1
|
Jiang Z, Zeng J, Wang X, Yu H, Yue L, Wang C, Chen F, Wang Z. Biodegradable microplastics and dissemination of antibiotic resistance genes: An undeniable risk associated with plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125952. [PMID: 40032228 DOI: 10.1016/j.envpol.2025.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Biodegradable plastics (BDPs) represent a promising alternative to conventional plastics; however, the release of microplastics (MPs) during degradation necessitates an urgent investigation into their biological effects. The potential risks associated with MPs and additives released from BDPs, particularly in facilitating the dissemination of antibiotic resistance genes (ARGs), remain largely unknown. This study aims to investigate the effects of polylactic acid (PLA) MPs and their common plasticizer, dibutyl phthalate (DBP), on the horizontal gene transfer (HGT) of ARGs using conjugative transfer and transformation model systems. The viability of Escherichia coli (E. coli) cells after exposure to PLA MPs (0.01, 0.1, 1, and 10 mg L-1), DBP (0.01, 0.1, 1, and 10 μg L-1) alone, or in combination (1 mg L-1 PLA MPs + 1 μg L-1DBP) remained unaffected. Exposure to PLA MPs at environmentally relevant concentrations did not promote the HGT of ARGs. However, the addition of DBP significantly enhanced the transfer frequency by 1.5-1.8 folds compared to exposure to PLA MPs alone. The accelerated dissemination of ARGs was primarily attributed to the elevated levels of reactive oxygen species (by 26.2%), increased membrane permeability (by 19.4%), and the up-regulation of genes involved in mating pair formation (by 1.6-3.8 folds) and DNA translocation (by 1.5-3.4 folds). These findings underscore the critical role of additives and highlight the potential accumulative effects associated with prolonged exposure to high concentrations of PLA MPs, which should be considered for a comprehensive risk assessment of BDPs.
Collapse
Affiliation(s)
- Zhaoheng Jiang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Hanxiao Yu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Zhang T, Fan L, Zhang YN. Antibiotic resistance genes in aquatic systems: Sources, transmission, and risks. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107392. [PMID: 40318462 DOI: 10.1016/j.aquatox.2025.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The widespread use of antibiotics has significantly contributed to the spread of antibiotic resistance genes (ARGs), which have become a major challenge to global ecological and public health. Antibiotic resistance not only proliferates in clinical settings but also persists in aquatic systems, where its residues and cross-domain spread pose a dual threat to both ecosystems and human health. ARGs spread rapidly within microbial communities through horizontal gene transfer (HGT) and vertical gene transfer (VGT). Aquatic systems are the key transmission medium. This review summarizes recent studies on the Source-Transport-Sink dynamics of ARGs in aquatic environments, along with their environmental and health risk assessments, with a particular focus on the potential ecotoxicity of ARGs transmission. It also examines the distribution characteristics of ARGs across different regions and the ecological risk assessment methods employed, highlighting the limitations of existing models when addressing the complex behaviors of ARGs. By analyzing the potential hazards of ARGs to aquatic ecosystems and public health, this article aims to provide a scientific foundation for future research and the development of public policies.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Linyi Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
3
|
Luo G, Fan L, Liang B, Guo J, Gao SH. Determining Antimicrobial Resistance in the Plastisphere: Lower Risks of Nonbiodegradable vs Higher Risks of Biodegradable Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7722-7735. [PMID: 40204671 DOI: 10.1021/acs.est.5c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The plastisphere is a potential contributor to global antimicrobial resistance (AMR), posing potential threats to public and environmental health. However, comprehensively quantifying the contribution of microplastics with different biodegradability to AMR is lacking. In this study, we systematically quantified AMR risk mediated by biodegradable and nonbiodegradable microplastics using abundance-based methods and a custom AMR risk ranking framework that includes antimicrobial resistance genes (ARGs) abundance, mobility, and host pathogenicity. Our results demonstrated that biodegradable microplastics exhibited higher AMR risk compared to that of nonbiodegradable plastics. Key resistance genes, including those for multidrug, bacitracin, and aminoglycoside resistance, were predominant. Machine learning analysis identified cell motility as the most significant signature associated with AMR risk, highlighting its potential role in promoting ARGs dissemination. In addition, biodegradable microplastics promoted oxidative stress and SOS responses, which likely enhanced horizontal gene transfer (HGT) and AMR. Metagenome-assembled genomes (MAGs) analysis uncovered the colocalization of microplastic degradation genes, ARGs, and virulence factors (VFs), further supporting the elevated risk in biodegradable plastisphere. The proximity of ARGs to mobile genetic elements (MGEs) suggests that microplastic degradation processes might favor ARGs mobility. These findings would contribute critical insights into AMR dissemination in the plastisphere, emphasizing the need for integrated environmental and public health strategies under the context of One Health.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban-rural Water Resource and Environment School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban-rural Water Resource and Environment School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shu-Hong Gao
- State Key Laboratory of Urban-rural Water Resource and Environment School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Li W, Wang B, Wang T, Li J, Qi J, Luo J, Zhang T, Xu X, Hou L. A review of antibiotic resistance genes in major river basins in China: Distribution, drivers, and risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125920. [PMID: 40010590 DOI: 10.1016/j.envpol.2025.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Antibiotic resistance genes (ARGs) have complex transmission pathways and are prone to form multi-drug-resistant bacteria, threatening the ecological environment and human health. This paper elucidates the distribution and dissemination of ARGs across seven major river basins in China through a comprehensive analysis of relevant literature from the past decade. It presents a comprehensive catalog of pertinent risk assessment methodologies and potential management strategies aimed at mitigating the threat posed by antibiotic resistance due to ARGs. The analysis results showed that the pollution abundance of ARGs showed a decreasing trend from east to west, with the estuarine environment and economically developed areas standing out, with sulfonamides and tetracyclines, among others, as the main types of pollution. Human activities are closely related to the occurrence and spread of ARGs. Mobile genetic factors and microbial communities act as the main drivers to promote the proliferation of ARGs among different microorganisms through horizontal transfer and other pathways. The exhibition of ARGs assessment methods was comparatively analyzed, while Chinese river basins are at medium-high risk and need to be managed rationally. This review can provide a reference for the distribution, spread and management of ARGs in Chinese river basin.
