1
|
Bao Y, Feng S, Yu F, Ye W, Xing H, Zhu X, Bao W, Huang M. Self-Regulating pH Pyrite-Construction waste Biofilter: Denitrification Performance, Metabolic Pathways, and Clogging Alleviation. BIORESOURCE TECHNOLOGY 2025; 429:132500. [PMID: 40204030 DOI: 10.1016/j.biortech.2025.132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Waste-based denitrification filters face challenges like alkalinity accumulation, low efficiency, and clogging. This study proposes a novel denitrification filter using construction waste and pyrite (WPDF) to address these issues. WPDF's performance, safety, and mechanisms were evaluated by measuring effluent, filler characteristics and metagenomics. Results demonstrated a high total nitrogen removal load (88.65 g N m-3d-1) with minimal biofilm (13 %) and filler accumulation (39 %), effectively mitigating clogging. Phosphorus removal relied on chemical precipitation in construction waste. WPDF was pH self-regulating and promoted the formation and release of fulvic acid. Pyrite promotes bio-metabolism, making WPDF enriched in energy metabolism (6 %) and transporter capacity (6 %). Functional prediction indicated that WPDF was more abundant in genes related to denitrification, glycolysis, and electron transport, which promoted the heterotrophic denitrification process. This study provides a novel, efficient, and eco-friendly possible solution for wastewater and offers new insights into the molecular mechanisms of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yinzhou Bao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suhao Feng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenpei Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Xing
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weibin Bao
- Nantong Huaxin Environmental Protection Technology Co., Nantong 226000, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Hou Y, Tang Y, Lian X, Yuan Y, Wang K, Xiao W, Liu Z, Zou G, Chen Q, Cheng Q, Chen Y. Atrazine disrupts nitrogen removal performance and greenhouse gas abatement in bioretention systems: Unraveling microbiotas and macrophytes responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138672. [PMID: 40408965 DOI: 10.1016/j.jhazmat.2025.138672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/15/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
The potential impact of stormwater runoff-induced loss of triazine herbicides, like atrazine (ATZ), on soil nitrogen cycling remains poorly understood. Bioretention systems (BRS) represent effective stormwater control measures (SCM) now understood to serve as important ATZ accumulation zones. However, the effects of ATZ exposure on nitrogen removal and greenhouse gas (GHG) abatement within BRS remain unclear. In the present study, bioretention columns were established and exposed to ATZ (0-25 mg kg-1) for 200 days. The results demonstrated that the accumulation of ATZ led to a reduction in total nitrogen removal efficiency (by 7.7-49.3 %) while simultaneously causing an increase in GHG emission fluxes (by 11.2 %-25.1 %). Moreover, ATZ significantly altered microbial activities, including nitrogen metabolism enzymes (hydroxylamine oxidoreductase, nitrate reductase, and nitrite reductase) and the electron transport system (ETSA). Microbial community analysis showed that ATZ reduced the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas), along with certain denitrifying bacteria (Thauera, Terrimonas, and Dechloromona). Besides, the compromised function of leaves and roots diminished plant nitrogen uptake, and the application of structural equation modeling (SEM) revealed an increased contribution of plants to nitrogen removal. These findings collectively suggest that the widespread presence of triazine herbicides in urban areas could potentially impact the performance of SCMs.
