1
|
Wang H, Zhong Y, Yang Q, Li J, Li D, Wu J, Yang S, Liu J, Deng Y, Song J, Peng P. Coupling of sulfate reduction and dissolved organic carbon degradation accelerated by microplastics in blue carbon ecosystems. WATER RESEARCH 2025; 279:123414. [PMID: 40056474 DOI: 10.1016/j.watres.2025.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Microplastics have increasingly accumulated in sulfate- and organic matter-rich mangrove ecosystems, yet their effects on microbially mediated carbon and sulfur cycling in sediments remains poorly understood. In this study, we performed a 70-day anaerobic microcosm experiment to examine the effects of polylactic acid (PLA) microplastics with different sizes on sulfate reduction and dissolved organic carbon (DOC) degradation in mangrove sediments. Our results demonstrated that millimeter-scale PLA (mm-PLA) more effectively enhanced sulfate reduction, sulfur isotope fractionation, reduced sulfide production, and carbon dioxide (CO2) emission compared to micrometer-scale PLA (m-PLA). These results suggested that mm-PLA had a more pronounced impact on the carbon and sulfur cycles. Integrated 16S rRNA gene amplicon sequencing and metagenomic analyses revealed that mm-PLA preferentially enriched key functional microorganisms, including acetate-producing bacteria (e.g., Acetobacteroides), completely oxidizing sulfate-reducing bacteria (e.g., Desulfobacter), and incompletely oxidizing sulfate-reducing bacteria (e.g., Desulfobulbus). These microorganisms exhibited higher abundances and greater genetic potential for carbon metabolism and sulfate reduction under mm-PLA treatment. Their relative abundances showed positive correlations with sulfate reduction rates, sulfur isotope fractionation, and CO2 emission, identifying them as crucial drivers of coupled carbon-sulfur cycling. Furthermore, the synergistic interactions among Acetobacteroides, Desulfobacter, and Desulfobulbus facilitated the oxidation of sediment-derived DOC, highlighting significant implications for carbon sequestration in blue carbon ecosystems.
Collapse
Affiliation(s)
- Heli Wang
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China 523808, China
| | - Yin Zhong
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China.
| | - Qian Yang
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaying Li
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan
| | - Junhong Wu
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Yang
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashuo Liu
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China 523808, China
| | - Jianzhong Song
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Yang J, Shi C, Xu C, Zhang Y, Zhang Z, Song M, Chen Q, Wang Z, Pan X, Fang M. The Analysis of Polylactic Acid Oligomers and Their Fate in Laboratory and Agricultural Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9235-9244. [PMID: 40304420 DOI: 10.1021/acs.est.4c12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Polylactic acid (PLA) is the most widely consumed biodegradable plastic worldwide. Though PLA products have the advantages of easy degradation and a small carbon footprint, poly(lactic acid) oligomers (OLAs) released from PLA have been found to exhibit toxicity. Accurate quantification of the presence of the OLAs in soil is crucial for understanding their occurrence and environmental fate. In this study, we synthesized sequence-defined OLA standards and deuterated OLAs (d-OLAs) and developed a broad-spectrum extraction method with water-saturated ethyl acetate and 0.1% formic acid, achieving sensitive and precise quantification of the OLAs across various soil environments. The simulated experiments showed that PLA-based products released amounts of OLAs, reaching their peak within 24 h, followed by degradation, with the OLAs remaining detectable in the soil for up to 168 h. Meanwhile, the OLA with a degree of polymerization (DP) of 2 exhibited the highest concentration, while higher-DP OLAs demonstrated greater stability in soil compared to others. In the field samples, OLAs were detected in soil over the long term beneath PLA-based biodegradable mulch films with residual concentrations reaching up to 16.10 ± 0.37 ng/g. This study bridges foundational analytical methods and addresses data gaps for further investigations into the environmental fates of the OLAs and PLA.
