO3 of the ability to slowly release SO32- is selected as an alternative S(IV) source to establish an enduring S(IV)-based AOP with Co(II). Herein, the Co(II)/CaSO3 process triggers a much better ofloxacin (OFL) degradation than the Co(II)/Na2SO3 process (degradation rate constant: 12.1 > 3.18 mM-1 min-1). The mechanism investigation corroborates that the Co(II) mediated CaSO3 activation follows a Fenton-like process (complexation followed by intramolecular electron transfer). Apart from the conventional sulfate radical (SO4•-), Co(IV) species and singlet oxygen (1O2) are also certifiably involved in Co(II)/CaSO3 process, and their role and formation mechanisms are elucidated comprehensively. Further, the proposed Co(II)/CaSO3 process exhibits an excellent tolerance to complex water matrices (e.g., background ions and humic acid), suggesting its practical application potential for various contaminants abatement in actual wastewater.
Collapse
Affiliation(s)
- Bangkang Yue
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Shuang Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Weizhen Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hong Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
31
|
Luo Z, Wu W, Liu B, Qi Y, Chen L, Lin X. A Co-based nitrogen-doped lignin carbon catalyst with high stability and wide operating window for rapid degradation of antibiotics. Int J Biol Macromol 2023; 253:126601. [PMID: 37652326 DOI: 10.1016/j.ijbiomac.2023.126601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Co-based catalysts play a crucial role in the activation of peroxymonosulfate (PMS) for degradation contaminants. However, the practical application of such catalysts is hindered by challenges like the self-aggregation of Co nanoparticles and leaching of Co2+. In this study, the Co-based catalyst Co-N/C@CL was synthesized from carboxymethylated lignin obtained by grafting abundant carboxymethyl groups into alkali lignin, in which the presence of these carboxymethyl groups enhanced its water solubility and allowed the formation of stable macromolecular complexes with Co2+. This catalyst exhibited a high specific surface area (521.8 m2·g-1) and a uniform distribution of Co nanoparticles. Consequently, the Co-N/C@CL/PMS system could completely remove 20 ppm tetracycline (TC) in 2 min at a rate of 2.404 min-1. Experimental results and DFT calculations revealed that the synergistic effect of lignin carbon and Co NPs accelerated the cleavage and electron transfer of OO bonds, thus promoting the formation of 1O2, OH and SO4-, with 1O2 emerging as the predominant contributor. Moreover, Co-N/C@CL displayed excellent cycling stability and low Co2+ leaching. This work not only provides a feasible strategy for the preparation of highly active and stable Co-based carbon materials but also offers a promising catalyst for the efficient degradation of TC.
Collapse
Affiliation(s)
- Zhicheng Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Weidong Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Bowen Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yi Qi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Liheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China.
| |
Collapse
|
32
|
Wu Z, Xiong Z, Liu W, Liu R, Feng X, Huang B, Wang X, Gao Y, Chen H, Yao G, Lai B. Active Center Size-Dependent Fenton-Like Chemistry for Sustainable Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21416-21427. [PMID: 38064647 DOI: 10.1021/acs.est.3c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Accurately controlling catalytic activity and mechanism as well as identifying structure-activity-selectivity correlations in Fenton-like chemistry is essential for designing high-performance catalysts for sustainable water decontamination. Herein, active center size-dependent catalysts with single cobalt atoms (CoSA), atomic clusters (CoAC), and nanoparticles (CoNP) were fabricated to realize the changeover of catalytic activity and mechanism in peroxymonosulfate (PMS)-based Fenton-like chemistry. Catalytic activity and durability vary with the change in metal active center sizes. Besides, reducing the metal size from nanoparticles to single atoms significantly modulates contributions of radical and nonradical mechanisms, thus achieving selective/nonselective degradation. Density functional theory calculations reveal evolutions in catalytic mechanisms of size-dependent catalytic systems over different Gibbs free energies for reactive oxygen species generation. Single-atom site contact with PMS is preferred to induce nonradical mechanisms, while PMS dissociates and generates radicals on clusters and nanoparticles. Differences originating from reaction mechanisms endow developed systems with size-dependent selectivity and mineralization for treating actual hospital wastewater in column reactors. This work brings an in-depth understanding of metal size effects in Fenton-like chemistry and guides the design of intelligent catalysts to fulfill the demand of specific scenes for water purification.