Collapse
Affiliation(s)
- Yizhi Hou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; College of Sciences, National University of Defense Technology, Changsha 410073, China
| | - Yinghui Tang
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kaifeng Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Gaoju Zou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Quanhong Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiming Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
3
|
Li D, Li Z, Xu B, Chen T, Sun J, Hou J, Liu S. Microbial denitrification responses to elevated CO 2 in lake-shore sediments under different flooding conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125835. [PMID: 40381298 DOI: 10.1016/j.jenvman.2025.125835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/25/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The lake-shore zone is a critical site for recognizing the ecological impacts of global climate change, such as persistent elevated CO2 (eCO2). However, the direct effect of eCO2 on functional microorganisms in lake-shore sediments is neglected or confused at previous studies. In this study, the short-term direct effects of eCO2 on microbial denitrification in lake-shore sediments were investigated by simulating four flooding conditions (non-flooding (NF), intermittent flooding (IF), alternating high and low water-level flooding (HLF), and constant water-level flooding (WF)) through incubation experiments in the laboratory. This work demonstrated eCO2 directly increased denitrification in lake-shore sediments under different water-level conditions by different regulatory mechanism within the short term of 24 days. The microbial pentose phosphate pathway (PPP) and glycolysis in HLF and WF sediments were enhanced, while glycolysis in NF and IF sediments were obviously suppressed. Additionally, eCO2 strengthened negative associations of nosZ-type and nirK-type denitrifiers communities in NF, while increased their positive associations in IF, HLF, and WF. The regulation of metabolic pathways in denitrifiers would become more important than their microbial community when denitrifiers adapting eCO2. And the rising CO2 levels shifted sediments hotspots for potential N2O emissions from dry-wet alternation areas in lake-shore zone to the near-lake regions and lake basins. Based on these results, we recommend adjusting water-level management strategies in the lake-shore zone to address the greenhouse effect. For example, increasing the size of intermittently flooded areas and decreasing the proportion of continuously flooded areas in the lake-shore zone to mitigate N2O emissions and optimize sediment denitrification.
Collapse
Affiliation(s)
- Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Boran Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianhua Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Zhan Y, Chen N, Feng C, Dai T, Gao H, Yuan Y, Hu W, Dong H. Electron flow dynamics in sulfur-based autotrophic bioreduction of Cr(VI) mediated by inorganic carbon species: Insights for environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138585. [PMID: 40378756 DOI: 10.1016/j.jhazmat.2025.138585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
The deployment of sulfur-based autotrophic bioremediation for in situ groundwater remediation faces hurdles due to electron competition among electron acceptors, impacting contaminant removal efficiency and causing pH instability. Notably, the sulfur-based bioreduction of Cr(VI) [Cr(VI)-SAR] exemplifies gaps in our comprehension of electron competition dynamics with inorganic carbon (IC), and its subsequent influence on pH. Herein, we established a Cr(VI)-SAR system interfaced with diverse IC species, providing definitive insights into electron transfer mechanisms through rigorous multi-biocycle analysis and thermodynamically consistent half-reaction calculations. Through quantification of electron transfer pathways, we derived reaction equations for Cr(VI) reduction in conjunction with various IC species. Furthermore, metagenomics were used to quantify functional enzymes and identify diverse electron transport patterns alongside IC fixation pathways. Notably, the enrichment of genes associated with electron shuttles and conductive pili expands the paradigm of extracellular electron transfer, while the Wood-Ljungdahl pathway streamlines microbial metabolic proliferation with reduced energy expenditure. Quantitative analysis of these functional genes offers a plausible mechanism underlying the observed shifts in electron competition between IC and Cr(VI). This research marks an advancement in the Cr(VI)-SAR foundational theory, with a particular focus on the dynamics of electron competition, contributing to a deeper understanding of this environmentally significant process.
Collapse
Affiliation(s)
- Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tianjiao Dai
