1
|
Ashokkumar V, Chandramughi VP, Mohanty K, Gummadi SN. Microplastic pollution: Critical analysis of global hotspots and their impact on health and ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:124995. [PMID: 40186977 DOI: 10.1016/j.jenvman.2025.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
This paper examines microplastic hotspots and their drastic effects on human health and the environment pointing out microplastic pollution as one of the biggest global issues. Besides, it analyses the key sources including industrial effluent discharge, littered plastic wastes, and deterioration of synthetic products together with pathways and routes of exposure. The review also focuses on microplastic contamination in food systems such as meat, plant-based products, dairy, and seafood, detailing their entry into the food chain via soil, water, and air. On the other hand, this work also focuses on human health issues including cellular absorption, and bioaccumulation, which results in tissue oxidative stress, inflammation, hormonal imbalance and adverse long-term effects, including carcinogenicity and organ toxicity. The ultimate effects of microplastic pollution on the condition of the soil, water, and fauna and flora of the ecosystem, highlighting on the need for the prevention measures, were also addressed. This paper seeks to critically ascertain the problems posed by microplastics, including their slow biodegradation limit, the absence of proper regulations, and lack of a universally accepted standard. It also highlights that microplastic pollution requires interdisciplinary analyses, future studies, and high standards-compliant policies and regulations. This work raises the alarm for a collective international effort to protect the public health, food, and the earth.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - V P Chandramughi
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| |
Collapse
|
2
|
Dong Z, Wang WX. Modeling the Vertical Transport of Copepod Fecal Particles under Nano/Microplastic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6610-6622. [PMID: 40153843 DOI: 10.1021/acs.est.5c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Nano- and microplastics (NMPs) may significantly impact the marine carbon cycle, and fecal pellets produced by the copepods are crucial for vertical carbon transport. In this study, we investigated the effects of NMP size, concentration, and diatom supply on the production and settling of fecal pellets by the marine copepod Parvocalanus crassirostris. By employing an aggregation-induced emission fluorescence imaging technique, we visualized the distribution of NMPs in fecal pellets, measured their size and production rate, and developed a fluid dynamic model to simulate the settling process of fecal pellets in the water column. Our results indicated that NPs and MPs exhibited uniform and nonuniform distributions in the produced fecal materials, respectively. NMPs reduced both the size and integrity of copepod fecal pellets. Copepods ingested MPs in the absence of diatoms, but exposure to 5000 μg/L of NMPs decreased the fecal pellet production by 52% in the presence of diatoms due to feeding selectivity. The sinking rates of fecal pellets of varying sizes, as obtained from modeling simulations, ranged from 10.9 to 103.1 m/day. When the proportion of participating polystyrene (PS) reached 50%, the sinking velocity decreased by 34%. Our study provides new insights into the vertical transport of copepod fecal pellets under NMP pollution.
Collapse
Affiliation(s)
- Zipei Dong
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Liang W, Li B, Munson A, Chen Q, Shi H. Can Fish Escape the Evolutionary Trap Induced by Microplastics? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4788-4796. [PMID: 40038063 PMCID: PMC11924217 DOI: 10.1021/acs.est.4c09932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Microplastic (MP) ingestion acts as an evolutionary trap with various ecological consequences. Cues that lead animals to respond differently to MPs are key factors driving MP ingestion, yet they remain poorly understood. Here, we quantified the susceptibility of three fish species to different types of MPs across different social contexts. Our results showed that bass were more attracted to MPs that resembled food visually, whereas carp tended to select MPs that shared olfactory cues with food. Goldfish relied more on oral processing to make foraging decisions on MPs. Structural differences in the oropharynx supported these discriminated oral processes. Enlarged group size and fasting time altered the foraging behaviors of MPs of goldfish and bass, both of which were suction-feeding species. Such behavioral changes, regardless of whether fish ultimately ingested or rejected MPs, could pose indirect costs to fish. However, changed group sizes and fasting times did not affect the intake of MPs by the filter-feeding carp. We also proposed four pathways causing the MP-induced evolutionary trap and discussed the potential of fish to escape this trap. Our results contribute to experimental and theoretical understanding of the ecological risks posed by MPs to aquatic species.
