1
|
Finlay I, Bullard JE, Alvarez-Barrantes L, Davis S. Macroplastic surface characteristics change during wind abrasion. Sci Rep 2025; 15:17630. [PMID: 40399498 PMCID: PMC12095662 DOI: 10.1038/s41598-025-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
Mechanical abrasion is an important wind driven process which can degrade plastic litter on sandy beaches, desert environments and in agricultural settings. Wind-driven particle impacts can cause surface roughening and chemical changes and eventually complete fragmentation in high stress environments. Aeolian abrasion has been considered in the context of microplastics (< 5 mm) which can be easily mobilised by wind. However, macroplastic (> 5 mm) abrasion has primarily been confined to engineering studies using high air velocities (> 25 m s-1) and large abraders (> 6 mm) which generate greater impact forces than observed in the natural environment. Using laboratory abrasion experiments, we demonstrate that the surface microtextures and surface chemistry of three different types of plastic are substantially altered during the processes of aeolian abrasion at impact particle velocities of 0.6 m s-1. After ten days of continuous abrasion with four different erodents the macroplastic surfaces developed textures resulting from micro-cutting, denting, flaking, micro-pitting and surface flattening. The prevalence of each surface texture was dependent upon the angularity of the erodent and the type of plastic. In all cases, polymer surface chemical compositions became more complex due to embedding of shattered abrasive and the replacment of carbon with oxygen and silica.
Collapse
Affiliation(s)
- Isabelle Finlay
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Joanna E Bullard
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | | | - Sam Davis
- Loughborough Materials Characterisation Centre, Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
2
|
Wang Z, Saadé NK, Panetta RJ, Ariya PA. A HoLDI mass spectrometry platform for airborne nanoplastic detection. Commun Chem 2025; 8:90. [PMID: 40133397 PMCID: PMC11937337 DOI: 10.1038/s42004-025-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
There are no established protocols for nanoplastic detection within complex environmental matrices. Mass spectrometry (MS) analysis of environmental nanoplastics is impeded by methodological constraints. We present a versatile platform evolved from matrix-assisted laser desorption/ionization (MALDI) MS for airborne nano/microplastic research. The 3D-printed hollow-laser desorption/ionization (HoLDI) target enables efficient, high-throughput analysis of aerosols collected on simple substrates without pre/post-treatments. HoLDI-MS determines the chemical composition and relative quantity of real-world airborne nano/microplastics, while used with conventional portable samplers and particle analyzers. Polyethylene, polyethylene glycol, and polydimethylsiloxanes are detected in an indoor environment, with a higher amount in the micro-sized range. Polycyclic aromatic hydrocarbons present in an outdoor setting, with a higher quantity in the nano-sized range. Morphological and elemental data provide additional evidence for observed contaminants and support multidisciplinary research interests. HoLDI holds promise as a standardized analytical framework for any air or water samples, facilitating research harmonization worldwide.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Nadim K Saadé
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Robert J Panetta
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, Montreal, QC, Canada.
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Al Harraq A, Brahana PJ, Bharti B. Colloid and Interface Science for Understanding Microplastics and Developing Remediation Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4412-4421. [PMID: 39951827 DOI: 10.1021/acs.langmuir.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Microplastics (MPs) originate from industrial production of <1 mm polymeric particles and from the progressive breakdown of larger plastic debris. Their environmental behavior is governed by their interfacial properties, which dominate due to their small size. This Perspective highlights the complex surface chemistry of MPs under environmental stressors and discusses how physical attributes like shape and roughness could influence their fate. We further identify wastewater treatment plants (WWTPs) as critical hotspots for MP accumulation, where the MPs are inadvertently transferred to sewage sludge and reintroduced into the environment. We emphasize the potential of colloid and interfacial science not only to improve our fundamental understanding of MPs but also to advance mitigation strategies in hotspots such as WWTPs.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Xie L, Zhu K, Chen N, Deng Y, Jiang W, Jia H. A Critical Review of an Environmental Risk Substance Induced by Aging Microplastics: Insights into Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22502-22518. [PMID: 39661042 DOI: 10.1021/acs.est.