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hang Gao
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuan Yuan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Weiwu Hu
- Journal Center, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
5
|
Wang Y, Bai Y, Xu L, Su J, Feng J, Zhang Y, Cheng W, Bai J. Mechanistic insights and performance of Mn redox cycling in a dual-bacteria bioreactor for ammonium and Cr(VI) removal. WATER RESEARCH 2025; 281:123713. [PMID: 40288248 DOI: 10.1016/j.watres.2025.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The co-contamination of hexavalent chromium (Cr(VI)) and ammonium (NH4+-N) in industrial wastewater has attracted considerable attention due to its serious threats to both ecological systems and public health. Manganese(IV) (Mn(IV))-driven NH4+-N oxidation (Mnammox) coupled with Mn(II)-mediated denitrification (MnOD), built on the Mn redox cycle, is a promising nitrogen removal process, where Mn(II) and NOx--N generated during Mnammox were effectively controlled by MnOD. Herein, a bioreactor integrating Mnammox and MnOD for NH4+-N and Cr(VI) removal was constructed utilizing core-shell gel beads embedded with two core strains and δ-MnO2. When the C/N was 1.5, pH was 6.5, and HRT was 20 h, the removal efficiencies for Cr(VI) and NH4+-N reached 96.3 and 91.3 %, respectively. Cr(VI) can be bioreduced to Cr(III) in bioreactors. Additionally, the microbial activity and electron transfer properties in the Mn redox system were studied under varying Cr(VI) concentrations. High-throughput data revealed that high Cr(VI) concentrations significantly impacted microbial community diversity, while Aromatoleu and Zoogloea consistently remaining the dominant species in the bioreactor. KEGG database analysis showed that appropriately increasing C/N promoted the expression of genes related to nitrification and Mn redox cycling. This study provides novel perspectives on the application of the Mnammox coupled MnOD process driven by the Mn redox cycle for treating NH4+-N and Cr(VI) co-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenjing Cheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiangtao Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Pang H, An L, Ding J, Wei Q, Luo J, He J, Tian Y, Liu Y, Lu J. Recyclable cation exchange resin-driven fermentation of waste activated sludge in sequential batch-parallel pattern: long-term resin/regenerant recycle stability and triple driving mechanisms. WATER RESEARCH 2025; 281:123654. [PMID: 40273601 DOI: 10.1016/j.watres.2025.123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Anaerobic acidogenic fermentation has been posited as a preferable technology for waste activated sludge management, whereas the inefficient hydrolysis, inadequate metabolism and disordered microbiota still existed as three fermentability limitations. The existing solutions addressed single limitation while consuming substantial chemicals/energy, thereby restraining technological dissemination. Innovatively, the recyclable cation exchange resin (CER) is a promising approach for synchronously overcoming these fermentability limitations and reducing chemicals/energy costs from sludge-native metal removal perspective; however, it has been rarely reported. This study pioneered a recyclable CER-driven sludge fermentation in continuous CER and regenerant reuse scene, taking comprehensive insights into long-term performance and multiple mechanisms. The CER induced speciation conversion and stepwise removal of structural metals from sludge, especially organic-binding and residual Ca&Mg, which played triple driving contributions: (1) breaking metal-bridging sites and hydrogen bonds disentangled protein molecules for raising electronegative repulsion and flocculation energy barrier, causing synergic extracellular and intracellular hydrolysis (up to 30.05 %); (2) liberating endogenous redox mediators from metal-complexations for assisting electron shuttle and extracellular respiration, which metabolic electron transfer activity by 1.58 times; (3) triggering "bacteria screening" through sensitive methanogen inhibition and tolerant acidogens growth towards maximum acidogenic eco-functions. Such fermentability breakthroughs greatly promoted short-chain fatty acids (superior carbon sources) accumulation by average 2.52 folds while declining sludge solid by 55.87 %. The NaCl regeneration thoroughly restored CER active sites and eluted pollutant blockages, with negligible capability loss ≤ 3.53 % in 18-cycle operations, which stabilized acidogenic performances during 72-day fermentation (RSD ≤ 7.88 %). The fermentative products presented as high-quality carbon sources with abundant carbon and absent nitrogen, owing to CER-mediated NH4+ exchange. Innovative batch-parallel operation was established in engineering strategy, offering 409.49 CNY/ton SS income. The findings provided mechanism framework linking sludge fermentability with native metal functions.
