1
|
Zhu F, Zhao Y, Dai C, Xu Y, Zhou Y. Iridium(III) complex functionalized ZIF-8 as a novel POD-like nanozyme for visual assay of triazine pesticides. Analyst 2025; 150:953-961. [PMID: 39916443 DOI: 10.1039/d4an01467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Due to the unique advantages of mimicking natural enzymes, nanozymes have received ever-growing interest in a wide range of fields including analytical chemistry in the past two decades. Exploring novel kinds of nanozymes with efficient active sites has always been one of the most important and hot topics in nanozyme-related research so far, especially in portable monitors. Herein, zeolitic imidazolate framework-8 (ZIF-8) incorporated with an organometallic iridium(III) complex as a new active site denoted as Irppy-ZIF-8 obtained via a one-pot coordination reaction between the iridium solvent complex and 2-methylimidazole is reported as an efficient peroxidase (POD)-like nanozyme. Importantly, due to the specific inhibition effects of triazine pesticides on the POD-like activities of this novel nanozyme, a portable acetylcholinesterase (AChE)-free colorimetric sensor via a smartphone apart from a UV-vis spectrometer to detect triazine pesticides in real vegetable sample analysis is further successfully proposed in this work. It should be noted that this work could not only open up a new avenue to explore novel kinds of nanozymes from organometallic complexes as active sites, but also promote the progress in emerging applications of nanozymes in visual and portable sensors in the future.
Collapse
Affiliation(s)
- Fangming Zhu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Chenji Dai
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| |
Collapse
|
2
|
Wang H, Feng X, Su W, Zhong L, Liu Y, Liang Y, Ruan T, Jiang G. Identifying Organic Chemicals with Acetylcholinesterase Inhibition in Nationwide Estuarine Waters by Machine Learning-Assisted Mass Spectrometric Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22379-22390. [PMID: 39631442 DOI: 10.1021/acs.est.4c10230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Neurotoxicity is frequently observed in the global aquatic environment, threatening aquatic ecosystems and human health. However, a very limited proportion of neurotoxic effects (∼1%) has been explained by known chemicals of concern. Here, we integrated machine learning, nontargeted analysis, and in vitro biotesting to identify neurotoxic drivers of acetylcholinesterase (AChE) inhibition in estuarine waters along the coast of China. Machine learning was used to predict AChE inhibitors in a large chemical space. The prediction output was profiled into a suspect screening list to guide high-resolution mass spectrometry (HRMS) screening of AChE inhibitors in estuarine water samples. Ultimately, 60 chemicals with diverse known and presently unknown structures were identified, explaining 82.1% of the observed AChE inhibition. Polyunsaturated fatty acids were unexpectedly found to be neurotoxic drivers, accounting for 80.5% of the overall effect. This proof-of-concept study demonstrates that machine learning-based toxicological prediction can achieve a virtual fractionation role to pinpoint HRMS features with the bioactivity potential. Our approach is expected to enable rapid and comprehensive screening of organic pollutants associated with various in vitro end points for large-scale monitoring of water quality.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Luo W, Chou L, Cui Q, Wei S, Zhang X, Guo J. High-efficiency effect-directed analysis (EDA) advancing toxicant identification in aquatic environments: Latest progress and application status. ENVIRONMENT INTERNATIONAL 2024; 190:108855. [PMID: 38945088 DOI: 10.1016/j.envint.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Facing the great threats to ecosystems and human health posed by the continuous release of chemicals into aquatic environments, effect-directed analysis (EDA) has emerged as a powerful tool for identifying causative toxicants. However, traditional EDA shows problems of low-coverage, labor-intensive and low-efficiency. Currently, a number of high-efficiency techniques have been integrated into EDA to improve toxicant identification. In this review, the latest progress and current limitations of high-efficiency EDA, comprising high-coverage effect evaluation, high-resolution fractionation, high-coverage chemical analysis, high-automation causative peak extraction and high-efficiency structure elucidation, are summarized. Specifically, high-resolution fractionation, high-automation data processing algorithms and in silico structure elucidation techniques have been well developed to enhance EDA. While high-coverage effect evaluation and chemical analysis should be further emphasized, especially omics tools and data-independent mass acquisition. For the application status in aquatic environments, high-efficiency EDA is widely applied in surface water and wastewater. Estrogenic, androgenic and aryl hydrocarbon receptor-mediated activities are the most concerning, with causative toxicants showing the typical structural features of steroids and benzenoids. A better understanding of the latest progress and application status of EDA would be beneficial to further advance in the field and greatly support aquatic environment monitoring.