Collapse
Affiliation(s)
- Jing Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Changzhi Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yankai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhuolan Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zimeng Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China
| |
Collapse
|
3
|
Jiang Z, Zeng J, Wang X, Yu H, Yue L, Wang C, Chen F, Wang Z. Biodegradable microplastics and dissemination of antibiotic resistance genes: An undeniable risk associated with plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125952. [PMID: 40032228 DOI: 10.1016/j.envpol.2025.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Biodegradable plastics (BDPs) represent a promising alternative to conventional plastics; however, the release of microplastics (MPs) during degradation necessitates an urgent investigation into their biological effects. The potential risks associated with MPs and additives released from BDPs, particularly in facilitating the dissemination of antibiotic resistance genes (ARGs), remain largely unknown. This study aims to investigate the effects of polylactic acid (PLA) MPs and their common plasticizer, dibutyl phthalate (DBP), on the horizontal gene transfer (HGT) of ARGs using conjugative transfer and transformation model systems. The viability of Escherichia coli (E. coli) cells after exposure to PLA MPs (0.01, 0.1, 1, and 10 mg L-1), DBP (0.01, 0.1, 1, and 10 μg L-1) alone, or in combination (1 mg L-1 PLA MPs + 1 μg L-1DBP) remained unaffected. Exposure to PLA MPs at environmentally relevant concentrations did not promote the HGT of ARGs. However, the addition of DBP significantly enhanced the transfer frequency by 1.5-1.8 folds compared to exposure to PLA MPs alone. The accelerated dissemination of ARGs was primarily attributed to the elevated levels of reactive oxygen species (by 26.2%), increased membrane permeability (by 19.4%), and the up-regulation of genes involved in mating pair formation (by 1.6-3.8 folds) and DNA translocation (by 1.5-3.4 folds). These findings underscore the critical role of additives and highlight the potential accumulative effects associated with prolonged exposure to high concentrations of PLA MPs, which should be considered for a comprehensive risk assessment of BDPs.
Collapse
Affiliation(s)
- Zhaoheng Jiang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Hanxiao Yu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Yan Y, Cheng J, Gao J, Liu Y, Tian H, Liu Y, Zheng X, Wang G, Yao J, Ding Y, Liu A, Wang M, Zhao J, Wang S, Shi C, Zeng L, Yang X, Qin H, Zhao X, Liu R, Chen L, Qu G, Yan B, Jiang G. Exploring Environmental Behaviors and Health Impacts of Biodegradable Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5897-5912. [PMID: 40116393 DOI: 10.1021/acs.est.4c14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Biodegradable plastics (BPs) are promoted as eco-friendly alternatives to conventional plastics. However, compared to conventional microplastics (MPs), they degrade rapidly into biodegradable microplastics (BMPs), which may lead to a more significant accumulation of BMPs in the environment. This review systematically compares BMPs and MPs, summarizes current knowledge on their environmental behaviors and impacts on ecosystems and human health, and offers recommendations for future research. BMPs are detected in water, sediments, indoor dust, food, marine organisms, and human samples. Compared to MPs, BMPs are more prone to environmental transformations, such as photodegradation and biodegradation, which results in a shorter migration distance across different matrices. Like MPs, BMPs can adsorb pollutants and transport them into organisms, enhancing toxicity and health risks through the Trojan horse effect. Studies indicate that BMPs may negatively impact terrestrial and aquatic ecosystems more than MPs by disrupting nutrient cycling and inhibiting plant and animal growth. In vivo and in vitro research also shows that BMP degradation products increase bioavailability, exacerbating neurotoxicity and overall toxicity. However, findings on BMPs' environmental and health effects remain inconsistent. Further evaluation of the trade-offs between BMP risks and their biodegradability is needed to address these uncertainties.
Collapse
Affiliation(s)
- Yuhao Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiexia Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehan Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtai Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Ding
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Science, Northeastern University, Shenyang 110004, China
| | - Xiulan Zhao
- School of Public Health, Shandong University, Jinan 250012, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Shandong University, Jinan 250012, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Shandong University, Jinan 250012, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Science, Northeastern University, Shenyang 110004, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Bao S, Wang X, Zeng J, Yue L, Xiao Z, Chen F, Wang Z. The fate of biodegradable polylactic acid microplastics in maize: impacts on cellular ion fluxes and plant growth. FRONTIERS IN PLANT SCIENCE 2025; 16:1544298. [PMID: 40070709 PMCID: PMC11893570 DOI: 10.3389/fpls.2025.1544298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize. Seed germination and hydroponic experiments were conducted over a period of 5 to 20 days, during which the plants were exposed to PLA MPs at concentrations of 0, 1, 10, and 100 mg L-1. Low concentrations of PLA MPs (1 mg L-1 and 10 mg L-1) significantly enhanced maize seed germination rate by 52.6%, increased plant shoot height by 16.6% and 16.9%, respectively, as well as elevated aboveground biomass dry weight by 133.7% and 53.3%, respectively. Importantly, depolymerization of PLA MPs was observed in the nutrient solution, resulting in the formation of small-sized PLA MPs (< 2 μm). Interestingly, further transformation occurred within the xylem sap and apoplast fluid (after 12 h) with a transformation rate reaching 13.1% and 27.2%, respectively. The enhanced plant growth could be attributed to the increase in dissolved organic carbon resulting from the depolymerization of PLA MPs. Additionally, the transformation of PLA MPs mediated pH and increase in K+ flux (57.2%, 72 h), leading to acidification of the cell wall and subsequent cell expansion. Our findings provide evidence regarding the fate of PLA MPs in plants and their interactions with plants, thereby enhancing our understanding of the potential impacts associated with biodegradable plastics.
