1
|
Fadadu RP, Bozack AK, Cardenas A. Chemical and climatic environmental exposures and epigenetic aging: A systematic review. ENVIRONMENTAL RESEARCH 2025; 274:121347. [PMID: 40058550 PMCID: PMC12048242 DOI: 10.1016/j.envres.2025.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Epigenetic aging biomarkers are used for evaluating morbidity and mortality, monitoring therapies, and direct-to-consumer testing. However, the influence of environmental exposures on epigenetic age acceleration (EAA), also known as epigenetic age deviation, has not been systematically evaluated. In this systematic review, we synthesized findings from human epidemiologic studies on chemical and climatic environmental exposures, particularly air pollution, chemicals, metals, climate, and cigarette smoke, and EAA. A total of 102 studies analyzing epigenetic data from over 180,000 subjects were evaluated. Overall, studies in each exposure category frequently included adult participants, used a variety of epigenetic clocks, analyzed whole blood samples, and had a low risk of bias. Exposure to air pollution (15/19 of studies; 79%), cigarette smoke (53/66; 80%), and synthetic and occupational chemicals (5/8; 63%) were notably associated with increased EAA. Results for essential and non-essential metal exposure were more equivocal: 7/13 studies (54%) reported increased EAA. One study reported increased EAA with greater temperature exposure. In summary, we identified environmental exposures, such as air pollution and cigarette smoke, that were strongly associated with increased EAA. Further research is needed with larger and more diverse samples and high-quality exposure assessment.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA; Department of Dermatology, University of California San Diego School of Medicine, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA.
| |
Collapse
|
2
|
Lou J, Dong F, Lu H, Fang S, Pan X. Prolonged Exposure to Environmental Levels of Haloacetamides Exacerbates Cellular Senescence: Phenotypic and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7890-7899. [PMID: 40231784 DOI: 10.1021/acs.est.5c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Disinfection byproducts (DBPs), such as haloacetamides (HAMs), have been associated with adverse health outcomes, including bladder cancer. The potential for DBPs to exacerbate cellular senescence, thereby linking exposure to health impacts, remains underexplored. In this study, MRC-5 cells were exposed to HAMs at concentrations of 2, 5, and 8 μg/L for 30 days to simulate long-term exposure to levels found in drinking water. All six tested HAMs significantly increased the cellular senescence degree and enriched the cellular senescence pathway at the proteomic-wide level. Specifically, HAMs upregulated microRNA-24 expression, which increased p16 mRNA levels and decreased p16 protein levels, thereby activating oncogene-induced senescence pathways. Additionally, HAMs were found to covalently bind to TNRC6A, activating the p53/p21 pathway. Principal component analysis highlighted the critical role of functional groups in activating senescence, and the interaction between HAMs and TNRC6A could extend to at least 27 other amide-containing DBPs. Prolonged exposure to HAMs at environmentally relevant levels notably exacerbates cellular senescence, shedding light on a commonly overlooked phenomenon. Given the widespread presence of DBPs in drinking water and their continuous exposure in humans, their role in cellular senescence represents an ongoing public health concern.
Collapse
Affiliation(s)
- Jinxiu Lou
- Zhejiang Carbon Neutral Innovation Institute and Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Lu
- College of Environmental and Resource Sciences and Academy of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuangxi Fang
- Zhejiang Carbon Neutral Innovation Institute and Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Sheng C, Zhou R, Wang H, Lin G, Cai Z, Wang W. Early-life smoking, cardiovascular disease risk, and the mediating role of DNA methylation biomarkers of aging. J Transl Med 2025; 23:484. [PMID: 40301976 PMCID: PMC12038996 DOI: 10.1186/s12967-025-06492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Early-life smoking is linked to biological aging and chronic diseases, yet its specific relationship with cardiovascular disease (CVD) risk and the role of DNA methylation biomarkers of aging as potential mediators of that relationship remain underexplored. METHODS In this study, we analyzed data from 2345 participants in the National Health and Nutrition Examination Survey (NHANES; 1999-2002). Early-life smoking status was assessed on the basis of the age of smoking initiation (ASI) and categorized into three smoking initiation periods (SIPs): childhood (5-14 years), adolescence/adulthood (> 14 years), and never smoked. DNA methylation biomarkers of aging (DNAm PhenoAge, DunedinPoAm, HorvathTelo) were measured, and CVD outcomes were determined via self-reported, physician-confirmed diagnoses. Multivariate logistic regression and causal mediation analyses were performed to assess the associations between SIP and CVD outcomes and explore the mediating effects of DNA methylation biomarkers on those associations. RESULTS Earlier smoking initiation was more strongly associated with an increased risk of developing CVD, with childhood smoking showing the highest risk (OR = 1.95, 95% CI: 1.15-3.29; P = 0.013). Furthermore, DNA methylation biomarkers of aging were independently associated with increased CVD risk (1-year increase in DNAm PhenoAge: OR = 1.03, 95% CI: 1.01-1.05, P < 0.001; 0.1-unit increase in DunedinPoAm: OR = 1.19, 95% CI: 1.00-1.40, P < 0.05; 1-kb increase in HorvathTelo: OR = 0.57, 95% CI: 0.34-0.96, P < 0.05). Subgroup analysis revealed that the