Collapse
Affiliation(s)
- Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yixuan Gao
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- Sino-German Centre for innovative Environmental Technologies (WATCH e.V.), Aachen 52078, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
33
|
Zhang L, Qi J, Chen W, Yang X, Fang Z, Li J, Li X, Lu S, Wang L. Constructing Hollow Multishelled Microreactors with a Nanoconfined Microenvironment for Ofloxacin Degradation through Peroxymonosulfate Activation: Evolution of High-Valence Cobalt-Oxo Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16141-16151. [PMID: 37695341 DOI: 10.1021/acs.est.3c04174] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study constructed hollow multishelled microreactors with a nanoconfined microenvironment for degrading ofloxacin (OFX) through peroxymonosulfate (PMS) activation in Fenton-like advanced oxidation processes (AOPs), resulting in adequate contaminant mineralization. Among the microreactors, a triple-shelled Co-based hollow microsphere (TS-Co/HM) exhibited optimal performance; its OFX degradation rate was 0.598 min-1, which was higher than that of Co3O4 nanoparticles by 8.97-fold. The structural tuning of Co/HM promoted the formation of oxygen vacancies (VO), which then facilitated the evolution of high-valence cobalt-oxo (Co(IV)═O) and shifted the entire t2g orbital of the Co atom upward, promoting catalytic reactions. Co(IV)═O was identified using a phenylmethyl sulfoxide (PMSO) probe and in situ Raman spectroscopy, and theoretical calculations were conducted to identify the lower energy barrier for Co(IV)═O formation on the defect-rich catalyst. Furthermore, the TS-Co/HM catalyst exhibited remarkable stability in inorganic (Cl-, H2PO4-, and NO3-), organic (humic acid), real water samples (tap water, river water, and hospital water), and in a continuous flow system in a microreactor. The nanoconfined microenvironment could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of Co(IV)═O. This work describes an activation process involving Co(IV)═O for organic contaminants elimination. Our results may encourage the use of multishelled structures and inform the design of nanoconfined catalysts in AOPs.
Collapse
Affiliation(s)
- Lin Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Juanjuan Qi
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaoyong Yang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Zhimo Fang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Jinmeng Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiuze Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Siyue Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
34
|
Khiem TC, Huy NN, Kwon E, Duan X, Wacławek S, Bedia J, Tsai YC, Ebrahimi A, Ghanbari F, Lin KYA. Hetero-interface-engineered sulfur vacancy and oxygen doping in hollow Co9S8/Fe7S8 nanospheres towards monopersulfate activation for boosting intrinsic electron transfer in paracetamol degradation. APPLIED CATALYSIS B: ENVIRONMENTAL 2023; 330:122550. [DOI: 10.1016/j.apcatb.2023.122550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
35
|
Wang X, Liu X, Tong Y, Liu C, Ding Y, Gao J, Fang G, Zha X, Wang Y, Zhou D. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO 3-x for pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131798. [PMID: 37336112 DOI: 10.1016/j.jhazmat.2023.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Interface oxygen vacancies (OVs) are commonly used to improve the catalytic performance of activators in persulfate-based advanced oxidation processes, but the underlying mechanism was not fully explored. This work reports a facile heat treatment method to regulate OVs in MoO3-x to elucidate the mechanism of peroxymonosulfate (PMS) activated by OVs to degrade 2,4,4-Trichlorobiphenyl (PCB28). Electron spin resonance, free radical quenching, X-ray photoelectron spectroscopy, and Raman spectroscopy confirmed that both reducing Mo species and OVs of MoO3-x surface were responsible for PMS activation. Further experiments and Density Function Theory (DFT) calculation suggest that OVs in MoO3-x induced the formation of superoxide radical (O2•-), and then O2•- was transformed into singlet oxygen (1O2) or mediated PMS activation to generate radicals, which contritbued to 70.2% of PCB28 degradation. The steady-state concentrations of free radical calculated with the kinetics model show that OVs were more favorable to mediate PMS to generate hydroxyl radicals (•OH) under oxic conditions, while reducing Mo species would like to induce PMS to produce sulfate radicals (SO4•-). Overall, this study is dedicated to a new insight into the in-depth mechanism of PMS activation by OVs-rich catalysts and provides a novel strategy for reactive species regulation in PMS based oxidation process.
