1
|
Gao Y, Yang C, Feng G, Zhang BX, Xu ZY, Wang Y, Tleubergenova A, Zhang Y, Meng XZ. Downward migration of per- and polyfluoroalkyl substances (PFAS) in lake sediments: Reconsideration of temporal trend analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138290. [PMID: 40252315 DOI: 10.1016/j.jhazmat.2025.138290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Using sediment cores to reconstruct the contamination history of per- and polyfluoroalkyl substances (PFAS) is essential for chemical management but poses challenge. Herein, sediment cores, as well as surface water and sediments were taken from two Chinese lakes to investigate the vertical distribution and migration of PFAS. Wind wave, properties of sediment and water, and chemical characters of PFAS were examined to clarify the main factors influencing PFAS migration. Total PFAS concentrations in sediment cores ranged from 0.12 to 5.28 ng g-1 dry weight (dw) in Dianchi Lake and from 0.19 to 2.51 ng g-1 dw in Taihu Lake, respectively. Strong hydrodynamic disturbance (wind-wave erosion depth up to 30 cm) in Taihu Lake resulted in consistent PFAS levels and profiles throughout the sediment core, limiting its use for retrospective analysis. In Dianchi Lake, an increasing trend of total organic carbon-normalized PFAS indicated their persistent emission in China over the past decades. Perfluorooctane sulfonic acid increased markedly from early 2000s; temporal trend in composition for perfluorocarboxylates coincided with the global production transition. Finally, we proposed a three-step conceptual framework, including lake selection, key time point assessment, and contamination history reconstruction, to further improve the reliability of PFAS retrospective analysis in lake.
Collapse
Affiliation(s)
- Yunze Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Chao Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zi-Yao Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Akmaral Tleubergenova
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, Zhejiang 314051, China.
| |
Collapse
|
2
|
Lobitz A, Steuber A, Jia S, Guo L. Harnessing Fluorine Chemistry: Strategies for Per- and Polyfluoroalkyl Substances Removal and Enrichment. Chempluschem 2025:e2400784. [PMID: 40194928 DOI: 10.1002/cplu.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, recalcitrant, bioaccumulative, and toxic. Effective concentration technologies are essential for remediating these compounds, a major focus of environmental science and engineering today. This review provides a comprehensive overview of PFAS, from fundamental chemistry to current research, encompassing fluorine chemistry, PFAS synthesis, and their applications. The review specifically thoroughly examines how fluorine chemistry can be utilized to enhance PFAS removal and enrichment, highlighting examples of aromatic/direct fluorination and aliphatic per- and polyfluorination, where the latter induces the fluorous effect. A comprehensive list of reactions used to design or modify PFAS sorbents is summarized, serving as a resource for ongoing research. Finally, insights are offered into how fluorine chemistry can be studied and employed to further improve PFAS characterization and management.
Collapse
Affiliation(s)
- Anne Lobitz
- Department of Civil Engineering, University of Arkansas, 800 W Dickson St, Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Alex Steuber
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Walk, Fayetteville, AR, 72701, USA
| | - Shang Jia
- Department of Chemistry, Rutgers University - Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Lei Guo
- Department of Civil Engineering, University of Arkansas, 800 W Dickson St, Bell Engineering Center, Fayetteville, AR, 72701, USA
| |
Collapse
|
3
|
Beryani A, Flanagan K, You S, Forsberg F, Viklander M, Blecken GT. Critical field evaluations of biochar-amended stormwater biofilters for PFAS and other organic micropollutant removals. WATER RESEARCH 2025; 281:123547. [PMID: 40179730 DOI: 10.1016/j.watres.2025.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Biochar is often promoted as an ideal amendment for stormwater biofilters; however, its effectiveness has rarely been tested under field conditions. This study evaluates the impact of biochar addition on the removal of organic micropollutants (OMPs) in field-scale biofilters operating under real-world conditions for the first time. The research comprised four vegetated biofilter facilities (3 - 5 years old), two without and two with 2.1 wt. % (10 vol. %) biochar amendment. Stormwater and filter material samples from various locations after four years of operation were analyzed for a wide range of common and emerging OMPs found in urban runoff. Unlike hydrophobic OMPs (hydrocarbons, polychlorinated biphenyls, and di(2-ethylhexyl) phthalate), the investigated biofilters demonstrated low, or inconsistent, removal of hydrophilic and slow-adsorbing OMPs like bisphenol A, monobutyltin, and per-fluoroalkyl substances (PFASs). Although the physiochemical properties of biochar were well-adapted to pollutant removal, biochar amendment did not significantly improve OMP removal when compared with the status quo. This can be attributed to several field conditions and suboptimal design interfering with the biochar's sorption capacity, namely, the large particle size (D50 ∼4 mm) and low quantity of biochar, high levels of competing agents (i.e., dissolved oxygen carbon (DOC) and cations), co-contaminants in stormwater, limited contact time, biochar pore blockage (e.g., by DOC molecules and sediments/minerals), diminished biochar surface porosity, and sometimes increased removal uncertainty due to low influent concentrations. Our findings demonstrated the complexities associated with applying biochar for stormwater treatment. Further research on biochar-specific biofilter designs is needed to optimize the sorption potential of this material under field conditions.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Kelsey Flanagan
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Shujie You
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Fredrik Forsberg
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
4
|
Stults JF, Schaefer CE, MacBeth T, Fang Y, Devon J, Real I, Liu F, Kosson D, Guelfo JL. Laboratory validation of a simplified model for estimating equilibrium PFAS mass leaching from unsaturated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179036. [PMID: 40043657 DOI: 10.1016/j.scitotenv.2025.179036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Modelling per- and polyfluoroalkyl substance (PFAS) fate and transport in the vadose zone is inherently more complex than in the saturated zone due to the highly transient nature and the wetting phase saturation dependent hydraulic flux associated with the vadose zone. The chemical complexity of PFAS impart multiple partitioning processes which complicate the evaluation of PFAS transport in the vadose zone. To date, simplified screening models describing PFAS leaching have been developed to determine PFAS soil cleanup criteria in the vadose zone. Recent work has presented evidence that while PFAS transport in the vadose zone is governed by several non-equilibrium mechanisms, it is possible to predict PFAS mass flux using equilibrium modelling over month to year timescales. We hypothesized that by quantifying important equilibrium partitioning and hydraulic processes, we could simplify vadose zone leaching models for assessing mass flux from the vadose zone to the underlying groundwater. A mass flux, cell-based model which accounts for important partitioning processes (solid and air-water interfacial partitioning) and transience in hydraulic processes (water flux and water content) was developed and validated herein. Column studies were conducted under simulated rainfall conditions to provide transient hydraulic and PFAS leaching data. A HYDRUS 1-D with PFAS module model was calibrated to the hydraulic conditions of the simulated rainfall columns. Forward simulations were carried out using HYDRUS and the mass balance approximation models. The HYDRUS and mass balance approximations performed nearly identically for all PFAS, and both models predicted PFAS mass leaching within a half order of magnitude of most measured data. These results suggest that readily applicable empirical models and simplified numerical models can reasonably estimate month to year scale mass flux from the vadose zone for sites without major heterogeneity or transport non-ideality considerations.