association between early-life smoking status and the risk of developing CVD was stronger among individuals without household smoking exposure (P for interaction = 0.035). Moreover, compared with early-life smoking status, later smoking initiation status was correlated with delayed epigenetic aging, as indicated by lower DNAm PhenoAge (β=-0.02, 95% CI: -0.03--0.01, P < 0.01), slower DunedinPoAm (β=-0.01, 95% CI: -0.01--0.01, P < 0.001), and longer HorvathTelo (β = 0.01, 95% CI: 0.01-0.01, P < 0.001). Mediation analysis revealed that DNAm PhenoAge significantly mediated the relationship between early-life smoking status and CVD risk, accounting for 6% of the total effect (ASI: ACME=-0.000100, P = 0.010; SIP: ACME = 0.004796, P = 0.022). CONCLUSION Early-life smoking status is associated with significantly increased CVD risk. DNAm PhenoAge partially mediates this relationship, suggesting its potential as a target for prevention. Moreover, these findings highlight the need for early smoking prevention to reduce CVD risk.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hongcai Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhou Cai
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Vascular Intervention in Hunan Province, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Wei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Vascular Intervention in Hunan Province, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Siddique A, Al-Shamlan MYM, Al-Romaihi HE, Khwaja HA. Beyond the outdoors: indoor air quality guidelines and standards - challenges, inequalities, and the path forward. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:21-35. [PMID: 38148484 DOI: 10.1515/reveh-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
In the last few decades, indoor air quality (IAQ) has become a major threat to public health. It is the fifth leading cause of premature death globally. It has been estimated that people spend ∼90 % of their time in an indoor environment. Consequently, IAQ has significant health effects. Although IAQ-related standards and guidelines, policies, and monitoring plans have been developed in a few countries, there remain several global inequalities and challenges. This review paper aims to comprehensively synthesize the current status of widely accepted IAQ guidelines and standards. It analyzes their global implementation and effectiveness to offer insights into challenges and disparities in IAQ policies and practices. However, the complexity of domestic environments and the diversity of international standards impede effective implementation. This manuscript evaluates international, national, and regional IAQ guidelines, emphasizing similarities and differences. In addition, it highlights knowledge gaps and challenges, urging the international scientific community, policymakers, and stakeholders to collaborate to advance IAQ standards and guidelines. The analysis evaluates the efficacy of guidelines, identifies deficiencies, and offers recommendations for the future of domestic air quality standards.
Collapse
Affiliation(s)
- Azhar Siddique
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Ar-Rayyan, Qatar
| | - Maryam Y M Al-Shamlan
- Health Protection and Communicable Disease Control Department, Ministry of Public Health (MoPH), Doha, Qatar
- College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hamad E Al-Romaihi
- Health Protection and Communicable Disease Control Department, Ministry of Public Health (MoPH), Doha, Qatar
| | - Haider A Khwaja
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
5
|
Yang J, Guan J, Zhang X, Chen S, Guo Y, Yuan H, Dai J, Xu Q, Zhang G, Li Y, Lin Z, Wu Y, Yang C. Pollutant emissions and environmental advantages of heating peanut oil by using commercial induction cooktop: A comparative analysis with traditional natural gas stoves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125457. [PMID: 39643227 DOI: 10.1016/j.envpol.2024.125457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Commercial induction cooktops are increasingly gaining popularity in residential households and business restaurants. However, little is known about the specific environmental benefits of induction cooking compared to conventional gas cooking. This study used two heating methods to heat peanut oil to achieve the same heating effect, and compared particulate matter, volatile organic compounds (VOCs), ozone precursors, and total carbon emissions generated during the heating process using various detection devices. Utilising an induction cooktop will result in a 27.3% reduction in the overall emission of VOC after 15 min of heating, indicating that using an induction cooktop has an advantage in terms of ozone formation potential, cutting OFPs by 23.6%. Using induction cooktops also reduces 26.8% in PM2.5 emissions, 63.3% in CH4 emissions, 100% in CO2 direct emissions, and 94.4% in CO emissions, owing to the varied heating techniques employed. Considering indirect emissions, such as energy usage, the utilization of induction cooktops will reduce total carbon emissions by an equivalent of 11.4%. The reasons for these advantages are partly due to the additional COX and CH4 generated by natural gas combustion, and on the other hand, the concentration and particle size differences of particulate matter may be due to the fact that compared to natural gas stoves, induction cooktops have a more uniform and concentrated heat utilization rate, resulting in lower ambient temperatures around the pot and suppressing the production of some pollutants. These findings suggest that replacing conventional natural gas stoves with commercial induction cooktops has significant advantages in terms of reduction of gaseous pollutant emissions as well as environmental impacts such as carbon neutrality.
