1
|
Huang Q, Hou R, Wang Y, Lin L, Li H, Liu S, Xu X, Yu K, Huang X. Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure? WATER RESEARCH X 2025; 27:100294. [PMID: 39801790 PMCID: PMC11721218 DOI: 10.1016/j.wroa.2024.100294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the Σ10L-OPFRs concentration (16.1-1.18 × 105 lipid weight (lw)) was significantly greater than that of Σ8E-OPFRs (nondetectable (nd) - 2.82 × 103 ng/g lw) among the investigated organisms, and they both exhibited similar trends: fish
Collapse
Affiliation(s)
- Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuchen Wang
- College of Life Sciences and Engineering, Jinan University, Guangzhou 510632, China
| | - Lang Lin
- South China Sea Bureau of Ministry of Natural Resources, Guangzhou 510310, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
2
|
Zhang Y, Qin H, Zu B, Yu Z, Liu C, Shi J, Zhou B. Maternal Exposure to Environmentally Relevant Concentrations of Tris(2,4-di- tert-butylphenyl) Phosphate-Induced Developmental Toxicity in Zebrafish Offspring via Disrupting foxO1/ ripor2 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5474-5486. [PMID: 40087148 DOI: 10.1021/acs.est.4c14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Abnormal development and mortality in early life stages pose significant threats to the growth and continuation of fish populations. Tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP) is a novel organophosphate ester contaminant detected in natural waters. However, the potential effects of maternal exposure to TDtBPP on the early development of offspring embryos in fish remain unknown. Here, 30-day-old zebrafish were exposed to TDtBPP at 0, 50, 500, or 5000 ng/L for 180 days, and the exposed females were spawned with unexposed males. TDtBPP accumulation was detected in offspring embryos, accompanied by an increased malformation rate and mortality. The developmental abnormality of offspring embryos was identified to originate from the gastrula stage. Furthermore, based on transcriptome analysis, the down-regulation of RHO family interacting cell polarization regulator 2 gene (ripor2) was considered as a key toxic event, and this was confirmed in the subsequent knockdown experiment. Moreover, molecular docking studies and forkhead box O1 (foxO1) transcription factor inhibitor (AS1842856) exposure experiments demonstrated that the blockade of foxO1 transcriptional regulation was responsible for the decreased expression of ripor2. The results of this study demonstrated that the occurrence of developmental malformation and mortality in zebrafish offspring embryos following maternal TDtBPP exposure were triggered by the blockade of foxO1 transcriptional regulation and the consequent down-regulation of ripor2.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Kang P, Chen Q, Wu J, Zhang Q, Crump D, Su G. Novel Organophosphate Ester Tris(2,4-di- tert-butylphenyl)phosphate Alters Lipid Metabolism: Insights from Lipidomic Analysis and mRNA Expression. Chem Res Toxicol 2025; 38:448-457. [PMID: 39928661 DOI: 10.1021/acs.chemrestox.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP), a novel organophosphate ester (OPE), has been extensively detected in various environmental and biological samples; however, its potential biological effects remain unexplored. In this study, we investigated biotransformation characteristics, alteration of lipid metabolism, and mRNA expression in primary mouse hepatocytes (PMHs) following exposure to TDTBPP. After 36-h exposure in PMHs, TDTBPP exhibited a high stability potential with no statistically significant degradation trend. Subsequently, we analyzed the disruption of lipid homeostasis in PMHs following exposure to 0-4.5 μM TDTBPP. Lipidomic analysis indicated that TDTBPP disrupted lipid homeostasis in PMHs, and several lipid classes were dysregulated, in particular, glycerolipids and glycerophospholipids. Additionally, three lipids were proposed as potential lipid biomarkers of TDTBPP exposure, including triglycerides (TGs) and phosphatidylcholines (PCs). These observations were further supported by transcriptional changes, with significant alteration observed in genes associated with lipid uptake, de novo lipogenesis, β-oxidation of fatty acids, glycerolipid metabolism, and lipid export. Overall, these findings highlight the detrimental effects of TDTBPP on lipid homeostasis, providing important insights for health risk assessments of this abundant OPE in the environment.