Collapse
Affiliation(s)
- Shijia Bao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
He S, Ye Y, Cui Y, Huo X, Shen M, Li F, Yang Z, Zeng G, Xiong W. Different wetting states in riparian sediment ecosystems: Response to microplastics exposure. WATER RESEARCH 2025; 270:122823. [PMID: 39612814 DOI: 10.1016/j.watres.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Climate change alters the wetting state of riparian sediments, impacting microbial community response and biogeochemical processes. Microplastics (MPs) invade nearly all ecosystems on earth, posing a significant environmental risk. However, little is known about the response mechanism of MP exposure in sediment ecosystems with different wetting states under alternating seasonal rain and drought conditions. In this study, sediments with three different wetting states were selected to explore the differential response of ecosystems to PLA MP exposure. We observed that PLA MP exposure directly affected biogeochemical processes in sediment ecosystems and induced significant changes in microbial communities. PLA MP exposure was found to alter the composition of key species and microbial functional groups in the ecosystem, resulting in a more complex, interconnected, but less stable microbial network. Our findings showed that PLA MP exposure enhances the contribution of stochastic processes, for example the dispersal limitation increasing from 7.41 % to 54.32 %, indicating that sediment ecosystems strive to buffer disturbances from PLA MP exposure. In addition, 87 pathogenic species were detected in our samples, with PLA MPs acting as vectors for their transmission, potentially amplifying ecosystem disturbance. Importantly, we revealed that submerged sediments may present a greater environmental risk, while alternating wet and dry sediments demonstrate greater resistance and resilience to PLA MPs pollution. Overall, this study sheds light on how sediment ecosystems respond to MP exposure, and highlights differences in sediment response mechanisms across wetting states.
Collapse
Affiliation(s)
- Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yajing Cui
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiuqin Huo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Fang Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
7
|
Xu X, Peng C, Shao X, Gong K, Zhao X, Xie W, Zhang W, Tan J. Unveiling the impacts of biodegradable microplastics on cadmium toxicity, translocation, transformation, and metabolome in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177669. [PMID: 39579896 DOI: 10.1016/j.scitotenv.2024.177669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Biodegradable microplastics (BMPs) may impact the environmental fate and ecotoxicity of Cd, but the effect mechanism in soil-plant system remain poorly understood. This study investigated the impact of BMPs (poly(lactic acid) (PLA) and poly(butylene adipate terephthalate) (PBAT) microplastics) on the Cd toxicity, translocation, transformation, and metabolome in lettuce (Lactuca sativa L.) by pot experiments. The results show that co-exposure to BMPs and Cd synergistically inhibited the shoot growth. 0.2 % PLA MPs enhanced but 2.5 % PLA MPs inhibited the photosynthesis; however, the dose of PBAT MPs was negatively correlated with the content of chlorophyll a. Moreover, the presence of 2.5 % PBAT MPs increased the nitrate content of leaves by 9.5 % compared to single Cd exposure. The partial least squares path model (PLS-PM) indicates that BMPs exacerbated the inhibitory effects of Cd on lettuce growth. PLA MPs enhanced K, Ca, Cu, and Zn accumulation in root stele, whereas PBAT MPs promoted Fe and Mn enrichment in epidermis. Furthermore, co-exposure resulted in higher inorganic and water-soluble Cd proportions in shoots. PLA MPs elevated Cd contents in cell wall fractions of both roots and shoots, while PBAT MPs increased Cd contents in shoot cell walls and root cells and soluble Cd ratio in shoots. BMPs enhanced Cd toxicity and bioaccumulation by downregulating the expression of ABC transporters and phenylpropanoid biosynthesis pathways, and the relative abundance of related metabolites.