Collapse
Affiliation(s)
- Jie Yang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jie Guan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xiaojiao Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Shuai Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yaoguang Guo
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Hao Yuan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jue Dai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Qin Xu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Gangfeng Zhang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - YiHao Li
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Ziyin Lin
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Yanlin Wu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Chao Yang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| |
Collapse
|
6
|
Zhang S, Liu Y, Qi J, Yan Y, Gao T, Zhang X, Sun D, Wang T, Zeng P. Accelerated aging as a mediator of the association between co-exposure to multiple air pollutants and risk of chronic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117582. [PMID: 39719816 DOI: 10.1016/j.ecoenv.2024.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The association between co-exposure to multiple air pollutants and the occurrence of chronic kidney disease (CKD) was not well-established, and the mediating role of accelerated aging in this association remained uncertain. METHODS Using a cohort of 313,908 participants without CKD at baseline from the UK Biobank, we examined the potential association between co-exposure to multiple air pollutants, including PM2.5, PM10, PM2.5-10, NO2 and NOx, and the incidence of CKD by calculating an air pollution score. Mediation analyses were performed to examine the mediating role of accelerated aging (PhenoAgeAccel or KDM-BioAgeAccel) in this association. RESULTS During the median follow-up time of 12.9 years, 11,117 participants developed CKD. The results showed that per interquartile range (IQR) increment in air pollution score led to an approximately 9.0 % (6.6-11.4 %) elevated risk of occurring CKD. Compared to the first quartile (Q1) of air pollution score, those in the highest quartile (Q4) had a 21.2 % (14.8-27.9 %) higher risk of developing CKD (Ptrend<0.001). Mediation analyses suggested that PhenoAgeAccel and KDM-BioAgeAccel significantly mediated 1.5 % and 5.7 % of the association between air pollution score and incident CKD, respectively. CONCLUSION Co-exposure to multiple air pollutants could increase the risk of developing CKD, with accelerated aging serving as a partial mechanism in the relationship between air pollution and CKD. These findings highlight the importance of reducing air pollution, and suggest a possible mechanism from air pollution to CKD through accelerated aging.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dong Sun
- Department of Nephrology and Clinical Research Center for Kidney Disease, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Clinical Research Center for Kidney Disease, Xuzhou Medical University, Xuzhou 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
7
|
Wu Y, Xu R, Li S, Wen B, Southey MC, Dugue PA, Hopper JL, Abramson MJ, Li S, Guo Y. Association between wildfire-related PM 2.5 and epigenetic aging: A twin and family study in Australia. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136486. [PMID: 39566450 DOI: 10.1016/j.jhazmat.2024.136486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Wildfire-related PM2.5 has been associated with various adverse health outcomes, but its association with epigenetic aging remains unclear. This study examined the association between wildfire-related PM2.5 exposure and epigenetic aging using DNA methylation data from a twin and family study. With a within-sibship analysis, we found that each 1 µg/m3 increase in annual wildfire-related PM2.5 was associated with a 0.25-year (95 % CI: 0.04, 0.47) increase in GrimAge1 acceleration and a 0.36-year (95 % CI: 0.12, 0.59) increase in GrimAge2 acceleration. Subgroup analyses found that participants aged ≥ 60 years, those with a history of current or former smoking and alcohol consumption, and those living in rural regions exhibited more pronounced epigenetic age acceleration. These findings suggest that wildfire smoke could accelerate biological aging, particularly in vulnerable populations, posing a significant challenge to healthy aging.
Collapse
Affiliation(s)
- Yao Wu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Rongbin Xu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Shanshan Li
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Bo Wen
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne 3010, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 3004 VIC, Australia
| | - Pierre-Antoine Dugue
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 3004 VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, VIC, Australia.
| | - Yuming Guo
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia.
| |
Collapse
|
8
|
Lv N, Wu R, Guo R, Wu L, Zhang H, Guo C, Xu J. Exploring the progress and challenges of ultrasonic technology in environmental remediation. ULTRASONICS SONOCHEMISTRY 2025; 112:107175. [PMID: 39608064 PMCID: PMC11634997 DOI: 10.1016/j.ultsonch.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/27/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Amidst escalating environmental pollution due to accelerated industrialization and urbanization, there is an acute demand for effective and sustainable environmental remediation strategies. Ultrasonic technology, recognized for its green and efficient characteristics, has gained significant prominence in mitigating environmental pollution in aquatic, soil, and atmospheric ecosystems. The review provides a comprehensive analysis of the role of ultrasonic treatment in wastewater treatment, air quality improvement, and soil remediation. We systematically evaluate existing research to assess the effectiveness of ultrasonic technology in degrading pollutants and its potential for large-scale deployment. The review also examines the challenges associated with ultrasonic remediation, including optimizing operational parameters, enhancing energy transfer efficiency, and understanding the unique degradation mechanisms for various pollutants. Furthermore, we discuss environmental and safety considerations, along with the economic implications related to equipment costs and energy consumption. This review aims to contribute to the advancement of ultrasonic technology in environmental remediation by presenting a forward-looking perspective, aligning with the goals of environmental protection and sustainable development.