Collapse
Affiliation(s)
- Pingping Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianyu Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, K1A0H3, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Su W, Liang W, Yang Z, Huang X, Wang P, Liu J, Ruan T, Jiang G. Identification and Prioritization of Emerging Organophosphorus Compounds Beyond Organophosphate Esters in Chinese Estuarine Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4080-4091. [PMID: 39960287 DOI: 10.1021/acs.est.4c09869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Organophosphorus compounds (OPCs) pose potential hazards to human health and aquatic ecosystems. However, limited knowledge of emerging OPCs beyond organophosphate esters (OPEs) hinders a thorough understanding of the environmental occurrence and exposure risks. Through target, suspect, and nontarget screening analysis, 64 OPCs were successfully identified in Chinese estuarine waters, including 24 known OPEs and 40 emerging analogues (i.e., quaternary phosphonium, phosphine oxide, organophosphonate, and organothiophosphate esters). Domestic wastewater and agricultural and industrial discharges were factors influencing the OPC distribution patterns. In particular, quaternary phosphoniums and phosphine oxides accounted for over 50% of the total OPC loading in the Yellow and Jia Rivers, which were likely polluted by phosphorus-related industries. Risk quotient (RQ) calculations showed that tetrabutylphosphonium contributed the most to algae toxicity due to the biocidal effects of onium salts, while chloroalkyl OPEs dominated the ecological risks for daphnia and fish. The multicriteria decision analysis approach was further introduced for relative chemical ranking by considering the variations in hazard criteria of environmental occurrence, fate, and toxicity of the OPCs. The results indicate that aryl phosphoniums and aryl phosphine oxides have a hazard priority similar to that of the OPEs and, therefore, require more attention.
Collapse
Affiliation(s)
- Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wu Y, Yao Y, Chen S, Li X, Wang Z, Wang J, Gao H, Chen H, Wang L, Sun H. Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:798-810. [PMID: 39723965 DOI: 10.1021/acs.est.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs). Thirty-four OPFRs were detected in river water samples, with total concentrations of 62.9-1.06 × 103 ng/L (median: 455 ng/L). Triphenylphosphine oxide and diphenyl phosphoric acid were ubiquitously detected up to 620 and 127 ng/L, respectively. Among 26 identified NOPs, 17 were reported for the first time in the environment, including 14 novel organophosphate esters (especially 4 heterocycles and 3 oligomers), 2 organophosphites, and an organophosphonate. Bis(2,4-di-tert-butylphenyl) hydrogen phosphate and 2,2-dimethylpropoxy(propyl)phosphinic acid with high predicted persistence or toxicity were widely detected, with semiquantified concentrations up to 990 and 1.0 × 103 ng/L, respectively. Structurally similar organophosphorus heterocycles exhibited consistent variation trends, suggesting a common emission source. Estimated annual river discharges to the sea were 20.6-37.0 kg/yr for OPFRs and 30.8-161 kg/yr for NOPs. These findings indicate that industrial activities contribute OPFRs and NOPs to the river catchment and its estuary, posing ecological risks to both terrestrial and marine environments.