Collapse
Affiliation(s)
- John F Stults
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA.
| | | | | | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA; Haley and Aldrich Inc., 3131 Elliott Ave #600, Seattle, WA 98121, USA
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA
| | - Isreq Real
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Fangfei Liu
- Department of Civil and Enivronmental Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - David Kosson
- Department of Civil and Enivronmental Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jennifer L Guelfo
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Meng Z, Taseska T, Wilsey MK, Müller AM. Complete aqueous defluorination of PFAS in aqueous film-forming foam (AFFF) by pulsed electrolysis with tailored potential modulation. RSC Adv 2025; 15:8287-8292. [PMID: 40103981 PMCID: PMC11912562 DOI: 10.1039/d4ra08214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are harmful and persistent global water contaminants. AFFF, a foam-forming aqueous mixture used for firefighting, is a major source of PFAS pollution and challenging to defluorinate. We report the complete photo-assisted electrocatalytic defluorination of PFAS in AFFF with nonprecious materials. The high salt content in the aqueous LiOH electrolyte prevented foaming. Pulsed electrolysis with tailored potential modulation balanced anodic fluoride removal and the adsorption of unreacted anionic PFAS. Our findings demonstrate the effectiveness of pulsed electrocatalysis in defluorinating persistent PFAS in AFFF.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester Rochester New York 14627 USA
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester Rochester New York 14627 USA
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester Rochester New York 14627 USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester Rochester New York 14627 USA
- Department of Chemical Engineering, University of Rochester Rochester New York 14627 USA
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| |
Collapse
|
6
|
Petersen KU, Lauritzen DF, Wils RS, Saber AT, Vogel U, Ebbehøj NE, Hansen J, Pedersen JE, Jensen TK, Guerra Andersen MH. Serum concentrations of per- and polyfluoroalkyl substances (PFAS) among men from the Danish fire services and Armed Forces. Int J Hyg Environ Health 2025:114559. [PMID: 40133147 DOI: 10.1016/j.ijheh.2025.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Per- and polyfluoralkyl substances (PFAS) have been used extensively in firefighting foams with resulting occupational exposure among firefighters. OBJECTIVE To examine serum concentrations of PFAS among current and former employed and volunteer firefighters from the Danish fire services and Armed Forces. METHODS During 2023-2024, 429 men from the Danish fire services and Armed Forces participated in the study. They were asked to provide a blood sample and fill in an online questionnaire. Concentrations of 15 PFAS were measured in serum. Measurements from the general population sampled in 2021 (the ENFORCE study) were used as reference. Associations between occupational factors and serum PFAS were assessed using multiple linear regression. RESULTS Participants were from municipal fire services (n = 208), governmental fire services (n = 59), civilian airport fire services (n = 50), the air force (n = 98) and the navy (n = 14). Their median age was 50 years and median year of commencing service was 1999. While serum concentrations of PFAS among most participants were at level with those of the general population, civilian airport firefighters had higher serum concentrations of especially perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS). Age-adjusted geometric means were 1.42 ng/mL for PFHxS, 0.28 ng/mL for PFHpS and 6.92 ng/mL for total PFOS among civilian airport firefighters. CONCLUSION Higher serum concentrations of PFHxS, PFHpS and PFOS among civilian airport firefighters likely reflected past occupational exposure to firefighting foam. Findings emphasized the importance of regulatory measures and substitution.
Collapse
Affiliation(s)
- Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400, Copenhagen, NW, Denmark.
| | - Dorthe Furstrand Lauritzen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400, Copenhagen, NW, Denmark
| | - Regitze Sølling Wils
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400, Copenhagen, NW, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen E, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen E, Denmark
| | | | - Johnni Hansen
- Danish Cancer Institute, The Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen E, Denmark
| | - Julie Elbæk Pedersen
- Danish Cancer Institute, The Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen E, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | |
Collapse
|
7
|
Kali SE, Österlund H, Viklander M, Blecken GT. Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams. WATER RESEARCH 2025; 271:122973. [PMID: 39700609 DOI: 10.1016/j.watres.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems. River water was sampled during dry (DW) and wet weather (WW) upstream, immediately downstream, and further downstream of three urbanized areas with separate sewer systems and with and without point sources (i.e. waste water treatment plant, airports). Water samples were analyzed for 34 targeted PFAS compounds and sediment samples for 35 targeted PFAS and 30 PFAS compounds using a total oxidizable precursor assay. The sum of the quantified PFAS concentrations ranged from the reporting limit (RL) to 84.7 ng/L during DW and increased as the streams were affected by WW discharges (0.87 to 102.3 ng/L). The highest PFAS concentrations were found downstream of urban areas and/or point sources (i.e. airports) during WW, indicating a clear contribution from stormwater discharges. A consistent PFAS contribution from the WWTP was observed under both DW and WW conditions. During WW events, concentrations of perfluorooctanesulfonic acid (PFOS) and total PFAS (PFOA equivalents) exceeded the annual average environmental quality standards, which are an established limit of 0.65 ng/L for PFOS and a proposed limit of 4.4 ng/L for total PFAS. Notably, except for the legacy PFAS, PFOS and perfluorooctanoic acid (PFOA), the most frequently quantified PFAS during DW were short-chain. For WW, long-chain perfluorocarboxylic acids (PFCAs) and a precursor, 6:2 Fluorotelomer sulfonic acid (6:2 FTS), were more frequently quantified, suggesting stormwater is a source of these longer-chain and particle-associated PFAS. The detection of unregulated fluorotelomer sulfonates (FTSs) such as 6:2 and 8:2 FTS during WW suggests a need for regulatory action, as these compounds can degrade into more stable PFAS. In sediment, higher concentrations, and a greater variety of PFAS were found at sites with known point sources i.e. airports. Long-chain PFCAs (C7-C13), perfluoroalkyl sulfonates (PFSAs) (C6), and precursors (i.e. N-Ethyl perfluorooctane sulfonamidoacetic acid), were more prevalent in sediments than in the water. Notably, PFOS concentrations in sediment exceeded the lowest Predicted No-Effect Concentration (PNEC) across sites, posing a potential long-term environmental risk, though current PNECs for other PFAS may underestimate such risks. The findings of the study highlight urban stormwater as a source of PFAS to urban streams indicating the need to minimize PFAS sources in the urban environment and to effectively treat stormwater to protect receiving water bodies.
Collapse
Affiliation(s)
- Suna Ekin Kali
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| |
Collapse
|
8
|
Antell E, Yi S, Olivares CI, Chaudhuri S, Ruyle BJ, Alvarez-Cohen L, Sedlak DL. Selective Quantification of Charged and Neutral Polyfluoroalkyl Substances Using the Total Oxidizable Precursor (TOP) Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3780-3791. [PMID: 39946740 PMCID: PMC11866920 DOI: 10.1021/acs.est.4c13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025]
Abstract
Perfluoroalkyl acid (PFAA) precursors are a diverse subclass of per- and polyfluoroalkyl substances (PFASs) that can be transformed into PFAAs of public health concern. Unlike strongly acidic PFAAs, precursors can be anionic, cationic, neutral, or zwitterionic. Precursor charge affects the environmental fate, but existing quantification techniques struggle to ascertain the abundance of compounds within each charge group. To fill this gap, we developed and validated a solid-phase extraction procedure that separates precursors by charge and quantifies the sum of the precursors in each fraction with the total oxidizable precursor (TOP) assay. Method performance was demonstrated by spiking known concentrations of ten precursors into aqueous film-forming foam (AFFF)-impacted groundwater, municipal wastewater, and soil samples. Precursor fractionation and recovery were greater in groundwater and soil samples than in wastewater. Use of the method provided results that were consistent with expectations based on precursor transport properties. In surficial soils near an AFFF source zone, anionic precursors with five or fewer perfluorinated carbons accounted for about 95% of PFASs, but less than half of PFASs in the underlying groundwater. In municipal wastewater influent, the sum of precursors exceeded the sum of PFAAs and was approximately equally distributed among all charge fractions.