Collapse
Affiliation(s)
- Ningqing Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ruonan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linlin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Yang B, Jia Y, Yan M, Zhao X, Gu Z, Qin Y, Liu Z, Yang Y, Wang P, Wang W. Moderate BMI accumulation modified associations between blood benzene, toluene, ethylbenzene and xylene (BTEX) and phenotypic aging: mediating roles of inflammation and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124669. [PMID: 39103038 DOI: 10.1016/j.envpol.2024.124669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The associations between blood benzene, toluene, ethylbenzene, and xylenes (BTEX) and biological aging among general adults remain elusive. The present study comprised 5780 participants from the National Health and Nutrition Examination Survey 1999-2010. A novel measure of biological aging, phenotypic age acceleration (PhenoAge.Accel), derived from biochemical markers was calculated. Weighted generalized linear regression and weighted quantile sum regression (WQS) were utilized to assess the associations between BTEX components and mixed exposure, and PhenoAge.Accel. The mediating roles of systemic immune-inflammation index (SII) and oxidative stress indicators (serum bilirubin and gamma-glutamyl transferase), along with the modifying effects of body mass index (BMI) were also examined. In the single-exposure model, the highest quantile of blood benzene (b = 0.89, 95%CI: 0.58 to 1.20), toluene (b = 0.87, 95%CI: 0.52 to 1.20), and ethylbenzene (b = 0.80, 95%CI: 0.46 to 1.10) was positively associated with PhenoAge.Accel compared to quantile 1. Mixed-exposure analyses revealed a consistent positive association between BTEX mixed exposure and PhenoAge.Accel (b = 0.88, 95%CI: 0.56 to 1.20), primarily driven by benzene (92.78%). The association between BTEX and PhenoAge.Accel was found to be partially mediated by inflammation and oxidative stress indicators (ranging from 3.2% to 13.7%). Additionally, BMI negatively modified the association between BTEX mixed exposure and PhenoAge.Accel, with a threshold identified at 36.2 kg/m^2. Furthermore, BMI negatively moderated the direct effect of BTEX mixed exposure on PhenoAge.Accel in moderated mediation models, while positively modified the link between SII and PhenoAge.Accel in the indirect path (binteraction = 0.04, 95%CI: 0.01 to 0.06). Overall, BTEX mixed exposure was associated with PhenoAge.Accel among US adults, with benzene may have reported most contribution, and inflammation and oxidative damage processes may partially explain this underlying mechanism. The study also highlighted the potential benefits of appropriate BMI increased. Additional large-scale cohort studies and experiments were necessary to substantiate these findings.
Collapse
Affiliation(s)
- Bin Yang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yangyang Jia
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, Henan, China
| | - Mengqing Yan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangkai Zhao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiguang Gu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Qin
- School of Nursing and Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zuyun Liu
- Department of Big Data in Health Science School of Public Health, and Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
11
|
Nwanaji-Enwerem JC, Bozack AK, Ward-Caviness C, Diaz-Sanchez D, Devlin RB, Bind MC, Cardenas A. Bronchial cell epigenetic aging in a human experimental study of short-term diesel and ozone exposures. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae017. [PMID: 39416749 PMCID: PMC11482248 DOI: 10.1093/eep/dvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Blood-based, observational, and cross-sectional epidemiological studies suggest that air pollutant exposures alter biological aging. In a single-blinded randomized crossover human experiment of 17 volunteers, we examined the effect of randomized 2-h controlled air pollution exposures on respiratory tissue epigenetic aging. Bronchial epithelial cell DNA methylation 24 h post-exposure was measured using the HumanMethylation450K BeadChip, and there was a minimum 2-week washout period between exposures. All 17 volunteers were exposed to ozone, but only 13 were exposed to diesel exhaust. Horvath DNAmAge [Pearson coefficient (r) = 0.64; median absolute error (MAE) = 2.7 years], GrimAge (r = 0.81; MAE = 13 years), and DNAm Telomere Length (DNAmTL) (r = -0.65) were strongly correlated with chronological age in this tissue. Compared to clean air, ozone exposure was associated with longer DNAmTL (median difference 0.11 kb, Fisher's exact P-value = .036). This randomized trial suggests a weak relationship of ozone exposure with DNAmTL in target respiratory cells. Still, causal relationships with long-term exposures need to be evaluated.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Emergency Medicine and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305, United States
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305, United States
| | - Cavin Ward-Caviness
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, United States
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, United States
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, United States
| | - Marie‐Abèle C Bind
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
12
|
Krieger N, Testa C, Chen JT, Johnson N, Watkins SH, Suderman M, Simpkin AJ, Tilling K, Waterman PD, Coull BA, De Vivo I, Smith GD, Diez Roux AV, Relton C. Epigenetic Aging and Racialized, Economic, and Environmental Injustice: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421832. [PMID: 39073820 PMCID: PMC11287398 DOI: 10.1001/jamanetworkopen.2024.21832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/10/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Epigenetic age acceleration is associated with exposure to social and economic adversity and may increase the risk of premature morbidity and mortality. However, no studies have included measures of structural racism, and few have compared estimates within or across the first and second generation of epigenetic clocks. Objective To determine whether epigenetic age acceleration is positively associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design, Setting, and Participants This cross-sectional study used data from the My Body My Story (MBMS) study between August 8, 2008, and December 31, 2010, and examination 5 of the Multi-Ethnic Atherosclerosis Study (MESA) from April 1, 2010, to February 29, 2012. In the MBMS, DNA extraction was performed in 2021; linkage of structural measures to the MBMS and MESA, in 2022. US-born individuals were randomly selected from 4 community health centers in Boston, Massachusetts (MBMS), and 4 field sites in Baltimore, Maryland; Forsyth County, North Carolina; New York City, New York; and St Paul, Minnesota (MESA). Data were analyzed from November 13, 2021, to August 31, 2023. Main Outcomes and Measures Ten epigenetic clocks (6 first-generation and 4 second-generation), computed using DNA methylation data (DNAm) from blood spots (MBMS) and purified monocytes (MESA). Results The US-born study population included 293 MBMS participants (109 men [37.2%], 184 women [62.8%]; mean [SD] age, 49.0 [8.0] years) with 224 Black non-Hispanic and 69 White non-Hispanic participants and 975 MESA participants (492 men [50.5%], 483 women [49.5%]; mean [SD] age, 70.0 [9.3] years) with 229 Black non-Hispanic, 191 Hispanic, and 555 White non-Hispanic participants. Of these, 140 (11.0%) exhibited accelerated aging for all 5 clocks whose estimates are interpretable on the age (years) scale. Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 (95% CI, 0.003-0.27) SDs and with birth state conservatism by 0.06 (95% CI, 0.01-0.12) SDs, pooling across all clocks. Low parental educational level was associated with epigenetic age acceleration, pooling across all clocks, for both Black non-Hispanic (0.24 [95% CI, 0.08-0.39] SDs) and White non-Hispanic (0.27 [95% CI, 0.03-0.51] SDs) MBMS participants. Adult impoverishment was positively associated with the pooled second-generation clocks among the MESA participants (Black non-Hispanic, 0.06 [95% CI, 0.01-0.12] SDs; Hispanic, 0.07 [95% CI, 0.01-0.14] SDs; White non-Hispanic, 0.05 [95% CI, 0.01-0.08] SDs). Conclusions and Relevance The findings of this cross-sectional study of MBMS and MESA participants suggest that epigenetic age acceleration was associated with racialized and economic injustice, potentially contributing to well-documented inequities in premature mortality. Future research should test the hypothesis that epigenetic accelerated aging may be one of the biological mechanisms underlying the well-documented elevated risk of premature morbidity and mortality among social groups subjected to racialized and economic injustice.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Nykesha Johnson
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sarah Holmes Watkins
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Matthew Suderman
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway
| | - Kate Tilling
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent A. Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - George Davey Smith
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Ana V. Diez Roux
- Urban Health Collective and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Caroline Relton
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
13
|
Wang Y, Li H, Huang J, Jiang M, Tian S, Liu S, Zhang L, Wu S, Kan H, Gao X. Short-Term PM 2.5 Exposure and DNA Methylation Changes of Circadian Rhythm Genes: Evidence from Two Experimental Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9991-10000. [PMID: 38814053 DOI: 10.1021/acs.est.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The circadian rhythm regulates many crucial physiological processes, impacting human aging and aging-related outcomes. Observational evidence links circadian rhythm disturbance to PM2.5 exposure, yet the underlying DNA methylation mechanisms remain unclear due to limited PM2.5-dominated experimental settings. Therefore, we investigated the associations between short-term PM2.5 exposure and DNA methylation changes of 1188 CpG candidates across circadian genes among 32 young adults in the FDU study, with the validation in 26 individuals from the PKU study. Further mediation analyses tested whether DNA methylation of circadian genes could mediate the influence of PM2.5 on aging measured by three epigenetic ages: DNAmGrimAge, DunedinPoAm, and the mortality risk score. We identified three CpG sites associated with personal PM2.5 exposure: cg01248361 (CSNK2A2), cg17728065 (RORA), and cg22513396 (PRKAG2). Acute effects of PM2.5 on the three loci could be mediated by several circulating biomarkers, including MDA and EGF, with up to ∼30% of mediated proportions. Three loci further showed varying potentials in mediating the aging acceleration effect of PM2.5. Locus cg17728065 is the key site exhibiting a robust mediating effect (7.54-12.52%) on PM2.5-induced aging acceleration. Our findings demonstrated that PM2.5, even short-term peaks, could leave imprints on human aging via inducing aberrant temporal fluctuation in circadian homeostasis captured by DNA methylation profiles.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Sifan Tian
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710049, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710049, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710049, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100871, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Center for Healthy Aging, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
14
|
Liang R, Fan L, Lai X, Shi D, Wang H, Shi W, Liu W, Yu L, Song J, Wang B. Air pollution exposure, accelerated biological aging, and increased thyroid dysfunction risk: Evidence from a nationwide prospective study. ENVIRONMENT INTERNATIONAL 2024; 188:108773. [PMID: 38810493 DOI: 10.1016/j.envint.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Long-term air pollution exposure is a major health concern, yet its associations with thyroid dysfunction (hyperthyroidism and hypothyroidism) and biological aging remain unclear. We aimed to determine the association of long-term air pollution exposure with thyroid dysfunction and to investigate the potential roles of biological aging. METHODS A prospective cohort study was conducted on 432,340 participants with available data on air pollutants including particulate matter (PM2.5, PM10, and PM2.5-10), nitrogen dioxide (NO2), and nitric oxide (NO) from the UK Biobank. An air pollution score was calculated using principal component analysis to reflect joint exposure to these pollutants. Biological aging was assessed using the Klemera-Doubal method biological age and the phenotypic age algorithms. The associations of individual and joint air pollutants with thyroid dysfunction were estimated using the Cox proportional hazards regression model. The roles of biological aging were explored using interaction and mediation analyses. RESULTS During a median follow-up of 12.41 years, 1,721 (0.40 %) and 9,296 (2.15 %) participants developed hyperthyroidism and hypothyroidism, respectively. All air pollutants were observed to be significantly associated with an increased risk of incident hypothyroidism, while PM2.5, PM10, and NO2 were observed to be significantly associated with an increased risk of incident hyperthyroidism. The hazard ratios (HRs) for hyperthyroidism and hypothyroidism were 1.15 (95 % confidence interval: 1.00-1.32) and 1.15 (1.08-1.22) for individuals in the highest quartile compared with those in the lowest quartile of air pollution score, respectively. Additionally, we noticed that individuals with higher pollutant levels and biologically older generally had a higher risk of incident thyroid dysfunction. Moreover, accelerated biological aging partially mediated 1.9 %-9.4 % of air pollution-associated thyroid dysfunction. CONCLUSIONS Despite the possible underestimation of incident thyroid dysfunction, long-term air pollution exposure may increase the risk of incident thyroid dysfunction, particularly in biologically older participants, with biological aging potentially involved in the mechanisms.
