1
|
Díaz-Avello UG, Skouridou V, Shkembi X, Reverté J, Mandalakis M, Peristeraki P, Campàs M, O'Sullivan CK. Aptamer-antibody sandwich lateral flow test for rapid visual detection of tetrodotoxin in pufferfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179419. [PMID: 40245514 DOI: 10.1016/j.scitotenv.2025.179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/09/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Tetrodotoxin (TTX) is a highly potent marine toxin which can cause severe poisoning following consumption of contaminated fish and seafood. Thus, a sensitive, reliable and simple test is required for rapid screening of samples and prevention of intoxication. Herein, we translated a previously reported microtiter plate hybrid aptamer-antibody assay into a rapid lateral flow assay (LFA) test. The test relies on an aptamer immobilized on the membrane and an antibody conjugated with gold nanoparticles to provide a visual result when TTX is present in the sample. The optimized test is simple (one-step), rapid (<20 min), highly sensitive (visual limit of detection of 0.3 ng/mL TTX in buffer corresponding to 0.78 mg TTX/kg tissue), specific, reproducible and with long storage life. It was validated by analyzing contaminated pufferfish tissue extracts and it successfully detected TTX below the current limits set by official bodies. The analysis performed with this device in combination with a simple LFA reader for quantification was in excellent agreement with other established methods, further demonstrating the value of this test as a simple, low-cost and reliable analytical tool to ensure food safety, protect human health, and broaden the knowledge on the correlation between biological parameters and environmental data.
Collapse
Affiliation(s)
- Ulises G Díaz-Avello
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Spain
| | - Vasso Skouridou
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Xhensila Shkembi
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Jaume Reverté
- Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 710 03 Heraklion, Greece
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03 Heraklion, Greece
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Spain
| | - Ciara K O'Sullivan
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Institució Català de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
2
|
Finch SC, Harwood DT. Past, Current and Future Techniques for Monitoring Paralytic Shellfish Toxins in Bivalve Molluscs. Toxins (Basel) 2025; 17:105. [PMID: 40137878 PMCID: PMC11945588 DOI: 10.3390/toxins17030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Paralytic shellfish poisoning is a threat to human health caused by the consumption of shellfish contaminated with toxins of the saxitoxin class. Human health is protected by the setting of regulatory limits and the analysis of shellfish prior to sale. Both robust toxicity data, generated from experiments fitting into the ethical 3R framework, and appropriate analysis methods are required to ensure the success of this approach. A literature review of in vivo animal bioassays and in vitro and analytical methods showed that in vitro methods are the best option to screen shellfish for non-regulatory purposes. However, since neither the receptor nor antibody binding of paralytic shellfish toxin analogues correlate with toxicity, these assays cannot accurately quantify toxicity in shellfish nor be used to calculate toxicity equivalence factors. Fully replacing animals in testing is rightfully the ultimate goal, but this cannot be at a cost to human health. More modern technology, such as organ-on-a-chip, represent an exciting development, but animal bioassays cannot currently be replaced in the determination of toxicity. Analytical methods that employ toxicity equivalence factors calculated using oral animal toxicity data result in an accurate assessment of the food safety risk posed by paralytic shellfish toxin contamination in bivalve molluscs.
Collapse
Affiliation(s)
- Sarah C. Finch
- AgResearch Ltd., Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand;
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Wei LN, Luo L, Li B, Yin QC, Lei H, Wang BZ, Guan T, Xu ZL. Ultrasensitive "Hunter of Target": Rabbit Monoclonal Antibody-Based Competitive Lateral Flow Immunoassay for Saxitoxin. Anal Chem 2025; 97:1410-1418. [PMID: 39787431 DOI: 10.1021/acs.analchem.4c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The rapid, sensitive, and accurate detection of paralytic shellfish toxins (PSTs), such as saxitoxin (STX), is critical for protecting human health due to the frequent occurrence of toxic red tides. In this work, to address the low affinity of traditional mouse monoclonal antibodies (m-mAbs), rabbit monoclonal antibodies (r-mAbs) against STX were produced by a single B-cell sorting culture and a cross-selection strategy. The r-mAbs showed 100-fold improvement in sensitivity (IC50 = 0.018 ng/mL), improved stability under strong acid/alkali resistance (pH = 3-12), and high tolerance to organic solvent (MOH, 30%) in comparison with m-mAbs. The structural analysis of PSTs shows that the r-mAbs primarily interacted with common functional groups in PSTs, including guanidine, amide, and alcoholic hydroxyl groups (-OH). R-mAbs3C3 recognized STX, GTX2/3, C1/C2, NEO, and dcSTX with broad specificity through hydrogen bonding facilitated by Asp93, Gln27, Ser27A, and Asp95 in the complementarity-determining region (CDR) pocket. In contrast, r-mAbs3C7 displayed high specificity for STX, mediated by Ser98, Leu96, Ser30, Tyr97, and Ser53, which formed hydrogen bonds and hydrophobic interactions. The lack of interaction with Asp93 and Asp95 in r-mAbs3C7 likely contributed to its enhanced specificity. The anti-STX r-mAbs3C3 was then used to develop an ultrasensitive lateral flow immunoassay (LFIA) for the detection of STX with a cutoff value of 100 pg/mL. The LFIA demonstrated recovery rates ranging from 86.6 to 106.3% in food samples (mussels, nassariidae, bullacta exarata, and fresh water). Given its high target selectivity and sensitivity, this study provides a sight for rapid, sensitive, and accurate monitoring of food toxins.