Collapse
Affiliation(s)
- Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qinglan Cui
- Bluestar Lehigh Engineering Institute Co., Ltd., Lianyungang 222004, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
4
|
Liu J, Xiang T, Song XC, Zhang S, Wu Q, Gao J, Lv M, Shi C, Yang X, Liu Y, Fu J, Shi W, Fang M, Qu G, Yu H, Jiang G. High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9925-9944. [PMID: 38820315 DOI: 10.1021/acs.est.3c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
Collapse
Affiliation(s)
- Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yang Y, Zhang X, Fu L, Li C, Zhang S. The number of test organisms might influence the toxicity evaluation of hydrophobic micropollutants. CHEMOSPHERE 2024; 355:141814. [PMID: 38554862 DOI: 10.1016/j.chemosphere.2024.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Evaluating the toxicity of micropollutants forms the basis for understanding their potential risks to the ecosystem and/or human health. To accurately evaluate the toxicity of micropollutants in toxicity tests, many factors have been carefully considered, while the impact of the number of test organisms on toxicity results has rarely been taken into account. In this study, the role of the organism number on the developmental toxicity of five micropollutants was investigated using embryos of the marine polychaete Platynereis dumerilii. The toxicity of hydrophobic micropollutants was found to decrease significantly with increasing the number of embryos used in the test. A quantitative model was developed to better describe how the number of embryos affected developmental toxicity. The model showed a satisfactory fit to the raw data in all scenarios tested. The intrinsic half-maximal effective concentration EC50,int was then determined using the model. For a given compound, the EC50,int was a stable parameter that did not depend on the number of test embryos and thus provided an indication of the intrinsic toxicity of the compounds tested. Compared with the EC50 values determined with the commonly used embryo number (around 120), the EC50,int values of all tested hydrophobic micropollutants were lower. The more hydrophobic the compounds tested, the more pronounced the reduction in toxicity. This suggested that hydrophobic micropollutants could be more toxic than reported in the literature. Some suggestions were also made to eliminate the effect of the number of organisms used in the toxicity evaluation.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Longshan Fu
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Can Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Siwei Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
6
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Burton EA, Atkinson B, Salerno J, Khan HN, Prosser RS, Gillis PL. Lethal and Sub-lethal Implications of Sodium Chloride Exposure for Adult Unionid Mussel Species: Eurynia dilatata and Lasmigona costata. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:1-12. [PMID: 37233741 PMCID: PMC10374710 DOI: 10.1007/s00244-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
The elevated use of salt as a de-icing agent on roads in Canada is causing an increase in the chloride concentration of freshwater ecosystems. Freshwater Unionid mussels are a group of organisms that are sensitive to increases in chloride levels. Unionids have greater diversity in North America than anywhere else on Earth, but they are also one of the most imperiled groups of organisms. This underscores the importance of understanding the effect that increasing salt exposure has on these threatened species. There are more data on the acute toxicity of chloride to Unionids than on chronic toxicity. This study investigated the effect of chronic sodium chloride exposure on the survival and filtering activity of two Unionid species (Eurynia dilatata, and Lasmigona costata) and assessed the effect on the metabolome in L. costata hemolymph. The concentration causing mortality after 28 days of exposure was similar for E. dilatata (1893 mg Cl-/L) and L. costata (1903 mg Cl-/L). Significant changes in the metabolome of the L. costata hemolymph were observed for mussels exposed to non-lethal concentrations. For example, several phosphatidylethanolamines, several hydroxyeicosatetraenoic acids, pyropheophorbide-a, and alpha-linolenic acid were significantly upregulated in the hemolymph of mussels exposed to 1000 mg Cl-/L for 28 days. While no mortality occurred in the treatment, elevated metabolites in the hemolymph are an indicator of stress.
Collapse
Affiliation(s)
- Erika A Burton
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Brian Atkinson
- Agriculture and Food Laboratory, University of Guelph, Guelph, ON, Canada
| | - Joseph Salerno
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Hufsa N Khan
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Patricia L Gillis
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada.
| |
Collapse
|
8
|
Gustafsson J, Legradi J, Lamoree MH, Asplund L, Leonards PEG. Metabolite alterations in zebrafish embryos exposed to hydroxylated polybrominated diphenyl ethers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159269. [PMID: 36208744 DOI: 10.1016/j.scitotenv.2022.159269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed by metabolism from the flame retardants polybrominated diphenyl ethers (PBDEs). In the aquatic environment, they are also produced naturally. OH-PBDEs are known for their potential to disrupt energy metabolism, the endocrine system, and the nervous system. This is the first study focusing on the effects of OH-PBDEs at the metabolite level in vivo. The aim of the current study was to investigate the metabolic effects of exposure to OH-PBDEs using metabolomics, and to identify potential biomarker(s) for energy disruption of OH-PBDEs. Zebrafish (Danio rerio) embryos were exposed to two different concentrations of 6-OH-BDE47 and 6-OH-BDE85 and a mixture of these two compounds. In total, 342 metabolites were annotated and 79 metabolites were affected in at least one exposure. Several affected metabolites, e.g. succinic acid, glutamic acid, glutamine, tyrosine, tryptophan, adenine, and several fatty acids, could be connected to known toxic mechanisms of OH-PBDEs. Several phospholipids were strongly up-regulated with up to a six-fold increase after exposure to 6-OH-BDE47, a scarcely described effect of OH-PBDEs. Based on the observed metabolic effects, a possible connection between disruption of the energy metabolism, neurotoxicity and potential immunotoxicity of OH-PBDEs was suggested. Single compound exposures to 6-OH-BDE47 and 6-OH-BDE85 showed little overlap in the affected metabolites. This shows that compounds of similar chemical structure can induce different metabolic effects, possibly relating to their different toxic mechanisms. There were inter-concentration differences in the metabolic profiles, indicating that the metabolic effects were concentration dependent. After exposure to the mixture of 6-OH-BDE47 and 6-OH-BDE85, a new metabolic profile distinct from the profiles obtained from the single compounds was observed. Succinic acid was up-regulated at the highest, but still environmentally relevant, concentration of 6-OH-BDE47, 6-OH-BDE85, and the mixture. Therefore, succinic acid is suggested as a potential biomarker for energy disruption of OH-PBDEs.
Collapse
Affiliation(s)
- Johan Gustafsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Jessica Legradi
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lillemor Asplund
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Somogyvári D, Farkas A, Mörtl M, Győri J. Behavioral and biochemical alterations induced by acute clothianidin and imidacloprid exposure in the killer shrimp, Dikerogammarus villosus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109421. [PMID: 35908639 DOI: 10.1016/j.cbpc.2022.109421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
Abstract
Neonicotinoids are widely used insecticides around the world and are preserved permanently in soils and appear in surface waters posing an increased threat to ecosystems. In the present study, we exposed adult specimens of amphipod Dikerogammarus villosus to environmentally relevant and higher concentrations of two widely used agricultural neonicotinoids, clothianidin (CLO) and imidacloprid (IMI), for 2 days. The acute effects were investigated at the behavioral (immobility time and swimming activity) and biochemical (glutathione S-transferase [GST] and acetylcholine esterase [AchE] activity) levels. All CLO concentrations used (64 nM, 128 nM, 192 nM) significantly decreased the immobility time and swimming activity. In the case of IMI, the immobility time decreased significantly only at the highest concentration applied (977 nM), but the distance travelled by the animals significantly decreased even at lower concentrations (78 nM and 313 nM). The GST enzyme activity did not change in the CLO-treated groups, however, the 626 nM and 977 nM IMI concentrations significantly increased the GST activity. Similarly, to the behavioral level, all CLO concentrations significantly decreased the AchE activity. In contrast, IMI has a significant stimulating effect on the AchE activity at the 313 nM, 626 nM, and 977 nM concentrations. Based on the authors' best knowledge, this is the first study to investigate the effects of CLO and IMI at environmentally-relevant concentrations on D. villosus. Our findings contribute to the understanding of the physiological effects of neonicotinoids.