Collapse
Affiliation(s)
- Wenjia Li
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Tao Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Junmin Qi
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Ting Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li'an Hou
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Xu Z, Li S, Ma Y, Li C, Lu H, Xiong J, He G, Li R, Ren X, Huang B, Pan X. Role of organophosphorus pesticides in facilitating plasmid-mediated conjugative transfer: Efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137318. [PMID: 39854814 DOI: 10.1016/j.jhazmat.2025.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Non-antibiotic conditions, including organophosphorus pesticides (OPPs), have been implicated in the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) to varying degrees. While most studies focus on the toxicity of OPPs to humans and animals, their roles in ARG dissemination remain largely unexplored. In this study, we investigate the effects and involved molecular mechanisms of environmentally relevant concentrations of malathion and dimethoate, two representative OPPs, on plasmid-mediated conjugal transfer. By detecting reactive oxygen species (ROS) production and cell membrane permeability, we gained insights into the underlying processes. Furthermore, we substantiated the role of ROS and cell membrane permeability in plasmid-mediated conjugative transfer through the analysis of relevant antioxidant enzyme activities, cell membrane-related indices, and RNA sequences. Additionally, our examination of proton motive force and adenosine triphosphate content provided evidence that OPPs create conditions conducive to plasmid-mediated conjugative transfer from an energetic perspective. The findings of the present study highlight the potential risk of OPPs in promoting ARG spread, which could ultimately provide new theoretical support and direction for future research on the impacts of pesticides on ARG propagation.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Lu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guangzhou He
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruiying Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Ye T, Li Y, Zhou X, Ye Y, Liu X, Xiong W. Hormesis-like effects of black phosphorus nanosheets on the spread of multiple antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137207. [PMID: 39827804 DOI: 10.1016/j.jhazmat.2025.137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes. The results indicated that BPNSs exhibited concentration-dependent hormesis-like effects on bacterial conjugation gene transfer. Specifically, at sub-inhibitory concentrations (0.0001-1 mg/L), BPNSs promoted both intra- and intergeneric conjugative transfer, demonstrating an initial increase followed by a decline, with transfer rates rising by 1.5-3.1-fold and 1.5-3.3-fold, respectively. BPNSs were found to induce reactive oxygen species (ROS) production, increase malondialdehyde levels, and trigger the SOS response, enhancing plasmid uptake. Additionally, BPNSs increased membrane permeability by forming pores and upregulating outer membrane porins (OMPs) genes. At higher BPNSs concentrations (0.1-1 mg/L), conjugative frequency was inhibited due to the disruption of the cellular antioxidant system and changes in the adsorption process. These findings underscore the influence of BPNSs on the conjugative transfer of ARGs, complementing current knowledge of the biotoxicity and potential ecological risks associated with BPNSs.
Collapse
Affiliation(s)
- Tao Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yingbin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiangming Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
8
|
Gomes IB. The overlooked interaction of emerging contaminants and microbial communities: a threat to ecosystems and public health. J Appl Microbiol 2025; 136:lxaf064. [PMID: 40118512 DOI: 10.1093/jambio/lxaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
CONTEXT AND AIMS Emerging contaminants (ECs) and microbial communities should not be viewed in isolation, but through the One Health perspective. Both ECs and microorganisms lie at the core of this interconnected framework, as they directly influence the health of humans, animals, and the environment.The interactions between ECs and microbial communities can have profound implications for public health, affecting all three domains. However, these ECs-microorganism interactions remain underexplored, potentially leaving significant public health and ecological risks unrecognized. Therefore, this article seeks to alert the scientific community to the overlooked interactions between ECs and microbial communities, emphasizing the pivotal role these interactions may play in the management of 'One Health.' RESULTS The most extensively studied interaction between ECs and microbial communities is biodegradation. However, other more complex and concerning interactions demand attention, such as the impact of ECs on microbial ecology (disruptions in ecosystem balance affecting nutrient and energy cycles) and the rise and spread of antimicrobial resistance (a growing global health crisis). Although these ECs-microbial interactions had not been extensively studied, there are scientific evidence that ECs impact on microbial communities may be concerning for public health and ecosystem balance. CONCLUSIONS So, this perspective summarizes the impact of ECs through a One Health lens and underscores the urgent need to understand their influence on microbial communities, while highlighting the key challenges researchers must overcome. Tackling these challenges is vital to mitigate potential long-term consequences for both ecosystems and public health.