Collapse
Affiliation(s)
- Liu-Na Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Bei Li
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Qing-Chun Yin
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Bing-Zhi Wang
- Department of Technique, Shenzhen Bioeasy Biotechnology Co., Ltd., Shenzhen 518100, China
| | - Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Kim J, Nam J, Park J, Baek S, Park B, Kim K, Kang J. Simultaneous Detection of Five Infectious Diseases in a Single Strip: Oligo dT-Utilized Lateral Flow Immunoassay. Anal Chem 2025; 97:775-782. [PMID: 39745343 DOI: 10.1021/acs.analchem.4c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The need for accurate and simultaneous diagnosis of multiple respiratory infectious diseases has become increasingly critical due to ongoing viral mutations and the similarity of symptoms among various viruses. Here, we have advanced our detection capabilities by developing a multiplex lateral flow immunoassay (LFA) platform that integrates oligonucleotides and antibodies, enabling the simultaneous detection of five respiratory viruses: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (FluA), Influenza B (FluB), Respiratory syncytial virus (RSV), and Adenovirus (ADV), on a single membrane. By applying the oligonucleotide and antibody-conjugated AuNPs, the platform enables highly sensitive and specific detection. In addition, signal amplification using RPA70A-conjugated gold nanoparticles that developed in the previous study can further be applied optionally for low-concentration biomarkers. Our interferences and cross-reactivity tests confirmed that these complexes do not produce false positives, substantiating the assay's utility in clinical settings. This platform, therefore, provides a robust solution for the precise and rapid diagnosis of complex viral infections, positioning it as suitable for application in pandemic response scenarios.
Collapse
Affiliation(s)
- Jinwoo Kim
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jungmin Nam
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongeun Park
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sowon Baek
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byungho Park
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kihyeun Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Juyoung Kang
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
6
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Liu S, Zhao C, Shu R, Dou L, Luo X, Luo L, Sun J, Wang Y, Ji Y, Wang J. Fortified Dual-Spectral Overlap with Enhanced Colorimetric/Fluorescence Dual-Response Immunochromatography for On-Site Bimodal-Type Gentamicin Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38624165 DOI: 10.1021/acs.jafc.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
10
|
Doğruyol H, Ulusoy Ş, Erkan N, Mol S, Özden Ö, Can Tunçelli İ, Tosun ŞY, Üçok D, Dağsuyu E, Yanardağ R. Evaluation of biotoxins and toxic metal risks in mussels from the Sea of Marmara following marine mucilage. Food Chem Toxicol 2024; 186:114558. [PMID: 38432438 DOI: 10.1016/j.fct.2024.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The mucilage phenomenon observed in the Sea of Marmara in 2021, has raised public concern about seafood safety. Mediterranean mussels serve as a vehicle in food chain, enabling the transfer of pollutants. Farmed and wild mussels were collected from 4 different stations throughout the fishing season. Biotoxins causing amnesic, paralytic, or diarrhetic shellfish poisonings (ASP, PSP, or DSP) were examined during monthly samplings. Potential health risks posed by cadmium, lead and arsenic were assessed. Health risks were evaluated considering 150 g/week mussel consumption, accounting for the different age groups of consumers (50, 60, 70 kg). Estimated Weekly Intake calculations of metals were determined to be lower than Provisional Tolerable Weekly Intake at all age groups throughout the sampling period in all stations. Target Hazard QuotientCd of mussels captured from Istanbul Strait was always determined <1, while it was equal to 1 for 50 kg individuals in Gelibolu samples. All THQAs were >1. Target carcinogenic Risk was evaluated for Pb and iAs, which were found to be negligible and acceptable, respectively. No biotoxins responsible for ASP, PSP, or DSP were detected. Hg levels were under detectable limits. Excluding Cd, the results did not reveal any risks associated with mussel consumption during mucilage.
Collapse
Affiliation(s)
- Hande Doğruyol
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Food Safety Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye.