Collapse
Affiliation(s)
- Dávid Somogyvári
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary; National Laboratory for Water Science and Water Safety, Balaton Limnological Research Institute, Tihany, Hungary; Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200, Hungary.
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary; National Laboratory for Water Science and Water Safety, Balaton Limnological Research Institute, Tihany, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - János Győri
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary; National Laboratory for Water Science and Water Safety, Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
10
|
Liu W, Chen Y, Yin X, Liu F, Li W, Yu J, Jing G, Li W. A Rapid and on-Site detection of Pesticide Residue from Fruit Samples based on Surface Swab-Electrospray Ionization-Ion Mobility Spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Zhang S, Yin F, Li J, Ren S, Liang X, Zhang Y, Wang L, Wang M, Zhang C. Transcriptomic and metabolomic investigation of metabolic disruption in Vigna unguiculata L. triggered by acetamiprid and cyromazine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113675. [PMID: 35617907 DOI: 10.1016/j.ecoenv.2022.113675] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A variety of pesticides are often used in agricultural management to control target pests but may trigger disruptions in the metabolism of nontarget organisms, ultimately affecting crop quality. Acetamiprid (ACE) and cyromazine (CYR) are two frequently used insecticides on cowpea, so it is critical to understand whether these two insecticides cause metabolic disorders in cowpea quality changes and the mechanism by which they do so. Here, we used metabolomic and transcriptomic methods to explore the mechanisms of the effects of ACE, CYR, and their mixture (MIX) on cowpea. In this study, ACE, CYR and MIX had no significant effects on plant biomass or growth status but decreased the contents of starch, soluble protein, and total flavonoids. All treatments reduced the total flavonoid content, but MIX showed the largest reduction of 10.02%. Metabolomic and transcriptomic analyses revealed that ACE markedly affected amino acid metabolism, and CYR and MIX affected sugar metabolism and flavonoid synthesis pathways. ACE and CYR reduced the levels of alanine, glutamic acid, isoleucine and phenylalanine and the expression of amino acid-related genes in cowpea, while MIX significantly increased the levels of most amino acids. All pesticide treatments reduced saccharide levels and related genes, with the most pronounced reduction in the MIX treatment. Exposure to ACE decreased the content of naringenin chalcone and quercetin and increased the content of anthocyanins in cowpeas, while MIX caused a significant decrease in the contents of quercetin and anthocyanins. According to the current study, single and mixed pesticides had different effects on the active ingredients of cowpea, with MIX causing the most significant decrease in the metabolite content of cowpea. These results provide important insights from a molecular perspective on how neonicotinoids and triazine insecticides affect cowpea metabolism.
Collapse
Affiliation(s)
- Shanying Zhang
- College of Food Science and Engineering, Hainan University, 570228 Haikou, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Fengman Yin
- College of Life Sciences, Hainan University, Haikou 570228, China
| | - Jiahao Li
- College of Food Science and Engineering, Hainan University, 570228 Haikou, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
| | - Saihao Ren
- College of Food Science and Engineering, Hainan University, 570228 Haikou, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xiaoyu Liang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
| | - Yu Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Afairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Meng Wang
- College of Food Science and Engineering, Hainan University, 570228 Haikou, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chenghui Zhang
- College of Food Science and Engineering, Hainan University, 570228 Haikou, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China.
| |
Collapse
|
12
|
Kanwischer M, Asker N, Wernersson AS, Wirth MA, Fisch K, Dahlgren E, Osterholz H, Habedank F, Naumann M, Mannio J, Schulz-Bull DE. Substances of emerging concern in Baltic Sea water: Review on methodological advances for the environmental assessment and proposal for future monitoring. AMBIO 2022; 51:1588-1608. [PMID: 34637089 PMCID: PMC9005613 DOI: 10.1007/s13280-021-01627-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 41390 Göteborg, Sweden
| | - Ann-Sofie Wernersson
- Department for Management of Contaminated Sites, Swedish Geotechnical Institute, Hugo Grauers gata 5 B, 41296 Göteborg, Sweden
| | - Marisa A. Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Elin Dahlgren
- Swedish University of Agricultural Sciences, Stångholmsvägen 2, 178 93 Drottningholm, Sweden
| | - Helena Osterholz
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Friederike Habedank
- State Office for Agriculture, Food Safety and Fisheries, Mecklenburg-Western Pomerania, Thierfelderstraße 18, 18059 Rostock, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jaakko Mannio
- Centre for Sustainable Consumption and Production/Contaminants, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Detlef E. Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
13
|