Collapse
Affiliation(s)
- Weiwenhui Liang
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- School
of
Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Bowen Li
- State Environmental
Protection Key Laboratory of Environmental Pollution Health Risk Assessment,
Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology
and Environment, Guangzhou 510655, China
| | - Amelia Munson
- Department
of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå 750 07, Sweden
| | - Qiqing Chen
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Xu Z, Jiang H, Liu S, Ying J, Jiang Y, Jiang H, Xu J. Behavioral adaptations of cruise-feeding copepods to harmful algal blooms: Insights from the East China Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107005. [PMID: 39947070 DOI: 10.1016/j.marenvres.2025.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/08/2025]
Abstract
Harmful algal blooms (HABs) have become a global environmental concern, significantly impacting marine life and the fishing industry. However, the tolerance and adaptive mechanisms of zooplankton to HABs remain poorly understood. This study examines the behavioral and feeding responses of the cruise-feeding copepod Centropages dorsispinatus to summer HABs in the East China Sea (ECS), focusing on interactions with the blooming diatom (Skeletonema costatum) and dinoflagellates (Prorocentrum donghaiense, Karenia mikimotoi, and Alexandrium tamarense). Using short-term incubations and high-speed filming, we compared the ingestion rates and behaviors of C. dorsispinatus fed mono-algal diets and mixed diets containing neutral distraction particles (polystyrene beads). The results revealed that C. dorsispinatus obtained limited carbon from each algal diet (1.02-7.02 μg C cop.-1 day-1). The presence of distraction particles reduced carbon intake from S. costatum, P. donghaiense, and A. tamarense, but significantly increased intake from the healthy control, Platymonas helgolandica. Behavioral responses varied among algal diets: compared to P. helgolandica, C. dorsispinatus exhibited more frequent but shorter swims in S. costatum diets and less frequent swims in K. mikimotoi, and A. tamarense diets. These algal-specific responses were generally mitigated when copepods simultaneously exposed to the neutral distraction particles. Copepods achieved higher carbon intake with lower mechanical energy expenditure when grazing on large dinoflagellates compared to diatoms. We suggest that cruise-feeding copepods can actively adjust their behavior to adapt to varying food conditions, including the density, morphologic characteristics, and toxicity of algae. It allows copepods to better survive and forage in dinoflagellate HABs than in diatom HABs. However, the low ingestion rates observed limit the potential for cruise-feeding copepods to exert top-down control on HABs.
Collapse
Affiliation(s)
- Zhongheng Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Huihuang Jiang
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, China.
| | - Shouhai Liu
- East China Sea Ecology Center, Ministry of Natural Resources, Shanghai, 201206, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, Ministry of Natural Resources, Shanghai, 201206, China.