Collapse
Affiliation(s)
- Xiaolei Wang
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yunping Tong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yingzhi Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Xianghao Zha
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
36
|
Song J, Hou N, Liu X, Antonietti M, Zhang P, Ding R, Song L, Wang Y, Mu Y. Asymmetrically Coordinated CoB 1 N 3 Moieties for Selective Generation of High-Valence Co-Oxo Species via Coupled Electron-Proton Transfer in Fenton-like Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209552. [PMID: 36932043 DOI: 10.1002/adma.202209552] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
High-valence metal species generated in peroxymonosulfate (PMS)-based Fenton-like processes are promising candidates for selective degradation of contaminants in water, the formation of which necessitates the cleavage of OH and OO bonds as well as efficient electron transfer. However, the high dissociation energy of OH bond makes its cleavage quite challenging, largely hampering the selective generation of reactive oxygen species. Herein, an asymmetrical configuration characterized by a single cobalt atom coordinated with boron and nitrogen (CoB1 N3 ) is established to offer a strong local electric field, upon which the cleavage of OH bond is thermodynamically favored via a promoted coupled electron-proton transfer process, which serves an essential step to further allow OO bond cleavage and efficient electron transfer. Accordingly, the selective formation of Co(IV)O in a single-atom Co/PMS system enables highly efficient removal performance toward various organic pollutants. The proposed strategy also holds true in other heteroatom doping systems to configure asymmetric coordination, thus paving alternative pathways for specific reactive species conversion by rationalized design of catalysts at atomic level toward environmental applications and more.
Collapse
Affiliation(s)
- Junsheng Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nannan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaocheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Pengjun Zhang
- CAS Center for Excellence in Nanoscience, National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Rongrong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Song
- CAS Center for Excellence in Nanoscience, National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
37
|
Wang C, Wang X, Wang H, Zhang L, Wang Y, Dong CL, Huang YC, Guo P, Cai R, Haigh SJ, Yang X, Sun Y, Yang D. Low-coordinated Co-N 3 sites induce peroxymonosulfate activation for norfloxacin degradation via high-valent cobalt-oxo species and electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131622. [PMID: 37196442 DOI: 10.1016/j.jhazmat.2023.131622] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The identification of reactive species in peroxymonosulfate (PMS) activation triggered by carbon-based single atom catalysts is the key to reveal the pollutant degradation mechanism. Herein, carbon-based single atom catalyst with low-coordinated Co-N3 sites (CoSA-N3-C) was synthesized to active PMS for norfloxacin (NOR) degradation. The CoSA-N3-C/PMS system exhibited consistent high performance for oxidizing NOR over a wide pH range (3.0-11.0). The system also achieved complete NOR degradation in different water matrixes, high cycle stability and excellent degradation performance for other pollutants. Theoretical calculations confirmed that the catalytic activity was derived from the favorable electron density of low-coordinated Co-N3 configuration, which was more conductive to PMS activation than other configurations. Electron paramagnetic resonance spectra, in-situ Raman analysis, solvent exchange (H2O to D2O), salt bridge and quenching experiments concluded that high-valent cobalt(IV)-oxo species (56.75%) and electron transfer (41.22%) contributed dominantly to NOR degradation. Moreover, 1O2 was generated in the activation process while not involved in pollutant degradation. This research demonstrates the specific contributions of nonradicals in PMS activation over Co-N3 sites for pollutant degradation. It also offers updated perceptions for rational design of carbon-based single atom catalysts with appropriate coordination structure.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Hu Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Lijie Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Yonghao Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Chung-Li Dong