Liu C, Fan H, Ma J, Ma L, Ge RL. In vitro and in vivo efficacy of thiacloprid against Echinococcus multilocularis. Parasit Vectors 2021; 14:450. [PMID: 34488852 PMCID: PMC8419995 DOI: 10.1186/s13071-021-04952-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is a chronic zoonosis caused by the larval form of Echinococcus multilocularis (E. multilocularis). Current chemotherapy against AE has relied on albendazole and mebendazole, which only exhibit parasitostatic and not parasiticidal efficacy. Therefore, novel compounds for the treatment of this disease are needed. METHODS Phosphoglucose isomerase (PGI) assays were used for compound screening of seven neonicotinoids. The anti-parasitic effects of thiacloprid were then evaluated on E. multilocularis metacestode vesicles, germinal cells and protoscoleces in vitro. Human foreskin fibroblasts (HFF) and Reuber rat hepatoma (RH) cells were used to assess cytotoxicity. Glucose consumption in E. multilocularis protoscoleces and germinal cells was assessed by measuring uptake of 2-deoxyglucose (2-DG). Molecular docking was used to evaluate the potential binding sites of thiacloprid to acetylcholine receptors. In vivo efficacy of thiacloprid was evaluated in mice by secondary infection with E. multilocularis. In addition, ELISA and flow cytometry were used to evaluate the effects of cytokines and T lymphocyte subsets after thiacloprid treatment. Furthermore, collagen deposition and degradation in the host lesion microenvironment were evaluated. RESULTS We found that thiacloprid is the most promising compound, with an IC50 of 4.54 ± 1.10 μM and 2.89 ± 0.34 μM, respectively, against in vitro-cultured E. multilocularis metacestodes and germinal cells. Thiacloprid was less toxic for HFF and RH mammalian cell lines than for metacestodes. In addition, thiacloprid inhibited the acetylcholinesterase activity in protoscoleces, metacestodes and germinal cells. Thiacloprid inhibited glucose consumption by protoscoleces and germinal cells. Subsequently, transmission electron microscopy revealed that treatment with thiacloprid damaged the germinal layer. In vivo, metacestode weight was significantly reduced following oral administration of thiacloprid at 15 and 30 mg/kg. The level of CD4+ T lymphocytes in metacestodes and spleen increased after thiacloprid treatment. Anti-echinococcosis-related cytokines (IL-2, IL-4, IL-10) were significantly increased. Furthermore, thiacloprid inhibited the expression of matrix metalloproteinases (MMPs 1, 3, 9, 13) and promoted collagen deposition in the host lesion microenvironment. CONCLUSIONS The results demonstrated that thiacloprid had parasiticidal activity against E. multilocularis in vitro and in vivo, and could be used as a novel lead compound for the treatment of AE.
Collapse
Affiliation(s)
- Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 Qinghai China
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai China
- Qinghai Key Laboratory for Echinococcosis, Xining, 810001 Qinghai China
| | - Haining Fan
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai China
- Qinghai Key Laboratory for Echinococcosis, Xining, 810001 Qinghai China
| | - Jie Ma
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 Qinghai China
- Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, 810001 Qinghai China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, 810001 Qinghai China
| | - Ri-li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 Qinghai China
- Qinghai Key Laboratory for Echinococcosis, Xining, 810001 Qinghai China
- Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, 810001 Qinghai China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, 810001 Qinghai China
| |
Collapse
|
14
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
15
|
Allen J, Gross EM, Courcoul C, Bouletreau S, Compin A, Elger A, Ferriol J, Hilt S, Jassey VEJ, Laviale M, Polst BH, Schmitt-Jansen M, Stibor H, Vijayaraj V, Leflaive J. Disentangling the direct and indirect effects of agricultural runoff on freshwater ecosystems subject to global warming: A microcosm study. WATER RESEARCH 2021; 190:116713. [PMID: 33302039 DOI: 10.1016/j.watres.2020.116713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Aquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate. Two experiments were performed to determine the direct effect of ARO on primary producers (submerged macrophytes, periphyton and phytoplankton) and on the grazing snail Lymnaea stagnalis, respectively. Three different ARO concentrations added as single doses or as multiple pulses at two different temperatures (22°C and 26°C) were applied. In a third experiment, primary producers and consumers were exposed together to allow trophic interactions. When functional groups were exposed alone, ARO had a direct positive effect on phytoplankton and a strong negative effect on L. stagnalis. When exposed together, primary producer responses were contrasting, as the negative effect of ARO on grazers led to an indirect positive effect on periphyton. Periphyton in turn exerted a strong control on phytoplankton, leading to an indirect negative effect of ARO on phytoplankton. Macrophytes showed little response to the stressors. Multiple pulse exposure increased the effect of ARO on L. stagnalis and periphyton when compared with the same quantity of ARO added as a single dose. The increase in temperature had only limited effects. Our results highlight the importance of indirect effects of stressors, here mediated by grazers and periphyton, and the frequency of the ARO input in aquatic ecosystems.
Collapse
Affiliation(s)
- Joey Allen
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Université de Lorraine, CNRS, LIEC, F-57000 Metz, France.