| | - Jiawen Ying
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Yining Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China
| | - Huimin Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| |
Collapse
|
5
|
Ying J, Xu J, Shen A, Xu Z, Jiang H, Jiang Y. Behavioral responses of copepod Calanus sinicus to bloom-forming algae Prorocentrum donghaiense and Skeletonema costatum. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107007. [PMID: 39938316 DOI: 10.1016/j.marenvres.2025.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Harmful algal blooms (HABs) severely threaten estuarine and coastal ecosystems in recent decades. The adverse impacts of HABs on zooplankton have been extensively studied, while the strategies employed by zooplankton to cope with HABs remain unclear. The copepod Calanus sinicus is the most dominant zooplankton species in the North Pacific Ocean during spring and early summer, coinciding with frequent blooms of the diatom Skeletonema costatum and the dinoflagellate Prorocentrum donghaiense. To investigate the behavioral responses and energy expenditures of C. sinicus under HAB conditions, we conducted both bottle incubations and high-speed video observations over 24 h. Incubation experiments revealed that the carbon intake rate of C. sinicus when feeding on these harmful algae was significantly lower (1.7 and 0.9 μg C Cop.-1 day-1 from P. donghaiense and S. costatum, respectively) compared to feeding on the healthy prey Platymonas helgolandica, with rates 5-10 times higher. This reduced intake barely met the daily basic metabolic requirements of the copepods. When exposed to P. donghaiense alone, copepods exhibited a pronounced escape-like jumping behavior characterized by high frequency, velocity and straight-line trajectory. In contrast, their swimming behavior differed when exposed to S. costatum alone, with a higher incidence of short, straight swim bouts likely related to the reorientation of diatom chains before ingestion. These specific behaviors were mitigated when alternative food sources were available alongside the harmful algae. We suggest that C. sinicus has evolved adaptive strategies to cope with blooms of P. donghaiense and S. costatum, including selective feeding on other phytoplankton and microzooplankton and either conserving energy by minimizing movement or rapidly escaping from bloom patches when food resources are severely depleted. These adaptive strategies of C. sinicus in HABs, highlighting the potential resilience mechanisms of zooplankton in fluctuating marine ecosystems, which could inform future conservation and management efforts in coastal waters.
Collapse
Affiliation(s)
- Jiawen Ying
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241, Shanghai, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241, Shanghai, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Anglu Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, 201306, Shanghai, China.
| | - Zhongheng Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241, Shanghai, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Huimin Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241, Shanghai, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Yining Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241, Shanghai, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| |
Collapse
|
6
|
Rodríguez-Torres R, Rist S, Almeda R, Nielsen TG, Pedrotti ML, Hartmann NB. Research trends in nano- and microplastic ingestion in marine planktonic food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125136. [PMID: 39424047 DOI: 10.1016/j.envpol.2024.125136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Over the past decade, microplastic research on ingestion and impacts in marine biota has received significant attention. Zooplankton has become a subject of interest due to their crucial role in marine food webs. This review focuses on trends in nano- and microplastics (NMPs) ingestion studies in marine zooplankton. Four groups of organisms were considered: protozoans, holoplankton, meroplankton and ichthyoplankton. Of 120 reviewed articles, holoplankton was the most studied group, with laboratory experiments dominating over field studies. Although NMPs sizes and polymer types are diversifying in laboratory experiments, their characteristics are still far from representing the complexity of NMPs found in nature. Polystyrene (as polymer type) and beads (as shape) are overrepresented in laboratory experiments (54% and 79%, respectively). Furthermore, most NMPs concentrations used in the laboratory exceed those found in the field. The units used to report ingestion of NMPs in zooplankton vary greatly, with "microplastics per individual" being the most frequently used. In addition, certain planktonic groups (e.g., protozoans and ichthyoplankton) and behavioral traits, such as ambush feeding, have been poorly investigated. This variability hampers comparisons between studies and thus mechanistic insights into NMPs ingestion in marine zooplankton. This review identifies research gaps and it highlights the ongoing disparity between environmental and laboratory conditions in zooplankton ingestion studies. We encourage the scientific community to harmonize the reporting units for NMPs ingestion and focus on more environmentally realistic studies with a trait-based approach. Transitioning towards more hypothesis-driven experiments is crucial to clarify the mechanistic importance of environmentally relevant microplastic features.
Collapse
Affiliation(s)
- R Rodríguez-Torres
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark; Laboratoire d'Océanographie de Villefranche sur Mer (LOV), UPMC Université Paris 06, CNRS, UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France.