Collapse
Affiliation(s)
- Yilin Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixian Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Zhang Y, Qin H, Li B, Yu Z, Zu B, Kong R, Letcher RJ, Liu C, Zhou B. A Novel Organophosphate Ester, Tris(2,4-di tert-butylphenyl) Phosphate, Induced Reproductive Toxicity in Male Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:279-290. [PMID: 39718999 DOI: 10.1021/acs.est.4c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
As a novel organophosphate ester (NOPE), tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) has attracted significant attention due to its unexpectedly high detection in natural environments. However, the ecological toxic effects of environmentally relevant concentrations of TDtBPP in organisms remain entirely unknown. In this study, 1 month old zebrafish were exposed to 0, 50, 500, or 5000 ng/L TDtBPP for 150 days, and the reproductive toxicity in male fish was evaluated. Results demonstrated that TDtBPP exposure significantly inhibited the maturation of spermatozoa and thus decreased spermatogenesis. Furthermore, abnormal sperm morphology and decreased sperm motility were also observed. The decrease in sperm quantity and quality eventually resulted in the declining fecundity. Moreover, TDtBPP exposure downregulated the expression of hsd3b1 in vivo and in vitro and subsequently inhibited the synthesis of androgens in zebrafish testes and Leydig cells. This inhibition of androgen synthesis appeared to be responsible for the observed reproductive toxicity in male fish. Molecular docking and dual-luciferase reporter gene experiments elucidated that TDtBPP inhibited the promotion of vitamin D on hsd3b1 transcription by the vitamin D receptor and thus downregulated the expression of hsd3b1. Our findings provide first time evidence that TDtBPP poses a risk to male fish reproduction at environmentally relevant levels.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, OttawaK1S 5B6, Ontario ,Canada
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| |
Collapse
|
7
|
Feng X, Xu W, Ji X, Liang J, Liu X, Liu X, Liu C, Qu G, Liu R. First Evidence of Novel Organothiophosphate Esters as Prevalent New Pollutants in Dust from Automotive Repair Shops Discovered by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22790-22798. [PMID: 39582259 DOI: 10.1021/acs.est.4c09683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The occurrence of organophosphorus compounds has garnered global concern due to their widespread production and potential environmental risks. Limited structural information has hindered a comprehensive understanding of their composition. By characteristic fragmentation-based nontarget analysis, the occurrence and composition of organothiophosphate esters (OTPEs), which are antiwear additives in lubricant oils that have received little attention previously, were investigated in dust from automotive repair shops and surrounding buildings. Fourteen OTPEs were tentatively identified, including four triarylphosphorothionates, six O,O-dialkyl phosphorothioates, and four O-alkyl O-alkyl sulfone phosphorothioates, among which four OTPEs were further confirmed by authentic standards or an industrial product. Triphenyl phosphorothioate (TPhPt) and tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168=S) were prevalently detected in automotive repair shops with median concentrations of 230 and 246 ng/g, respectively, closely comparable to triphenyl phosphate (TPhP, median concentration: 302 ng/g). O,O-Dihexyl phosphorothioate (DHPt), O,O-dioctyl phosphorothioate (DOPt), O-hexyl O-hexyl sulfone phosphorothioate (DHSPt), and O-octyl O-octyl sulfone phosphorothioate (DOSPt) were the abundant analogues in automotive repair shops with semiquantitative median concentrations in the range of 119-1.05 × 103 ng/g. Hierarchical cluster analysis showed that OTPEs exhibited similar distribution patterns across automotive repair shops, indicating that these chemicals had similar sources. Moreover, the concentrations of OTPEs were usually higher in automotive repair shops than that in surrounding buildings, suggesting a motor vehicle related emission source. To our knowledge, 12 out of the 14 detected OPTEs were reported in the environment for the first time. The discovery of these OTPEs expanded the scope of known organophosphorus pollutants, highlighting the potential contaminants of OTPEs from lubricant oils for automotive and industrial applications.