Collapse
Affiliation(s)
- Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
8
|
Cheng H, Zou Y, Lu B, Wang J, Magnuson JT, Xu B, Qiu W, Xuan R. Immunotoxic response of bio-based plastic on early life stage zebrafish (Danio rerio): A safe alternative to petroleum-based plastics? JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135846. [PMID: 39303614 DOI: 10.1016/j.jhazmat.2024.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Bio-based plastics are marketed as environmentally friendly alternatives to petroleum-based plastics, although they require specific composting conditions for degradation, which leads to their accumulation in the environment and potential risks to aquatic organisms. We hypothesized that the accumulation of bio-based plastics may induce immunotoxic responses in fish. Our research focused on the accumulation and immunotoxicity of 80 nm polylactic acid (PLA) and polystyrene (PS) (0.1-10 mg/L) on early life stage zebrafish (Danio rerio) exposed for 7 days. Compared to PS, there was a higher accumulation of PLA in larvae. Exposure to PLA resulted in a significant increase in neutrophils and macrophages, while immune protein levels such as Complement 3 (C3), Immunoglobulin M (IgM), and C-reactive protein (CRP) were significantly reduced. Furthermore, the mRNA expression of pro-inflammatory cytokines, including tnf-α and il-6, were significantly elevated in PLA treatments. Additionally, PLA-exposed zebrafish were more susceptible to infection by Vibrio parahaemolyticus. Interestingly, at the same concentration, exposures to PS did not induce significant changes in macrophages or immune protein levels, C3 and IgM. This suggests that PLA has a greater immunotoxic response relative to PS. Our research findings contradict the popular belief that bio-based plastics are non-toxic and harmless, which may have potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Haodong Cheng
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Society of Environmental Sciences, Guangzhou 510045, China
| | - Bin Lu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China; Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Jason T Magnuson
- US Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China; Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
9
|
Feng Y, Duan J, Yang C, Zou Q, Chen Z, Pu J, Xiang Y, Chen M, Fan M, Zhang H. Microplastics and benthic animals reshape the geochemical characteristics of dissolved organic matter by inducing changes in keystone microbes in riparian sediments. ENVIRONMENTAL RESEARCH 2024; 262:119806. [PMID: 39151559 DOI: 10.1016/j.envres.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Dissolved organic matter (DOM) in riparian sediments plays a vital role in regulating element cycling and pollutant behavior of river ecosystems. Microplastics (MPs) and benthic animals (BAs) have been frequently detected in riparian sediments, influencing the substance transformation in river ecosystems. However, there is still a lack of systematic investigation on the effects of MPs and BAs on sediment DOM. This study investigated the impact of MPs and BAs on the geochemical characteristics of DOM in riparian sediments and their microbial mechanisms. The results showed that MPs and BAs increased sediment DOC concentration by 34.24%∼232.97% and promoted the conversion of macromolecular components to small molecular components, thereby reducing the humification degree of DOM. Mathematical model verified that the changes of keystone microbes composition in sediments were direct factors affecting the characteristics of DOM in riparian sediment. Especially, MPs tolerant microbes, including Planctomicrobium, Rhodobacter, Hirschia and Lautropia, significantly increased DOC concentration and decreased humification degree (P < 0.05). In addition, MPs and BAs could also influence keystone microbes in sediments by altering the structure of microbial network, thereby indirectly affecting DOM characteristics. The study demonstrates the pollution behavior of MPs in river ecosystems and provides a basis for protecting the ecological function of riparian sediments from MPs pollution.
Collapse
Affiliation(s)
- Yuanyuan Feng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jinjiang Duan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qingping Zou
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ziwei Chen
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
10
|
Li Y, Sha X, Wang Y, Zhao Y, Zhang J, Wang P, Chen X, Xing B, Wang L. In situ imaging of microplastics in living organisms based on mass spectrometry technology. ECO-ENVIRONMENT & HEALTH 2024; 3:412-417. [PMID: 39524474 PMCID: PMC11541458 DOI: 10.1016/j.eehl.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 11/16/2024]
Abstract
Plastic pollution is widely present in terrestrial and aquatic ecosystems, and microplastics (MPs) can be detected in organisms. In situ detection methods for MPs in organisms have attracted widespread attention. Traditional imaging characterization methods of MPs, including stereo microscopes and fluorescence microscopy, are typically used to image artificially added microsphere standards under laboratory conditions. However, they cannot specifically identify MPs in biological samples. Thus, there is a need for a detection technique that can provide spatial distribution information of MPs in biological samples as well as measure their quality and quantity. In this perspective, to obtain high-resolution images with chemical composition analysis, we compared ion sources for ionizing plastic macromolecules and mass analyzers for analyzing macromolecules. Matrix-assisted laser desorption/ionization (MALDI) is suitable for imaging characterization, while time-of-flight (TOF) and Orbitrap mass spectrometry are suitable for polymer mass spectrometry analysis. Furthermore, we propose a technique that combines MALDI with TOF or Orbitrap, which holds promise for the in situ imaging of MPs in biological samples.