Collapse
Affiliation(s)
- Edmund
H. Antell
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Shan Yi
- Department
of Chemical and Materials Engineering, University
of Auckland, Auckland, 1142, New Zealand
| | - Christopher I. Olivares
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Shreya Chaudhuri
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Bridger J. Ruyle
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
- Department
of Civil and Urban Engineering, New York
University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Lisa Alvarez-Cohen
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David L. Sedlak
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Balgooyen S, Scott M, Blackwell BR, Pulster EL, Mahon MB, Lepak RF, Backe WJ. A High Efficiency Method for the Extraction and Quantitative Analysis of 45 PFAS in Whole Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3759-3770. [PMID: 39954005 DOI: 10.1021/acs.est.4c10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
This study describes and validates a new method for extracting perfluoroalkyl and polyfluoroalkyl substances (PFAS) from whole-body fish tissue, demonstrates that freeze-dry preservation of tissue conserves bioaccumulative PFAS, and details a method demonstration on Lake Michigan fish. While fish filets are more commonly analyzed for their significance to human health, whole fish are useful to determine ecological impacts, but published methods such as EPA 1633 do not produce reliable results for this more challenging matrix. Here we show that lipid removal technology produces clean extracts without the need for solid-phase extraction or evaporative concentration, which often lead to loss of some PFAS. This method achieves an accuracy of 96 ± 9% for the detection of 45 PFAS while also offering benefits of a simple procedure, reduced processing time, and decreased waste generation compared to multistep cleanup and concentration methods. A test of freeze-drying demonstrated that compounds detected in Great Lakes fish were retained, but volatile compounds including sulfonamide precursors and ethanols were lost. To demonstrate field performance, the entire method was applied to whole-fish composites from Lake Michigan. Results from these samples reveal that the PFAS concentration was driven by collection location, while the distribution of PFAS was dictated by fish species.
Collapse
Affiliation(s)
- Sarah Balgooyen
- SpecPro Professional Services, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Madelynn Scott
- Oak Ridge Associated Universities, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Brett R Blackwell
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Erin L Pulster
- U.S. Geological Survey Columbia Environmental Research Center, 4200 East New Haven Road, Columbia, Missouri 65201, United States
| | - Michael B Mahon
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Ryan F Lepak
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Will J Backe
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| |
Collapse
|
10
|
Yu Y, Ning K, Liu X, Liang Y, Jiao Z, Zou B, Cai T, Yang Z, Chen W, Wu T, Jiang M, Yang A. Per- and polyfluoroalkyl substances (PFAS) exposure is associated with radioiodine therapy resistance and dedifferentiation of differentiated thyroid cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125629. [PMID: 39755358 DOI: 10.1016/j.envpol.2025.125629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Differentiated thyroid cancer (DTC) generally has a favorable prognosis, and radioactive iodine (RAI) therapy is typically used for metastatic DTC that continues to progress and poses life-threatening risks. However, resistance to RAI in metastatic DTC significantly impairs treatment effectiveness. This study aims to identify potential compounds that may influence RAI efficacy. We conducted untargeted metabolomics on pre-treatment serum samples from 42 RAI-refractory DTC (RAIR-DTC) patients and 52 RAI-sensitive patients. The results revealed significantly elevated levels of two per- and polyfluoroalkyl substances (PFAS), PFDA and PFNA, in RAI-resistant patients. This accumulation was significantly negatively correlated with the expression of the sodium-iodide symporter (NIS), which reflects the differentiation status and iodide uptake capability of thyroid cancer. Furthermore, high levels of PFDA and PFNA exposure were significantly associated with poor prognosis in patients undergoing RAI therapy. In vivo exposure simulations in a murine model showed that PFAS exposure significantly increased the malignant progression of thyroid cancer, reduced iodine uptake ability, and promoted dedifferentiation. Overall, these findings provide novel insights into the development of RAIR-DTC, highlighting the importance of continuous monitoring and control of PFAS exposure in cancer patients.
Collapse
Affiliation(s)
- Yongchao Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kang Ning
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinyu Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yarong Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zan Jiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bu Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Taonong Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weichao Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Mingjie Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ankui Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Rey DM, Briggs MA, Tokranov AK, Lind HG, Scordato PT, Iery RD, Moore HE, Slater LD, LeBlanc DR. Groundwater flowpath characteristics drive variability in per- and polyfluoroalkyl substances (PFAS) loading across a stream-wetland system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178533. [PMID: 39862507 DOI: 10.1016/j.scitotenv.2025.178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC). Surface-water and groundwater samples were analyzed for 40 PFAS compounds between March and October 2022. Samples were collected from groundwater seeps identified as preferential discharge points (PDPs), wells upgradient of the stream-wetland system, contributing flow-through kettle lakes, and along Quashnet River surface-waters. PFAS from sampled waters contained perfluorinated carboxylates (PFPea, PFHxA, PFNA), perfluorinated sulfonates (PFBS, PFPeS, PFHxS, PFOS), fluorotelomer sulfonates (6:2, 8:2 FtS), and perfluoroalkyl sulfonamides (PFOSA). Samples from PDPs and wells had measured PFAS concentrations ranging from non-detect to 4677 ng/L ng/L (mean = 418 ng/L, std. = 709 ng/L), and a range of deuterium excess values (3.2 to 15.9 per mil) indicative of varying degrees of groundwater-lake interaction prior to groundwater flowpath emergence at PDPs. Correlations (p < 0.01) between deuterium excess, %PFAS precursors, and terminal PFAS compounds highlighted potential precursor transformations associated with lake-groundwater exchange along flowpaths sourcing PDPs. However, some seepages had higher total PFAS concentrations (>1000 ng/L) than upgradient kettle lakes despite showing lake (evaporative) isotopic signatures, indicating the potential for groundwater flowpath convergence at wetland discharge zones and the influence of lakebed PFAS precursor reactions. Results from these synoptic surveys address gaps in the existing PFAS literature by demonstrating the importance of subsurface fate and transport on PFAS compound concentrations and mass loading in preferential groundwater discharge zones.
Collapse
Affiliation(s)
- David M Rey
- US Geological Survey, Hydrologic Remote Sensing Branch, Lakewood, CO, USA.
| | - Martin A Briggs
- US Geological Survey, Hydrologic Remote Sensing Branch, Storrs, CT, USA
| | - Andrea K Tokranov
- US Geological Survey, New England Water Science Center, Northborough, MA, USA
| | - Hayley G Lind
- US Geological Survey, New England Water Science Center, Northborough, MA, USA
| | - Patrick T Scordato
- US Geological Survey, New England Water Science Center, Northborough, MA, USA
| | | | - Henry E Moore
- Department of Earth, and Environmental Sciences, Rutgers University Newark, NJ, USA
| | - Lee D Slater
- Department of Earth, and Environmental Sciences, Rutgers University Newark, NJ, USA; Earth Systems Science Division of the Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Denis R LeBlanc
- US Geological Survey, New England Water Science Center, Northborough, MA, USA
| |
Collapse
|
12
|
Sun R, Bhat AP, Arnold WA, Xiao F. Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1756-1768. [PMID: 39792993 PMCID: PMC11781311 DOI: 10.1021/acs.est.4c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA). Sixteen reactions involving chlorine with N-AP-FHxSA and its quaternary ammonium analog were investigated; seven were confirmed, while the remainder were either disproved or found to be insignificant. The quaternary ammonium moiety did not determine a polyfluoroalkyl substance's reactivity toward chlorine. For example, while 6:2 fluorotelomer sulfonamide betaine transformed rapidly to PFHxA, other quaternary-ammonium-containing polyfluoroalkyl substances, such as 5:1:2 and 5:3 fluorotelomer betaines, showed significant resistance to chlorination. Further investigation identified potential sites for electrophilic attacks near the amine region by examining the highest occupied molecular orbitals of the polyfluoroalkyl substances. Visualization techniques helped pinpoint electron-deficient and electron-rich sites as potential targets for nucleophilic and electrophilic attacks, respectively. Increasing the solution pH from 6 to 10 did not diminish the apparent degradation of the studied polyfluoroalkyl substances, likely due to the greater reactivity of the deprotonated forms compared to the conjugate acids. Finally, we also examined the hydrolysis of polyfluoroalkyl substances at pH 6 to 11 in the absence of chlorine.