Collapse
Affiliation(s)
- Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wendi Shi
- Lucy Cavendish College, University of Cambridge, Cambridge CB3 0BU, UK
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
15
|
Gao X. Environmental aging: through the prism of DNA methylation. Epigenomics 2024; 16:795-798. [PMID: 38869463 PMCID: PMC11370961 DOI: 10.1080/17501911.2024.2345042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Xu Gao
- Department of Occupational & Environmental Health Sciences, School of Public Health,Peking University, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
- Center for Healthy Aging, Peking University Health Science Center, Beijing, 100191, China
- Peking University Institute of Environmental Medicine, Beijing, 100191, China
| |
Collapse
|
16
|
Zhou HL, Di DS, Cui ZB, Zhou TT, Yuan TT, Liu Q, Zhang JL, Luo X, Ling DY, Wang Q. Whole-body aging mediates the association between exposure to volatile organic compounds and osteoarthritis among U.S. middle-to-old-aged adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167728. [PMID: 37827324 DOI: 10.1016/j.scitotenv.2023.167728] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Humans are constantly exposed to various volatile organic compounds (VOCs) because of their widespread sources and characteristic of easy evaporation. Existing evidence regarding the association between VOC exposure and osteoarthritis (OA) risk is limited. PURPOSE This study aimed to investigate the associations between individual urinary VOC metabolites (VOCMs) and the VOCM mixture, representing internal exposure levels of VOCs, with prevalent OA risk and to explore the mediating effect of aging and oxidative stress (OS) in these associations. METHODS Data from the National Health and Nutrition Examination Surveys 2005-2020 were analyzed. Weighted generalized linear regression was employed to explore the associations between individual VOCMs and OA risk, as well as aging and OS biomarkers. A five-repeated ten-fold cross-validation elastic net model was used to identify critical VOCMs for the weight quantile sum (WQS) analysis, which was performed to explore the VOCM mixture and OA risk association. Parallel and serial mediation analyses were conducted to identify the potential mediators and mediation pathways. RESULTS This study included 6578 American adults aged ≥40 years, among whom 1052 (16.0 %) individuals reported prevalent OA. Urinary levels of N-acetyl-S-(benzyl)-L-cysteine, mandelic acid and phenylglyoxylic acid were positively associated with OA risk. Eleven VOCMs with nonzero coefficients were identified and included in the WQS analysis, and results revealed an average increase of 24.4 % in OA risk (OR = 1.244, 95 % CI: 1.041, 1.486) per one-quantile increment in the VOCM mixture. Two aging biomarkers, phenotypic age and biological age, parallelly mediated the association between the VOCM mixture and OA risk, with mediation effect proportions of 9.0 % and 16.4 %, respectively. CONCLUSIONS Exposure to VOCs is associated with an increased OA risk in middle-to-old aged American adults. The mediating effect of aging contributes to the association between co-exposure to VOCs and OA risk. Further prospective studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhang-Bo Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Li Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Luo
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan-Yang Ling
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Krieger N, Testa C, Chen JT, Johnson N, Watkins SH, Suderman M, Simpkin AJ, Tilling K, Waterman PD, Coull BA, De Vivo I, Smith GD, Roux AVD, Relton C. Epigenetic aging & embodying injustice: US My Body My Story and Multi-Ethnic Atherosclerosis Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299930. [PMID: 38168159 PMCID: PMC10760288 DOI: 10.1101/2023.12.13.23299930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Importance Epigenetic accelerated aging is associated with exposure to social and economic adversity and may increase risk of premature morbidity and mortality. However, no studies have included measures of structural racism and few have compared estimates within or across the 1st and 2nd generation of epigenetic clocks (the latter additionally trained on phenotypic data). Objective To determine if accelerated epigenetic aging is associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design Cross-sectional My Body My Story Study (MBMS; US, 2008-2010) and Exam 5 Multi-Ethnic Atherosclerosis Study (MESA; US, 2010-2012). MBMS DNA extraction: 2021; linkage of structural measures to MBMS and MESA: 2022. Setting MBMS recruited a random sample of US-born Black non-Hispanic (BNH) and white non-Hispanic (WNH) participants from 4 community health centers in Boston, MA. The MESA Exam 5 epigenetic component included 975 randomly selected US-born BNH, WNH, and Hispanic participants from four field sites: Baltimore, MD; Forsyth County, NC; New York City, NY; St. Paul, MN. Participants US-born persons (MBMS: 224 BNH, 69 WNH; MESA: 229 BNH, 555 WNH, 191 Hispanic). Main outcome and measures 10 epigenetic clocks (six 1st generation; four 2nd generation), computed using DNA methylation data (DNAm) from