| | - S Rist
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark
| | - R Almeda
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark; EOMAR, IU-ECOAQUA, University of Las Palmas de Gran Canaria, 35017, Tafira Baja, Las Palmas, Spain
| | - T G Nielsen
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark
| | - M L Pedrotti
- Laboratoire d'Océanographie de Villefranche sur Mer (LOV), UPMC Université Paris 06, CNRS, UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - N B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Almeda R, Rodriguez-Torres R, Rist S, Winding M, Jonasdottir S, Nielsen TG. Sublethal effects of microplastic and oil co-exposure on biological rates and lipid profiles of keystone Arctic copepods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125286. [PMID: 39522637 DOI: 10.1016/j.envpol.2024.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) and petroleum hydrocarbons are contaminants of emerging concern in the Arctic, but little is known about their co-exposure effects. In this study, we present the first assessment of the sublethal impacts resulting from combined exposure to microplastics and oil in three key Arctic copepod species. Specifically, we investigated the effects of a 5-day exposure to oil alone (1 μL L-1) and in combination with MPs (polyethylene microspheres, 20 μm, 20 MP mL-1) and dispersant (Corexit 9500, 0.05 μL L-1) on the biological functions and lipid profiles of the planktonic copepods Metridia longa, Calanus finmarchicus, and Calanus glacialis. Exposure to oil alone caused a significant reduction (34-58%) in fecal pellet production, but neither microplastics nor dispersant increased the negative effect of oil on fecal pellet production. C. glacialis and C. finmarchicus exposed to the studied pollutants for 5 days produced eggs with delayed hatching and lower hatching success. The highest hatching inhibition (50%) was observed in eggs of C. glacialis exposed to oil plus MPs and dispersant for five days. This indicates that maternal transfer of oil components to eggs negatively affects embryonic development and hatching. Lipid content and fatty acids profiles varied among the studied copepod species but were not affected by the tested pollutants after five days of exposure. By microscopical observation of fecal pellets, ingestion of small oil droplets and MPs was confirmed in all species, but the estimated ingestion of MPs was low (<25 MPs cop-1 d-1, <0.2% of total offered MPs) suggesting avoidance of MP consumption in copepods. Our results indicate that virgin MPs did not increase the toxicity of oil to the studied Arctic copepods under co-exposure conditions, and dispersants can slightly increase certain adverse effects of oil (hatching). However, environmentally relevant concentrations of oil alone can negatively impact Arctic keystone copepods and potentially the biological carbon pump. These findings emphasize the need to reduce petrogenic pollution and the risk of oil spills in the sensitive Arctic ecosystem.
Collapse
Affiliation(s)
- R Almeda
- EOMAR, ECOAQUA, University of Las Palmas de Gran Gran Canaria, Spain; DTU AQUA, Technical University of Denmark, Denmark.
| | - R Rodriguez-Torres
- DTU AQUA, Technical University of Denmark, Denmark; Laboratoire d'Océanographie de Villefranche sur mer (LOV), Sorbonne Université, France
| | - S Rist
- DTU AQUA, Technical University of Denmark, Denmark
| | - M Winding
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Greenland
| | | | | |
Collapse
|
8
|
Yadav DK, Samantaray BP, Kumar R. Effect of alternative natural diet on microplastic ingestion, functional responses and trophic transfer in a tri-trophic coastal pelagic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174999. [PMID: 39097011 DOI: 10.1016/j.scitotenv.2024.174999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
The patchy distribution of microplastics (MP) and their size range similar to planktonic organisms, are likely to have major ecological consequences, through MP ingestion, food dilution, and transfer across trophic levels. Our study applied a community module using tritrophic food chain with zooplankton as prey, and a planktivorous seabass fry as predator. We conducted a series of feeding experiments and recorded the direct uptake of MP under six different concentrations ranging from 25 to 800 particles L-1. We also estimated the indirect transfer of MP via trophic link. The ingestion rates for Brachionus plicatilis, Mesocyclops isabellae, and Lates calcarifer, were 3.7 ± 0.3 MP ind-1 min-1, 1.69 ± 0.1 MP ind-1 min-1, and 3.51 ± 0.52 MP ind-1 h-1, respectively. In the presence of a natural diet, rotifers and copepods ingested significantly lower number, whereas, fish fry ingested a higher number of MP, suggesting further vulnerability to the consumers of MP-contaminated fish and potential biomagnification at higher trophic levels. Overall, the MP uptake rate increased with increasing concentration, and finally leveled off, indicating a type II functional response to MP concentration. The presence of natural diet led to a lower Km value. In the indirect transfer experiment, 74 % of B. plicatilis and 78 % of M. isabellae individuals were contaminated with MP, when offered as prey. Brachionid mastax and MP particles were observed in the gut of copepods. The fish fry gut content also recorded brachionid mastax, MP-contaminated copepods, and MP particles, showing direct evidence of trophic transfer pointing to a cascading effect on higher trophic levels including humans via piscivory.
