1
|
Zhang J, Zhang H, Zhao S, Shi X, Sun B, Lu J, Liu Y, Li W, Zhao Y, Cui Z. Spatial pattern and methylation process of mercury enrichment in lake sediments during glacial periods in cold and arid regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125792. [PMID: 39914562 DOI: 10.1016/j.envpol.2025.125792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/22/2024] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Underlying surface in lake watersheds and mercury concentrations in lake inflows are key factors affecting the accumulation of mercury in lake sediments. Lake characteristics play a crucial role in the process of mercury methylation in sediments. Lakes in cold regions have unique environmental features, including a long ice-cover period, during which mercury undergoes complex physicochemical processes. However, the extent of mercury accumulation and methylation in cold region lake sediments remains unclear. We studied the concentrations, pollution levels, and ecological risks of mercury and methylmercury in surface sediments from six lakes in China's cold regions, and analyzed the mechanisms by which lake characteristics influence mercury methylation. The results indicate significant mercury enrichment in surface sediments of typical lakes in Inner Mongolia, with some regions exceeding the average mercury levels found in lakes across China. Mercury concentrations in surface sediments of lakes from different land use types within their watersheds show considerable spatial variability, with the following pattern: agricultural irrigation areas > agro-pastoral transition areas > grassland and sand areas. Agricultural activity intensity in lake watersheds has the most pronounced impact on the spatial heterogeneity of surface sediment mercury concentrations and their associated ecological risks. Lake water input and geographical location can indirectly control the spatial distribution of mercury concentrations and ecological risks in Inner Mongolia lakes by affecting external mercury inputs. The methylation process in lake surface sediments during the ice-cover period is significant. Based on a correlation analysis model, water depth was found to be a key factor controlling methylmercury content and mercury methylation rates in lake sediments during the ice-cover period. Deep water lakes promote the conversion of mercury into methylmercury in sediments. Water depth influences the redox conditions of sediments and the amount of light radiation received by the sediments, thereby affecting the methylation and demethylation processes of mercury, ultimately controlling the levels of methylmercury in sediments.
Collapse
Affiliation(s)
- Jinda Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Hui Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur, 014404, China; Daihai Wetland Hydrology and Ecological Environment Field Scientific Observation and Research Station of Inner Mongolia Autonomous Region, Ulanqab, 012000, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur, 014404, China
| | - Biao Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenbao Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yunxi Zhao
- National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhimou Cui
- National Key Laboratory of Water Engineering and Ecological Environment in Dry Areas of Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
2
|
Li Y, Ma L, Wang Q, Liu W, Saparov G, Abuduwaili J. Unveiling mercury's hidden threat: An integrated methodology for soil mercury risk assessment in Syr Darya River Basin, Central Asia. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136690. [PMID: 39612881 DOI: 10.1016/j.jhazmat.2024.136690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Mercury (Hg) contamination of soil poses a significant threat to ecological and human health. Integrating risk assessment with a comprehensive analysis of the physical and chemical properties of soil enables macroscopic understanding of the potential risks associated with Hg. The integrated risk assessment framework was achieved by applying a projection pursuit clustering (PPC) model that considered ecological and human health risks, soil environmental factors derived from the SHapley Additive Explanation-eXtreme Gradient Boosting (SHAP-XGBoost) model, and exposure risk vulnerability. It was found that the concentrations of Hg in the soils of the Syr Darya River Basin ranged from 3.70 to 40.10 ng/g and Fe2O3, Al2O3, and soil organic carbon (SOC) were important factors in the variation in Hg concentrations. Regions with a high risk of soil Hg were identified using the proposed integrated risk assessment framework, with the geographical distribution concentrated near the cities of Kyzylorda and Kazalinsk. From the perspective of different land use types, shrub soil sampling sites had the largest percentage of high Hg risk values, followed by cropland, bare land, and grassland. These findings confirm that the combined risk values depend not only on Hg concentrations, but also on environmental variables and socioeconomic conditions. Integrated risk assessment of soil Hg is based on machine learning and projection pursuit clustering models, which can provide a novel perspective for potential toxic element pollution evaluation, prevention, and treatment.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; China-Kazakhstan Joint Laboratory for Remote Sensing Technology and Application, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan.