Collapse
Affiliation(s)
- Runze Sun
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Akash P. Bhat
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Missouri
Water Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Ruyle BJ, Pennoyer EH, Vojta S, Becanova J, Islam M, Webster TF, Heiger-Bernays W, Lohmann R, Westerhoff P, Schaefer CE, Sunderland EM. High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans. Proc Natl Acad Sci U S A 2025; 122:e2417156122. [PMID: 39761386 PMCID: PMC11761303 DOI: 10.1073/pnas.2417156122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025] Open
Abstract
Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024. Here, we find that the six regulated PFAS (mean = 7 to 8%) and 18 measured PFAA (mean = 11 to 21%) make up only a small fraction of the extractable organofluorine (EOF) in influent and effluent from eight large municipal wastewater treatment facilities. Most of the EOF in influent (75%) and effluent (62%) consists of mono- and polyfluorinated pharmaceuticals. The treatment technology and sizes of the treatment facilities in this study are similar to those serving 70% of the US population. Despite advanced treatment technologies, the maximum EOF removal efficiency among facilities in this work was <25%. Extrapolating our measurements to other large facilities across the United States results in a nationwide EOF discharge estimate of 1.0 to 2.8 million moles F y-1. Using a national model that simulates connections between wastewater discharges and downstream drinking water intakes, we estimate that the sources of drinking water for up to 23 million Americans could be contaminated above regulatory thresholds by wastewater-derived PFAS alone. These results emphasize the importance of further curbing ongoing PFAS sources and additional evaluations of the fate and toxicity of fluorinated pharmaceuticals.
Collapse
Affiliation(s)
- Bridger J. Ruyle
- Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY11201
| | - Emily H. Pennoyer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA02118
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - Minhazul Islam
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ85287
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA02118
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA02118
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ85287
| | | | - Elsie M. Sunderland
- Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
14
|
Zhao C, Liu H, Cheng D, Wang Y, Hu Z, Wu H, Xie H, Zhang J. Insights into poly-and perfluoroalkyl substances (PFAS) removal in treatment wetlands: Emphasizing the roles of wetland plants and microorganisms. WATER RESEARCH 2025; 268:122702. [PMID: 39476545 DOI: 10.1016/j.watres.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are widespread emerging contaminants in aquatic environments, raising serious concerns due to their persistence and potential toxicity to both human health and ecosystems. Treatment wetlands (TWs) provide a sustainable, low-carbon solution for PFAS removal by harnessing the combined actions of substrates, plants, and microorganisms. This review evaluates the effectiveness of TWs in PFAS treatment, emphasizing their role as a post-treatment option for conventional wastewater treatment plants. Mass balance analysis reveals that substrate adsorption was the primary pathway for PFAS removal from TWs, while plant uptake and subsequent harvesting treatments, as well as microbial degradation, contribute substantially to long-term PFAS removal. Comparisons of bioaccumulation factor (BCF) and translocation factors (TF) between wetland and terrestrial plants demonstrate that wetland plants are particularly effective at adsorbing long-chain PFAS and transferring them from roots to aboveground tissues. The diverse environmental conditions within TWs support varied microbial communities, facilitating the evolution of PFAS-degrading microorganisms. Wetland microorganisms demonstrate the capacity to break down PFAS through processes such as head group transformations (e.g., decarboxylation, desulfonation) and defluorination (e.g., elimination, reductive defluorination, hydrolysis, dealkylation). This review emphasizes the crucial role of wetland plants and microorganisms in the sustainable removal of PFAS in TWs, providing insights for the ecological remediation of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Changjie Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
15
|
Cao Z, Dai L, Li J, Zhang J, Wang X, Xu A, Du H. Reproductive and germ-cell mutagenic effects of poly-and perfluoroalkyl substances (PFAS) to Caenorhabditis elegans after multigenerational exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176224. [PMID: 39270858 DOI: 10.1016/j.scitotenv.2024.176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of globally ubiquitous persistent organic pollutants (POPs). The developmental and reproductive toxicity of PFAS have attracted considerable attention. However, the influence of PFAS exposure on genomic stability of germ cells remains unexplored. In this study, we evaluated long-term reproductive toxicity of environmentally relevant levels of four long-chain PFAS compounds: perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10), and perfluorooctanesulfonic acid (PFOS, C8), and examined their germ-cell mutagenicity in Caenorhabditis elegans. Our findings reveal that multigenerational exposure to PFAS exhibited minor impacts on development and reproduction of worms. Among all tested PFAS, PFNA significantly increased mutation frequencies of progeny by preferentially inducing T:A → C:G substitutions and small indels within repetitive regions. Further analysis of mutation spectra uncovered elevated frequencies of microhomology-mediated deletions and large deletions in PFOA-treated worms, indicating its potential activity in eliciting DNA double-strand breaks. This study provides the first comparative analysis of the genome-wide mutational profile of PFAS compounds, underscoring the importance of assessing germ-cell mutagenic actions of long-chain PFAS.
Collapse
Affiliation(s)
- Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China
| | - Linglong Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - Jiali Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Anhui, No. 81, Mei-Shan Road, Hefei 230032, P. R. China
| | - Xialian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| |
Collapse
|
16
|
Sobolewski TN, Findlay JL, Hemphill JE, Walker RA. Aggregation, Not Micellization: Perfluorooctanoic Acid, Perfluorobutanesulfonic Acid, and Potassium Perfluorooctanesulfonate Behavior in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24820-24831. [PMID: 39539066 DOI: 10.1021/acs.langmuir.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Surface tension, conductivity, and dynamic light scattering (DLS) measurements were used to examine the surface and bulk solution behaviors of three members of the PFAS family, perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), and the potassium salt of perfluorooctanesulfonic acid (PFOS). Measurements were carried out in solutions having variable (acidic) pH and in solutions buffered to pH = 8.0. Surface tension data show traditional soluble surfactant behavior, and results illustrate that PFOA, PFBS, and PFOS surface activity depends sensitively on solution phase pH. The tightly packed monolayers formed by PFOA in mildly acidic solutions imply that the surface pH of PFOA solutions is several units lower than bulk. Results from conductivity experiments generally show increasing conductivity with increasing bulk solution surfactant concentration. In pH = 8.0 solutions, changes in conductivity slope with surfactant concentration suggest the onset of micelle formation at concentrations <1 mM, markedly lower than reported in literature. In general, apparent critical micelle concentrations (CMCs) determined from conductivity data agree with similar predictions made from surface tension results. DLS measurements show that at concentrations close to the predicted PFAS CMCs, objects with diameters ≤10 nm start to form. However, unlike micelles, these objects continue to grow with increasing bulk solute concentration. These aggregates form structures having diameters of 50-150 nm. Aggregate size shrinks modestly as solution phase temperature increases, and this behavior is reversible. Cryo-EM images of PFOA solutions confirm a broad distribution of particles, supporting the DLS measurements. Findings reported in this work represent the first evidence that these three EPA-regulated PFAS surfactants form aggregates rather than micelles in solution. Findings also begin to reconcile differences in reported surface behaviors that have led to CMC predictions in the literature varying by more than an order of magnitude.