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Microplastics (MPs), as an emerging contaminants category, can undergo complex aging in a variety of environmental matrices in which the chemical bonds of polymer molecules can be broken to form free radicals. While the existence of free radicals in aged plastics has been known for over half a century, only recently has significant research on a new type of environmentally risky substance, namely environmentally persistent free radicals (EPFRs), present in aged MPs and their environmental effects, been started, but it is still in its infancy. To address these issues, this work examines EPFR generation on MPs and their environmental effect by reviewing publications from 2012 to 2023. The aging processes and mechanisms of MPs in the environment are first summarized. Then, the occurrence and formation mechanisms of EPFRs on aged MPs are specifically discussed. Additionally, the reactivity of EPFRs on aging MPs and their influencing factors are comprehensively considered, such as their physicochemical properties, oxygen content, and coexisting substances. Due to their reactivity, EPFRs can interact directly with some substances (e.g., p-nitrophenol and proteins, etc.) or induce the generation of reactive oxygen species, leading to diverse environmental effects, including pollutant transformation, biotoxicity, and health risks. Finally, research challenges and perspectives for EPFRs formation on aging MPs and related environmental implications are presented. Given the environmental fate and risk of MPs-EPFRs, our urgent call for a better understanding of the potential hazards of aged MPs is to help develop a sustainable path for plastics management.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Na Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
5
|
Jia B, Zhu K, Bai Z, Abudula A, Liu B, Yan J, Wu Z, Tan H, Liu Q, Morawska L, Wang L, Chen J. Non targeted and targeted LC-MS/MS insights into the composition and concentration of atmospheric microplastics and additives: Impacts and regional changes of sandstorms in Shanghai and Hohhot, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176254. [PMID: 39277009 DOI: 10.1016/j.scitotenv.2024.176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Increasing dust storms impact ecosystems and human health by resuspending dust and microplastics. Plastic pollution is a major global concern. This study examines the molecular composition and concentration of atmospheric microplastics and additives in Hohhot and Shanghai, China during dust and non-dust days using non-target and target LC-MS/MS analysis with Multiple Reaction Monitoring (MRM) methodology and a self-established plastic monomers database. In Hohhot, 98 microplastics and additives types were identified on dust days (41 unique) and 70 on non-dust days (10 unique), mainly PEG, HTPE, PET, PPG, and Nylon. The types fluctuate ranging from 35 to 65 due to dusty conditions. In Shanghai, 50 types were identified (no unique), with 25 to 30 types consistently present. Hohhot's microplastics concentration during dust days peaked at 3531.59 ng/m3, about three times higher than non-dust days (1669.17 ng/m3) and significantly higher than Shanghai's maximum of 589.85 ng/m3. Overall, microplastic monomers in both cities were mostly compounds with low unsaturation, indicating potential for long-term atmospheric persistence. Highly reactive monomers like HTPE, PEG, thrive on dust days in Hohhot due to insufficient light and strong winds. These conditions reduce photochemical reactivity, accelerate microplastic aging through collisions, and resuspend more microplastics from the soil, resulting in a wider variety of microplastics with different m/z and carbon contents during sandstorms. On non-dust days, microplastics have more concentrated m/z values, indicating that substances with similar chemical properties disperse more under normal conditions. These findings highlight the significant impact of dust storms on microplastics characteristics. SYNOPSIS: This study indicates that dust storms and regional differences can have significant impacts on the diversity and abundance of atmospheric microplastics.
Collapse
Affiliation(s)
- Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Hohhot University, China
| | - Ayizuohere Abudula
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zelong Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Haihong Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | | | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
6
|
Rahman E, BinAhmed S, Keyes P, Alberg C, Godfreey-Igwe S, Haugstad G, Xiong B. Nanoscale Abrasive Wear of Polyethylene: A Novel Approach To Probe Nanoplastic Release at the Single Asperity Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13845-13855. [PMID: 38874627 DOI: 10.1021/acs.est.3c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
There is a growing concern that nanoplastic pollution may pose planetary threats to human and ecosystem health. However, a quantitative and mechanistic understanding of nanoplastic release via nanoscale mechanical degradation of bulk plastics and its interplay with photoweathering remains elusive. We developed a lateral force microscope (LFM)-based nanoscratch method to investigate mechanisms of nanoscale abrasive wear of low-density polyethylene (LDPE) surfaces by a single sand particle (simulated by a 300 nm tip) under environmentally relevant load, sliding motion, and sand size. For virgin LDPE, we found plowing as the dominant wear mechanism (i.e., deformed material pushed around the perimeter of scratch). After UVA-weathering, the wear mechanism of LDPE distinctively shifted to cutting wear (i.e., deformed material detached and pushed to the end of scratch). The shift in the mechanism was quantitatively described by a new parameter, which can be incorporated into calculating the NP release rate. We determined a 10-fold higher wear rate due to UV weathering. We also observed an unexpected resistance to initiate wear for UV-aged LDPE, likely due to nanohardness increase induced by UV. For the first time, we report 0.4-4 × 10-3 μm3/μm sliding distance/μN applied load as an initial approximate nanoplastic release rate for LDPE. Our novel findings reveal nanoplastic release mechanisms in the environment, enabling physics-based prediction of the global environmental inventory of nanoplastics.