blood spots (MBMS; N = 293) and purified monocytes (MESA; N = 975). Results Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 standard deviations (95% confidence interval [CI] 0.00, 0.27) and with birth state conservatism (0.06, 95% CI 0.00, 0.05), pooling across all clocks, as was low parental education for both Black non-Hispanic and white non-Hispanic MBMS participants (respectively: 0.24, 95% CI 0.08, 0.39, and 0.27, 95% CI 0.03, 0.51. Adult impoverishment was positively associated with the pooled 2nd generation clocks among the MESA participants (Black non-Hispanic: 0.06, 95% CI 0.01, 0.12; white non-Hispanic: 0.05, 95% CI 0.01, 0.08; Hispanic: 0.07, 95% CI 0.01, 0.14). Conclusions and Relevance Epigenetic accelerated aging may be one of the biological mechanisms linking exposure to racialized and economic injustice to well-documented inequities in premature morbidity and mortality.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Nykesha Johnson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah H. Watkins
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Ana V. Diez Roux
- Urban Health Collective and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
18
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
19
|
Miousse IR, Hale RB, Alsbrook S, Boysen G, Broadnax T, Murry C, Williams C, Park CH, Richards R, Reedy J, Chalbot MC, Kavouras IG, Koturbash I. Climate Change and New Challenges for Rural Communities: Particulate Matter Matters. SUSTAINABILITY 2023; 15:16192. [PMID: 39119507 PMCID: PMC11307925 DOI: 10.3390/su152316192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Climate change presents multiple challenges to rural communities. Here, we investigated the toxicological potential of the six types of particulate matter most common to rural Arkansas: soil, road, and agricultural dusts, pollen, traffic exhaust, and particles from biomass burning in human small airway epithelial cells (SAECs). Biomass burning and agricultural dust demonstrated the most potent toxicological responses, exhibited as significant (p < 0.05) up-regulation of HMOX1 (oxidative stress) and TNFα (inflammatory response) genes as well as epigenetic alterations (altered expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, enzymatic activity, and DNA methylation of alpha satellite elements) that were evident at both 24 h and 72 h of exposure. We further demonstrate evidence of aridification in the state of Arkansas and the presence of winds capable of transporting agricultural dust- and biomass burning-associated particles far beyond their origination. Partnerships in the form of citizen science projects may provide important solutions to prevent and mitigate the negative effects of the rapidly evolving climate and improve the well-being of rural communities. Furthermore, the identification of the most toxic types of particulate matter could inform local policies related to agriculture, biomass burning, and dust control.
Collapse
Affiliation(s)
- Isabelle Racine Miousse
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel B. Hale
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Scott Alsbrook
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | - Chul Hyun Park
- Clinton School of Public Service, University of Arkansas, Little Rock, AR 72201, USA
| | - Robert Richards
- Clinton School of Public Service, University of Arkansas, Little Rock, AR 72201, USA
| | - Justin Reedy
- Department of Communication, University of Oklahoma, Norman, OK 73019, USA
| | - Marie-Cécile Chalbot
- Department of Biological Sciences, New York City College of Technology, City University of New York, New York, NY 10018, USA
| | - Ilias G. Kavouras
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York, New York, NY 10018, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
20
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
21
|
Yaskolka Meir A, Keller M, Hoffmann A, Rinott E, Tsaban G, Kaplan A, Zelicha H, Hagemann T, Ceglarek U, Isermann B, Shelef I, Blüher M, Stumvoll M, Li J, Haange SB, Engelmann B, Rolle-Kampczyk U, von Bergen M, Hu FB, Stampfer MJ, Kovacs P, Liang L, Shai I. The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial. BMC Med 2023; 21:364. [PMID: 37743489 PMCID: PMC10519069 DOI: 10.1186/s12916-023-03067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. METHODS We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3-4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). RESULTS Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e - 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = - 0.41, p = 0.004 and beta = - 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = - 1.8; p = 0.061) and green tea (beta = - 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). CONCLUSIONS This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. TRIAL REGISTRATION ClinicalTrials.gov, NCT03020186.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
- Soroka University Medical Center, 84101, Be'er Sheva, Israel
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ilan Shelef
- Soroka University Medical Center, 84101, Be'er Sheva, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Sven-Bastian Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel.