Collapse
Affiliation(s)
- Ye Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoyu Sha
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yanfang Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junjie Zhang
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Ping Wang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- School of Business, Qingdao University, Qingdao 266100, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Jia B, Zhu K, Bai Z, Abudula A, Liu B, Yan J, Wu Z, Tan H, Liu Q, Morawska L, Wang L, Chen J. Non targeted and targeted LC-MS/MS insights into the composition and concentration of atmospheric microplastics and additives: Impacts and regional changes of sandstorms in Shanghai and Hohhot, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176254. [PMID: 39277009 DOI: 10.1016/j.scitotenv.2024.176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Increasing dust storms impact ecosystems and human health by resuspending dust and microplastics. Plastic pollution is a major global concern. This study examines the molecular composition and concentration of atmospheric microplastics and additives in Hohhot and Shanghai, China during dust and non-dust days using non-target and target LC-MS/MS analysis with Multiple Reaction Monitoring (MRM) methodology and a self-established plastic monomers database. In Hohhot, 98 microplastics and additives types were identified on dust days (41 unique) and 70 on non-dust days (10 unique), mainly PEG, HTPE, PET, PPG, and Nylon. The types fluctuate ranging from 35 to 65 due to dusty conditions. In Shanghai, 50 types were identified (no unique), with 25 to 30 types consistently present. Hohhot's microplastics concentration during dust days peaked at 3531.59 ng/m3, about three times higher than non-dust days (1669.17 ng/m3) and significantly higher than Shanghai's maximum of 589.85 ng/m3. Overall, microplastic monomers in both cities were mostly compounds with low unsaturation, indicating potential for long-term atmospheric persistence. Highly reactive monomers like HTPE, PEG, thrive on dust days in Hohhot due to insufficient light and strong winds. These conditions reduce photochemical reactivity, accelerate microplastic aging through collisions, and resuspend more microplastics from the soil, resulting in a wider variety of microplastics with different m/z and carbon contents during sandstorms. On non-dust days, microplastics have more concentrated m/z values, indicating that substances with similar chemical properties disperse more under normal conditions. These findings highlight the significant impact of dust storms on microplastics characteristics. SYNOPSIS: This study indicates that dust storms and regional differences can have significant impacts on the diversity and abundance of atmospheric microplastics.
Collapse
Affiliation(s)
- Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Hohhot University, China
| | - Ayizuohere Abudula
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zelong Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Haihong Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | | | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
12
|
Xu S, Li H, Xiao L, Feng S, Fan J, Pawliszyn J. Monitoring Poly(methyl methacrylate) and Polyvinyl Dichloride Micro/Nanoplastics in Water by Direct Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. Anal Chem 2024; 96:10772-10779. [PMID: 38902946 DOI: 10.1021/acs.analchem.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A simple, sustainable, and sensitive monitoring approach of micro/nanoplastics (MNPs) in aqueous samples is crucial since it helps in assessing the extent of contamination and understanding the potential risks associated with their presence without causing additional stress to the environment. In this study, a novel strategy for qualitative and quantitative determination of MNPs in water by direct solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was proposed for the first time. Spherical poly(methyl methacrylate) (PMMA) and irregularly shaped polyvinyl dichloride (PVDC) were used to evaluate the feasibility and performance of the proposed method. The results demonstrated that both PMMA and PVDC MNPs were efficiently extracted by the homemade SPME coating of nitrogen-doped porous carbons (N-SPCs) and exhibited sufficient thermal decomposition in the GC-MS injection port. Excellent extraction performances of N-SPCs coating for MNPs are attributed to hydrophobic cross-linking, electrostatic forcing, hydrogen bonding, and pore trapping. Methyl methacrylate was identified as the marker for PMMA, while 1,3-dichlorobenzene and 1,3,5-trichlorobenzene were the indicators for PVDC. Under the optimal extraction and decomposition conditions, the proposed method exhibited ultrahigh sensitivity, with a limit of detection of 0.0041 μg/L for PMMA and 0.0054 μg/L for PVDC. Notably, a programmed temperature strategy for the GC-MS injector was developed to discriminate and eliminate the potential interferences of intrinsic indicator compounds. Owing to the integration of sampling, extraction, injection, and decomposition into one step by SPME, the proposed method demonstrates exceptional sensitivity, eliminating the necessity for complex sample pretreatment procedures and the use of organic solvents. Finally, the proposed method was successfully applied in the determination of PMMA and PVDC MNPs in real aqueous samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Liu C, Jiao Y, Guo J, Li B, Gu C, Qian T, Liu X. Tracing the entry process of submicrometre plastics in soybean sprouts by leaf-derived fluorescent carbon dots. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134272. [PMID: 38613953 DOI: 10.1016/j.jhazmat.2024.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.