| | | | - Camille Courcoul
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Stéphanie Bouletreau
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Arthur Compin
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Arnaud Elger
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jessica Ferriol
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Sabine Hilt
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Vincent E J Jassey
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Martin Laviale
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Bastian H Polst
- Helmholtz-Centre for Environmental Research - UFZ, Dept of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Mechthild Schmitt-Jansen
- Helmholtz-Centre for Environmental Research - UFZ, Dept of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Herwig Stibor
- Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | - Joséphine Leflaive
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
16
|
Herbert LT, Cossi PF, Painefilú JC, Mengoni Goñalons C, Luquet CM, Kristoff G. Acute neurotoxicity evaluation of two anticholinesterasic insecticides, independently and in mixtures, and a neonicotinoid on a freshwater gastropod. CHEMOSPHERE 2021; 265:129107. [PMID: 33288284 DOI: 10.1016/j.chemosphere.2020.129107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Neurotoxic insecticides are ubiquitous in aquatic ecosystems, frequently as part of complex mixtures. Freshwater gastropods are generally underrepresented in neurotoxicity evaluations and cumulative toxicity testing. This study investigates the behavioural and biochemical effects of acute exposures to the carbamate carbaryl, the organophosphate chlorpyrifos, and the neonicotinoid acetamiprid on the freshwater gastropod Chilina gibbosa. First, we evaluated behavioural neurotoxicity and cholinesterase (ChE), carboxylesterase (CE), and glutathione S-transferase (GST) activities in acute (48h) single-chemical exposures to increasing concentrations of carbaryl (0.5-500 μg L-1), chlorpyrifos (10-7500 μg L-1), and acetamiprid (1-10000 μg L-1). We then studied the effects of acute (48h) exposures to binary mixtures of carbaryl and chlorpyrifos equivalent to 0.5, 1, and 1.5 ChE 48h-IC50. None of the insecticides caused severe behavioural neurotoxicity, except for a significant lack of adherence by 5000 μg L-1 chlorpyrifos. Carbaryl caused concentration-dependent inhibition of ChEs (NOEC 5 μg L-1; 48h-IC50 45 μg L-1) and CEs with p-nitrophenyl butyrate as substrate (NOEC 5 μg L-1; 48h-IC50 37 μg L-1). Chlorpyrifos caused concentration-dependent inhibition of ChEs (NOEC 50 μg L-1; 48h-IC50 946 μg L-1) but did not affect CEs (NOEC ≥7500 μg L-1). Carbaryl-chlorpyrifos mixtures inhibited ChEs additively, inhibited CEs with p-nitrophenyl butyrate, and did not affect behaviour. GST activity was not affected by single or mixture exposures. Acute exposure to acetamiprid did not affect any of the endpoints evaluated. This study provides new information on carbaryl, chlorpyrifos, and acetamiprid toxicity on C. gibbosa, relevant to improve gastropod representation in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Lucila Thomsett Herbert
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Paula Fanny Cossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Julio César Painefilú
- Laboratorio de Ecotoxicología Acuática (INIBIOMA, UNCo-CONICET)-CEAN, Junín de Los Andes, Neuquén, Argentina.
| | | | - Carlos Marcelo Luquet
- Laboratorio de Ecotoxicología Acuática (INIBIOMA, UNCo-CONICET)-CEAN, Junín de Los Andes, Neuquén, Argentina.
| | - Gisela Kristoff
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Zhao GP, Yang FW, Li JW, Xing HZ, Ren FZ, Pang GF, Li YX. Toxicities of Neonicotinoid-Containing Pesticide Mixtures on Nontarget Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1884-1893. [PMID: 32936472 DOI: 10.1002/etc.4842] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are a widely used class of pesticides. Co-exposure to neonicotinoids and other classes of pesticides can exert potentiating or synergistic effects, and these mixtures have been detected in human bodily fluids. The present review summarizes studies into the effects of neonicotinoid-containing pesticide mixtures on humans and other nontarget organisms. Exposure to these mixtures has been reported to result in reproductive and hormonal toxicity, genotoxicity, neurotoxicity, hepatotoxicity, and immunotoxicity in vertebrates. Mortality of pollinators and toxicity in other organisms has also been reported. The underlying mechanism of pesticide mixture toxicity may be associated with impairment of cytochrome 450 enzymes, which are involved in metabolizing pesticides. However, a comprehensive explanation of the adverse effects of neonicotinoid-containing pesticide mixtures is still required so that effective prevention and control measures can be formulated. Environ Toxicol Chem 2020;39:1884-1893. © 2020 SETAC.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jin-Wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han-Zhu Xing
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Zaharia M, Mihai M, Roman T, Zbancioc G, Pui A, Gradinaru RV, Logigan C, Drochioiu G. Unusual ferrite induced photohydrolysis of dinitrophenols to nonaromatic and nontoxic derivatives. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Leung HM, Yue PYK, Sze SCW, Au CK, Cheung KC, Chan KL, Lok HY, Li WC, Yung KKL. Behavioural toxicity studies of Cyclope neritea and Nassarius mutabilis exposed to polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6695-6700. [PMID: 31865573 DOI: 10.1007/s11356-019-07250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The objective of the work was to study behavioural change of Cyclope neritea (sea snail) and Nassarius mutabilis (land snail) upon exposure to different levels of PAHs. Snail's behaviour was translated and expressed in Behavioural State Score (BSS) where the score ranged from "0" to "5" points refers to the ascending level of locomotion of a snail. A significant difference was found in snail's behaviour in 25.0 mg/L than in 0.5 mg/L with p value smaller than 0.01. BSS scores appear most frequent on the treatment and control group were 5 (61.5-64.5%) and 2 (41.0-45.0%), respectively. Intersex behaviour was found in all species (i.e. the same sex was grouped together) regardless of PAH concentrations. This is the first reported to study the behavioural change of snail sampled in Hong Kong area when exposed to PAHs. Further studies should be carried on the impact of snail's behaviour exposure on each congener in the family of PAHs.
Collapse
Affiliation(s)
- Ho Man Leung
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong
| | - Patrick Ying Kit Yue
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong
| | - Stephen Cho Wing Sze
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong
| | - Chi Kin Au
- History Department, Hong Kong Shue Yan University, North Point, Hong Kong
| | - Kwai Chung Cheung
- Institute of Vocational Education, Hong Kong Vocational Training Council, Wan Chai, Hong Kong
| | - Ka Loi Chan
- Po Leung Kuk Ngan Po Ling College, Hung Hom, Hong Kong
| | - Ho Yiu Lok
- Po Leung Kuk Ngan Po Ling College, Hung Hom, Hong Kong
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong.
| |
Collapse
|
20
|
Martins C, Dreij K, Costa PM. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of "Omics" Approaches Directed to Toxicant Mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234718. [PMID: 31779274 PMCID: PMC6926496 DOI: 10.3390/ijerph16234718] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The last decade witnessed extraordinary advances in “omics” methods, particularly transcriptomics, proteomics and metabolomics, enabling toxicologists to integrate toxicokinetics and toxicodynamics with mechanistic insights on the mode-of-action of noxious chemicals, single or combined. The toxicology of mixtures is, nonetheless, a most challenging enterprise, especially for environmental toxicologists and ecotoxicologists, who invariably deal with chemical mixtures, many of which contain unknowns. Despite costs and demanding computations, the systems toxicology framework, of which “omics” is a major component, endeavors extracting adverse outcome pathways for complex mixtures. Still, the interplay between the multiple components of gene expression and cell metabolism tends to be overlooked. As an example, the proteome allocates DNA methyltransferases whose altered transcription or loss of function by action of chemicals can have a global impact on gene expression in the cell. On the other hand, chemical insult can produce reactive metabolites and radicals that can intercalate or bind to DNA as well as to enzymes and structural proteins, compromising their activity. These examples illustrate the importance of exploring multiple “omes” and the purpose of “omics” and multi-“omics” for building truly predictive models of hazard and risk. Here we will review the state-of-the-art of toxicogenomics highlighting successes, shortcomings and perspectives for next-generation environmental toxicologists.