| | - Qingjie Wang
- Sichuan water development investigation, Design & Research Co., Ltd., Chengdu, Sichuan 610065, China
| | - Wen Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Galymzhan Saparov
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; China-Kazakhstan Joint Laboratory for Remote Sensing Technology and Application, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan; Kazakh Research Institute of Soil Science and Agrochemistry Named after U. U. Uspanov, Almaty 050060, Kazakhstan
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; China-Kazakhstan Joint Laboratory for Remote Sensing Technology and Application, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan
| |
Collapse
|
3
|
Malcata Martins B, Hintelmann H, Pilote M, Vieira G, Canário J. Recent advances in the study of mercury biogeochemistry in Arctic permafrost ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178176. [PMID: 39708466 DOI: 10.1016/j.scitotenv.2024.178176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Permafrost predominates in polar and high mountain regions, encompassing nearly 15 % of the exposed land in the Northern Hemisphere. It denotes soil or rock that remains at or below 0 °C for the duration of at least two consecutive years. These frozen soils serve as a barrier to contaminants that are stored and accumulated in permafrost over extended periods of time. One of these chemical compounds is mercury (Hg), a heavy metal well recognized for its severe toxic effects. Mercury presents a major risk worldwide to ecosystems, biota and human health and is strengthened by the Minamata Convention on Mercury. The International Panel on Climate Change (IPCC) scientific group monitors and assesses the science related to climate change and highlights the significant impacts of global warming. The phenomenon known as Arctic amplification has accentuated warming of the Arctic in recent years and has led to the degradation and rapid thawing of permafrost. This process has significant implications in hydrology of the ecosystems and for the mobility of previously sequestered carbon and trace metals, such as Hg, with possible adverse environmental and human health impacts. In this article, we provide a comprehensive review of the current understanding of the Hg cycle in permafrost regions, exploring the effects of global warming on these intricate processes. Additionally, we highlight existing research gaps and propose directions for future investigations.
Collapse
Affiliation(s)
- Beatriz Malcata Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Centre d´études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
| | - Holger Hintelmann
- Water Quality Center, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 0G2, Canada
| | - Martin Pilote
- Centre d´études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montréal, QC H2Y 2E7, Canada
| | - Gonçalo Vieira
- Centre d´études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; Centro de Estudos Geográficos, Laboratório Associado Terra, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Centre d´études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Feng X, Wang X, Jia L, Yuan W, Lu M, Liu N, Wu F, Cai X, Wang F, Lin CJ. Influence of global warming and human activity on mercury accumulation patterns in wetlands across the Qinghai-Tibet Plateau. Natl Sci Rev 2025; 12:nwae414. [PMID: 39781276 PMCID: PMC11707873 DOI: 10.1093/nsr/nwae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions. The former is attributed to the combined effects of increasing anthropogenic emissions and climate-induced changes in the cryosphere and wetland hydrology in the last 100-150 years. The climate changes in westerly-controlled regions in the last 50-70 years led to a fluctuation in hydrology and Hg peak in the sediment subsurface. The increase in legacy Hg input from soil erosion has largely enhanced the Hg accumulation rate in wetlands since the 1950s, especially in the proglacial wetlands. We highlight that accelerated glacier melting and permafrost thawing caused by global warming have altered geomorphology and hydrology, and affected Hg transport and accumulation in wetlands.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng Lu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
5
|
Yin X, Zhou W, Su Y, Tang C, Guo J, Liu Z, Wang Y, Zhang X, Rupakheti D, Kang S. Spatial distribution and risk assessment of mercury in soils over the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176652. [PMID: 39362537 DOI: 10.1016/j.scitotenv.2024.176652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The Tibetan Plateau is one of the highest and most pristine plateaus in the world, and its ecological environment has a significant impact on global climate and the distribution of water resources. Mercury (Hg), as a toxic metal pollutant, can have a severe impact on the health of living organisms and the ecosystem due to its presence in the environment. This study collected 336 soil samples from 28 sites across four typical surface vegetation landscapes (meadow, grassland, desert, and forest) on the Tibetan Plateau to measure soil THg (Total Hg) concentrations. The research aimed to explore the factors influencing soil THg levels, analyze pollution and environmental risks of THg in the surface soil, and evaluate the associated health risks to the local population. The results indicate that the mean soil THg concentration (31.84 ± 32.58 ng·g-1) of this study is compared to the background value of THg in Tibetan Plateau soils (37.0 ng·g-1), but there are significant differences in THg concentration among soils with different surface vegetation landscapes. The mean THg concentration in soils of forest vegetation types (74.42 ± 41.19 ng·g-1) is approximately twice the background value of Tibetan Plateau soils. In the forested regions of the southeastern, eastern, and southern Tibetan Plateau, soil concentrations of total mercury are relatively high, whereas in the desert areas of the northern, northwestern, and northeastern Tibetan Plateau, the concentrations are lower. Organic matter (soil organic carbon) being an important factor influencing the soil THg. Based on existing surface soil THg data from this and previous research in Tibetan Plateau (n = 477), 34.2 % of the samples show Hg pollution and potential ecological risks. However, the health risks of soil Hg to both adults and children are not significant.