Collapse
Affiliation(s)
- Heliang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Lei An
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiangbo Ding
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Wei
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
7
|
Qu C, Tang J, Liu J, Wang W, Song F, Cheng S, Tang X, Tang CJ. Quorum sensing-enhanced electron transfer in anammox consortia: A mechanism for improved resistance to variable-valence heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137130. [PMID: 39813926 DOI: 10.1016/j.jhazmat.2025.137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress. Metagenomic binning results revealed that Candidatus Brocadia sinica serves as a major contributor to AHL production for regulating heavy metal resistance, while other symbiotic bacteria offer complementary resistance pathways. In these bacteria, the AHL synthesis gene htdS plays a pivotal role in QS regulation of electron transfer and heavy metal resistance. Experimental findings demonstrated that AHL increased the electron transport system activity by 19.8 %, and upregulated electron transfer gene expression by 1.1- to 6.9-fold. The enhanced electron transfer facilitated a 28.7 % increase in the transformation of As(III) to less toxic As(V) and monomethylarsonic acid, ultimately achieving efficient nitrogen removal under As(III) stress. This study expands our understanding of how QS strengthens bacterial resistance to heavy metals, offering novel strategies for enhancing nitrogen removal of anammox in heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Caiyan Qu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jiong Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jingyu Liu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Fengming Song
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Siyuan Cheng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xi Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
8
|
Zhang Y, Bian Z, Wang F, Peng Y, Xiao W, Zhang Q. In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities. WATER RESEARCH 2025; 273:123025. [PMID: 39721503 DOI: 10.1016/j.watres.2024.123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80 % to 47.60 %. The proportion of intracellular degradation by bacteria in the community significantly increased by 23.25 times, which mainly facilitated by NADH-dependent reductases and iron-sulfur proteins. Microbial network analysis and electrochemical analysis indicated that the in-situ synthesis of FeS NPs altered the interactions among different microbial species, enabling Petrimonas to transfer electrons directly to Lysinibacillus more effectively. This adjustment led to an increase in the activity of the electron transport system by 1.2 times, an increase in the electron supply capacity by 2.8 times, and a decrease in the electrochemical impedance (EIS) to 3.21 Ω. Moreover, the coupling of electron transfer pathways and protease transport channels significantly increased Na+/K+-ATPase by 14.72 times. Inhibitor experiments and molecular dynamics (MD) results showed that FeS NPs interact with Nqo1 in the cell membrane via electrostatic force at -28.573 kcal/mol, forming a unique electron conduit with ubiquinone (CoQ). This study provides new insights into the role of in situ nanominerals in electron transfer between different microorganisms, aim to enhance the antibiotic wastewater treatment efficiency in actual anaerobic processes.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Feng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiyin Peng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenyu Xiao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qiang Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China
| |
Collapse
|
9
|
Xiang Z, Chen X, Li H, Zhu B, Bai J, Huang X. Insight into enhanced adaptability of iron-carbon biofilter in treating low-carbon nitrogen mariculture wastewater for nitrogen removal and carbon reduction. BIORESOURCE TECHNOLOGY 2025; 419:132103. [PMID: 39855576 DOI: 10.1016/j.biortech.2025.132103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO3--N removal efficiency (65.1-96.0 %) compared to the control filter (-12.1-76.9 %) across all tested C/N ratios. Furthermore, the N2O emission proportion in R-Fe was reduced by 37.4-42.4 % compared to the control. Increasing the influent C/N ratio enhanced N removal efficiency while reducing the proportion of N2O emissions. This improvement correlated with enhanced electron transfer activity and an increased abundance of heterotrophic nitrifying-aerobic denitrifying bacteria (HNADB) and heterotrophic denitrifying bacteria (DNB), while the abundance of autotrophic denitrifying bacteria declined. Strong correlations were observed among microbial electron transfer activity, denitrifying microbial communities, Fe transport genes, denitrification-related functional genes, N removal efficiency, and N2O emission proportion, highlighting the critical role of electron transfer activity in microbial N removal processes.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003 China
| | - Hui Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Baoxing Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China.
| |
Collapse
|
10
|