- Research Center for X-ray Science, Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City 25137, Taiwan
| | - Yu-Cheng Huang
- Research Center for X-ray Science, Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City 25137, Taiwan
| | - Peng Guo
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
38
|
Zhang T, Wu S, Li N, Chen G, Hou L. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130971. [PMID: 36805443 DOI: 10.1016/j.jhazmat.2023.130971] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vacancy defects in heterogeneous catalysts have received extensive attention for persulfate (PS) activation. Vacancy defects can tune the electronic structure of metal oxides and generate unsaturated coordination sites. Meanwhile, the adsorption energy of reactants on catalyst surface is optimized. Thereby, the reaction energy barrier between catalysts and PS decreases, which could promote catalytic activation and accelerate pollutants degradation. Nowadays, oxygen vacancy (OV), nitrogen vacancy (NV), sulfur vacancy (SV), selenium vacancy (SeV) and titanium vacancy (TiV) have been widely studied with great potential for water remediation. So far, no review was reported regarding the vacancy activated persulfate systems. This paper summarized the types, preparation, mechanism and applications of vacancy in PS systems systematically. In addition, we put forward possible development of vacancy engineering in PS activation systems. It is expected that this review will contribute to the controllable synthesis and applications of vacancies in catalysts for PS activation and contaminants removal.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuang Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; 96911 Unit, Beijing 100011, China.
| |
Collapse
|
39
|
Hu Y, Guo J, Wang W, He Y, Li Z. Unveiling different antibiotic degradation mechanisms on dual reaction center catalysts with nitrogen vacancies via peroxymonosulfate activation. CHEMOSPHERE 2023; 332:138788. [PMID: 37119923 DOI: 10.1016/j.chemosphere.2023.138788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Metal-nitrogen-site catalysts are widely recognized as effective heterogeneous catalysts in peroxymonosulfate (PMS)-based advanced oxidation processes. However, the selective oxidation mechanism for organic pollutants is still contradictory. In this work, manganese-nitrogen active centers and tunable nitrogen vacancies were synchronously constructed on graphitic carbon nitride (LMCN) through l-cysteine-assisted thermal polymerization to reveal different antibiotic degradation mechanisms. Benefiting from the synergism of manganese-nitrogen bond and nitrogen vacancies, the LMCN catalyst exhibited excellent catalytic activity for the degradation of tetracycline (TC) and sulfamethoxazole (SMX) antibiotics with first-order kinetic rate constants of 0.136 min-1 and 0.047 min-1, which were higher than those of other catalysts. Electron transfer dominated TC degradation at low redox potentials, while electron transfer and high-valent manganese (Mn (V)) were responsible for SMX degradation at high redox potentials. Further experimental studies unveiled that the pivotal role of nitrogen vacancies is to promote electron transfer pathway and Mn(V) generation, while nitrogen-coordinated manganese as the primary catalytic active site determines Mn(V) generation. In addition, the antibiotic degradation pathways were proposed and the toxicity of byproducts was analyzed. This work provides an inspiring idea for the controlled generation of reactive oxygen species by targeted activation of PMS.
Collapse
Affiliation(s)
- Youyou Hu
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China.
| | - Jialin Guo
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Yanqing He
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
40
|
Si Q, Wang H, Kuang J, Liu B, Zheng S, Zhao Q, Jia W, Wu Y, Lu H, Wu Q, Yu T, Guo W. Light and nitrogen vacancy-intensified nonradical oxidation of organic contaminant with Mn (III) doped carbon nitride in peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131463. [PMID: 37141778 DOI: 10.1016/j.jhazmat.2023.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.