Collapse
Affiliation(s)
- Xiufeng Yin
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenting Zhou
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; Lanzhou University of Arts and Science, Lanzhou 730000, China
| | - Yanbin Su
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Cuiwen Tang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Zhiwei Liu
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Wang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xiaohui Zhang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhen J, Li T, Cai H, Nie X, He S, Meng M, Wang Y, Chen J. Photoreduction and origin of dissolved and particulate mercury in cloud water: Insights from stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134654. [PMID: 38810583 DOI: 10.1016/j.jhazmat.2024.134654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The photoreduction of mercury (Hg) in clouds is crucial for determining global Hg cycling. The recently-developed isotope approach provides new insight into the fate of atmospheric Hg, however, limited data have been reported on the dynamics of Hg isotopes in clouds. This study presented the isotopic compositions of dissolved mercury (DHg) and particulate mercury (PHg) in cloud water collected at Mt. Tai (1545 m a.s.l.) in eastern China during summer 2021. Both DHg and PHg exhibited positive mass-independent fractionation of odd isotopes (odd-MIF, denoted as Δ199Hg), with averaged Δ199Hg values of 0.83 ± 0.34‰ and 0.20 ± 0.11‰, respectively. This high odd-MIF likely resulted from aqueous photoreduction in clouds, with DHg being more susceptible to photolysis than PHg. Our findings indicated that the photoreduction was promoted by sunlight and influenced by the chemical compositions of cloud water that controlled the Hg(II) speciation. The isotope mixing model estimation revealed that particulate-bound Hg and reactive gaseous Hg constituted the principal sources of Hg in cloud water, accounting for 55% to 99% of the total, while gaseous element Hg also made a notable contribution. Additionally, cloud water samples with faster reduction rates of Hg(II) were located outside of the isotope mixing models, which indicated an enhanced photoreduction process in cloud water.
Collapse
Affiliation(s)
- Jiebo Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Hongming Cai
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Sheng He
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Jiubin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Sun S, Ma M, Guo J, He X, Yin X, Sun T, Zhang Q, Kang S. Westerlies-driven transboundary transport of atmospheric mercury to the north-central Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173135. [PMID: 38734088 DOI: 10.1016/j.scitotenv.2024.173135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The transboundary mercury (Hg) pollution has caused adverse effects on fragile ecosystems of the Tibetan Plateau (TP). Yet, knowledge of transport paths and source regions of atmospheric Hg on the inland TP remains poor. Continuous measurements of atmospheric total gaseous mercury (TGM) were conducted in the central TP (Tanggula station, 5100 m a.s.l., June-October). Atmospheric TGM level at Tanggula station (1.90 ± 0.30 ng m-3) was higher than the background level in the Northern Hemisphere. The identified high-potential source regions of atmospheric TGM were primarily located in the northern South Asia region. TGM concentrations were lower during the Indian summer monsoon (ISM)-dominant period (1.81 ± 0.25 ng m-3) than those of the westerly-receding period (2.18 ± 0.40 ng m-3) and westerly-intensifying period (1.91 ± 0.26 ng m-3), contrary to the seasonal pattern in southern TP. The distinct TGM minima during the ISM-dominant period indicated lesser importance of ISM-transported Hg to Tanggula station located in the northern boundary of ISM intrusion, compared to stations in proximity to South and Southeast Asia source regions. Instead, from the ISM-dominant period to the westerly-intensifying period, TGM concentrations showed an increasing trend as westerlies intensified, indicating the key role of westerlies in transboundary transport of atmospheric Hg to the inland TP.
Collapse
Affiliation(s)
- Shiwei Sun
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
| | - Xiaobo He
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Tanggula Cryosphere and Environment Observation Station, State Key Laboratory of Cryospheric Science, Lanzhou 730000, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
| | - Tao Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Cai N, Wang X, Zhu H, Hu Y, Zhang X, Wang L. Isotopic insights and integrated analysis for heavy metal levels, ecological risks, and source apportionment in river sediments of the Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2024; 251:118626. [PMID: 38467358 DOI: 10.1016/j.envres.2024.118626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The research was carried out to examine the pollution characteristics, ecological risk, and origins of seven heavy metals (Hg, As, Pb, Cu, Cd, Zn, and Ni) in 51 sediment samples gathered from 8 rivers located on the Qinghai-Tibet Plateau (QTP) in China. The contents of Hg and Cd were 5.0 and 1.1 times higher than their background values, respectively. The mean levels of other measured heavy metals were below those found naturally in the local soil. The enrichment factor showed that the study area exhibited significantly enriched Hg with 70.6% sampling sites. The Cd contents at 19.6% of sampling sites were moderately enriched. The other sampling sites were at a less enriched level. The sediments of all the rivers had a medium level of potential ecological risk. Hg was the major ecological risk factor in all sampling sites, followed by Cd. The findings from the positive matrix factorization (PMF) analysis shown agricultural activities, industrial activities, traffic emissions, and parent material were the major sources. The upper, middle, and low reaches of the Quanji river had different Hg isotope compositions, while sediments near the middle reaches were similar to the δ202Hg of the industrial source. At the upstream sampling sites, the Hg isotope content was very close to the background level. The results of this research can establish a strong scientific sound to improve the safety of the natural circumstances of rivers on the QTP.