Collapse
Affiliation(s)
- Inês B Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical and Biological Engineeirng, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Yin M, Li P, Chen C, Jia R, Xia B, Liu Y, Liu A, Liu L, Li ZH. Bioremediation potential of sulfadiazine-degrading bacteria: Impacts on ryegrass growth and soil functionality. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138012. [PMID: 40122011 DOI: 10.1016/j.jhazmat.2025.138012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
The extensive use of antibiotics, particularly sulfadiazine (SDZ), has led to significant environmental contamination and the proliferation of antibiotic resistance genes (ARGs). This study investigates the bioremediation potential of two SDZ-degrading bacterial strains, Acinetobacter sp. M9 and Enterobacter sp. H1, and their impact on ryegrass (Lolium perenne) growth and the inter-root microenvironment in SDZ-contaminated soils. A pot experiment combined with amplicon and metagenomic sequencing revealed that inoculation with M9 and H1 significantly enhanced ryegrass growth by alleviating oxidative stress, increasing chlorophyll content, and improving soil nutrient availability. The strains also promoted SDZ degradation efficiency and improved carbon and nitrogen cycling through the upregulation of key functional genes. Furthermore, microbial community analysis demonstrated increased alpha diversity, shifts in dominant taxa, and functional enrichment in pollutant degradation pathways. The dynamics of ARGs revealed a decrease in aminoglycoside, rifamycin, and streptomycin resistance genes, while sulfonamide resistance genes increased due to the residual SDZ stress. These findings highlight the potential of M9 and H1 as sustainable bioremediation agents to mitigate antibiotic contamination, improve soil health, and support plant growth in polluted environments.
Collapse
Affiliation(s)
- Minghao Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ruolan Jia
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong
| | - Banghua Xia
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yiwei Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Aiqiu Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
10
|
Liu Y, Liu L, Wang X, Shao M, Wei Z, Wang L, Li B, Li C, Luo X, Li F, Zheng H. Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer. ECO-ENVIRONMENT & HEALTH 2025; 4:100136. [PMID: 40052062 PMCID: PMC11883372 DOI: 10.1016/j.eehl.2025.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) pose significant challenges to the One Health framework due to their intricate and multifaceted ecological and environmental impacts. However, the understanding of how MP properties influence ARG prevalence in mariculture sediments remains limited. Herein, the polystyrene (PS) and polyvinyl chloride (PVC) MPs with different sizes (20-120 μm and 0.5-2.0 mm) were selected to evaluate their impacts and underlying mechanisms driving ARGs dissemination. The results showed that PS and PVC MPs increased the relative abundance of ARGs by 1.41-2.50-fold and 2.01-2.84-fold, respectively, compared with control, particularly high-risk genes. The polymer type effect was identified as more influential than the size effect in driving the sediment resistome evolution. PVC shifted the microbial community assembly from stochastic to deterministic processes, thus enriching ARG host pathogens. Furthermore, the highly hydrophobic PS not only recruited the host bacteria colonization but also facilitated ARG exchange within the plastisphere. The exogenous additives released by PVC (e.g., heavy metals, bisphenol A, and tridecyl ester) and the particles synergistically promoted ARG conjugative transfer by inducing oxidative stress and enhancing cell membrane permeability. These findings revealed how MPs characteristics facilitated the spread of ARGs in marine benthic ecosystems, underscoring the importance of mitigating MPs pollution to maintain mariculture ecosystem health, prevent zoonotic diseases, and balance global mariculture with ecological health.
Collapse
Affiliation(s)
- Yifan Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Mengying Shao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Zihan Wei
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Lina Wang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenguang Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
11
|
Zhang X, Guo W, Zhang Z, Gao P, Tang P, Liu T, Yao X, Li J. Insights into the mobility and bacterial hosts of antibiotic resistance genes under dinotefuran selection pressure in aerobic granular sludge based on metagenomic binning and functional modules. ENVIRONMENTAL RESEARCH 2025; 268:120807. [PMID: 39798650 DOI: 10.1016/j.envres.2025.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules. It was found that DIN stress increased the total abundance of ARGs, mobile genetic elements (MGEs), and VFGs in the AGS system, with the highest abundance of fabG (4.6%), tnpA (55.6%) and LPS (39.0%), respectively. The proliferation of the enteric pathogens Salmonella enterica and Escherichia coli in the system indicates that DIN induces exposure of harmless bacteria to the infected environment. The genera Nitrospira (1169 ARG subtypes) and Dechloromonas (663 ARG subtypes) were identified as the potentially antibiotic-resistant bacteria carrying the most ARGs and MGEs in the metagenome-assembled genomes. Co-localization patterns of some ARGs, MGEs, and the SOS response-related gene lexA were observed on metagenome-assembled contigs under high levels of DIN exposure, suggesting DIN stimulated ROS production (101.8% increase over control), altered cell membrane permeability, and increased the potential for horizontal gene transfer (HGT). Furthermore, the DNA damage caused by DIN in AGS led to the activation of the antioxidant system and the SOS repair response, which in turn promoted the expression of the type IV secretion system and HGT through the flagellar channel. This study extends the previously unappreciated DIN understanding of the spread and associated risks of ARGs and VFGs in the AGS system of WWTPs. It elucidates how DIN facilitates HGT, offering a scientific basis for controlling emerging contaminant-induced resistance.