Collapse
Affiliation(s)
- Chao Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Junmei Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Changxin Gu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| |
Collapse
|
14
|
Yang C, Xie J, Gowen A, Xu JL. Machine learning driven methodology for enhanced nylon microplastic detection and characterization. Sci Rep 2024; 14:3464. [PMID: 38342944 PMCID: PMC10859384 DOI: 10.1038/s41598-024-54003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 02/13/2024] Open
Abstract
In recent years, the field of microplastic (MP) research has evolved significantly; however, the lack of a standardized detection methodology has led to incomparability across studies. Addressing this gap, our current study innovates a reliable MP detection system that synergizes sample processing, machine learning, and optical photothermal infrared (O-PTIR) spectroscopy. This approach includes examining high-temperature filtration and alcohol treatment for reducing non-MP particles and utilizing a support vector machine (SVM) classifier focused on key wavenumbers that could discriminate between nylon MPs and non-nylon MPs (1077, 1541, 1635, 1711 cm-1 were selected based on the feature importance of SVM-Full wavenumber model) for enhanced MP identification. The SVM model built from key wavenumbers demonstrates a high accuracy rate of 91.33%. Results show that alcohol treatment is effective in minimizing non-MP particles, while filtration at 70 °C has limited impact. Additionally, this method was applied to assess MPs released from commercial nylon teabags, revealing an average release of 106 particles per teabag. This research integrates machine learning with O-PTIR spectroscopy, paving the way for potential standardization in MP detection methodologies and providing vital insights into their environmental and health implications.
Collapse
Affiliation(s)
- Cihang Yang
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jun-Li Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Li Y, Lin X, Wang J, Xu G, Yu Y. Quantification of nanoplastics uptake and transport in lettuce by pyrolysis gas chromatography-mass spectrometry. Talanta 2023; 265:124837. [PMID: 37379754 DOI: 10.1016/j.talanta.2023.124837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Nanoplastics (NPs) can enter the edible parts of crop and threaten human health, which attract widespread attention. However, the precise quantification of NPs in crop is still a tremendous challenge. Herein, a method with Tetramethylammonium hydroxide (TMAH) digestion, dichloromethane extraction combined with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) quantification was present to quantify polystyrene (PS) NPs uptake in lettuce (Lactuca sativa). 25% of TMAH was optimized as extraction solvent and 590 °C was selected as pyrolysis temperature. Recoveries of 73.4-96.9% were obtained for PS-NPs at spiking level of 4-100 μg/g in control samples (RSD < 8.6%). The method exhibited good intra-day and inter-day reproducibility, detection limits of 34-38 ng/g and linearity with 0.998-0.999. The reliability of Py-GC/MS method was verified by europium-chelated PS using inductively coupled plasma mass spectrometry (ICP-MS). To simulate different environmental conditions, hydroponic culture and soil incubated lettuce were exposed to different concentrations of NPs. Higher levels of PS-NPs were detected in roots and very few was transferred to the shoots. NPs in lettuce were confirmed by laser scanning confocal microscopy (LSCM). The developed method provides new opportunities for the quantification of NPs in crops.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
16
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
17
|