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Chunguang Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Gao M, Zhang Q, Wu S, Wu L, Cao P, Zhang Y, Rong L, Fang B, Yuan C, Yao Y, Wang Y, Sun H. Contamination Status of Novel Organophosphate Esters Derived from Organophosphite Antioxidants in Soil and the Effects on Soil Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10740-10751. [PMID: 38771797 DOI: 10.1021/acs.est.3c10611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The contamination status of novel organophosphate esters (NOPEs) and their precursors organophosphite antioxidants (OPAs) and hydroxylated/diester transformation products (OH-OPEs/di-OPEs) in soils across a large-scale area in China were investigated. The total concentrations of the three test NOPEs in soil were 82.4-716 ng g-1, which were considerably higher than those of traditional OPEs (4.50-430 ng g-1), OPAs (n.d.-30.8 ng g-1), OH-OPEs (n.d.-0.49 ng g-1), and di-OPEs (0.57-21.1 ng g-1). One NOPE compound, i.e., tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) contributed over 65% of the concentrations of the studied OPE-associated contaminants. A 30-day soil incubation experiment was performed to confirm the influence of AO168 = O on soil bacterial communities. Specific genera belonging to Proteobacteria, such as Lysobacter and Ensifer, were enriched in AO168 = O-contaminated soils. Moreover, the ecological function of methylotrophy was observed to be significantly enhanced (t-test, p < 0.01) in soil treated with AO168 = O, while nitrogen fixation was significantly inhibited (t-test, p < 0.01). These findings comprehensively revealed the contamination status of OPE-associated contaminants in the soil environment and provided the first evidence of the effects of NOPEs on soil microbial communities.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lina Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peiyu Cao
- Department of Global Development, College of Agriculture and Life Science, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York 14850, United States
| | - Yaozhi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chaolei Yuan
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Zhang X, Shi J, Wang R, Ma J, Li X, Cai W, Li T, Zou W. Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134389. [PMID: 38669931 DOI: 10.1016/j.jhazmat.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (AO168 =O), a novel organophosphate ester, is prevalent and abundant in the environment, posing great exposure risks to ecological and public health. Nevertheless, the toxicological effects of AO168 =O remain entirely unknown to date. The results in this study indicated that acute exposure to AO168 =O at 10 and 100 μg/L for 5 days obviously impaired cardiac morphology and function of zebrafish larvae, as proofed by decreased heartbeat, stroke volume, and cardiac output and the occurrence of pericardial edema and ventricular hypertrophy. Transcriptomics, polymerase chain reaction, and molecular docking revealed that the strong interaction of AO168 =O and transferrin receptor 1 activated the transportation of ferric iron into intracellular environment. The release of free ferrous ion to cytoplasmic iron pool also contributed to the iron overload in heart region, thus inducing ferroptosis in larvae via generation of excessive reactive oxygen species, glutathione peroxidase 4 inhibition, glutathione depletion and lipid peroxidation. Ferroptosis inhibitor (Fer-1) co-exposure effectively relieved the cardiac dysfunctions of zebrafish, verifying the dominant role of ferroptosis in the cardiotoxicity caused by AO168 =O. This research firstly reported the adverse impact and associated mechanisms of AO168 =O in cardiomyogenesis of vertebrates, underlining the urgency of concerning the health risks of AO168 =O.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Ruonan Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Wenwen Cai
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tengfei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
11
|
Hu J, Lyu Y, Li M, Wang L, Jiang Y, Sun W. Discovering Novel Organophosphorus Compounds in Wastewater Treatment Plant Effluents through Suspect Screening and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6402-6414. [PMID: 38546437 DOI: 10.1021/acs.est.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Limited knowledge on the structure of emerging organophosphorus compounds (OPCs) hampers our comprehensive understanding of their environmental occurrence and potential risks. Through suspect and nontarget screening, combining data-dependent acquisition, data-independent acquisition, and parallel reaction monitoring modes, we identified 60 OPCs (17 traditional and 43 emerging compounds) in effluents of 14 wastewater treatment plants (WWTPs) in Beijing and Qinghai, China. These OPCs comprise 26 organophosphate triesters, 17 organophosphate diesters, 6 organophosphonates, 7 organothiophosphate esters, and 4 other OPCs. Notably, 14 suspect OPCs were newly identified in WWTP effluents, and 16 nontarget OPCs were newly discovered in environmental matrices. Specifically, the cyclic phosphonate, (5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl dimethyl phosphonate P-oxide (PMMMPn), consistently appeared in all WWTP effluents, with semiquantitative concentrations ranging from 44.4 to 282 ng/L. Its analogue, di-PMMMPn, presented in 93% of wastewater samples. Compositional differences between the WWTP effluents of two cities were mainly attributed to emerging OPCs. Hazard and ecological risk assessment underscored the substantial contribution of chlorinated organophosphate esters and organothiophosphate esters to overall risks of OPCs in WWTP effluents. This study provides the most comprehensive OPC profiles in WWTP effluents to date, highlighting the need for further research on their occurrence, fate, and risks, particularly for chlorinated OPCs.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