Collapse
Affiliation(s)
- Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Zuyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tingting Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xingrong Yao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
12
|
Bing J, Wang Y, Zou Y, Zhang H, Chou Z, Cheng W, Xiao X. Catalytic ozonation of dimethyl phthalate by Ti-MCM-41 in water. RSC Adv 2025; 15:2106-2114. [PMID: 39845117 PMCID: PMC11753080 DOI: 10.1039/d4ra07901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
A Ti-MCM-41 mesoporous molecular sieve catalyst was prepared by a hydrothermal method. Nitrogen adsorption desorption, XRD, TEM and SEM characterization results showed that the catalyst had a large specific surface area, a regular hexagonal pore structure, and titanium doping was uniformly dispersed in MCM-41 molecular sieves. The amount of titanium doping, reaction temperature, and the initial solution pH had important effects on the catalytic ozonation of dimethyl phthalate (DMP) by Ti-MCM-41. In comparison to ozonation alone and MCM-41/O3, Ti-MCM-41/O3 exhibited the most effective degradation and mineralization of DMP, with a Si/Ti ratio of 80, a reaction temperature of 25 °C, and an initial solution pH of 5.4. Ozonation alone, MCM-41/O3, and Ti-MCM-41/O3 removed 94%, 96%, and 100% of DMP after 15 min of reaction. At 60 min of reaction, the TOC removal rate of the Ti-MCM-41/O3 process reached 36%, which was 2.4 times that of the O3 process and 1.9 times that of the MCM-41/O3 process. The experimental results of initial solution pH and hydroxyl radical capture showed that Ti-MCM-41 had the highest catalytic activity near the zero-charge point, and hydroxyl radicals were active oxygen species. Ti-MCM-41 catalytic ozonation of DMP had synergistic effects and is a promising environmental catalytic material.
Collapse
Affiliation(s)
- Jishuai Bing
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
| | - Yaoting Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Yiming Zou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Zhiling Chou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Weixiang Cheng
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Xin Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
| |
Collapse
|
13
|
Zhang X, Wang J, Yang Z, Zhang Z, Wang M, Zhang T, Chen Y, Wu X, Liu P, Jia H. Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:834-845. [PMID: 39723446 DOI: 10.1021/acs.est.4c10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection. The results showed that MPs significantly facilitated the conjugative transfer of ARGs compared with individual ultraviolet disinfection, and PSMPs exhibited higher facilitation than PLAMPs. The facilitation effects were attributed to light shielding and the production of reactive oxygen species (ROS) and nanoplastics from ultraviolet irradiation of MPs. The light shielding of MPs protected the bacteria and ARGs from ultraviolet inactivation. More importantly, ROS and nanoplastics generated from irradiated MPs induced intracellular oxidative stress on bacteria and further increased the cell membrane permeability and intercellular contact, ultimately enhancing the ARG exchange. The greater fragmentation of PSMPs than PLAMPs resulted in a higher intracellular oxidative stress and a stronger enhancement. This study highlights the concerns of conventional and biodegradable MPs associated with the transfer of ARGs during wastewater treatment, which provides new insights into the combined risks of MPs and ARGs in the environment.
Collapse
Affiliation(s)
- Xinrui Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jian Wang
- Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Zeyuan Yang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zixuan Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mingjun Wang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Taishuo Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yiqi Chen
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaowei Wu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Guo J, Yang M, Huang R, Yu J, Peng K, Cai C, Huang X, Wu Q, Liu J. The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178336. [PMID: 39754942 DOI: 10.1016/j.scitotenv.2024.178336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs). Mangrove ecosystems have a complex influence on the behaviors of MPs and additives. Under the action of natural and unnatural factors, these pollutants exhibit complex behaviors including migration, interception, deposition and transformation, that are closely linked to those of particulate carbon, particularly carbon sequestration processes. MPs and additives hinder the CS function of mangroves by harming the growth of flora and fauna, influencing microbial nitrogen and sulfur cycles, and enhancing the degradation of organic matter in the sediment. The increasing accumulation and widespread occurrence of MPs and additives will greatly influence the carbon cycle. Future work is encouraged on systematic investigation of new alternatives to plastics and additives, and research methods to uncover the impact mechanisms of MPs and additives on BCEs. The developments of management measures and engineering technologies are also required to enhance pollutant control and mangrove CS.