Wu X, Zhang X, Chen X, Ye A, Cao J, Hu X, Zhou W. The effects of polylactic acid bioplastic exposure on midgut microbiota and metabolite profiles in silkworm (Bombyx mori): An integrated multi-omics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122210. [PMID: 37454715 DOI: 10.1016/j.envpol.2023.122210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Polylactic acid (PLA) is a highly common biodegradable plastic and a potential threat to health and the environment. However, limited data are available on the effects of PLA exposure in the silkworm (Bombyx mori), a model organism used in toxicity studies. In this study, silkworms with or without PLA exposure (P1: 1 mg/L, P5: 5 mg/L, P25: 25 mg/L, and P0: 0 mg/L) for the entire 5th instar period were used to investigate the impact of PLA exposure on midgut morphology, larvae growth, and survival. Mitochondrial damage was observed in the P5 and P25 groups. The weights of the P25 posterior silk gland (5th day in the 5th instar), mature larvae and pupae were all significantly lower than those of the controls (P < 0.05). Dead worm cocoon rates and larva-pupa to 5th instar larvae ratios showed a positive and negative dose-dependent manner with respect to PLA concentrations, respectively. Additionally, reactive oxygen species levels and superoxide dismutase activity of the P25 midgut were significantly higher and lower when compared with controls, respectively (P < 0.05). The molecular mechanisms underlying the effects of PLA and associated physiological responses were also investigated. In the midgut metabolome, 127 significantly different metabolites (variable importance projection >1 and P < 0.05) were identified between the P0 and P25 groups and were mainly enriched for amino acid metabolism and energy supply pathways. The 16 S rDNA data showed that PLA altered microbial richness and structural composition. Microbiota, classified into 34 genera and 63 species, were significantly altered after 25 mg/L PLA exposure (P < 0.05). Spearman's correlation results showed that Bifidobacterium catenulatum and Schaalia odontolytica played potentially vital roles during exposure, as they demonstrated stronger correlations with the significantly different metabolites than other bacterial species. In sum, PLA induced toxic effects on silkworms, especially on energy- and protein-relevant metabolism, but at high concentrations (25 mg/L). This prospective mechanistic investigation on the effects of PLA on larval toxicity provides novel insight regarding the ecological risks of biodegradable plastics in the environment.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
18
|
Wang K, Yang S, Yu X, Bai M, Ye H, Xu Y, Zhao L, Wu D, Li X, Weng L, Li Y. Microplastics degradation stimulated by in-situ bioelectric field in agricultural soils. ENVIRONMENT INTERNATIONAL 2023; 177:108035. [PMID: 37329759 DOI: 10.1016/j.envint.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Bioelectric field is a stimulated force to degrade xenobiotic pollutants in soils. However, the effect of bioelectric field on microplastics (MPs) aging is unclear. The degradation behavior of polyvinyl chloride (PVC), polyethylene (PE) and polylactic acid (PLA) was investigated in an agricultural soil microbial electrochemical system in which bioelectric field was generated in-situ by native microbes. Based on the density function theory, the energy gaps between the highest and the lowest occupied molecular orbitals of the three polymers with periodic structure were 4.20, 7.24 and 10.09 eV respectively, and further decreased under the electric field, indicating the higher hydrolysis potential of PLA. Meanwhile, the mass loss of PLA in the closed-circuit group (CC) was the highest on day 120, reaching 8.94%, which was 3.01-3.54 times of that without bioelectric field stimulation. This was mainly due to the enrichment of plastic-degrading bacteria and a robust co-occurrence network as the deterministic assembly process, e.g., the abundance of potential plastic-degrading bacteria on the surface of PLA and PVC in the CC increased by 1.92 and 1.30 times, respectively, compared to the open-circuit group. In terms of functional genes, the xenobiotic biodegradation and metabolism capacity of plasticsphere in the CC were stronger than that in soil, and determined by the bioaccessibility of soil nitrogen and carbon. Overall, this study explored the promoting effect of bioelectric field on the degradation of MPs and reveled the mechanism from quantum chemical calculations and microbial community analysis, which provides a novel perception to the in-situ degradation of MPs.