Collapse
Affiliation(s)
- Ehsanur Rahman
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Sara BinAhmed
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Claire Alberg
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| | - Stacy Godfreey-Igwe
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, Minnesota 55455, United States
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Klaus J, Seeger M, Bigalke M, Weber CJ. Microplastics in vineyard soils: First insights from plastic-intensive viticulture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174699. [PMID: 38997010 DOI: 10.1016/j.scitotenv.2024.174699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In the terrestrial environment, microplastics in specialty cropping systems have not been studied so far. Viticulture as a potential plastic-intensive management form and a land use with high erosion risks, plays an important role in transport and distribution of material to other terrestrial and aquatic systems. This paper is a first investigation of microplastics in vineyard soils, assessing the spatial distribution and composition of microplastics in organically and conventionally managed viticulture, and relates it to the macroplastic collected at the vineyards. Topsoils (0-10, 10-30 cm) and plastic particles on soil surfaces from eight vineyard lots were sampled. Four of the vineyards were under organic and four underconventional management and they were all located in the Moselle and Saar Wine Region (Rhineland-Palatinate, Germany). Microplastic analysis was performed via μFTIR chemical imaging after wet-chemical microplastic extraction from soil samples. The mean microplastic concentration was 4200 ± 2800 p kg-1 (mean ± SD), with detected mean sizes of 230 μm ± 300 μm. Most abundant polymers were PP (35.2 %), PA (25.3 %) and PE (15.5 %). The distribution pattern showed higher microplastic concentration in topsoil, at middle and bottom slope position. The smallest particle sizes were found in subsoil samples and bottom position. Thus, erosion is assumed to be a potential downhill transport pathway. According to our dataset, management seems to have no significant influence on microplastic abundance, but affects polymer composition. Polymer composition of micro- and macroplastics partly coincide, thus in-situ fragmentation, is considered the major input source. Based on our findings, we recommend further investigation of plastic pathways in speciality crop systems like viticulture.
Collapse
Affiliation(s)
- Jenny Klaus
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Manuel Seeger
- Department of Physical Geography, Trier University, Behringstraße 21, 54296 Trier, Germany
| | - Moritz Bigalke
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Collin J Weber
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany.
| |
Collapse
|
8
|
Mladinich K, Holohan BA, Shumway SE, Ward JE. Abundance of microplastics at and near a shellfish aquaculture farm: An eastern oyster (Crassostrea virginica) transplant study. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106606. [PMID: 38917662 DOI: 10.1016/j.marenvres.2024.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Microplastics (MP) have repeatedly been found in commercially cultured species of bivalves. There are concerns regarding the amount of MP released into the environment by aquaculture activities, and questions regarding possible higher MP loads in farm-grown shellfish compared to levels in shellfish collected from recreational beds. To explore this concept, seawater, aquaculture gear, and eastern oysters (Crassostrea virginica) were sampled from an aquaculture site in Niantic Bay, CT, USA, and a 2-week transplantation experiment was performed in which oysters were transplanted between the aquaculture site and a plastic-free cage off the dock at the University of Connecticut-Avery Point campus. The digestive gland-stomach complex (gut) was dissected from the oysters and MP were extracted from the adjacent seawater and oyster gut samples using previously validated extraction methods. Extensive quality assurance and control measures were taken to reduce MP contamination. Particles in all samples were isolated, imaged under a stereomicroscope, and characterized (size, shape, polymer) using ImageJ software and micro-Fourier transform infrared spectroscopy. Water samples contained 0-0.3 MP/L and oyster gut samples contained 0-1.3 MP/g wet weight indicating very low concentrations of MP at the farm (0-2 MP/individual) or away from the farm (0-3 MP/individual). Aquaculture gear in this area is not contributing to MP ingestion in farmed oysters or elevated MP levels in the surrounding water.