Collapse
Affiliation(s)
- Tess N Sobolewski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - J Luke Findlay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Jackilyn E Hemphill
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A Walker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Bozeman, Montana 59717, United States
| |
Collapse
|
17
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
18
|
Fuller N, Suski JG, Lanasa S, Chanov MK, Jones DK, Haskins DL, Quinlin KA, Wigren MA, Hoverman JT, Choi YJ, Sepulveda MS, Lee LS, Lotufo GR, Kennedy A, May L, Harmon A, Biber T, Melby N, Moore DW, Key PB, Chung KW, Wirth EF, Anderson TA. Chronic Toxicity of Per- and Polyfluoroalkyl Substance-Free Firefighting Foams to Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2436-2454. [PMID: 39189750 DOI: 10.1002/etc.5979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Amid global concern regarding the health and environmental impacts of per- and polyfluoroalkyl substances (PFAS), there is an urgent need to develop and implement alternative products without PFAS. Consequently, PFAS-free firefighting foams used for fire suppression have been developed for use in military and residential settings. To facilitate the selection of lower-risk PFAS-free foams, the present study focused on the chronic toxicity of seven PFAS-free and one PFAS-containing foam to six aquatic species. Target species included two cladocerans, Daphnia magna and Ceriodaphnia dubia; the chironomid Chironomus dilutus; the mysid Americamysis bahia; and two fish species, Pimephales promelas and Cyprinodon variegatus, with endpoints including growth, development, reproduction, and survival. To facilitate comparison and product toxicity rankings, effective concentrations (20%, 50%) and no- and lowest-observed-effect concentrations (NOECs and LOECs, respectively) were calculated. Effective concentrations, NOECs, and LOECs varied by over an order of magnitude among foams and species, with several of the PFAS-free formulations ranked as highly toxic based on US Environmental Protection Agency alternatives assessment hazard criteria. Overall, the PFAS-free foams were found to exhibit either similar or greater toxicity compared to the PFAS-containing reference foam across several species and endpoints. Nonmonotonic and hormetic dose responses were observed in D. magna for several of the tested foams, with increased reproduction and growth at intermediate exposures. Generally, tested foam toxicity rankings were consistent with a related acute toxicity study using the same species and formulations, and other research using soil invertebrates. Combined with related efforts for other taxa including mammals, birds, and plants, the present research will facilitate the selection of appropriate PFAS-free firefighting foams that minimize harm to the environment. Environ Toxicol Chem 2024;43:2436-2454. © 2024 SETAC.
Collapse
Affiliation(s)
- Neil Fuller
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Jamie G Suski
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Sarah Lanasa
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Michael K Chanov
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Devin K Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - David L Haskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Kathryn A Quinlin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Maria S Sepulveda
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Guilherme R Lotufo
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Alan Kennedy
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Lauren May
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Ashley Harmon
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Thomas Biber
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Nicolas Melby
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - David W Moore
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Peter B Key
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Katy W Chung
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Edward F Wirth
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
19
|
Liang Z, Lu Y, Cao Z, Huang X, Lei H, Li J, Wu Z, An X, Wang P. Co-emissions of fluoride ion, fluorinated greenhouse gases, and per- and polyfluoroalkyl substances (PFAS) from different fluorochemical production processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124609. [PMID: 39074690 DOI: 10.1016/j.envpol.2024.124609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Fluorochemical industry is an emerging industry leading to environmental emissions of fluoride ion, fluorinated greenhouse gases (GHGs) and per- and polyfluoroalkyl substances (PFASs) globally. Chlorofluorocarbon (CFCs) and hydrochlorofluorocarbon (HCFCs) are the primary causes of ozone layer depletion, and together with hydrofluorocarbons (HFCs), they contribute to global climate warming. PFAS are emerging persistent organic pollutants, comprising thousands of materials including perfluoroalkyl acids (PFAAs), perfluoroalkane sulfonamides (FASAs), and fluoropolymers.As the implementation of the Montreal Protocol and the Stockholm Convention makes progress, fluorochemical industry is searching for alternatives like HFCs, perfluoroalkyl ether carboxylic acids (PFECAs) and etc. Even though studies on chemical processes and environmental influences of the fluorochemical industry are plentiful, research on emissions of fluorine chemicals from different fluorochemical industry is still scarce. In this study, we conducted on-site sampling to analyze the distribution of fluorine chemicals in the surrounding environment of the fluorochemical industrial sites. The sampling sites represent different stages of fluorochemical industry production, including fluorite mining, synthesis of fluorochemical raw materials like fluorocarbons, and fine fluorine product processing which is mostly PFAS. Results show that at the fluorite mining stage, concurrent emissions of fluoride ion and CFC-12 contribute to the primary environmental issue. Perfluorooctanoic acid (PFOA) and some short-chain PFASs like perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS) are the main pollutants from fluocarbons production, accompanied by emissions of fluorinated GHGs such as HFC-32, and HCFC-22. At the fine fluorine product synthesis stage where produces fluoropolymers, perfluoropolyethers and fluorinated surfactants, PFAS especially for emerging alternatives PFECAs like hexafluoropropylene oxide dimer acid (HFPODA) and Perfluoro-4-oxapentanoic acid (PF4OPeA), as well as fluorinated GHGs like HFC-23 and HFC-227ea, require increasing attention.
Collapse
Affiliation(s)
- Zian Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhiwei Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xinyi Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jialong Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhaoyang Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xupeng An
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
20
|
Dukes DA, McDonough CA. N-glucuronidation and Excretion of Perfluoroalkyl Sulfonamides in Mice Following Ingestion of Aqueous Film-Forming Foam. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2274-2284. [PMID: 38923620 DOI: 10.1002/etc.5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Perfluoroalkyl sulfonamides (FASAs) and other FASA-based per- and polyfluoroalkyl substances (PFASs) can transform into recalcitrant perfluoroalkyl sulfonates in vivo. We conducted high-resolution mass spectrometry suspect screening of urine and tissues (kidney and liver) from mice dosed with an electrochemically fluorinated aqueous film-forming foam (AFFF) to better understand the biological fate of AFFF-associated precursors. The B6C3F1 mice were dosed at five levels (0, 0.05, 0.5, 1, and 5 mg kg-1 day-1) based on perfluorooctane sulfonate and perfluorooctanoate content of the AFFF mixture. Dosing continued for 10 days followed by a 6-day depuration. Total oxidizable precursor assay of the AFFF suggested significant contributions from precursors with three to six perfluorinated carbons. We identified C4 to C6 FASAs and N-glucuronidated FASAs (FASA-N-glus) excreted in urine collected throughout dosing and depuration. Based on normalized relative abundance, FASA-N-glus accounted for up to 33% of the total excreted FASAs in mouse urine, highlighting the importance of phase II metabolic conjugation as a route of excretion. High-resolution mass spectrometry screening of liver and kidney tissue revealed accumulation of longer-chain (C7 and C8) FASAs not detected in urine. Chain-length-dependent conjugation of FASAs was also observed by incubating FASAs with mouse liver S9 fractions. Shorter-chain (C4) FASAs conjugated to a much greater extent over a 120-min incubation than longer-chain (C8) FASAs. Overall, this study highlights the significance of N-glucuronidation as an excretion mechanism for short-chain FASAs and suggests that monitoring urine for FASA-N-glus could contribute to a better understanding of PFAS exposure, as FASAs and their conjugates are often overlooked by traditional biomonitoring studies. Environ Toxicol Chem 2024;43:2274-2284. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- David A Dukes
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Carrie A McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
22
|
Beryani A, Furén R, Österlund H, Tirpak A, Smith J, Dorsey J, Winston RJ, Viklander M, Blecken GT. Occurrence, Concentration, and Distribution of 35 PFASs and Their Precursors Retained in 20 Stormwater Biofilters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14518-14529. [PMID: 39078743 PMCID: PMC11325539 DOI: 10.1021/acs.est.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Current knowledge about the fate and transport behaviors of per- and polyfluoroalkyl substances (PFASs) in urban stormwater biofilter facilities is very limited. C5-14,16 perfluoroalkyl carboxylic acids [perfluorinated carboxylic acids (PFCAs)], C4,8,10 perfluoroalkanesulfonic acids (PFSAs), methyl-perfluorooctane sulfonamide acetic acid (MeFOSAA, a PFSA precursor), and unknown C6-8 PFCA and perfluorooctanesulfonic acid precursors were frequently found in bioretention media and forebay sediments at Σ35PFAS concentrations of <0.03-19 and 0.064-16 μg/kg-DW, respectively. Unknown C6-8 PFCA precursor concentrations were up to ten times higher than the corresponding PFCAs, especially at forebays and biofilters' top layer. No significant trend could be attributed to PFAS and precursor concentrations versus depth of filter media, though PFAS concentrations were 2-3 times higher in the upper layers on average (significant difference between the upper (0-5 cm) and deepest (35-50 cm) layer). PFASs had a similar spatial concentration distribution in each filter media (no clear difference between short- and long-chain PFASs). Commercial land use and organic matter were important factors explaining the concentration variations among the biofilters and between the sampling depths, respectively. Given the comparable PFAS accumulations in deeper and superficial layers and possible increased mobility after precursor biotransformation, designing shallow-depth, nonamended sand biofilters or maintaining only the top layer may be insufficient for stormwater PFAS management.