Collapse
Affiliation(s)
- Carla Martins
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
- Correspondence: (C.M.); (P.M.C.); Tel.: +351-212-948-300 (ext. 11103) (P.M.C.)
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
| | - Pedro M. Costa
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: (C.M.); (P.M.C.); Tel.: +351-212-948-300 (ext. 11103) (P.M.C.)
| |
Collapse
|
21
|
Zhou X, Li Y, Li H, Yang Z, Zuo C. Responses in the crucian carp (Carassius auratus) exposed to environmentally relevant concentration of 17α-Ethinylestradiol based on metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109501. [PMID: 31401330 DOI: 10.1016/j.ecoenv.2019.109501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
17α-ethynylestradiol (EE2), a ubiquitous synthetic endocrine disrupting chemical, was the principal component of contraceptive drugs and one of common hormone medications. The detrimental impact of EE2 on the reproduction of organisms was widely recognized. However, the underlying mechanisms of physiological and metabolome effects of EE2 on freshwater fish are still unclear. This study investigated the toxic effects and related mechanisms of EE2 on freshwater fish crucian carp (Carassius auratus) based on metabolomics. Crucian carp were exposed to EE2 at environmentally relevant concentration for 9 days, 18 days, and 27 days, and the biological responses were explored through analysis of the physiological endpoints, steroid hormones, and metabolome. The physiological endpoints of crucian carp had no distinct change after EE2 exposure. However, metabolomics analysis probed significant deviation based on chemometrics, indicating that the metabolomics approach was more sensitive to the effects of EE2 at environmentally relevant concentration to freshwater fish than the traditional endpoints. The alterations of 24 metabolites in gonad and 16 metabolites in kidney were induced by treatment with EE2, respectively, which suggesting the perturbations in amino acid metabolism, lipid metabolism, energy metabolism, and oxidative stress. Moreover, EE2 exposure could induce the disruption of lipid metabolism and then broke the homeostasis of endogenous steroid hormones. Metabolomics provided a new strategy for the studies on contaminant exposure at a low dose in the short term and gave important information for the toxicology and mechanism of EE2.
Collapse
Affiliation(s)
- Xinyi Zhou
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Yue Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Chenchen Zuo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| |
Collapse
|
22
|
Malinowska JM, Viant MR. Confidence in metabolite identification dictates the applicability of metabolomics to regulatory toxicology. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Ge G, Jiao W, Cui C, Liao G, Sun J, Hou R. Thiamethoxam Metabolism and Metabolic Effects in Cell Suspension Culture of Tea ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7538-7546. [PMID: 31180663 DOI: 10.1021/acs.jafc.8b07011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thiamethoxam (TMX) has already been proven to have a physiological effect in plant tissue or cell expect for the insecticidal activity. In our previous study, TMX was verified to be metabolized by tea cells in either a suspension culture or tea plant into several metabolites. Here, tea cell suspension cultures were treated for 45 days to investigate the metabolite effects in both the tea cells and the culture supernatants by nontargeted metabolomics. Using multivariate analysis (PCA and OPLS-DA), all treatment and control groups could be clearly separated. Inside the cells, 113 metabolites were found to be up-regulated while 122 were down-regulated, when compared with untreated cells. In the culture supernatant, there were 128 up-regulated and 35 down-regulated metabolites, compared to untreated cultures. KEGG searches revealed that the alanine, aspartate, and glutamate metabolic pathways were strongly affected by TMX metabolism within the tea cell. Molecular docking models showed that (i) 4-aminobutyrate aminotransferase may be related to the formation of 2-chloro-thiazole-5-carboxylic acid and (ii) 3'(2'),5'-bisphosphate nucleotidase may be able to interact with TMX. This study can help us to understand the interaction mechanism of pesticides with plant cells.