Collapse
Affiliation(s)
- Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Junyan Kuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Hao Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Tao Yu
- Tianjin Univ, Sch Chem Eng & Technol, Tianjin 300350, People's Republic of China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China.
| |
Collapse
|
41
|
Wu QY, Yang ZW, Wang ZW, Wang WL. Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation. Proc Natl Acad Sci U S A 2023; 120:e2219923120. [PMID: 37040400 PMCID: PMC10120063 DOI: 10.1073/pnas.2219923120] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/21/2023] [Indexed: 04/12/2023] Open
Abstract
The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Zheng-Wei Yang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Zhi-Wei Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
42
|
Zhao Z, Hu M, Nie T, Zhou W, Pan B, Xing B, Zhu L. Improved Electronic Structure from Spin-State Reconstruction of a Heteronuclear Fe-Co Diatomic Pair to Boost the Fenton-like Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4556-4567. [PMID: 36894515 DOI: 10.1021/acs.est.2c09336] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dual-atom catalysts (DACs) are promising candidates for various catalytic reactions, including electrocatalysis, chemical synthesis, and environmental remediation. However, the high-activity origin and mechanism underlying intrinsic activity enhancement remain elusive, especially for the Fenton-like reaction. Herein, we systematically compared the catalytic performance of dual-atom FeCo-N/C with its single-atom counterparts by activating peroxymonosulfate (PMS) for pollutant abatement. The unusual spin-state reconstruction on FeCo-N/C is demonstrated to effectively improve the electronic structure of Fe and Co in the d orbital and enhance the PMS activation efficiency. Accordingly, the dual-atom FeCo-N/C with an intermediate-spin state remarkably boosts the Fenton-like reaction by almost 1 order of magnitude compared with low-spin Co-N/C and high-spin Fe-N/C. Moreover, the established dual-atom-activated PMS system also exhibits excellent stability and robust resistance against harsh conditions. Combined theoretical calculations reveal that unlike unitary Co atom or Fe atom transferring electrons to the PMS molecule, the Fe atom of FeCo-N/C provides extra electrons to the neighboring Co atom and positively shifts the d band of the Co center, thereby optimizing the PMS adsorption and decomposition into a unique high-valent FeIV-O-CoIV species via a low-energy barrier pathway. This work advances a conceptually novel mechanistic understanding of the enhanced catalytic activity of DACs in Fenton-like reactions and helps to expand the application of DACs in various catalytic reactions.
Collapse
Affiliation(s)
- Zhendong Zhao
- State Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingzhu Hu
- State Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tiantian Nie
- Hangzhou Environmental Group, Hangzhou, Zhejiang 310022, China
| | - Wenjun Zhou
- State Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji, Zhejiang 313300, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lizhong Zhu
- State Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji, Zhejiang 313300, China
| |
Collapse
|
43
|
Liu Y, Dai J, Li C, Wang Y, Zhao J, Li B, Ye J. 3D variable Co species carbon foam enhanced reactive oxygen species generation and ensured long-term stability for water purification. J Colloid Interface Sci 2023; 641:737-746. [PMID: 36965344 DOI: 10.1016/j.jcis.2023.03.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Cobalt (Co) and oxides are the most common catalysts for activating peroxymonosulfate (PMS). However, practical applications of Co-based PMS-advanced oxidation processes are difficult to realize the degradation of the targeted pollutants due to poor yield of reactive oxygen species (ROS) and inaccessible active sites. Here, we designed 3D oxygen vacancy-rich (Vo-rich) variable Co species@carbon foam (CoxOy@CF) via coupling solvent-free and pyrolysis strategies for degrading tetracycline by PMS activation. The kinetic rate of optimized (Co@CoO) CoxOy@CF-1.0 (1.0 presented the molar ratio of Co2+ and 2-methylimidazole) enhanced by an order of magnitude compared to that of ZIFs derivatives (ZIFs-500) (0.073 vs 0.155 min-1) due to the special structure. The flow-through unit maintained over 90% removal within 12 h, which was far better than that of ZIFs-500/PMS system. We used electrochemical analysis, quenching experiment, in-situ FTIR and Raman spectra to further investigate the possible mechanism of the 3D CoxOy@CF-1.0/PMS system. 3D CoxOy@CF-1.0 stimulated the production of the metastable catalyst-PMS* complex obtained O2- as intermediates accompanied by the redox cycling of Co2+/Co3+, which created the dominant ROS (more 1O2) in the presence of Vo, which was completely different for ZIFs-500/PMS with coordinated and dominant radical and non-radical pathways. This study could large-scale generate variable cobalt-based catalysts for enhanced ROS generation, leading the new insight for boosting practical applications.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Agrochem Laboratory Co., Ltd, Chang Zhou, Jiangsu 213022, China
| | - ChunXiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Binrong Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
44
|
Guo L, Zhao L, Tang Y, Zhou J, Shi B. Chrome shaving-derived biochar as efficient persulfate activator: Ti-induced charge distribution modulation for 1O 2 dominated nonradical process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160838. [PMID: 36521598 DOI: 10.1016/j.scitotenv.2022.160838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Efficient degradation of organic contaminants by oxidative radicals remains a challenge due to invalid consumption of radicals and easy generation of secondary halogenated pollutants. In this work, an efficient and recyclable bimetallic biochar (Cr-Ti/BC) was developed through peroxydisulfate (PDS) activation via nonradical pathway for sulfamethoxazole (SMX) degradation. The Cr-Ti/BC exhibited excellent catalytic activity for 99.9 % of SMX removal with a high kobs of 0.13 min-1, and negligible inhibitory effects were observed under various pH condition. The activation mechanisms were (i) metastable reactive intermediates (Cr-Ti/BC-PDS) formation via an interaction between Cr-Ti/BC and PDS on the active defective sites (e.g., OH/COC, COOH, CO, nitric oxides, graphitic N, and pyridinic N), and (ii) 1O2 generation through electron transfer between Cr-Ti/BC-PDS intermediates and dissolved oxygen. The high reusability and strong stability of Cr-Ti/BC also verified the outstanding advantage of the Cr-Ti/BC during practical application. This study not only is the first study the catalytic performance of Cr and Ti co-doped biochar for PDS activation, but also successfully provides a promising strategy to induce a nonradical pathway for PDS activation, which is of great significance for the subsequent method design, and thus paving the path for exploiting advanced oxidation systems in practical application for organic contaminant removal toward polluted site remediation.
Collapse
Affiliation(s)
- Lijun Guo
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Liming Zhao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China.
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
45
|
Liu X, Yan X, Liu W, Yan Q, Xing M. Switching of radical and nonradical pathways through the surface defects of Fe 3O 4/MoO xS y in a Fenton-like reaction. Sci Bull (Beijing) 2023; 68:603-612. [PMID: 36914546 DOI: 10.1016/j.scib.2023.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Coexistence of radical and nonradical reaction pathways during advanced oxidation processes (AOPs) makes it challenging to obtain flexible regulation of high efficiency and selectivity for the requirement of diverse degradation. Herein, a series of Fe3O4/MoOxSy samples coupling peroxymonosulfate (PMS) systems enabled the switching of radical and nonradical pathways through the inclusion of defects and adjustment of Mo4+/Mo6+ ratios. The silicon cladding operation introduced defects by disrupting the original lattice of Fe3O4 and MoOxS. Meanwhile, the abundance of defective electrons increased the amount of Mo4+ on the catalyst surface, promoting PMS decomposition with a maximum k value up to 1.530 min-1 and a maximum free radical contribution of 81.33%. The Mo4+/Mo6+ ratio in the catalyst was similarly altered by different Fe contents, and Mo6+ contributed to the production of 1O2, allowing the whole system to attain a nonradical species-dominated (68.26%) pathway. The radical species-dominated system has a high chemical oxygen demand (COD) removal rate for actual wastewater treatment. Conversely, the nonradical species-dominated system can considerably improve the biodegradability of wastewater (biochemical oxygen demand (BOD)/COD = 0.997). The tunable hybrid reaction pathways will expand the targeted applications of AOPs.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingyun Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
46
|
Zhu J, Wang S, Yang Z, Pan B. Robust polystyrene resin-supported nano-CoFe 2O 4 mediated peroxymonosulfate activation for efficient oxidation of 1-hydroxyethane 1,1-diphosphonic acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130281. [PMID: 36334573 DOI: 10.1016/j.jhazmat.2022.130281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanosized spinel cobalt ferrite (CoFe2O4) shows high performance in peroxymonosulfate (PMS) activation for decontamination in water, but is yet challenged by the easily leached Co(II) with high toxicity. Herein, macroporous polystyrene resin is used as the support to improve the stability of CoFe2O4 nanoparticles during PMS activation. CoFe2O4@S201 exerted high catalytic activity toward PMS activation for oxidation of 1-hydroxyethane 1,1-diphosphonic acid (HEDP), with the apparent rate normalized by Co content 38.2 times higher than that of the unsupported CoFe2O4. Meanwhile, one