Collapse
Affiliation(s)
- Kayla Mladinich
- Department of Marine Sciences, University of Connecticut, 1080 Shennecosset Rd, Groton, CT, 06340, United States.
| | - Bridget A Holohan
- Department of Marine Sciences, University of Connecticut, 1080 Shennecosset Rd, Groton, CT, 06340, United States
| | - Sandra E Shumway
- Department of Marine Sciences, University of Connecticut, 1080 Shennecosset Rd, Groton, CT, 06340, United States
| | - J Evan Ward
- Department of Marine Sciences, University of Connecticut, 1080 Shennecosset Rd, Groton, CT, 06340, United States
| |
Collapse
|
9
|
Evangelou I, Tatsii D, Bucci S, Stohl A. Atmospheric Resuspension of Microplastics from Bare Soil Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9741-9749. [PMID: 38767840 PMCID: PMC11155246 DOI: 10.1021/acs.est.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Microplastics (MPs) are emerging as an atmospheric pollutant. Here, we present a method of estimating MP resuspension with mineral dust in bare soil based on reported MP mass in soils, their enrichment in suspended dust relative to soil, and a mineral dust resuspension scheme. Using the estimated resuspensions, we simulate the global atmospheric MP transport and deposition using the dispersion model FLEXPART for two particle shape scenarios, spheres, and fibers. We estimate the uncertainties using a Monte Carlo technique that varies input data parameters within their reported ranges. The total MP resuspensions are estimated at about 104 (48-110) tonnes yr-1. We find that bare soils in West Asia and North Africa are the main source regions. FLEXPART results show that fibers have higher concentrations in the atmosphere and are dispersed more widely than spheres. Annually, 75 (43-83) tonnes of microfibers are deposited on land and 29 (18-33) tonnes in the oceans. Resuspended MPs can even reach remote regions, such as the Arctic. The results suggest that areas with bare soils can be an important MP source; however, further research on the factors that affect resuspension is needed.
Collapse
Affiliation(s)
- Ioanna Evangelou
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| | - Daria Tatsii
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| | - Silvia Bucci
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| | - Andreas Stohl
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| |
Collapse
|
10
|
Miller C, Neidhart A, Hess K, Ali AMS, Benavidez A, Spilde M, Peterson E, Brearley A, Wang X, Dhanapala BD, Cerrato JM, Gonzalez-Estrella J, El Hayek E. Uranium accumulation in environmentally relevant microplastics and agricultural soil at acidic and circumneutral pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171834. [PMID: 38521258 PMCID: PMC11141427 DOI: 10.1016/j.scitotenv.2024.171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 μM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.
Collapse
Affiliation(s)
- Casey Miller
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA
| | - Andrew Neidhart
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuewen Wang
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - B Dulani Dhanapala
- College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 740784, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Theobald B, Risani R, Donaldson L, Bridson JH, Kingsbury JM, Pantos O, Weaver L, Lear G, Pochon X, Zaiko A, Smith DA, Anderson R, Davy B, Davy S, Doake F, Masterton H, Audrezet F, Maday SDM, Wallbank JA, Barbier M, Greene AF, Parker K, Harris J, Northcott GL, Abbel R. An investigation into the stability and degradation of plastics in aquatic environments using a large-scale field-deployment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170301. [PMID: 38272094 DOI: 10.1016/j.scitotenv.2024.170301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.