Collapse
Affiliation(s)
- Devesh Kumar Yadav
- Ecosystem Ecology Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, NH-120, Gaya-Panchanpur Rd, Fatehpur, Gaya, Bihar 824326, India.
| | - Banaja Prakashini Samantaray
- Ecosystem Ecology Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, NH-120, Gaya-Panchanpur Rd, Fatehpur, Gaya, Bihar 824326, India.
| | - Ram Kumar
- Ecosystem Ecology Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, NH-120, Gaya-Panchanpur Rd, Fatehpur, Gaya, Bihar 824326, India.
| |
Collapse
|
9
|
Meng L, Zheng S, Zhao Y, Liu T, Liang J, Zhu M, Sun X. Seasonal microplastic ingestion by carnivorous chaetognaths in Jiaozhou Bay, China: Field evidence revealing microplastic trophic transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135532. [PMID: 39154478 DOI: 10.1016/j.jhazmat.2024.135532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) are widely distributed in marine environments and ingested by marine organisms, especially zooplankton. Chaetognaths, typical carnivorous zooplankton, are pivotal in the food chain from secondary producers, such as copepods, to higher trophic level species. However, little is known about their MP ingestion. In this study, based on field observation data, for the first time, we studied seasonal characteristics and risks of MPs ingested by chaetognaths in Jiaozhou Bay and assessed effects of key prey copepods on MP ingestion by chaetognaths. MP/chaetognath values in February, May, August, and November were 0.19, 0.17, 0.15, and 0.39, respectively, showing no significant seasonal variation. Chaetognaths predominantly ingested MPs that were fiberous in shape, 101-400 µm in size and polyester in polymer type, with no significant seasonal variations. The risk of MP load in chaetognaths was low, but there are higher polymeric hazards and potential ecological risks. MP/chaetognath values were positively correlated with the copepod abundance and MP/copepod values. The characteristics of MPs ingested by chaetognaths were also highly similar to those of MPs ingested by copepods. However, the overall risk of biomagnification in the copepod-chaetognath food chain was low. This study provided field evidence for MP transfer in the planktonic food chain.
Collapse
Affiliation(s)
- Liujiang Meng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yongfang Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Tao Liu
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mingliang Zhu
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Valdez-Cibrián A, Kozak ER, Franco-Gordo C. Microplastic ingestion in marine mesozooplankton species associated with functional feeding traits. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106650. [PMID: 39047548 DOI: 10.1016/j.marenvres.2024.106650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic (MP, <5 mm) contamination in the ocean raises concern for zooplankton, as their prey and MPs fall within the same size range. This study aimed to evaluate the ingestion capacity of MPs among a diverse array of mesozooplankton taxonomic groups and species from the central Mexican Pacific, focusing on two functional traits: trophic group and feeding strategy. A total of 20 taxa belonging to eight taxonomic groups, 13 which were identified to species level, were exposed to microspheres (Ms) ranging in size from 38 to 53 μm, at a concentration of 100 Ms/mL. All experimental treatments were placed in 620 mL bottles and rotated on a plankton wheel for 2 h. The results demonstrate that the capacity to ingest MPs is closely related to the trophic group and the feeding strategy of each species, independent of taxonomic group. Omnivores and omnivore-herbivores which generate feeding currents were the most susceptible to MPs ingestion, while highly carnivorous species with active feeding strategies were the least prone. These findings highlight the importance of evaluating MP ingestion by zooplankton at the species level, due to the variability of feeding strategies within taxonomic groups, and the need for continued trait-based research at the species level. A more detailed understanding of zooplankton feeding behavior, especially in ecologically significant species, could enhance trait-based modeling at a biogeographic scale, predicting areas with the highest risk of MP ingestion by zooplankton communities and evaluating global impacts.