Collapse
Affiliation(s)
- Junru Guo
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Mingqing Yang
- Fuzhou Urban and Rural Construction Group Company Limited, Fuzhou 350007, China
| | - Ruohan Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Junyi Yu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Fuzhou City Construction Investment Group Company Limited, Fuzhou 350014, China.
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China.
| |
Collapse
|
15
|
Lin C, Li LJ, Yang K, Xu JY, Fan XT, Chen QL, Zhu YG. Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance. THE ISME JOURNAL 2025; 19:wraf009. [PMID: 39869787 PMCID: PMC11845867 DOI: 10.1093/ismejo/wraf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes (ARGs). However, the effects of protozoan predation on ARGs dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of ARGs to soil microbial communities. Protozoan predation reduced the absolute abundance of plasmids but promoted the expression of conjugation-associated genes, leading to a 5-fold and 4.5-fold increase in conjugation frequency in the presence of C. steinii and A. castellanii, respectively. Excessive oxidative stress, increased membrane permeability, and the provoked SOS response closely associated with the increased conjugative transfer. Protozoan predation also altered the plasmid host range and selected for specific transconjugant taxa along with ARGs and virulence factors carried by transconjugant communities. This study underscores the role of protozoa in the plasmid-mediated conjugative transfer of ARGs, providing new insights into microbial mechanisms that drive the dissemination of environmental antibiotic resistance.
Collapse
Affiliation(s)
- Chenshuo Lin
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Li-Juan Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jia-Yang Xu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing-Lin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Song J, Huang Z, Gao Y, Wang W, Guo G, Duan Y, Zhou S, Tang Z. Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125260. [PMID: 39510298 DOI: 10.1016/j.envpol.2024.125260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution.
Collapse
Affiliation(s)
- Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Weigang Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
17
|
Li Y, Zheng Q, Lu Y, Qiao Y, Guo H, Ma Q, Zhou J, Li H, Wang T. Water temperature disturbance alters the conjugate transfer of antibiotic resistance genes via affecting ROS content and intercellular aggregation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135762. [PMID: 39255666 DOI: 10.1016/j.jhazmat.2024.135762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10-7 at a constant water temperature of 5 °C, and it reached 2.18 × 10-5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5-30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.
Collapse
Affiliation(s)
- Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiyi Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanhan Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yinuo Qiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
18
|
Zhao H, Sun Y, Cao X, Waigi MG, Liu J. Effects and mechanisms of chlormequat on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation in agro-ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135639. [PMID: 39191006 DOI: 10.1016/j.jhazmat.2024.135639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Chlormequat (CCC) is widely used in agricultural production to increase the crop yield. However, the effects of CCC on transfer of ARGs in agricultural system are still unclear. In this study, using E.coli DH5α (carrying RP4 plasmid with AmpR, TetR, KanR) as the donor bacterium, E.coli HB101, endophytic Pseudomonas sp. Ph6 or rhizosphere Pseudomonas putida KT2440 as the recipient strain, three conjugative systems were designed to investigate the effects of CCC on ARG transfer. Meanwhile, hydroponics experiments were designed to study the ARG spread in the rice-nutrient solution system after CCC application. The results showed that CCC significantly promoted the RP4 conjugation by expanding cell membrane permeability and improving the relative transcription levels of trfAp, trbBp, traA and traL genes in RP4. Furthermore, the conjugation frequency between E. coli and Pseudomonas was much higher than that between E. coli cells. Compared with spraying foliage with 2500 mg·L-1 of CCC, soaking seeds with 250 mg·L-1 of CCC was more beneficial to the colonization of ARB in rice, and also increased the abundance of ARGs in rice cultivation system. These results remind that the use of CCC in agricultural production might promote the ARG transmission in agro-ecosystems; however, foliage spraying with 2500 mg·L-1 of CCC could control its spread.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yulong Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Cao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
19
|
Zhang H, Xu L, Hou X, Li Y, Niu L, Zhang J, Wang X. Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124676. [PMID: 39103039 DOI: 10.1016/j.envpol.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
The emergence and spread of antibiotic resistance in the environment pose a serious threat to global public health. It is acknowledged that non-antibiotic stresses, including disinfectants, pharmaceuticals and organic pollutants, play a crucial role in horizontal transmission of antibiotic resistance genes (ARGs). Despite the widespread presence of non-steroidal anti-inflammatory drugs (NSAIDs), notably in surface water, their contributions to the transfer of ARGs have not been systematically explored. Furthermore, previous studies have primarily concentrated on model strains to investigate whether contaminants promote the conjugative transfer of ARGs, leaving the mechanisms of ARG transmission among antibiotic resistant bacteria in natural aqueous environments under the selective pressures of non-antibiotic contaminants remains unclear. In this study, the Escherichia coli (E. coli) K12 carrying RP4 plasmid was used as the donor strain, indigenous strain Aeromonas veronii containing rifampicin resistance genes in Taihu Lake, and E. coli HB101 were used as receptor strains to establish inter-genus and intra-genus conjugative transfer systems, examining the conjugative transfer frequency under the stress of ketoprofen. The results indicated that ketoprofen accelerated the environmental spread of ARGs through several mechanisms. Ketoprofen promoted cell-to-cell contact by increasing cell surface hydrophobicity and reducing cell surface charge, thereby mitigating cell-to-cell repulsion. Furthermore, ketoprofen induced increased levels of reactive oxygen species (ROS) production, activated the DNA damage-induced response (SOS), and enhanced cell membrane permeability, facilitating ARG transmission in intra-genus and inter-genus systems. The upregulation of outer membrane proteins, oxidative stress, SOS response, mating pair formation (Mpf) system, and DNA transfer and replication (Dtr) system related genes, as well as the inhibition of global regulatory genes, all contributed to higher transfer efficiency under ketoprofen treatment. These findings served as an early warning for a comprehensive assessment of the roles of NSAIDs in the spread of antibiotic resistance in natural aqueous environments.