Collapse
Affiliation(s)
- Guoqin Ge
- State Key Laboratory of Tea Plant Biology and Utilization, and Province Key Lab of Analysis and Detection for Food Safety, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , 230036 , People's Republic of China
| | - Weiting Jiao
- State Key Laboratory of Tea Plant Biology and Utilization, and Province Key Lab of Analysis and Detection for Food Safety, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , 230036 , People's Republic of China
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment , Anhui Agricultural University , Hefei 230036 , People's Republic of China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization, and Province Key Lab of Analysis and Detection for Food Safety, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , 230036 , People's Republic of China
| | - Guangqin Liao
- State Key Laboratory of Tea Plant Biology and Utilization, and Province Key Lab of Analysis and Detection for Food Safety, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , 230036 , People's Republic of China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, and Province Key Lab of Analysis and Detection for Food Safety, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , 230036 , People's Republic of China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, and Province Key Lab of Analysis and Detection for Food Safety, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , 230036 , People's Republic of China
| |
Collapse
|
24
|
Ye Y, Bruning H, Liu W, Rijnaarts H, Yntema D. Effect of dissolved natural organic matter on the photocatalytic micropollutant removal performance of TiO2 nanotube array. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Wagner ND, Simpson AJ, Simpson MJ. Sublethal metabolic responses to contaminant mixture toxicity in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2448-2457. [PMID: 29920755 DOI: 10.1002/etc.4208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic activity is increasing the presence of contaminants that enter waterways through wastewater effluent and urban and/or agricultural runoff, generally in complex mixtures. Depending on the mode of action of the individual contaminant within the mixture, toxicity can occur due to contaminants having similar or dissimilar modes of action. However, it is unknown how the metabolome responds to sublethal contaminant mixtures in the keystone genus Daphnia. In the present study we examined D. magna metabolic responses to acute sublethal exposure of propranolol, carbamazepine, and perfluorooctanesulfonic acid (PFOS) as well as in binary (propranolol-carbamazepine, propranolol-PFOS, carbamazepine-PFOS) and tertiary mixtures (carbamazepine-propranolol-PFOS), all at 10% of the median lethal concentration of the population (LC50). The metabolome was measured using 1 H nuclear magnetic resonance (NMR) and characterized using principal component analysis, regression analysis, and fold changes in metabolite relative to the unexposed (control) group. The averaged principal component analysis scores plots revealed that carbamazepine-PFOS and carbamazepine-propranolol-PFOS exposures were significantly different from the control treatment. After normalizing the toxicity of each contaminant, we found that some metabolites responded monotonically, whereas others displayed a nonmonotonic response with increasing toxicity units. The single contaminant exposures and 2 binary mixtures (propranolol-carbamazepine, and propranolol-PFOS) resulted in minimal changes in the identified metabolites, whereas the carbamazepine-PFOS and carbamazepine-propranolol-PFOS displayed increases in several amino acid metabolites and decreases in glucose. Overall, our results highlight the sensitivity of the metabolome to distinguish the composition of the contaminant mixtures, with some mixtures displaying heightened responses versus others. Environ Toxicol Chem 2018;37:2448-2457. © 2018 SETAC.
Collapse
Affiliation(s)
- Nicole D Wagner
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Zhao L, Huang Y, Keller AA. Comparative Metabolic Response between Cucumber ( Cucumis sativus) and Corn ( Zea mays) to a Cu(OH) 2 Nanopesticide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6628-6636. [PMID: 28493687 DOI: 10.1021/acs.jafc.7b01306] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to their unique properties, copper-based nanopesticides are emerging in the market. Thus, understanding their effect on crop plants is very important. Metabolomics can capture a snapshot of cellular metabolic responses to a stressor. We selected maize and cucumber as model plants for exposure to different doses of Cu(OH)2 nanopesticide. GC-TOF-MS-based metabolomics was employed to determine the metabolic responses of these two species. Results revealed significant differences in metabolite profile changes between maize and cucumber. Furthermore, the Cu(OH)2 nanopesticide induced metabolic reprogramming in both species, but in different manners. In maize, several intermediate metabolites of the glycolysis pathway and tricarboxylic acid cycle (TCA) were up-regulated, indicating the energy metabolism was activated. In addition, the levels of aromatic compounds (4-hydroxycinnamic acid and 1,2,4-benzenetriol) and their precursors (phenylalanine, tyrosine) were enhanced, indicating the activation of shikimate-phenylpropanoid biosynthesis in maize leaves, which is an antioxidant defense-related pathway. In cucumber, arginine and proline metabolic pathways were the most significantly altered pathway. Both species exhibited altered levels of fatty acids and polysaccharides, suggesting the cell membrane and cell wall composition may change in response to Cu(OH)2 nanopesticide. Thus, metabolomics helps to deeply understand the differential response of these plants to the same nanopesticide stressor.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- Center for Environmental Implications of Nanotechnology , University of California , Santa Barbara , California 93106-5131 , United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- Center for Environmental Implications of Nanotechnology , University of California , Santa Barbara , California 93106-5131 , United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- Center for Environmental Implications of Nanotechnology , University of California , Santa Barbara , California 93106-5131 , United States
| |
Collapse
|
27
|
Wang Y, Wu S, Chen J, Zhang C, Xu Z, Li G, Cai L, Shen W, Wang Q. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. CHEMOSPHERE 2018; 192:14-23. [PMID: 29091792 DOI: 10.1016/j.chemosphere.2017.10.129] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 05/24/2023]
Abstract
Pesticides usually present in mixtures in surface waters, although they are traditionally regulated on an individual basis in aquatic ecosystems. In this study, we aimed to investigate the lethal and transcriptional responses of individual and combined pesticides (iprodione, pyrimethanil, pyraclostrobin and acetamiprid) on zebrafish (Danio rerio). Semi-static toxicity test indicated that the greatest toxicity to the four life stages (embryonic, larval, juvenile and adult stages) of D. rerio was detected from pyraclostrobin, followed by iprodione and pyrimethanil. In contrast, the lowest toxicity to the organisms was found from acetamiprid. Most of the selected pesticides exerted greater toxicities to D. rerio of embryonic stage compared with other life stages. Synergistic responses were observed from all binary mixtures of iprodione in combination with pyrimethanil or acetamiprid and ternary mixtures of iprodione+pyraclostrobin in combination with pyrimethanil or acetamiprid. The expressions of 16 genes related to cell apoptosis pathway, oxidative stress response, innate immunity and endocrine disruption at the mRNA level showed that zebrafish embryos were affected by the individual or combined pesticides. The expressions of P53, Tnf, TRβ, Tsh and Cyp19a exhibited greater changes upon exposure to combined pesticides compared with individual pesticides. Taken together, increased toxicity might be triggered by the simultaneous presence of several pesticides in the aquatic environment, which seriously damaged the non-target organisms.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jine Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changpeng Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zhenlan Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Gang Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Weifeng Shen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