| | - Şafak Ulusoy
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - Nuray Erkan
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Food Safety Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - Sühendan Mol
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - Özkan Özden
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - İdil Can Tunçelli
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - Şehnaz Yasemin Tosun
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - Didem Üçok
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, Kalenderhane Mah. Onalti Mart Şehitleri Cad. No.2, Fatih, 34134, Istanbul, Türkiye
| | - Eda Dağsuyu
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Biochemistry Division, İstanbul Üniversitesi-Cerrahpaşa Avcılar Yerleşkesi, Avcılar 34320, İstanbul, Türkiye
| | - Refiye Yanardağ
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Biochemistry Division, İstanbul Üniversitesi-Cerrahpaşa Avcılar Yerleşkesi, Avcılar 34320, İstanbul, Türkiye
| |
Collapse
|
11
|
Liu ML, Chen ZJ, Huang XQ, Wang H, Zhao JL, Shen YD, Luo L, Wen XW, Hammock B, Xu ZL. A bispecific nanobody with high sensitivity/efficiency for simultaneous determination of carbaryl and its metabolite 1-naphthol in the soil and rice samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122265. [PMID: 37517641 PMCID: PMC10529271 DOI: 10.1016/j.envpol.2023.122265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The simultaneous determination of carbaryl and its metabolite 1-naphthol is essential for risk assessment of pesticide exposure in agricultural and environmental samples. Herein, several bispecific nanobodies (BsNbs) with different lengths of hydrophilic linkers and junction sites were prepared and characterized for the simultaneous recognition of carbaryl and its metabolite 1-naphthol. It was found that the affinity of BsNbs to the analytes could be regulated by controlling linker length and linking terminal. Additionally, molecular simulation revealed that linker lengths affected the conformation of BsNbs, leading to alteration in sensitivity. The BsNb with G4S linker, named G4S-C-N-VHH, showing good thermal stability and sensitivity was used to develop a bispecific indirect competitive enzyme-linked immunosorbent assay (Bic-ELISA). The assay demonstrated a limit of detection of 0.8 ng/mL for carbaryl and 0.4 ng/mL for 1-naphthol in buffer system. Good recoveries from soil and rice samples were obtained, ranging from 80.0% to 112.7% (carbaryl) and 76.5%-110.8% (1-naphthol), respectively. Taken together, this study firstly provided a BsNb with high sensitivity and efficiency against environmental pesticide and its metabolite, and firstly used molecular dynamics simulation to explore the influence of linker on recognition. The results are valuable for the application of immunoassay with high efficiency in the fields of environment and agriculture.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiao-Qing Huang
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Li Zhao
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Wei Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Gong L, Wang K, Liang J, Zhang L, Yang T, Zeng H. Enhanced sensitivity and accuracy via gold nanoparticles based multi-line lateral flow immunoassay strip for Salmonella typhimurium detection in milk and orange juice. Talanta 2023; 265:124929. [PMID: 37442004 DOI: 10.1016/j.talanta.2023.124929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Food borne pathogens threaten food safety and affect human health. The lateral flow immunoassays (LFIAs) are widely concerned because of simplicity, low cost and user friendliness, and have broad application prospects in pathogen detection. However, the sensitivity of LFIAs is limited. Herein, multi-line LFIAs are introduced into pathogen detection for the first time. Compared with traditional single-line LFIAs, the overall signal strength of multi-line LFIAs has been significantly improved. It is particularly noteworthy that multi-line LFIAs detection accuracy of 103 CFU/mL pathogen has been improved by about 55%. The proposed multi-line LFIAs reduce the possibility of judging a positive result as a false negative result. The LFIAs strip was validated in real samples of milk and orange juice. This strategy has great potential for rapid detection of pathogens in real samples, and provides new insights for improving the accuracy and sensitivity of LFIAs strips.
Collapse
Affiliation(s)
- Liangke Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jianwei Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Liren Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
13
|
Zhang H, Wu H, Zheng G, Zhong Y, Tan Z. Variation profile of diarrhetic shellfish toxins and diol esters derivatives of Prorocentrum lima during growth by high-resolution mass spectrometry. Toxicon 2023:107224. [PMID: 37437785 DOI: 10.1016/j.toxicon.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Prorocentrum lima is a widely distributed toxigenic benthic dinoflagellate whose production of diarrhetic shellfish toxins threatens the shellfish industry and seafood safety. Current research primarily assesses the difference between free and post-hydrolysis total toxin methods, ignoring the impact of different detection methods on technical accuracy. After removing matrix interference with SPE extraction, a thorough HRMS strategy was created in this study. Alkaline hydrolysis could release the diol esters and played a crucial role in obtaining an accurate assessment of toxin levels, achieving satisfactory recoveries (74.0-147.0%) and repeatability (relative deviation <12.3%). The HRMS approach evaluated toxin profile variation during the growth of three P. lima strains from China. A total of 24 toxin contents varying in composition, content, and a high proportion were detected. The SHG, HN, and 3XS strains had total toxin contents of 23.3 ± 1.74, 19.8 ± 1.25, and 19.5 ± 1.58 pg cell-1, respectively. The diol esters proportion varied among the strains, with SHG having 58.9-69.9, HN having 75.4-86.5, and 3XS having 91.0-91.7%. The variety of toxins produced by distinct P. lima strains highlighted the significance of this method for appropriately measuring the risks connected with DSTs manufacturing. The proposed approach provides a technical basis for gathering comprehensive and accurate data on the potential risks of P. lima DSTs production, with significant implications for ensuring food safety and preventing harmful toxins from spreading in the marine ecosystem.
Collapse
Affiliation(s)
- Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
14
|
Wei LN, Luo L, Wang BZ, Lei HT, Guan T, Shen YD, Wang H, Xu ZL. Biosensors for detection of paralytic shellfish toxins: Recognition elements and transduction technologies. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|