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linyun Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jie Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xixi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
20
|
Yin M, Liu Z, Sun Z, Qu X, Chen Z, Diao Y, Cheng Y, Shen S, Wang X, Cai Z, Lu B, Tan S, Wang Y, Zhao X, Chen F. Biomimetic Scaffolds Regulating the Iron Homeostasis for Remolding Infected Osteogenic Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407251. [PMID: 39373362 PMCID: PMC11600272 DOI: 10.1002/advs.202407251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Indexed: 10/08/2024]
Abstract
The treatment of infected bone defects (IBDs) needs simultaneous elimination of infection and acceleration of bone regeneration. One mechanism that hinders the regeneration of IBDs is the iron competition between pathogens and host cells, leading to an iron deficient microenvironment that impairs the innate immune responses. In this work, an in situ modification strategy is proposed for printing iron-active multifunctional scaffolds with iron homeostasis regulation ability for treating IBDs. As a proof-of-concept, ultralong hydroxyapatite (HA) nanowires are modified through in situ growth of a layer of iron gallate (FeGA) followed by incorporation in the poly(lactic-co-glycolic acid) (PLGA) matrix to print biomimetic PLGA based composite scaffolds containing FeGA modified HA nanowires (FeGA-HA@PLGA). The photothermal effect of FeGA endows the scaffolds with excellent antibacterial activity. The released iron ions from the FeGA-HA@PLGA help restore the iron homeostasis microenvironment, thereby promoting anti-inflammatory, angiogenesis and osteogenic differentiation. The transcriptomic analysis shows that FeGA-HA@PLGA scaffolds exert anti-inflammatory and pro-osteogenic differentiation by activating NF-κB, MAPK and PI3K-AKT signaling pathways. Animal experiments confirm the excellent bone repair performance of FeGA-HA@PLGA scaffolds for IBDs, suggesting the promising prospect of iron homeostasis regulation therapy in future clinical applications.
Collapse
Affiliation(s)
- Mengting Yin
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Zhiqing Liu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Zhongyi Sun
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
- Suzhou First People's HospitalSchool of MedicineAnhui University of Science and TechnologyAnhui232001P.R. China
| | - Xinyu Qu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Ziyan Chen
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Yuying Diao
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Yuxuan Cheng
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Sisi Shen
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Xiansong Wang
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Zhuyun Cai
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Bingqiang Lu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Shuo Tan
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Xinyu Zhao
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Feng Chen
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
- Suzhou First People's HospitalSchool of MedicineAnhui University of Science and TechnologyAnhui232001P.R. China
| |
Collapse
|
21
|
Liu M, Su X, Yuan J, Yang X, Chen Y, Xu Q, Huang X, Xu J, He Y. Unravelling the processes involved in biodegradation of chlorinated organic pollutant: From microbial community to isolated organohalide degraders. WATER RESEARCH 2024; 268:122730. [PMID: 39504695 DOI: 10.1016/j.watres.2024.122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Hundreds of studies have demonstrated the bioremediation of chlorinated organic pollutants (COPs) in flooded environments. However, the role of specific functional strains in degrading COPs under complex media such as wetlands is still unclear. Here, we focused on the microbial characteristics of COP-polluted sediments, identified the bacteria responsible for degradation and conducted a genomic analysis of these bacteria. Four strains were obtained and identified as Petrimonas sulfuriphila PET, Robertmurraya sp. CYTO, Hungatella sp. CloS1 and Enterococcus avium PseS3, respectively. They were capable of degrading a typical COP, γ-hexachlorocyclohexane (γ-HCH). The residual γ-HCH concentrations were 58.8 % (PET), 45.6 % (CYTO), 60.2 % (CloS1), and 69.3 % (PseS3) of its initial value, respectively. Strain PET, CYTO and CloS1 could degrade γ-HCH to its dehalogenation product chlorobenzene. Each strain harbors genes annotated to the pathway of halogenated organic matter degradation (e.g. 2-haloacid dehalogenase) and cobalamin biosynthesis, which are involved in the degradation of COPs. Comparative genomic analysis of the four strains and other classical organohalide-respiring bacteria (e.g. Dehalococcoides mccartyi and Sulfurospirillum multivorans DSM 12446) showed that they share orthologous clusters related to the cobalamin biosynthetic process (GO:0009236). VB12 was also detected in the culture systems of the four strains, further highlighting the importance of cobalamin in COPs degradation. In the genome of the four strains, some genes were annotated to the halogenated organic matter degradation and cobalamin biosynthesis pathway within horizontal gene transfer (HGT) regions. This further indicated that microorganisms carrying these genes can adapt faster to pollution stress through HGT. Together, these findings revealed the co-evolution mechanism of functional strains and may provide novel insights into improved bioremediation strategies for COP-polluted complex media based on generalist organochlorine-degrading bacteria.