Collapse
Affiliation(s)
- Ali Beryani
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Robert Furén
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
- NCC
Sverige AB, Department of Research, and Innovation, 170 80 Solna, Sweden
| | - Heléne Österlund
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Andrew Tirpak
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Joseph Smith
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Jay Dorsey
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Ryan J. Winston
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
- Department
of Civil, Environmental, and Geodetic Engineering, Ohio State University, Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio 43210, United States
- Core
Faculty, Sustainability Institute, Ohio
State University, Smith
Lab 174 W, 18th Avenue, Columbus, Ohio 43210, United States
| | - Maria Viklander
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
23
|
Hill NI, Becanova J, Vojta S, Barber LB, LeBlanc DR, Vajda AM, Pickard HM, Lohmann R. Bioconcentration of Per- and Polyfluoroalkyl Substances and Precursors in Fathead Minnow Tissues Environmentally Exposed to Aqueous Film-Forming Foam-Contaminated Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1795-1806. [PMID: 38896102 PMCID: PMC11552075 DOI: 10.1002/etc.5926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/06/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with toxicity in wildlife and negative health effects in humans. Decades of fire training activity at Joint Base Cape Cod (MA, USA) incorporated the use of aqueous film-forming foam (AFFF), which resulted in long-term PFAS contamination of sediments, groundwater, and hydrologically connected surface waters. To explore the bioconcentration potential of PFAS in complex environmental mixtures, a mobile laboratory was established to evaluate the bioconcentration of PFAS from AFFF-impacted groundwater by flow-through design. Fathead minnows (n = 24) were exposed to PFAS in groundwater over a 21-day period and tissue-specific PFAS burdens in liver, kidney, and gonad were derived at three different time points. The ∑PFAS concentrations in groundwater increased from approximately 10,000 ng/L at day 1 to 36,000 ng/L at day 21. The relative abundance of PFAS in liver, kidney, and gonad shifted temporally from majority perfluoroalkyl sulfonamides (FASAs) to perfluoroalkyl sulfonates (PFSAs). By day 21, mean ∑PFAS concentrations in tissues displayed a predominance in the order of liver > kidney > gonad. Generally, bioconcentration factors (BCFs) for FASAs, perfluoroalkyl carboxylates (PFCAs), and fluorotelomer sulfonates (FTS) increased with degree of fluorinated carbon chain length, but this was not evident for PFSAs. Perfluorooctane sulfonamide (FOSA) displayed the highest mean BCF (8700 L/kg) in day 21 kidney. Suspect screening results revealed the presence of several perfluoroalkyl sulfinate and FASA compounds present in groundwater and in liver for which pseudo-bioconcentration factors are also reported. The bioconcentration observed for precursor compounds and PFSA derivatives detected suggests alternative pathways for terminal PFAS exposure in aquatic wildlife and humans. Environ Toxicol Chem 2024;43:1795-1806. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nicholas I Hill
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | | | | | - Alan M Vajda
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
24
|
Rasmusson K, Fagerlund F. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources - A comprehensive review of subsurface transport processes. CHEMOSPHERE 2024; 362:142663. [PMID: 38908440 DOI: 10.1016/j.chemosphere.2024.142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants in the environment. An increased awareness of adverse health effects related to PFAS has further led to stricter regulations for several of these substances in e.g. drinking water in many countries. Groundwater constitutes an important source of raw water for drinking water production. A thorough understanding of PFAS subsurface fate and transport mechanisms leading to contamination of groundwater resources is therefore essential for management of raw water resources. A review of scientific literature on the subject of processes affecting subsurface PFAS fate and transport was carried out. This article compiles the current knowledge of such processes, mainly focusing on perfluoroalkyl acids (PFAA), in soil- and groundwater systems. Further, a compilation of data on transport parameters such as solubility and distribution coefficients, as well as, insight gained and conclusions drawn from the reviewed material are presented. As the use of certain fire-fighting foams has been identified as the major source of groundwater contamination in many countries, research related to this type of pollution source has been given extra focus. Uptake of PFAS in biota is outside the scope of this review. The review showed a large spread in the magnitude of distribution coefficients and solubility for individual PFAS. Also, it is clear that the influence of multiple factors makes site-specific evaluation of distribution coefficients valuable. This article aims at giving the reader a comprehensive overview of the subject, and providing a base for further work.
Collapse
Affiliation(s)
- Kristina Rasmusson
- Uppsala Water and Waste AB, Virdings allé 32B, SE-75450, Uppsala, Sweden.
| | - Fritjof Fagerlund
- Uppsala University, Department of Earth Sciences, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
25
|
DeLuca NM, Boettger J, Miller KE, Fuller C, Minucci JM, Ashley PJ, Cox D, DeWalt G, Friedman W, Pinzer EA, Bradham KD, McCord J, Hubal EAC. Per- and polyfluoroalkyl substances (PFAS) in paired tap water and house dust from United States homes. INDOOR ENVIRONMENTS 2024; 1:100033. [PMID: 40183116 PMCID: PMC11964114 DOI: 10.1016/j.indenv.2024.100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most people in the United States have been exposed to per- and polyfluoroalkyl substances (PFAS) which have been linked to a wide array of adverse health conditions in adults and children. The consumption of contaminated drinking water is an important human exposure pathway to PFAS. Residential sources also contribute to PFAS exposure through dermal contact and ingestion of house dust, which acts as an aggregate of chemicals from sources like furnishing materials and consumer products. The U.S. Department of Housing and Urban Development (HUD) conducted the first nationwide survey of residential hazards called the American Healthy Homes Survey (AHHS) in 2005, followed by a second survey (AHHS II) in 2017. The U.S. Environmental Protection Agency (EPA) collaborated with HUD on both efforts and subsequently analyzed PFAS in household tap water and house dust collected from the same homes during the AHHS II study. This study leverages these paired samples to investigate potentially important exposure sources and pathways in the residential environment. Here we report results for paired household tap water and house dust samples from 241 homes for 13 and 16 PFAS chemicals, respectively. All 13 targeted chemicals were detected in the household tap water samples with detections ranging from 100 % for PFBS to 1 % for PFNS, and all 16 targeted chemicals were detected in the house dust samples with detections ranging from 97 % for PFOA to 9 % for PFNS. Four chemicals (PFOA, PFOS, PFHxS, and PFHpA) were measured above the limit of detection in at least 50 % of the samples in both media. All households had at least one of the targeted PFAS detected in both their tap water and house dust. Results provided evidence that geographical factors, such as proximity to ambient contamination sources, were main drivers of PFAS contamination in tap water, while PFAS contamination in house dust was driven mainly by within-home sources. Exposure estimates calculated from the measured PFAS concentrations highlight the importance of addressing potential sources of exposure to PFAS within homes in addition to ambient sources affecting communities' drinking water, particularly to reduce children's exposure to these chemicals.
Collapse
Affiliation(s)
- Nicole M. DeLuca
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jason Boettger
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kelsey E. Miller
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher Fuller
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey M. Minucci
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peter J. Ashley
- Office of Lead Hazard Control and Healthy Homes, US Department of Housing and Urban Development, Washington, DC, USA
| | - David Cox
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Gary DeWalt
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Warren Friedman
- Office of Lead Hazard Control and Healthy Homes, US Department of Housing and Urban Development, Washington, DC, USA
| | - Eugene A. Pinzer
- Office of Lead Hazard Control and Healthy Homes, US Department of Housing and Urban Development, Washington, DC, USA
| | - Karen D. Bradham
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Elaine A. Cohen Hubal
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
26
|
Stults JF, Schaefer CE, Fang Y, Devon J, Nguyen D, Real I, Hao S, Guelfo JL. Air-water interfacial collapse and rate-limited solid desorption control Perfluoroalkyl acid leaching from the vadose zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104382. [PMID: 38861839 DOI: 10.1016/j.jconhyd.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.