Collapse
Affiliation(s)
| | | | | | - James H Bridson
- Scion, Rotorua 3010, New Zealand; University of Canterbury, Christchurch 8140, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Gavin Lear
- University of Auckland, Auckland 1010, New Zealand
| | - Xavier Pochon
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | - Ben Davy
- Scion, Rotorua 3010, New Zealand
| | | | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - François Audrezet
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li K, Xu L, Bai X, Zhang G, Zhang M, Huang Y. Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: Evidence from metagenomic analysis of plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133428. [PMID: 38198862 DOI: 10.1016/j.jhazmat.2024.133428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The plastisphere may act as reservoir of antibiotic resistome, accelerating global antimicrobial resistance dissemination. However, the environmental risks in the plastisphere of field microplastics (MPs) in farmland remain largely unknown. Here, antibiotic resistance genes (ARGs) and virulence factors (VFs) on polyethylene microplastics (PE-MPs) and polybutylene adipate terephthalate and polylactic acid microplastics (PBAT/PLA-MPs) from residues were investigated using metagenomic analysis. The results suggested that the profiles of ARG and VF in the plastisphere of PBAT/PLA-MPs had greater number of detected genes with statistically higher values of diversity and abundance than soil and PE-MP. Procrustes analysis indicated a good fitting correlation between ARG/VF profiles and bacterial community composition. Actinobacteria was the major host for tetracycline and glycopeptide resistance genes in the soil and PE-MP plastisphere, whereas the primary host for multidrug resistance genes changed to Proteobacteria in PBAT/PLA-MP plastisphere. Besides, three human pathogens, Sphingomonas paucimobilis, Lactobacillus plantarum and Pseudomonas aeruginosa were identified in the plastisphere. The PE-MP plastisphere exhibited a higher transfer potential of ARGs than PBAT/PLA-MP plastisphere. This work enhances our knowledge of potential environmental risks posed by microplastic in farmland and provides valuable insights for risk assessment and management of agricultural mulching applications.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
13
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
14
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
15
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
16
|
Wu X, Zhao X, Chen R, Liu P, Liang W, Wang J, Shi D, Teng M, Wang X, Gao S. Size-dependent long-term weathering converting floating polypropylene macro- and microplastics into nanoplastics in coastal seawater environments. WATER RESEARCH 2023; 242:120165. [PMID: 37320877 DOI: 10.1016/j.watres.2023.120165] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
In this study, we systematically developed the long-term photoaging behavior of different-sized polypropylene (PP) floating plastic wastes in a coastal seawater environment. After 68 d of laboratory accelerated UV irradiation, the PP plastic particle size decreased by 99.3 ± 0.15%, and nanoplastics (average size: 435 ± 250 nm) were produced with a maximum yield of 57.9%, evidencing that natural sunlight irradiation-induced long-term photoaging ultimately converts floating plastic waste in marine environments into micro- and nanoplastics. Subsequently, when comparing the photoaging rate of different sized PP plastics in coastal seawater, we discovered that large sized PP plastics (1000-2000 and 5000-7000 μm) showed a lower photoaging rate than that of small sized PP plastic debris (0-150 and 300-500 μm), with the decrease rate of plastic crystallinity as follow: 0-150 μm (2.01 d-1) > 300-500 μm (1.25 d-1) > 1000-2000 μm (0.780 d-1) and 5000-7000 μm (0.900 d-1). This result can be attributed to the small size PP plastics producing more reactive oxygen species (ROS) species, with the formation capacity of hydroxyl radical •OH as follows: 0-150 μm (6.46 × 10-15 M) > 300-500 μm (4.87 × 10-15 M) > 500-1000 (3.61 × 10-15 M) and 5000-7000 μm (3.73 × 10-15 M). The findings obtained in this study offer a new perspective on the formation and ecological risks of PP nanoplastics in current coastal seawater environments.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
He X, Qian Y, Li Z, Yang S, Tian J, Wang Q, Lei J, Qi R, Feng C. Identification of factors influencing the microplastic distribution in agricultural soil on Hainan Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162426. [PMID: 36842590 DOI: 10.1016/j.scitotenv.2023.162426] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in agricultural soils, but to what extent and how environmental factors determine the source and fate of MPs in agricultural soils is not clear. In this study, Hainan Island, which has different climatic conditions, altitudes, and land uses across the island, was selected to investigate the MPs abundance and the shape, size, color, and polymer type of the MPs in agricultural soils. The main focus was on the role of land use type and the identification of environmental influencing factors. The results showed that MPs were detected in all the soil samples across the island, with an abundance range of 20 to 6790 items kg-1 and an average of 417 items kg-1. Fragments (46.8 %), MPs smaller than 0.5 mm (37.8 %), black MPs (48.3 %), and polypropylene MPs (56.8 %) were observed as the dominant MPs species. Significantly higher MPs abundance was found in mulched arable land, and higher contents of fibers and fragments were observed in woodland and paddy lands, respectively. With correlation and redundancy analyses, soil pH, soil organic matter content, and average annual temperature were found to be the main factors influencing the biotic/abiotic fragmentation of MPs. The regional population density, including tourism represented by the night light index, affects the input process of MPs. MPs transport and deposition were found to be affected by altitude, annual precipitation, and soil moisture content. This study represents the first large-scale study of MPs contamination in island agricultural soils and provides important data on the distribution, transport, and fate of MPs.
Collapse
Affiliation(s)
- Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Zhenling Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Shuai Yang
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Jinfei Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ruifang Qi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|