12
|
Yin Y, Zhao N, Pan W, Xue Q, Fu J, Xiao Z, Wang R, Wang P, Li X. Unravelling bioaccumulation, depletion and metabolism of organophosphate triesters in laying hens: Insight of in vivo biotransformation assisted by diester metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133598. [PMID: 38280327 DOI: 10.1016/j.jhazmat.2024.133598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Organophosphate triesters (tri-OPEs) threaten human health through dietary exposure, but little is known about their feed-to-food transfer and in vivo behavior in farm animals. Herein 135 laying hens were fed with contaminated feed (control group, low-level group and high-level group) to elucidate the bioaccumulation, distribution, and metabolism of the six most commonly reported tri-OPEs. The storage (breast muscle), metabolism and mobilization (liver and blood) and non-invasive (feather) tissues were collected. The exposure-increase (D1∼14) and depuration-decrease (D15∼42) trends indicated that feed exposure caused tri-OPE accumulation in animal tissues. Tissue-specific and moiety-specific behavior was observed for tri-OPEs. The highest transfer factor (TF) and transfer rate (TR) were observed in liver (TF: 14.8%∼82.3%; TR: 4.40%∼24.5%), followed by feather, breast muscle, and blood. Tris(2-chloroisopropyl) phosphate (TCIPP) had the longest half-life in feather (72.2 days), while triphenyl phosphate (TPhP) showed the shortest half-life in liver (0.41 days). Tri-OPEs' major metabolites (organophosphate diesters, di-OPEs) were simultaneously studied, which exhibited dose-dependent and time-dependent variations following administration. In breast muscle, the inclusion of di-OPEs resulted in TF increases of 735%, 1108%, 798%, and 286% than considering TCIPP, tributyl phosphate, tris(2-butoxyethyl) phosphate and tris(2-ethylhexyl) phosphate alone. Feather was more of a proxy of birds' long-term exposure to tri-OPEs, while short-term exposure was better reflected by di-OPEs. Both experimental and in silico modeling methods validated aryl-functional group facilitated the initial accumulation and metabolism of TPhP in the avian liver compared to other moiety-substituted tri-OPEs.
Collapse
Affiliation(s)
- Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Nannan Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
13
|
Shi H, Zhao Y. Bringing the emerging organophosphate flame retardants (eOPFRs) into view: A hidden ecological and human health threat. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106833. [PMID: 38215608 DOI: 10.1016/j.aquatox.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The production and usage of organophosphate flame retardants (OPFRs) in textiles, plastics, and electronics have surged, with phosphorus-based flame retardants constituting over 30 % of the global consumption of flame retardants. Meanwhile, concerns regarding the potential hazards of OPFRs to ecosystems and human health including disruptions in the endocrine system, inhibition of reproduction, and manifestation of developmental defects have intensified. However, our comprehensive data analysis has unveiled a pronounced and critical knowledge gap, as at present, a majority of studies emphasize the attributes of traditional OPFRs, such as triphenyl phosphate (TPHP), while emerging OPFRs (eOPFRs) remain undeservedly overlooked. We elaborated on the current advancements and challenges regarding eOPFRs research and demonstrated that eOPFRs exhibit considerable diversity in terms of their chemical structures, substantial residue levels, broad sources of occurrence, and limited understanding of their potent (eco)toxicological implications. In light of these attributes, it becomes evident that the environmental and health risks of eOPFRs can be comparable to, if not surpass, those attributed to traditional OPFRs. This compelling observation underscores an imperative need for heightened research focus and extensive research efforts dedicated to the study of eOPFRs, rather than still focusing on the realm of their traditional counterparts. Despite the challenges ahead, the emphasized environmental surveillance and toxicological assessment are imperative to prevent the potential evolution of these compounds into a significant ecological and human health threat.