Collapse
Affiliation(s)
- Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Yuan
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xueling Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxuan Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qianru Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
22
|
Maday SDM, Kingsbury JM, Weaver L, Pantos O, Wallbank JA, Doake F, Masterton H, Hopkins M, Dunlop R, Gaw S, Theobald B, Risani R, Abbel R, Smith D, Handley KM, Lear G. Taxonomic variation, plastic degradation, and antibiotic resistance traits of plastisphere communities in the maturation pond of a wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0071524. [PMID: 39329490 PMCID: PMC11497791 DOI: 10.1128/aem.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Ōtautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.
Collapse
Affiliation(s)
- Stefan D. M. Maday
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Jessica A. Wallbank
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Maisie Hopkins
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rosa Dunlop
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | - Kim M. Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Tang KHD, Li R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics (Basel) 2024; 13:941. [PMID: 39452208 PMCID: PMC11504238 DOI: 10.3390/antibiotics13100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, College of Agriculture, Life & Environmental Sciences, The University of Arizona (UA), Tucson, AZ 85721, USA
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
| | - Ronghua Li
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
- Department of Environmental Science and Engineering, College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
24
|
Guo J, Qiu X, Xie YG, Hua ZS, Wang Y. Regulation of intracellular process by two-component systems: Exploring the mechanism of plasmid-mediated conjugative transfer. WATER RESEARCH 2024; 259:121855. [PMID: 38838482 DOI: 10.1016/j.watres.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.
Collapse
Affiliation(s)
- Jingjing Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Qiu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Guo Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Shuang Hua
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
25
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Critical insights into the Hormesis of antibiotic resistome in saline soil: Implications from salinity regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134616. [PMID: 38754232 DOI: 10.1016/j.jhazmat.2024.134616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
26
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
27
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
28
|
Cai S, Zhang X, Chen S, Peng S, Sun T, Zhang Y, Yang P, Chai H, Wang D, Zhang W. Solid-liquid redistribution and degradation of antibiotics during hydrothermal treatment of sewage sludge: Interaction between biopolymers and antibiotics. WATER RESEARCH 2024; 258:121759. [PMID: 38754299 DOI: 10.1016/j.watres.2024.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shuaiyu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Sainan Peng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
29
|
Zhang J, Zhao L, Wang W, Zhang Q, Wang XT, Xing DF, Ren NQ, Lee DJ, Chen C. Large language model for horizontal transfer of resistance gene: From resistance gene prevalence detection to plasmid conjugation rate evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172466. [PMID: 38626826 DOI: 10.1016/j.scitotenv.2024.172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.
Collapse
Affiliation(s)
- Jiabin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
30
|
Zhou R, Huang X, Xie Z, Ding Z, Wei H, Jin Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. ENVIRONMENTAL RESEARCH 2024; 251:118737. [PMID: 38493850 DOI: 10.1016/j.envres.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Zhongtang Xie
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| |
Collapse
|
31
|
Zhou H, Lu Z, Liu X, Bie X, Xue F, Tang S, Feng Q, Cheng Y, Yang J. Environmentally Relevant Concentrations of Tetracycline Promote Horizontal Transfer of Antimicrobial Resistance Genes via Plasmid-Mediated Conjugation. Foods 2024; 13:1787. [PMID: 38891015 PMCID: PMC11171790 DOI: 10.3390/foods13111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The ubiquitous presence of antimicrobial-resistant organisms and antimicrobial resistance genes (ARGs) constitutes a major threat to global public safety. Tetracycline (TET) is a common antimicrobial agent that inhibits bacterial growth and is frequently detected in aquatic environments. Although TET may display coselection for resistance, limited knowledge is available on whether and how it might influence plasmid-mediated conjugation. Subinhibitory concentrations (3.9-250 ng/mL) of TET promoted horizontal gene transfer (HGT) via the mobilizable plasmid pVP52-1 from the donor Vibrio parahaemolyticus NJIFDCVp52 to the recipient Escherichia coli EC600 by 1.47- to 3.19-fold. The transcription levels of tetracycline resistance genes [tetA, tetR(A)], conjugation-related genes (traA, traD), outer membrane protein genes (ompA, ompK, ompV), reactive oxygen species (ROS)-related genes (oxyR, rpoS), autoinducer-2 (AI-2) synthesis gene (luxS), and SOS-related genes (lexA, recA) in the donor and recipient were significantly increased. Furthermore, the overproduced intracellular ROS generation and increased cell membrane permeability under TET exposure stimulated the conjugative transfer of ARGs. Overall, this study provides important insights into the contributions of TET to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Xinmei Liu
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijie Tang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Qiushi Feng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Yiyu Cheng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Jun Yang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| |