Collapse
Affiliation(s)
- John F Stults
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States.
| | - Charles E Schaefer
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States; CDM Smith, 110 Fieldcrest Avenue, #8, 6th Floor, Edison, NJ 08837, United States
| | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States; Haley and Aldrich Inc., 3131 Elliott Ave #600, Seattle, WA 98121, United States
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States
| | - Dung Nguyen
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States
| | - Isreq Real
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Shilai Hao
- Civil & Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jennifer L Guelfo
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
27
|
Wang K, Xiao X, Liu Z, Wang J, Zhu X, Wu E, Higgins CP, Chen B. Nontarget Discovery of Per- and Polyfluoroalkyl Sulfonyl Halides in Soils by Integration of Derivatization and Specific Fragment-Based Liquid Chromatography-High Resolution Mass Spectrometry Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10287-10297. [PMID: 38805641 DOI: 10.1021/acs.est.4c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Though long recognized as synthetic precursors to other poly- and perfluoroalkyl substances (PFASs), most poly- and perfluoroalkyl sulfonyl halides (PASXs) cannot be directly measured and have generally received minimal attention. Inspired by the redox reaction between sulfonyl halide groups and p-toluenethiol in organic chemistry, we developed a novel nontarget analysis strategy for PASXs by intergrating derivatization and specific fragment-based liquid chromatography-high resolution mass spectrometry screening for m/z 82.961 [SO2F-] and m/z 95.934 [S2O2-]. By using this strategy, we discovered 11 PASXs, namely, perfluoroalkyl sulfonyl fluorides (5), polyfluoroalkyl sulfonyl fluorides (2), unsaturated perfluoroalkyl sulfonyl fluoride (1), and perfluoroalkyl sulfonyl chlorides (3) in soil samples collected from an abandoned fluorochemical manufacturing park. These average ∑PASXs concentrations were 1120 μg kg-1 (range: 9.7-9860 μg kg-1), which were very likely to be the key intermediates and undesired byproducts of electrochemical fluorination processes. Spatial variation in the mass ratio of ∑PASXs to ∑PFSAs (range: 0.7-795%) also indicates their different transportation pathways. More importantly, the decline of PASXs and increase of perfluoroalkyl sulfonates (when compared to a prior study at this site) suggest the continued hydrolysis of PASXs and the relatively fast environmental transformation rates in the abandoned fluorochemical park soils. Overall, these findings demonstrated the utility of a novel nontarget analysis strategy, which may change most PASXs from inferred precursors to measured intermediates and further could be adapted for structures, distribution, and transformation studies of PFASXs in other matrices.
Collapse
Affiliation(s)
- Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Hangzhou Global Scientific & Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Xin Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China
| |
Collapse
|
28
|
Björklund S, Weidemann E, Jansson S. Distribution of Per- and Polyfluoroalkyl Substances (PFASs) in a Waste-to-Energy Plant─Tracking PFASs in Internal Residual Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8457-8463. [PMID: 38685907 PMCID: PMC11097385 DOI: 10.1021/acs.est.3c10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) constitute a diverse group of man-made chemicals characterized by their water- and oil-repellent properties and persistency. Given their widespread use in consumer products, PFASs will inevitably be present in waste streams sent to Waste-to-Energy (WtE) plants. We have previously observed a subset of PFASs in residual streams (ashes, treated process water, and flue gas) from a WtE plant. However, the transport and distribution of PFASs inside the WtE plant have remained unaddressed. This study is part of a comprehensive investigation to create a synoptic overview of the distribution of PFASs in WtE residues. PFASs were found in all sample types except for boiler ash. The total levels of 18 individual PFASs (Σ18PFASs) in untreated flue gas ranged from 5.2 to 9.5 ng m-3, decreasing with 35% ± 10% after wet flue gas treatment. Σ18PFASs in the condensate ranged from 46 to 50 ng L-1, of which perfluorohexanoic acid (PFHxA) made up 90% on a ng L-1 basis. PFHxA was also dominant in filter ash, where Σ18PFASs ranged from 0.28 to 0.79 ng g-1. This study shows that flue gas treatment can capture some PFASs and transfer them into WtE residues.
Collapse
Affiliation(s)
- Sofie Björklund
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
- Industrial
Doctoral School, Umeå University, SE-901 87 Umeå, Sweden
| | - Eva Weidemann
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stina Jansson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
29
|
Schaefer CE, Nguyen D, Fang Y, Gonda N, Zhang C, Shea S, Higgins CP. PFAS Porewater concentrations in unsaturated soil: Field and laboratory comparisons inform on PFAS accumulation at air-water interfaces. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104359. [PMID: 38697007 DOI: 10.1016/j.jconhyd.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.
Collapse
Affiliation(s)
- Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6(th) Floor, Edison, NJ 08837, USA.
| | - Dung Nguyen
- CDM Smith, 14432 SE Eastgate Way, # 100, Bellevue, WA 98007, USA
| | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, # 100, Bellevue, WA 98007, USA
| | - Nicholas Gonda
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Stephanie Shea
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
30
|
Sørmo E, Lade CBM, Zhang J, Asimakopoulos AG, Åsli GW, Hubert M, Goranov AI, Arp HPH, Cornelissen G. Stabilization of PFAS-contaminated soil with sewage sludge- and wood-based biochar sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170971. [PMID: 38408660 DOI: 10.1016/j.scitotenv.2024.170971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Sustainable and effective remediation technologies for the treatment of soil contaminated with per- and polyfluoroalkyl substances (PFAS) are greatly needed. This study investigated the effects of waste-based biochars on the leaching of PFAS from a sandy soil with a low total organic carbon content (TOC) of 0.57 ± 0.04 % impacted by PFAS from aqueous film forming foam (AFFF) dispersed at a former fire-fighting facility. Six different biochars (pyrolyzed at 700-900 °C) were tested, made from clean wood chips (CWC), waste timber (WT), activated waste timber (aWT), two digested sewage sludges (DSS-1 and DSS-2) and de-watered raw sewage sludge (DWSS). Up-flow column percolation tests (15 days and 16 pore volume replacements) with 1 % biochar indicated that the dominant congener in the soil, perfluorooctane sulphonic acid (PFOS) was retained best by the aWT biochar with a 99.9 % reduction in the leachate concentration, followed by sludge-based DWSS (98.9 %) and DSS-2 and DSS-1 (97.8 % and 91.6 %, respectively). The non-activated wood-based biochars (CWC and WT) on the other hand, reduced leaching by <42.4 %. Extrapolating this to field conditions, 90 % leaching of PFOS would occur after 15 y for unamended soil, and after 1200 y and 12,000 y, respectively, for soil amended with 1 % DWSS-amended and aWT biochar. The high effectiveness of aWT and the three sludge-based biochars in reducing PFAS leaching from the soil was attributed largely to high porosity in a pore size range (>1.5 nm) that can accommodate the large PFAS molecules (>1.02-2.20 nm) combined with a high affinity to the biochar matrix. Other factors like anionic exchange capacity could play a contributing role. Sorbent effectiveness was better for long-chain than for short-chain PFAS, due to weaker, apolar interactions between the biochar and the latter's shorter hydrophobic CF2-tails. The findings were the first to demonstrate that locally sourced activated wood-waste biochars and non-activated sewage sludge biochars could be suitable sorbents for the ex situ stabilization and in situ remediation of PFAS-contaminated soil, bringing this technology one step closer to full-scale field testing.