Wang Y, Bai Y, Xu L, Su J, Ren M, Hou C, Feng J. Autotrophic ammonium nitrogen removal process mediated by manganese oxides: Bioreactors performance optimization and potential mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120778. [PMID: 39765308 DOI: 10.1016/j.envres.2025.120778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH4+-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH4+-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH4+-N removal sludge reactors mediated by various MnOx types, including δ-MnO2 (δ-MSR), β-MnO2 (β-MSR), α-MnO2 (α-MSR), and natural Mn ore (MOSR), investigating their NH4+-N removal performances and mechanisms under different initial N loading and pH conditions. During the 330 d operation, the reactors exhibited NH4+-N removal efficiencies in the order of δ-MSR > α-MSR > β-MSR > MOSR. Notably, metal-reducing bacteria (Candidatus Brocadia, Dechloromonas, and Rhodocyclaceae) and Mn(II) oxidizing bacteria (Pseudomonas and Zoogloea) were enriched in the reactors, especially in the δ-MSR. The presence of these microorganisms facilitated the reduction of Mn(IV) and utilized the generated Mn(II) to drive autotrophic denitrification (MnOAD), thereby completing the Mn(IV)/Mn(II) cycle and enhancing N removal in the system. An active Mn cycle displayed in δ-MSR, which could be demonstrated by the formation of petal-shaped biogenic MnOx and the increased abundance of Mn cycling genes (MtrCDE, MtrA, MtrB, and CotA, etc.). Meanwhile, genes involved in N metabolism were enriched, particularly functional genes associated with nitrification and denitrification. In this study, the coupling of Mnammox and MnOAD was realized via the Mn cycle, providing a new perspective on the application of autotrophic N removal technologies in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
11
|
Zheng C, Zhang X, He T, Wu P, Wu W, Zhang M, Zhao H. New Insight Into the Mechanism of Nitrite Enhancement on Heterotrophic Nitrification and Aerobic Denitrification Bacterium in Gene Expression. Environ Microbiol 2025; 27:e70080. [PMID: 40065431 DOI: 10.1111/1462-2920.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 05/13/2025]
Abstract
The growth and nitrogen metabolism of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria are affected by nitrite, but the mechanisms underlying this for strain Acinetobacter johnsonii EN-J1 are unclear. In this study, the addition of 10 mg/L nitrite increased the reduction rate of ammonium by 1.0 mg/L/h, and 20 mg/L nitrite increased the reduction rate of nitrate by 3.9 mg/L/h. Compared with the control, the nitrate reductase activity, electron transfer activity, and adenosine triphosphate content of EN-J1 were enhanced by 142.0%, 278.0% and 279.0%, respectively, in the nitrate removal process after the addition of 20 mg/L nitrite. The whole genome was annotated with nitrogen removal genes such as narGHI, narK, nsrR, nirBD, nasA, glnA, gltB, gdhA and amt. Transcriptome analysis showed that nitrite triggered significant upregulation of several key pathways, including nitrogen metabolism, the tricarboxylic acid cycle, and amino acid metabolism for enhancing denitrification. The expression of key denitrification genes (narG, narK, hmp, nirBD, glnA and nasA) was detected by real-time quantitative polymerase chain reaction. These results suggested that nitrite enhances denitrification by increasing the expression of denitrification genes, electron transfer and adenosine triphosphate levels, which is important for elucidating the mechanism of nitrite promotion of biological nitrogen removal efficiency.
Collapse
Affiliation(s)
- Chunxia Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiongfeng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Ministry of Education), College of Resource and Environment Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Wenruo Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Hong Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Wang XP, Han NN, Yang JH, Fan NS, Jin RC. Metagenomic insight into the diffusion signal factor mediated social traits of anammox consortia after starvation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124270. [PMID: 39864165 DOI: 10.1016/j.jenvman.2025.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Biomass starvation is common in biological wastewater treatment. As a social trait of microbial community, how quorum sensing (QS) regulated bacterial trade-off through interactions after starvation remains unclear. This study deciphered the mechanism of anaerobic ammonium oxidation (anammox) consortia in response to starvation, including reducing extracellular electron transfer (EET), adenosine 5'-triphosphate (ATP) content and amino acid metabolism. Metagenomic analysis has shown that the addition of the diffusion signal factor (DSF) resulted in a high abundance of antioxidant genes, which contributed to achieving redox balance in anammox bacteria. There was an enrichment of Geobacter and Methanosarcina, which were QS-responsive direct interspecific electron transfer participants. Furthermore, DSF stimulated the nitrogen and carbon metabolism of Ca. Kuenenia_stuttgartiensis, promoting syntrophy of metabolic intermediates within microbial community. This study highlighted the effect of DSF on the microbial interaction patterns and deciphered the QS-based social traits of anammox consortia after starvation, facilitating the stable operation of the anammox process.