Collapse
Affiliation(s)
- Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
14
|
Chen Y, Xiao Q, Su Z, Yuan G, Ma H, Lu S, Wang L. Discovery and occurrence of organophosphorothioate esters in food contact plastics and foodstuffs from South China: Dietary intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167447. [PMID: 37788781 DOI: 10.1016/j.scitotenv.2023.167447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A recent study revealed the presence of non-pesticide organothiophosphate esters (OTPEs) - precursors to organophosphate esters (OPEs) contaminants - in river water. Since OPEs have demonstrated adverse reproductive outcomes in humans, this accentuates the urgency to explore the prevalence of non-pesticide OTPEs in other potential human exposure matrices. In this study, a nontarget screening method based on high-resolution mass spectrometry was used to identify OTPEs in food contact plastic (FCP) samples collected from South China. O,O,O-triphenyl phosphorothioate (TPhPt) and O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168 = S) were unequivocally identified (Level 1), while O,O-di(di-butylphenyl) O-methyl phosphorothioate (BDBPMPt) was tentatively identified (Level 2b, indicating probable structure based on diagnostic evidence). Among n = 70 FCP samples, AO168 = S emerged with the highest detection frequency and median concentration of 74 % and 111 ng/g, respectively. Significant Pearson correlations were observed in log-transformed peak areas of AO168 = S and TPhPt in FCPs with their respective oxons, respectively. Occurrences of AO168 = S and TPhPt were further investigated in n = 100 foodstuff samples using a market basket method. AO168 = S and TPhPt exhibited detection frequencies of 43 % and 44 % in all food items with mean concentrations of 2.17 ng/g wet weight (ww) (range: <0.53-67.8 ng/g ww) and 0.112 ng/g ww (range: <0.006-2.39 ng/g ww), respectively. The highest mean concentrations for AO168 = S and TPhPt were found in vegetables (4.62 ng/g ww) and oil (3.00 ng/g ww), respectively. The median estimated daily intakes (EDIs) of AO168 = S and TPhPt via diet were calculated as 10.4 and 1.51 ng/kg body weight/day, respectively. For AO168 = S, only meat and vegetables contributed to the median EDI, whereas for TPhPt, oil was identified as the principal contributor to the median EDI. This study for the first time evaluated human exposure to OTPEs via diet, providing new insights to overall human exposure to OPEs.
Collapse
Affiliation(s)
- Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
15
|
Wu F, Chen R, Li Y, Wan Y, Hu J. Unregistered Hexaphenoxycyclotriphosphazene and Its Metabolite Antagonize Retinoic Acid and Retinoic X Receptors and Cause Early Developmental Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20551-20558. [PMID: 38037888 DOI: 10.1021/acs.est.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hexaphenoxycyclotriphosphazene (HPCTP), an unregistered chemical, has been used as a substitute for triphenyl phosphate in flame retardants and plasticizers. Here, we identified its metabolite, pentaphenoxycyclotriphosphazene (PPCTP) in the liver of Japanese medaka exposed to HPCTP. When sexually mature female medaka were exposed to HPCTP at 37.0, 90.4, and 465.4 ng/L for 35 days, the HPCTP concentration (642.1-2531.9 ng/g lipid weight [lw]) in the embryos considerably exceeded that (34.7-298.1 ng/g lw) in the maternal muscle, indicating remarkable maternal transfer. During 0-9 days postfertilization, the HPCTP concentration in the embryos decreased continuously, while the PPCTP concentration increased. HPCTP and PPCTP antagonized the retinoic X receptor with 50% inhibitory concentrations (IC50) of 34.8 and 21.2 μM, respectively, and PPCTP also antagonized the retinoic acid receptor with IC50 of 2.79 μM. Such antagonistic activities may contribute to eye deformity (4.7% at 465.4 ng/L), body malformation (2.1% at 90.4 ng/L and 6.8% at 465.4 ng/L), and early developmental mortality (11.6-21.7% in all exposure groups) of the embryos. HPCTP was detected in a main tributary of the Yangtze River Basin. Thus, HPCTP poses a risk to wild fish populations, given the developmental toxicities associated with this chemical and its metabolite.
Collapse
Affiliation(s)
- Feifan Wu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|