order of magnitude lower Co leaching (< 2.1 μg L-1) was detected during the catalytic oxidation. The Co(II)-PMS complex was the primary oxidant responsible for the oxidation of HEDP. The catalytic durability and stability of CoFe2O4@S201 for degradation of HEDP in actual wastewater were systematically evaluated in both batch and continuous-flow mode. It is found that the organic resin, which is often considered to be intolerant to oxidation, is rather stable during the non-radical process. The total cobalt leaching of the fresh CoFe2O4@S201 cannot be ignored in the 100-h continuous-flow run. In contrast, much lower cobalt leaching and slightly higher oxidation efficiency were observed for the regenerated CoFe2O4@S201, which might be due to the removal of unreactive and unstable Co sites on the surface in the first trial. The findings shed light on the potential of organic supports for improving the stability and activity of nanosized CoFe2O4 and other nano-catalysts toward practical application.
Collapse
Affiliation(s)
- Jinglin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Long Y, Huang S, Sun J, Peng D, Zhang Z. Markedly boosted peroxymonosulfate- and periodate-based Fenton-like activities of iron clusters on sulfur/nitrogen codoped carbon: Key roles of a sulfur dopant and compared activation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158752. [PMID: 36108861 DOI: 10.1016/j.scitotenv.2022.158752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Highly dispersed iron nanoclusters on carbon (FeNC@C) hold great promise for wastewater purification in Fenton-like reactions. The microenvironment engineering of central Fe atom is promising to boost the activation capacity of FeNC@C, which is however remains a challenge. This study developed a self-sacrificed templating strategy to S, N-codoped carbon supported Fe nanoclusters (FeNC@SNC) activator and find the key role of sulfur heteroatoms in regulating the electron structure of Fe sites and final activation property. Investigations revealed that the FeNC@SNC composite exhibited unusual bifunctional activity in both peroxymonosulfate (PMS)- and periodate (PI)-based Fenton-like reactions. We also offered insights into the differences between the degradation of organics by the FeNC@SNC/PMS and FeNC@SNC/PI systems. Specifically, under identical conditions, the FeNC@SNC/PMS system delivered a higher oxidation capability and stronger resistance to nontarget matrix constituents, but showed more severe Fe leaching than the FeNC@SNC/PI system. Furthermore, while mediated electron-transfer process was identified as the major route for pollutant decomposition in both systems, the high-valent Fe-oxo species [Fe (IV)] was the auxiliary reactive species found only in the FeNC@SNC/PMS system. Based on these findings, our results provide profound insights into the design of active and durable Fe-based activators toward highly efficient Fenton-like reactions.
Collapse
Affiliation(s)
- Yangke Long
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shixin Huang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jianlin Sun
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Zuotai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
48
|
Liu X, Huang D, Lai C, Qin L, Liu S, Zhang M, Fu Y. Single cobalt atom anchored on carbon nitride with cobalt nitrogen/oxygen active sites for efficient Fenton-like catalysis. J Colloid Interface Sci 2023; 629:417-427. [PMID: 36166968 DOI: 10.1016/j.jcis.2022.08.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
As one of the tactics to produce reactive oxygen radicals, the Fenton-like process has been widely developed to solve the increasingly severe problem of environmental pollution. However, establishing advanced mediators with sufficient stability and activity for practical application is still a long-term objective. Herein, we proposed a facile strategy through polymeric carbon nitride (pCN) in-situ growth single cobalt atom for efficient degradation of antibiotics by peroxymonosulfate (PMS) activation. X-ray absorption spectroscopy and high-angle annular dark field-scanning transmission electron microscopy prove the single cobalt atoms are successfully anchored on pCN. Moreover, extended X-ray absorption fine structure analysis shows that the embedded cobalt atoms are constructed by covalently forming the Co-N bond and Co-O bond, which endow the single-atom cobalt catalyst with high stability. Experiment results indicate that the prepared single-atom cobalt catalyst can be used for efficient PMS activation catalytic degradation of tetracycline with a high degradation rate of 98.7 % in 60 min. And the CoN/O sites with single cobalt atoms serve as the active site for generating active radical species (singlet oxygen) from PMS activation. This work may expand the strategy for constructing single-atom catalysts and extend its application for the advanced oxidation process.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, Guangdong, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China.