Collapse
Affiliation(s)
- Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Clara Benedikte Mader Lade
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | | | - Geir Wold Åsli
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Michel Hubert
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway.
| |
Collapse
|
31
|
Pickard HM, Haque F, Sunderland EM. Bioaccumulation of Perfluoroalkyl Sulfonamides (FASA). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:350-356. [PMID: 38645703 PMCID: PMC11027762 DOI: 10.1021/acs.estlett.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hundreds of sites across the United States have high concentrations of perfluoroalkyl sulfonamides (FASA), but little is known about their propensity to accumulate in fish. FASA are precursors to terminal per- and polyfluoroalkyl substances (PFAS) that are abundant in diverse consumer products and aqueous film-forming foams manufactured using electrochemical fluorination (ECF AFFF). In this study, FASA with C3-C8 carbon chain lengths were detected in all fish samples from surface waters up to 8 km downstream of source zones with ECF AFFF contamination. Short-chain FASA ≤ C6 have rarely been included in routine screening for PFAS, but availability of new standards makes such analyses more feasible. Bioaccumulation factors (BAF) for FASA were between 1 and 3 orders of magnitude greater than their terminal perfluoroalkyl sulfonates. Across fish species, BAF for FASA were greater than for perfluorooctanesulfonate (PFOS), which is presently the focus of national advisory programs. Similar concentrations of the C6 FASA (<0.36-175 ng g-1) and PFOS (0.65-222 ng g-1) were detected in all fish species. No safety thresholds have been established for FASA. However, high concentrations in fish next to contaminated sites and preliminary findings on toxicity suggest an urgent need for consideration by fish advisory programs.
Collapse
Affiliation(s)
- Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Faiz Haque
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Rodgers TFM, Spraakman S, Wang Y, Johannessen C, Scholes RC, Giang A. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5500-5511. [PMID: 38483320 DOI: 10.1021/acs.est.3c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.
Collapse
Affiliation(s)
- Timothy F M Rodgers
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Sylvie Spraakman
- Green Infrastructure Design Team, City of Vancouver Engineering Services, Vancouver, British Columbia V5Z0B4, Canada
| | - Yanru Wang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Cassandra Johannessen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Amanda Giang
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
33
|
Kapuscinski RB. Research Needs Regarding the Vapor Intrusion Potential of Volatile Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4056-4059. [PMID: 38393774 DOI: 10.1021/acs.est.3c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Certain per- or polyfluoroalkyl substances [e.g., fluorotelomer alcohols (FtOHs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)] have sufficient volatility to merit investigation of the vapor intrusion pathway on a site-specific basis, when they occur as subsurface contaminants in sufficient concentrations near occupied buildings. This perspective summarizes some of the evidence that these categories of per- or polyfluoroalkyl substances are volatile and offers specific research questions and objectives, for purposes of further assessing whether FtOHs, FOSAs, and/or FOSEs can pose indoor exposures via soil vapor intrusion and under what circumstances.
Collapse
Affiliation(s)
- Richard B Kapuscinski
- U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, William Jefferson Clinton Building (MC 5202T), 1200 Pennsylvania Avenue, NW, Washington, DC 20460, United States
| |
Collapse
|
34
|
Fischer FC, Ludtke S, Thackray C, Pickard HM, Haque F, Dassuncao C, Endo S, Schaider L, Sunderland EM. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to Serum Proteins: Implications for Toxicokinetics in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1055-1063. [PMID: 38166384 PMCID: PMC11149785 DOI: 10.1021/acs.est.3c07415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of highly persistent anthropogenic chemicals that are detectable in the serum of most humans. PFAS exposure has been associated with many adverse effects on human health including immunotoxicity, increased risk of certain cancers, and metabolic disruption. PFAS binding to the most abundant blood serum proteins (human serum albumin [HSA] and globulins) is thought to affect transport to active sites, toxicity, and elimination half-lives. However, few studies have investigated the competitive binding of PFAS to these proteins in human serum. Here, we use C18 solid-phase microextraction fibers to measure HSA-water and globulin-water distribution coefficients (DHSA/w, Dglob/w) for PFAS with carbon chains containing 4 to 13 perfluorinated carbons (ηpfc = 4-13) and several functional head-groups. PFAS with ηpfc < 7 were highly bound to HSA relative to globulins, whereas PFAS with ηpfc ≥ 7 showed a greater propensity for binding to globulins. Experimentally measured DHSA/w and Dglob/w and concentrations of serum proteins successfully predicted the variability in PFAS binding in human serum. We estimated that the unbound fraction of serum PFAS varied by up to a factor of 2.5 among individuals participating in the 2017-2018 U.S. National Health and Nutrition Examination Survey. These results suggest that serum HSA and globulins are important covariates for epidemiological studies aimed at understanding the effects of PFAS exposure.
Collapse
Affiliation(s)
- Fabian Christoph Fischer
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sophia Ludtke
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Heidi M. Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Faiz Haque
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Clifton Dassuncao
- Eastern Research Group, Inc. (ERG), Arlington, Virginia 22201, United States
| | - Satoshi Endo
- National Institute for Environmental Studies (NIES), Health and Environmental Risk Division, Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Laurel Schaider
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
35
|
Ruyle BJ, Pickard HM, Schultes L, Fredriksson F, Heffernan AL, Knappe DRU, Lord HL, Meng P, Mills MA, Ndungu K, Roesch P, Rundberget JT, Tettenhorst DR, Van Buren J, Vogel C, Westerman DC, Yeung LWY, Sunderland EM. Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel ( Anguilla rostrata): Recommendations for Methods Standardization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20159-20168. [PMID: 37934924 DOI: 10.1021/acs.est.3c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.
Collapse
Affiliation(s)
- Bridger J Ruyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lara Schultes
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Felicia Fredriksson
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Amy L Heffernan
- Eurofins Environment Testing Australia, Murarrie 2066, Queensland, Australia
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | | | - Pingping Meng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Marc A Mills
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Oslo N-0349, Norway
| | - Philipp Roesch
- Federal Institute for Materials Research and Testing, Berlin 12205, Germany
| | | | - Daniel R Tettenhorst
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jean Van Buren
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Christian Vogel
- Federal Institute for Materials Research and Testing, Berlin 12205, Germany
| | - Danielle C Westerman
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Leo W Y Yeung
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
36
|
Améduri B. Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules 2023; 28:7564. [PMID: 38005292 PMCID: PMC10675016 DOI: 10.3390/molecules28227564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
In contrast to some low-molar-mass per- and polyfluoroalkyl substances (PFASs), which are well established to be toxic, persistent, bioaccumulative, and mobile, fluoropolymers (FPs) are water-insoluble, safe, bioinert, and durable. These niche high-performance polymers fulfil the 13 polymer-of-low-concern (PLC) criteria in their recommended conditions of use. In addition, more recent innovations (e.g., the use of non-fluorinated surfactants in aqueous radical (co)polymerization of fluoroalkenes) from industrial manufacturers of FPs are highlighted. This review also aims to show how these specialty polymers endowed with outstanding properties are essential (even irreplaceable, since hydrocarbon polymer alternatives used in similar conditions fail) for our daily life (electronics, energy, optics, internet of things, transportation, etc.) and constitute a special family separate from other "conventional" C1-C10 PFASs found everywhere on Earth and its oceans. Furthermore, some information reports on their recycling (e.g., the unzipping depolymerization of polytetrafluoroethylene, PTFE, into TFE), end-of-life FPs, and their risk assessment, circular economy, and regulations. Various studies are devoted to environments involving FPs, though they present a niche volume (with a yearly production of 330,300 t) compared to all plastics (with 460 million t). Complementary to other reviews on PFASs, which lack of such above data, this review presents both fundamental and applied strategies as evidenced by major FP producers.
Collapse
Affiliation(s)
- Bruno Améduri
- Institute Charles Gerhardt, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|