Collapse
Affiliation(s)
- Alejandra Valdez-Cibrián
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco, 48980, Mexico
| | - Eva R Kozak
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco, 48980, Mexico.
| | - Carmen Franco-Gordo
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco, 48980, Mexico
| |
Collapse
|
11
|
Ebbesen LG, Strange MV, Gunaalan K, Paulsen ML, Herrera A, Nielsen TG, Shashoua Y, Lindegren M, Almeda R. Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. WATER RESEARCH 2024; 255:121500. [PMID: 38554636 DOI: 10.1016/j.watres.2024.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 μg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 μm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Linea Gry Ebbesen
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Markus Varlund Strange
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Kuddithamby Gunaalan
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | | | - Alicia Herrera
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, Denmark
| | - Martin Lindegren
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
12
|
Fagiano V, Alomar C, Ventero A, de Puelles MLF, Iglesias M, Deudero S. First assessment of anthropogenic particle ingestion in Pontellid copepods: Pontella mediterranea as a potential microplastic reservoir in the Neuston. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168480. [PMID: 37951251 DOI: 10.1016/j.scitotenv.2023.168480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Hyponeustonic species, living at the interface between the atmosphere and the oceans, comprise one of the most understudied and vast critical marine biotope, constantly exposed to high concentrations of anthropogenic contaminants and microplastic (MPs). Copepods of the Pontellidae family represent the primary components of this biotic assemblage worldwide, and their interaction with MPs is still unknown. We studied this interaction for the first time in Pontella mediterranea, assessing the ingestion of anthropogenic particles (APs) in 2793 individuals collected by manta trawl in the Northern Alboran Sea. We observed P. mediterranea abundances ranging from 41.67 to 1174.83 ind/m3, with a mean ingestion of 0.11 APs/ind, predominantly composed of MPs. These results confirm the low ingestion values observed for other copepod taxa. However, given its abundance, this species could retain an average of 45.15 and a maximum of 220 APs per m3 of seawater (APs/m3), mostly composed of cellulose acetate and cotton fibers. The abundances of APs were evaluated in surface (0-12 cm) and sub-surface waters (5 m depth) by combining manta trawl and Continuous Underway Fish Egg Sampler sampling. The AP abundances found (surface waters: 0.67 ± 1.04 APs/m3; subsurface waters: 3.85 ± 2.67 APs/m3) were consistent with those previously observed in the Mediterranean basin, confirming that the ingestion values observed in P. mediterranea are not due to a local accumulation of environmental MPs. Results highlight how this neustonic copepod could represent one of the largest reservoirs of APs within the upper layers of the oceans, representing an entry point for these particles within food webs. Considering the worldwide distribution and abundance of this family of copepods, the results are of environmental concern.
Collapse
Affiliation(s)
- V Fagiano
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain.