Collapse
|
32
|
Dadeh Amirfard K, Moriyama M, Suzuki S, Sano D. Effect of environmental factors on conjugative transfer of antibiotic resistance genes in aquatic settings. J Appl Microbiol 2024; 135:lxae129. [PMID: 38830804 DOI: 10.1093/jambio/lxae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/25/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
Antimicrobial-resistance genes (ARGs) are spread among bacteria by horizontal gene transfer, however, the effect of environmental factors on the dynamics of the ARG in water environments has not been very well understood. In this systematic review, we employed the regression tree algorithm to identify the environmental factors that facilitate/inhibit the transfer of ARGs via conjugation in planktonic/biofilm-formed bacterial cells based on the results of past relevant research. Escherichia coli strains were the most studied genus for conjugation experiments as donor/recipient in the intra-genera category. Conversely, Pseudomonas spp., Acinetobacter spp., and Salmonella spp. were studied primarily as recipients across inter-genera bacteria. The conjugation efficiency (ce) was found to be highly dependent on the incubation period. Some antibiotics, such as nitrofurantoin (at ≥0.2 µg ml-1) and kanamycin (at ≥9.5 mg l-1) as well as metallic compounds like mercury (II) chloride (HgCl2, ≥3 µmol l-1), and vanadium (III) chloride (VCl3, ≥50 µmol l-1) had enhancing effect on conjugation. The highest ce value (-0.90 log10) was achieved at 15°C-19°C, with linoleic acid concentrations <8 mg l-1, a recognized conjugation inhibitor. Identifying critical environmental factors affecting ARG dissemination in aquatic environments will accelerate strategies to control their proliferation and combat antibiotic resistance.
Collapse
Affiliation(s)
- Katayoun Dadeh Amirfard
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| | - Momoko Moriyama
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Bunkyōchō 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
- Department of Civil and Environmental Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| |
Collapse
|
33
|
Peng X, Yang T, Guo S, Zhou J, Chen G, Zhu Z, Tan J. Revealing chemical release from plastic debris in animals' digestive systems using nontarget and suspect screening and simulating digestive fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123793. [PMID: 38513944 DOI: 10.1016/j.envpol.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| |
Collapse
|
34
|
Wu J, Lv YH, Sun D, Zhou JH, Wu J, He RL, Liu DF, Song H, Li WW. Phthalates Boost Natural Transformation of Extracellular Antibiotic Resistance Genes through Enhancing Bacterial Motility and DNA Environmental Persistence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7291-7301. [PMID: 38623940 DOI: 10.1021/acs.est.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Yun-Hui Lv
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dan Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| |
Collapse
|
35
|
Hong Y, Xie H, Jin X, Naraginti S, Xu D, Guo C, Feng C, Wu F, Giesy JP. Prediction of HC 5s for phthalate esters by use of the QSAR-ICE model and ecological risk assessment in Chinese surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133642. [PMID: 38330644 DOI: 10.1016/j.jhazmat.2024.133642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and μg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA; Department of Integrative Biology and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI 48895, USA
| |
Collapse
|
36
|
Yin H, Wang H, Wang M, Shi B. The interaction between extracellular polymeric substances and corrosion products in pipes shaped different bacterial communities and the effects of micropollutants. WATER RESEARCH 2023; 247:120822. [PMID: 37950951 DOI: 10.1016/j.watres.2023.120822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
There are growing concerns over the effects of micropollutants on biofilms formation and antibiotic resistance gene (ARGs) transmission in drinking water distribution pipes. However, there was no reports about the influence of the interaction between extracellular polymeric substances (EPS) and corrosion products on biofilms formation. Our results indicated that the abundance of quorum sensing (QS)-related genes, polysaccharide and amino acids biosynthesis genes of EPS was 6747-8055 TPM, 2221-2619 TPM, and 1461-1535 TPM in biofilms of cast iron pipes, respectively, which were higher than that of stainless steel pipes. The two-dimensional correlation spectroscopy (2D-COS) analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) results indicated that polysaccharide of EPS was more easily adsorbed onto the corrosion products of cast iron pipes. Therefore, more human pathogenic bacteria (HPB) carrying ARGs were formed in biofilms of cast iron pipes. The amide I and amide II components and phosphate moieties of EPS were more susceptible to the corrosion products of stainless steel pipes. Thus, more bacteria genera carrying mobile genetic elements (MGE)-ARG were formed in biofilms of stainless steel pipes due to more abundance of QS-related genes, amino acids biosynthesis genes of EPS and the functional genes related to lipid metabolism. The enrichment of dimethyl phthalate (DMP), perfluorooctanoic acid (PFOA) and sulfadiazine (SUL) in corrosion products induced upregulation of QS and EPS-related genes, which promoted bacteria carrying different ARGs growth in biofilms, inducing more microbial risks.
Collapse
Affiliation(s)
- Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Luo G, Liang B, Cui H, Kang Y, Zhou X, Tao Y, Lu L, Fan L, Guo J, Wang A, Gao SH. Determining the Contribution of Micro/Nanoplastics to Antimicrobial Resistance: Challenges and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12137-12152. [PMID: 37578142 DOI: 10.1021/acs.est.3c01128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|