Collapse
Affiliation(s)
- Xue-Ping Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jia-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
13
|
Xian Y, Cao L, Lu Y, Li Q, Su C, He Y, Zhou G, Chen S, Gao S. Metagenomics and metaproteomics reveal the effects of sludge types and inoculation modes on N,N-dimethylformamide degradation pathways and the microbial community involved. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136548. [PMID: 39566459 DOI: 10.1016/j.jhazmat.2024.136548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
This study demonstrated the effects of the sludge type and inoculation method on the N,N-dimethylformamide degradation pathway and associated microbial communities. The sludge type is critical for DMF metabolism, with acclimatized aerobic sludge having a significant advantage in terms of DMF metabolism performance, whereas acclimatized anaerobic sludge has a reduced DMF metabolism capacity. Metagenomic revealed increased abundances of Methanosarcina, Pelomona and Xanthobacter in the adapted anaerobic sludge, suggesting that anaerobic sludge can utilize the methyl products produced by DMF metabolism for growth. Adapted aerobic sludge had high Mycobacterium abundance, significantly boosting DMF hydrolysis. In addition, a large number of dmfA2 genes were found in aerobic sludge, more so in acclimatized sludge, indicating stronger DMF metabolism. Conversely, acclimatized anaerobic sludge showed lower abundance of dmd-tmd and mauA/B, qhpA genes, implying long-term DMF toxicity reduced anaerobic microbial activity. Metaproteomic analysis showed that Methanosarcina and Methanomethylovorans enzymes in anaerobic sludge metabolized dimethylamine and methylamine to methane, aiding DMF degradation. In the aerobic sludge, aminohydrolase proteins, which hydrolyze DMF, were significantly upregulated. These findings provide insights into DMF wastewater treatment.
Collapse
Affiliation(s)
- Yunchuan Xian
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Linlin Cao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Qiuhong Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Yuan He
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Guangrong Zhou
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Shenglong Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Shu Gao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| |
Collapse
|
14
|
Shan E, Zhang X, Yu Z, Hou C, Pang L, Guo S, Liu Y, Dong Z, Zhao J, Wang Q, Yuan X. Seawater warming rather than acidification profoundly affects coastal geochemical cycling mediated by marine microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177365. [PMID: 39515382 DOI: 10.1016/j.scitotenv.2024.177365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The most concerning consequences of climate change include ocean acidification and warming, which can affect microbial communities and thus the biogeochemical cycling they mediate. Therefore, it is urgent to study the impact of ocean acidification and warming on microbial communities. In the current study, metagenomics was utilized to reveal how the structure and function of marine microorganisms respond to ocean warming and acidification. In terms of community structure, Non-metric Multidimensional Scaling analysis visualized the similarity or difference between the control and the warming or acidification treatments, but the inter-group differences were not significant. In terms of gene functionality, warming treatments showed greater effects on microbial communities than acidification. After treatment with warming, the relative abundance of genes associated with denitrification increased, suggesting that ocean nitrogen loss can increase with increased temperature. Conversely, acidification treatments apparently inhibited denitrification. Warming treatment also greatly affected sulfur-related microorganisms, increasing the relative abundance of certain sulfate-reducing prokaryote, and enriched microbial carbon-fixation pathways. These results provide information on the response strategies of coastal microorganisms in the changing marine environments.
Collapse
Affiliation(s)
- Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China
| | - Zhenglin Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China
| | - Chaowei Hou
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Lei Pang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Shuang Guo
- Dalian Ocean University, Dalian 116023, PR China
| | - Yongliang Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Zhijun Dong
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiutang Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266000, PR China.
| |
Collapse
|
15
|
Miao L, Zhang J, Luo D, Adyel TM, Ao Y, Li C, Yao Y, Wu J, You G, Hou J. Distinct effects of flow intermittency on the benthic microbial diversity and their denitrification on different substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177394. [PMID: 39528219 DOI: 10.1016/j.scitotenv.2024.177394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Global climate change has significantly increased the duration of droughts in intermittent rivers, impacting benthic microbial-mediated biogeochemical processes. However, the response mechanisms of biofilms on different substrate types to alternating dry and wet conditions and their related ecosystem functions remain poorly understood. This study uses high-throughput sequencing and enzyme assays to investigate the impact of gradient drought stress on microbial diversity and functional changes of biofilm communities inhabiting on gravel, cobblestone, and sediment. Results showed that the duration of drought significantly affects microbial diversity, with algal and bacterial α-diversity declining under extended drought across gravel, cobblestone, and sediment substrates. At the same time, fungal diversity was less affected, likely