| | - C Alomar
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - A Ventero
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - M L Fernández de Puelles
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - M Iglesias
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - S Deudero
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| |
Collapse
|
13
|
Dong Z, Wang WX. Tracking Nano- and Microplastics Accumulation and Egestion in a Marine Copepod by Novel Fluorescent AIEgens: Kinetic Modeling of the Rhythm Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20761-20772. [PMID: 38029324 DOI: 10.1021/acs.est.3c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nano- and microplastics (NMPs) are now prevalent in the marine environment. This study quantified the uptake and depuration kinetics of spherical polystyrene NMPs of different particle sizes (200 nm/30 μm) and functional groups (-NH2/-COOH) in a temperate calanoid copepod Calanus sinicus (C. sinicus), which exhibited rhythmic feeding patterns in natural environments. Aggregated-induced emission (AIE) fluorescent probes were employed to track and quantify the kinetics of NMPs with excellent photostability and biocompatibility. The results showed that C. sinicus consumed all NMPs types, with preference of NMPs to small size and amino group. Increased diatom concentrations also inhibited the bioaccumulation of NMPs. Influenced by rhythmic behavior, the bioaccumulation of NMPs by C. sinicus was nonstationary during the 6 h uptake phase. After 1-3 h of rapid uptake, the body burden peaked and then slowly declined. During the 3 h depuration phase, C. sinicus rapidly and efficiently removed NMPs with a mean half-life of only 0.23 h. To further quantify the body burden of C. sinicus under the influence of rhythmic feeding behavior, a biokinetic model was established, and the Markov chain Monte Carlo method was used to estimate the parameter distribution. Our results highlighted that copepods exhibited unique rhythmic feeding behavior under environmentally relevant concentrations of NMPs exposure, which may influence the bioaccumulation, trophic transfer, and environmental fate of NMPs.
Collapse
Affiliation(s)
- Zipei Dong
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
14
|
Ding Z, Sun X, Qiao Y, Liu Y, Liu J. Feeding Behavior Responses of the Small Copepod, Paracalanus parvus, to Toxic Algae at Different Concentrations. Animals (Basel) 2023; 13:3116. [PMID: 37835722 PMCID: PMC10571817 DOI: 10.3390/ani13193116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The feeding relationship between copepods and phytoplankton has immense ecological significance. This study investigated the feeding behavior of copepods by studying the feeding selectivity of Paracalanus parvus, a key small copepod species, using a high-speed camera. The feeding behavior of P. parvus separately fed on three algae, Prorocentrum minimum, Alexandrium minutum, and Thalassiosira weissflogii, was studied at five different concentrations. The factors characterizing feeding behavior, including the beating frequency (BF), beating time (BT), and rejection behavior, were analyzed. The average BT and BF of P. parvus fed on toxic algae were significantly lower than those of copepods fed on nontoxic algae, indicating that the toxic algae negatively affected their feeding behavior. There were no significant differences in feed rejection among the three algae during the short period of experimentation, indicating that the rejection behavior was insignificant in the early period (within 20 min) of feeding on toxic algae. The feeding behavior was inhibited when the concentration reached 250 cells/mL. The BT was initially affected at increasing concentrations followed by the BF, and P. minimum and A. minutum reduced the BF at concentrations of 250 and 1000 cells/mL, respectively. Analysis of the average BFs revealed that P. parvus was more significantly affected by P. minimum containing diarrheal shellfish poison than by A. minutum containing paralytic shellfish poison. The BF of copepods fed on P. minimum was significantly lower than that of copepods fed on A. minutum at 250-500 cells/mL but was not significantly different from that at 1000 cells/mL. This indicated that the inhibitory effect of P. minimum on the feeding behavior was more significant at concentrations observed at the onset of red tide blooms (0.25-0.5 × 102 cells/mL), but insignificant at concentrations reaching those in advanced red tides (>103 cells/mL). This study demonstrates that toxic dinoflagellates alter the feeding behavior of copepods and describes the variations in their feeding response to different algal species and concentrations. The findings provide crucial insights for further studies on the feeding relationship between copepods and phytoplankton and on functional assessment of plankton ecosystems.