Collapse
Affiliation(s)
- Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Dan Wu
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Shao Y, Wang Y, Hua X, Li Y, Wang D. Polylactic acid microparticles in the range of μg/L reduce reproductive capacity by affecting the gonad development and the germline apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2023; 336:139193. [PMID: 37315859 DOI: 10.1016/j.chemosphere.2023.139193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Polylactic acid (PLA) accounts for approximately 45% of the global market of biodegradable plastics. Using Caenorhabditis elegans as an animal model, we examined the effect of long-term exposure to PLA microplastic (MP) on reproductive capacity and the underlying mechanism. Brood size, number of fertilized eggs in uterus, and number of hatched eggs were significantly reduced by exposure to 10 and 100 μg/L PLA MP. Number of mitotic cells per gonad, area of gonad arm, and length of gonad arm were further significantly decreased by exposure to 10 and 100 μg/L PLA MP. In addition, exposure to 10 and 100 μg/L PLA MP enhanced germline apoptosis in the gonad. Accompanied with the enhancement in germline apoptosis, exposure to 10 and 100 μg/L PLA MP decreased expression of ced-9 and increased expressions of ced-3, ced-4, and egl-1. Moreover, the induction of germline apoptosis in PLA MP exposed nematodes was suppressed by RNAi of ced-3, ced-4, and egl-1, and strengthened by RNAi of ced-9. Meanwhile, we did not detect the obvious effect of leachate of 10 and 100 μg/L PLA MPs on reproductive capacity, gonad development, germline apoptosis, and expression of apoptosis related genes. Therefore, exposure to 10 and 100 μg/L PLA MPs potentially reduces the reproductive capacity by influencing the gonad development and enhancing the germline apoptosis in nematodes.
Collapse
Affiliation(s)
- Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuxing Wang
- Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
20
|
Jia J, Liu Q, Wu C. Microplastic and antibiotic proliferated the colonization of specific bacteria and antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131618. [PMID: 37201280 DOI: 10.1016/j.jhazmat.2023.131618] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Despite that the phycosphere was an important niche for the proliferation of various bacteria and antibiotic resistance genes (ARGs), the factors that affect the colonization of bacteria and ARGs in the phycosphere are still poorly understood. In this study, sterile C. pyrenoidosa co-cultured with bacteria from different sources and provided with polylactic acid microplastic (PLA MPs) and florfenicol (FF) was examined. Results showed that bacteria promoted the growth of C. pyrenoidosa and increased its chlorophyll contents. PLA MPs and FF also showed positive effects on C. pyrenoidosa due to the "Hormesis effect". The occurrence of bacteria in the phycosphere was significantly affected by their sources and the addition of PLA MPs and FF. However, the core microbiota of the phycosphere in each group was similar. Additionally, PLA MPs and FF proliferated the abundance of phenicol-related ARGs (especially floR) and mobile genetic elements in the phycosphere. Notably, PLA MPs and FF enhanced the abundance of Flavobacterium, a potential host of ARGs. Our results highlighted the important roles of bacteria in microalgae and demonstrated exogenous pollutants could promote the spread of ARGs between surrounding environments and the phycosphere, which provide new insights into the occurrence and spread of ARGs in the phycosphere.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
21
|
Wang M, Li Q, Shi C, Lv J, Xu Y, Yang J, Chua SL, Jia L, Chen H, Liu Q, Huang C, Huang Y, Chen J, Fang M. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. NATURE NANOTECHNOLOGY 2023; 18:403-411. [PMID: 36864128 DOI: 10.1038/s41565-023-01329-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The health risks of exposure to 'eco-friendly' biodegradable plastics of anthropogenic origin and their effects on the gastrointestinal tract are largely unknown. Here we demonstrate that the enzymatic hydrolysis of polylactic acid microplastics generated nanoplastic particles by competing for triglyceride-degrading lipase during gastrointestinal processes. Nanoparticle oligomers were formed by hydrophobically driven self-aggregation. In a mouse model, polylactic acid oligomers and their nanoparticles bioaccumulated in the liver, intestine and brain. Hydrolysed oligomers caused intestinal damage and acute inflammation. A large-scale pharmacophore model revealed that oligomers interacted with matrix metallopeptidase 12. Mechanistically, high binding affinity (Kd = 13.3 μmol l-1) of oligomers to the catalytic zinc-ion finger domain led to matrix metallopeptidase 12 inactivation, which might mediate the adverse bowel inflammatory effects after exposure to polylactic acid oligomers. Biodegradable plastics are considered to be a solution to address environmental plastic pollution. Thus, understanding the gastrointestinal fates and toxicities of bioplastics will provide insights into potential health risks.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Changzhi Shi
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jia Lv
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Youdong Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shae Linn Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linran Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huaiwen Chen
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
22
|
Oligomer nanoparticle release from a biodegradable plastic triggers acute gut inflammation. NATURE NANOTECHNOLOGY 2023; 18:329-330. [PMID: 36890213 DOI: 10.1038/s41565-023-01330-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
23
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|