| | - Lei Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, Hunan, PR China
| |
Collapse
|
49
|
Yang T, Mai J, Zhu M, Peng Q, Huang C, Wu S, Tan Q, Jia J, Fang J, Ma J. Enhanced Permanganate Activation under UVA-LED Irradiation: Unraveled Mechanism Involving Manganese Species and Hydroxyl Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17720-17731. [PMID: 36469811 DOI: 10.1021/acs.est.2c06290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Permanganate [Mn(VII)] has gained broad attention in water treatment. However, its limited reactivity toward some refractory micropollutants hinders its application for micropollutant degradation. Herein, we introduced UVA-LED photolysis of Mn(VII) (UVA-LED/Mn(VII)) to degrade micropollutants (diclofenac (DCF), 4-chlorophenol (4-CP), atrazine, and nitrobenzene) by selecting DCF and 4-CP as target micropollutants. The effects of operating conditions (e.g., light intensity, radiation wavelengths, pH, and water constituents) on DCF and 4-CP degradation as well as the underlying mechanisms were systematically studied. The degradation rates of DCF and 4-CP linearly decreased with increasing radiation wavelengths (from 365 to 405 nm), likely due to the decreased molar absorption coefficients and quantum yields of Mn(VII). Reactive manganese species (RMnS), including Mn(V), Mn(III), and HO•, were generated in the UVA-LED/Mn(VII) process. Mn(V) and HO• were responsible for DCF degradation, while Mn(III), HO•, and likely Mn(V) accounted for 4-CP degradation. Competitive kinetic results revealed that contributions of RMnS and HO• decreased with increasing radiation wavelengths, wherein RMnS played the dominant role. Increasing pH displayed opposite effects on DCF and 4-CP degradation with higher degradation efficiency obtained at acidic pH for the former one but alkaline pH for the latter one. The presence of water background ions (e.g., Cl-, HCO3-, and Ca2+) barely influenced DCF and 4-CP degradation. Finally, in comparison with Mn(VII) alone, enhanced degradation of DCF and 4-CP by UVA-LED/Mn(VII) was observed in real waters. This work advances the understanding of the photochemistry of manganese species in micropollutant degradation and facilitates Mn(VII) oxidation in practical application.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Qiqi Peng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Qinying Tan
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
50
|
Deng Z, Huang Z, Liu J, Huang Y, Lu P. Efficient Activation of Peroxymonosulfate by V-Doped Graphitic Carbon Nitride for Organic Contamination Remediation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8936. [PMID: 36556741 PMCID: PMC9785673 DOI: 10.3390/ma15248936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) activation have been developed as an ideal pathway for completely eradication of recalcitrant organic pollutants from water environment. Herein, the V-doped graphitic carbon nitride (g-C3N4) is rationally fabricated by one-step thermal polymerization method to activate PMS for contamination decontamination. The results demonstrate the V atoms are successfully integrated into the framework of g-C3N4, which can effectively improve light absorption intensity and enhance charge separation. The V-doped g-C3N4 displays superior catalytic performance for PMS activation. Moreover, the doping content has a great influence on the activation performances. The radical quenching experiments confirm •O2-, SO4•-, and h+ are the significant species in the catalytic reaction. This work would provide a feasible strategy to exploit efficient g-C3N4-based material for PMS activation.
Collapse
Affiliation(s)
- Zhi Deng
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Zhenhua Huang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Jun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yongkui Huang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|