Collapse
Affiliation(s)
- Zixuan Ding
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
| | - Xiaohong Sun
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Yiming Qiao
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
| | - Ying Liu
- Weihai Marine and Fishery Monitoring and Hazard Migration Centre, Weihai 264209, China;
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| |
Collapse
|
15
|
Deng Y, Peng L, Li Z, Xu W, Ren G, Wang F. First determination on two kinds of microplastic-air partition coefficients of seven per- and polyfluoroalkyl substances under environmentally relative conditions: Experiment measurement and model prediction. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132042. [PMID: 37480612 DOI: 10.1016/j.jhazmat.2023.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Microplastics (MPs) in the environment are the sink and vector of organic contaminants, including per- and polyfluoroalkyl substances (PFASs). Although PFASs are low- and non-volatile compounds, they have the potential to partition and diffuse from MP into the gas phase in the environmental functions. Herein, the MP-air partition coefficient (KPA) of seven PFASs was measured using a solid-fugacity meter. The PFAS KPA values in two MPs (high-density polyethylene (HDPE) and thermoplastic polyurethane (TPU)) were determined under different times, temperatures, and relative humidities (RH), and a model was developed to predict the PFAS KPA values based on the measured data. The results showed that the KPA of PFASs increased with the prolonged partition time until 90 mins, and higher temperature and RH facilitated the distribution of PFASs in MPs into the air phase, leading to smaller KPA values. Moreover, the derived equation for predicting PFAS log KPA values was robust with 0.79 of an adjusted square of correlation coefficient (R2adjusted = 0.79) and 0.35 of root mean squared error (RMSE = 0.35). These findings provided the first knowledge for understanding the partition behavior and fate of PFASs in the MP-air microenvironment.
Collapse
Affiliation(s)
- Yun Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lin Peng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR China
| | - Zhendong Li
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen 518049, Guangdong, China
| | - Gang Ren
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Gunaalan K, Nielsen TG, Rodríguez Torres R, Lorenz C, Vianello A, Andersen CA, Vollertsen J, Almeda R. Is Zooplankton an Entry Point of Microplastics into the Marine Food Web? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11643-11655. [PMID: 37497822 PMCID: PMC10413952 DOI: 10.1021/acs.est.3c02575] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Microplastics (MPs) overlap in size with phytoplankton and can be ingested by zooplankton, transferring them to higher trophic levels. Copepods are the most abundant metazoans among zooplankton and the main link between primary producers and higher trophic levels. Ingestion of MPs has been investigated in the laboratory, but we still know little about the ingestion of MPs by zooplankton in the natural environment. In this study, we determined the concentration and characteristics of MPs down to 10 μm in zooplankton samples, sorted calanoid copepods, and fecal pellets collected in the Kattegat/Skagerrak Sea (Denmark). We found a median concentration of 1.7 × 10-3 MPs ind-1 in the zooplankton samples, 2.9 × 10-3 MPs ind-1 in the sorted-copepods, and 3 × 10-3 MPs per fecal pellet. Most MPs in the zooplankton samples and fecal pellets were fragments smaller than 100 μm, whereas fibers dominated in the sorted copepods. Based on the collected data, we estimated a MP budget for the surface layer (0-18 m), where copepods contained only 3% of the MPs in the water, while 5% of the MPs were packed in fecal pellets. However, the number of MPs exported daily to the pycnocline via fecal pellets was estimated to be 1.4% of the total MPs in the surface layer. Our results indicate that zooplankton are an entry point of small MPs in the food web, but the number of MPs in zooplankton and their fecal pellets was low compared with the number of MPs found in the water column and the occurrence and/or ingestion of MPs reported for nekton. This suggests a low risk of MP transferring to higher trophic levels through zooplankton and a quantitatively low, but ecologically relevant, contribution of fecal pellets to the vertical exportation of MPs in the ocean.
Collapse
Affiliation(s)
- Kuddithamby Gunaalan
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Torkel Gissel Nielsen
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
| | - Rocío Rodríguez Torres
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- Laboratoire
d’Océanographie de Villefranche sur mer (LOV), UPMC
Université Paris 06, CNRS UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Claudia Lorenz
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Ceelin Aila Andersen
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Rodrigo Almeda
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- EOMAR-ECOAQUA, University of Las Palmas of Gran Canaria, 35017 Las Palmas
de Gran Canaria, Spain
| |
Collapse
|