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany.
| |
Collapse
|
22
|
Blechter B, Cardenas A, Shi J, Wong JYY, Hu W, Rahman ML, Breeze C, Downward GS, Portengen L, Zhang Y, Ning B, Ji BT, Cawthon R, Li J, Yang K, Bozack A, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Household air pollution and epigenetic aging in Xuanwei, China. ENVIRONMENT INTERNATIONAL 2023; 178:108041. [PMID: 37354880 PMCID: PMC11812304 DOI: 10.1016/j.envint.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden linked to lung cancer. In Xuanwei, China, lung cancer rate for nonsmoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal used for cooking and heating. Epigenetic age acceleration (EAA), a DNA methylation-based biomarker of aging, has been shown to be highly correlated with biological processes underlying the susceptibility of age-related diseases. We aim to assess the association between HAP exposure and EAA. METHODS We analyzed data from 106 never-smoking women from Xuanwei, China. Information on fuel type was collected using a questionnaire, and validated exposure models were used to predict levels of 43 HAP constituents. Exposure clusters were identified using hierarchical clustering. EAA was derived for five epigenetic clocks defined as the residuals resulting from regressing each clock on chronological age. We used generalized estimating equations to test associations between exposure clusters derived from predicted levels of HAP exposure, ambient 5-methylchrysene (5-MC), a PAH previously found to be associated with risk of lung cancer, and EAA, while accounting for repeated-measurements and confounders. RESULTS We observed an increase in GrimAge EAA for clusters with 31 and 33 PAHs reflecting current (β = 0.77 y per standard deviation (SD) increase, 95 % CI:0.36,1.19) and childhood (β = 0.92 y per SD, 95 % CI:0.40,1.45) exposure, respectively. 5-MC (ng/m3-year) was found to be associated with GrimAge EAA for current (β = 0.15 y, 95 % CI:0.05,0.25) and childhood (β = 0.30 y, 95 % CI:0.13,0.47) exposure. CONCLUSIONS Our findings suggest that exposure to PAHs from indoor smoky coal combustion, particularly 5-MC, is associated with GrimAge EAA, a biomarker of mortality.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Junming Shi
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George S Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
23
|
Ya J, Bayraktutan U. Vascular Ageing: Mechanisms, Risk Factors, and Treatment Strategies. Int J Mol Sci 2023; 24:11538. [PMID: 37511296 PMCID: PMC10380571 DOI: 10.3390/ijms241411538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Ageing constitutes the biggest risk factor for poor health and adversely affects the integrity and function of all the cells, tissues, and organs in the human body. Vascular ageing, characterised by vascular stiffness, endothelial dysfunction, increased oxidative stress, chronic low-grade inflammation, and early-stage atherosclerosis, may trigger or exacerbate the development of age-related vascular diseases, which each year contribute to more than 3.8 million deaths in Europe alone and necessitate a better understanding of the mechanisms involved. To this end, a large number of recent preclinical and clinical studies have focused on the exponential accumulation of senescent cells in the vascular system and paid particular attention to the specific roles of senescence-associated secretory phenotype, proteostasis dysfunction, age-mediated modulation of certain microRNA (miRNAs), and the contribution of other major vascular risk factors, notably diabetes, hypertension, or smoking, to vascular ageing in the elderly. The data generated paved the way for the development of various senotherapeutic interventions, ranging from the application of synthetic or natural senolytics and senomorphics to attempt to modify lifestyle, control diet, and restrict calorie intake. However, specific guidelines, considering the severity and characteristics of vascular ageing, need to be established before widespread use of these agents. This review briefly discusses the molecular and cellular mechanisms of vascular ageing and summarises the efficacy of widely studied senotherapeutics in the context of vascular ageing.
Collapse
Affiliation(s)
- Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
24
|
Protsenko E, Wolkowitz OM, Yaffe K. Associations of stress and stress-related psychiatric disorders with GrimAge acceleration: review and suggestions for future work. Transl Psychiatry 2023; 13:142. [PMID: 37130894 PMCID: PMC10154294 DOI: 10.1038/s41398-023-02360-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023] Open
Abstract
The notion of "biological aging" as distinct from chronological aging has been of increasing interest in psychiatry, and many studies have explored associations of stress and psychiatric illness with accelerated biological aging. The "epigenetic clocks" are one avenue of this research, wherein "biological age" is estimated using DNA methylation data from specific CpG dinucleotide sites within the human genome. Many iterations of the epigenetic clocks have been developed, but the GrimAge clock continues to stand out for its ability to predict morbidity and mortality. Several studies have now explored associations of stress, PTSD, and MDD with GrimAge acceleration (GrimAA). While stress, PTSD, and MDD are distinct psychiatric entities, they may share common mechanisms underlying accelerated biological aging. Yet, no one has offered a review of the evidence on associations of stress and stress-related psychopathology with GrimAA. In this review, we identify nine publications on associations of stress, PTSD, and MDD with GrimAA. We find that results are mixed both within and across each of these exposures. However, we also find that analytic methods - and specifically, the choice of covariates - vary widely between studies. To address this, we draw upon popular methods from the field of clinical epidemiology to offer (1) a systematic framework for covariate selection, and (2) an approach to results reporting that facilitates analytic consensus. Although covariate selection will differ by the research question, we encourage researchers to consider adjustment for tobacco, alcohol use, physical activity, race, sex, adult socioeconomic status, medical comorbidity, and blood cell composition.
Collapse
Affiliation(s)
- Ekaterina Protsenko
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA, USA.
- Department Epidemiology & Biostatistics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Kristine Yaffe
- Department Epidemiology & Biostatistics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| |
Collapse
|