28
|
Zhao L, Huang Y, Adeleye AS, Keller AA. Metabolomics Reveals Cu(OH) 2 Nanopesticide-Activated Anti-oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10184-10194. [PMID: 28738142 DOI: 10.1021/acs.est.7b02163] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the use of nanopesticides in modern agriculture continues to increase, their effects on crop plants are still poorly understood. Here, 4 week old spinach plants grown in an artificial medium were exposed via foliar spray to Cu(OH)2 nanopesticide (0.18 and 18 mg/plant) or Cu ions (0.15 and 15 mg/plant) for 7 days. A gas chromatography-time-of-flight-mass spectrometry metabolomics approach was applied to assess metabolic alterations induced by Cu(OH)2 nanopesticide in spinach leaves. Exposure to Cu(OH)2 nanopesticide and copper ions induced alterations in the metabolite profiles of spinach leaves. Compared to the control, exposure to 18 mg of Cu(OH)2 nanopesticide induced significant reduction (29-85%) in antioxidant or defense-associated metabolites including ascorbic acid, α-tocopherol, threonic acid, β-sitosterol, 4-hydroxybutyric acid, ferulic acid, and total phenolics. The metabolic pathway for ascorbate and aldarate was disturbed in all exposed spinach plants (nanopesticide and Cu2+). Cu2+ is responsible for the reduction in antioxidants and perturbation of the ascorbate and aldarate metabolism. However, nitrogen metabolism perturbation was nanopesticide-specific. Spinach biomass and photosynthetic pigments were not altered, indicating that metabolomics can be a rapid and sensitive tool for the detection og earlier nanopesticide effects. Consumption of antioxidants during the antioxidant defense process resulted in reduction of the nutritional value of exposed spinach.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Liu Y, Wang LT, Zhou K, Eremin SA, Huang XA, Sun YM, Xu ZL, Lei HT. Rapid and homologous immunoassay for the detection of herbicide propisochlor in water. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1359499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yao Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lan-Teng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Kai Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Sergei A. Eremin
- Faculty of Chemistry, MV Lomonosov Moscow State University, Moscow, Russia
| | - Xin-An Huang
- Tropical Medicine Institute and South China Chinese Medicine Collaborative Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
30
|
Deng J, Lu D, Zhang X, Shi G, Zhou T. Highly sensitive GQDs-MnO 2 based assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase fluctuation: A biomarker for organophosphorus pesticides poisoning and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:436-444. [PMID: 28258856 DOI: 10.1016/j.envpol.2017.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/12/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
In this study, we demonstrated an assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase (AChE) fluctuation as a biomarker for organophosphorus pesticides (OPs) poisoning and management based on single layer MnO2 nanosheets with graphene quantum dots (GQDs) as signal readout. Initially, the fluorescence of GQDs was quenched by MnO2 nanosheets mainly due to the inner filter effect (IFE). However, with the presence of reductive thiocholine (TCh), the enzymatic product, hydrolyzed from acetylthiocholine (ATCh) by AChE, the redox reaction between MnO2 and TCh occurred, leading to the destruction of the MnO2 nanosheets, and thereby IFE was diminished gradually. As a consequence, the turn-on fluorescence of GQDs with the changes in the spectrum of the dispersion constituted a new mechanism for sensing of cerebrospinal AChE. With the method developed here, we could monitor cerebrospinal AChE fluctuation of rats exposed to OPs before and after therapy, and could thereby open up the pathway to a new sensing platform for better understanding the mechanism of brain dysfunctions associate with OPs poisoning.
Collapse
Affiliation(s)
- Jingjing Deng
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dingkun Lu
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaolei Zhang
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
31
|
Escher BI, Hackermüller J, Polte T, Scholz S, Aigner A, Altenburger R, Böhme A, Bopp SK, Brack W, Busch W, Chadeau-Hyam M, Covaci A, Eisenträger A, Galligan JJ, Garcia-Reyero N, Hartung T, Hein M, Herberth G, Jahnke A, Kleinjans J, Klüver N, Krauss M, Lamoree M, Lehmann I, Luckenbach T, Miller GW, Müller A, Phillips DH, Reemtsma T, Rolle-Kampczyk U, Schüürmann G, Schwikowski B, Tan YM, Trump S, Walter-Rohde S, Wambaugh JF. From the exposome to mechanistic understanding of chemical-induced adverse effects. ENVIRONMENT INTERNATIONAL 2017; 99:97-106. [PMID: 27939949 PMCID: PMC6116522 DOI: 10.1016/j.envint.2016.11.029] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 05/17/2023]
Abstract
The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Achim Aigner
- Leipzig University, Rudolf Boehm Institute for Pharmacology & Toxicology, Clinical Pharmacology, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephanie K Bopp
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marc Chadeau-Hyam
- University London, Imperial College, Department Epidemiology & Biostatistics, School of Public Health, St Marys Campus, Norfolk Place, London W2 1PG, England, United Kingdom
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | | | - James J Galligan
- Vanderbilt University, School of Medicine, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department Biochemistry, Nashville, TN 37232, USA
| | - Natalia Garcia-Reyero
- US Army Engineer Research & Development Center, Vicksburg, MS, USA; Mississippi State University, Starkville, MS, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA; University of Konstanz, Germany
| | - Michaela Hein
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jos Kleinjans
- Maastricht University, Department Toxicogenomics, 6200 MD Maastricht, The Netherlands
| | - Nils Klüver
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marja Lamoree
- Vrije Universiteit, Faculty of Earth & Life Sciences, Institute for Environmental Studies, 1081 HV Amsterdam, The Netherlands
| | - Irina Lehmann
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Till Luckenbach
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gary W Miller
- Dept of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Andrea Müller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - David H Phillips
- King's College London, MRC-PHE Centre for Environment & Health, Analytical & Environmental Sciences Division, London SE1 9NH, England, United Kingdom
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Technical University Bergakademie Freiberg, Institute for Organic Chemistry, 09596 Freiberg, Germany
| | | | - Yu-Mei Tan
- US EPA, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Saskia Trump
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - John F Wambaugh
- US EPA, National Center for Computational Toxicology, Research Triangle Park, NC 27711, USA
| |
Collapse
|