Collapse
Affiliation(s)
- Na Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Haixia Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hu
- Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province, Golmud, 816099, China; Qinghai Provincial Key Laboratory of Exploration and Research of Salt Lake Resources in Qaidam Basin, Golmud, 816099, China
| | - Xiying Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Zhu L, Lou C, Zhang X, Yang F. Hg 2+-enhanced oxidase-like activity of platinum nanoparticles immobilized on porphyrin-based porous organic polymer for the colorimetric detection and removal of Hg 2. Mikrochim Acta 2024; 191:378. [PMID: 38853206 DOI: 10.1007/s00604-024-06471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Porphyrin-based porous organic polymer (POP) with uniformly immobilized platinum nanoparticles (Pt NPs) were designed and synthesized, and it was demonstrated that such nanocomposites (Pt/POP) have oxidase-like activity. Surprisingly, Hg2+ significantly enhanced the oxidase-like activity of Pt/POP. The enhancement was attributed to the capture of Hg2+ by the thioether group in Pt/POP and the subsequent redox reaction of Hg2+ with Pt NPs, accelerating the electron transfer. In the presence of Hg2+, Pt/POP catalyzed the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to turn blue rapidly and changed its absorbance at 652 nm. Based on this, a fast-response colorimetric sensor was constructed for the sensitive detection of Hg2+ with a linear range of 0.2-50 μM and a detection limit of 36.5 nM. Importantly, Pt/POP can be used as an adsorbent for the efficient removal of Hg2+ with a removal efficiency as high as 99.4%. This work provides a valuable strategy for colorimetric detection and efficient removal of Hg2+.
Collapse
Affiliation(s)
- Liqin Zhu
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250000, Shandong, China
| | - Congcong Lou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250000, Shandong, China
| | - Xiaomei Zhang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250000, Shandong, China
| | - Fei Yang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250000, Shandong, China.
| |
Collapse
|
10
|
Chen Y, Zhang Q, Zhang L, Liu X, Li Y, Liu R, Wang Y, Song Y, Li Y, Yin Y, Cai Y. Light-induced degradation of dimethylmercury in different natural waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134113. [PMID: 38565021 DOI: 10.1016/j.jhazmat.2024.134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.
Collapse
Affiliation(s)
- Yingying Chen
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, China.
| | - Lian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China; Yantai Port United General Wharf Company, Yantai 264012, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Song
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
11
|
Chai L, Zhou Y, Dong H, Gong P, Wang X. Soil contamination and carrying capacity across the Tibetan plateau using structural equation models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122640. [PMID: 37769704 DOI: 10.1016/j.envpol.2023.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Soil contamination is a major environmental issue worldwide. Compared with Arctic, European Alps and Rocky Mountains, the soil contamination and soil environment carrying capacity (SECC) of the Tibetan Plateau (TP) is not systematic and multidimensional. In this study, the levels, influencing factors including climate factors [(i.e., mean annual precipitation (MAP) and mean annual temperature (MAT)], socio-economic factors [(i.e., population, population density and gross domestic product (GDP)], vegetation coverage factor, soil factors [(i.e., pH, soil organic carbon (SOC), total phosphorus and total nitrogen] and topographic factors [(i.e., longitude, latitude and digital elevation model (DEM)] and carrying capacity of multiple soil contaminants [persistent organic pollutants (POPs), heavy metals (HMs) and microplastics (MPs)] was systematically studied. Results show that the spatial distribution of POPs in the eastern was higher than that in the western region, and the structural equation model (SEM) demonstrate that SOC and MAT were the key factors influencing distribution. Regarding HMs, except As, moderate and heavy pollution of the remaining elements were found in the northern and eastern TP regions, and pH and MAP were the main influencing factors. The MPs showed that the distribution of the patches was influenced by GDP and MAP. Furthermore, a higher SECC in the eastern region that gradually decreased from east to west. pH is the primary factors affecting SECC, followed by normalized difference vegetation index (NDVI). An increase of pH and NDVI by one unit is likely to make SECC scores decrease by 0.8 and increase by 0.32, respectively. Taken together, these studies provide a system, cost-effective, and quantitative framework for soil contamination and carrying capacity in the TP.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huike Dong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Gong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|