due to their distinct ecological niches and reproductive strategies. β-diversity analysis revealed significant changes in community heterogeneity, with algae and bacteria showing increased Bray-Curtis dissimilarities, indicating distinct adaptation strategies that may affect ecosystem functioning. Fungal communities, however, were less impacted by drought-induced heterogeneity changes. Network analysis showed that drought altered microbial network connectivity, with algal networks displaying decreased path distances, while bacterial networks remained stable, suggesting greater resilience to drought stress. Functional enzyme assays revealed significantly reduced denitrification rates across all substrates post-drought, with distinct denitrifying enzyme activity responses depending on substrate type. Partial least squares path modeling revealed that algal biodiversity were closely linked to the maintaining of enzyme activities, particularly denitrification rates of biofilms on cobblestone and gravel. These findings indicated the critical role of substrate types in shaping microbial responses to drought stress, with distinct microbial groups and diversity indices playing key roles in maintaining ecosystem functions. This study highlights the importance of understanding the interactions between microbial community dynamics and ecosystem functions under varying environmental stressors in river ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Junling Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa 850030, Tibet Autonomous Region, People's Republic of China
| | - Tanveer M Adyel
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
16
|
Zhao A, Li J, Gao P, Tang P, Liu T, Zhang X, Liu X, Chen C, Zhang Z, Zheng Z. Insight into the responses of the anammox granular sludge system to tetramethylammonium hydroxide (TMAH) during chip wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 263:120099. [PMID: 39374750 DOI: 10.1016/j.envres.2024.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Tetramethylammonium hydroxide (TMAH), an extensively utilized photoresist developer, is frequently present in ammonium-rich wastewater from semiconductor manufacturing, and its substantial ecotoxicity should not be underestimated. This study systematically investigated the effects of TMAH on the anammox granular sludge (AnGS) system and elucidated its inhibitory mechanisms. The results demonstrated that the median inhibitory concentration of TMAH for anammox was 84.85 mg/L. The nitrogen removal performance of the system was significantly decreased after long-term exposure to TMAH (0-200 mg/L) for 30 days (p < 0.05), but it showed adaptability to certain concentrations (≤50 mg/L). Concurrently, the stability of the granules decreased dramatically, resulting in the breakdown of AnGS. Further investigations indicated that TMAH exposure increased the secretion of extracellular polymeric substances but weakened their defense function. The increase in reactive oxygen species resulted in damage to the cell membrane. Reduced activity of anammox bacteria, impeded electron transfer, and changes in enzyme activity suggested that TMAH affected the metabolic activity. Microbiological analysis revealed that TMAH caused a decrease in the abundance of anammox bacteria and a weakening of symbiotic interactions within the microbial community. These results provide valuable guidance for the AnGS system application in chip wastewater treatment.
Collapse
Affiliation(s)
- Andong Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tingting Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xuming Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Cong Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zehao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Zhaoming Zheng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
17
|
Guo Y, Gao J, Zhang Y, Xie T, Wang Q, An J. Will the removal of carbon, nitrogen and mixed disinfectants occur simultaneously: The key role of heterotrophic nitrification-aerobic denitrification strain. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136431. [PMID: 39522204 DOI: 10.1016/j.jhazmat.2024.136431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The capacity and mechanism of heterotrophic nitrification-aerobic denitrification (HNAD) strain (H1) to remove carbon, nitrogen, disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) were investigated in this study. PCMX was removed via metabolism and chemical oxygen demand co-metabolism process. BEC was eliminated through bacterial adsorption, which greatly inhibited the removal of other pollutants. Carbon source optimization tests revealed that glucose was the optimal carbon source for co-removal of pollutants under mixed disinfectants circumstances (PCMX + BEC). Comparing the groups without (G1) and with disinfectants (G2), the content of extracellular polymeric substances was higher, and hydrophobicity was enhanced under the hazardous conditions of G2. All the nitrogen metabolism functional genes in G2 were up-regulated, and the electron transport system activity was also improved. At the same time, G2 had lower reactive oxygen species content, which reduced the probability of resistance genes dissemination, but the abundance of most quantified resistance genes was elevated in G2. Toxicity assessment assays found a dramatic reduction in the virulence of G2's effluent compared with the mixed disinfectants. The results confirmed that H1 strain could be used to treat the disinfectant-containing wastewater, which may aid in the application of HNAD process.
Collapse
Affiliation(s)
- Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tian Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiawen An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Li Z, Li D, Liu S, Zhao H, Li B, Shan S, Zhu Y, Sun J, Hou J. Impact of elevated CO 2 on microbial communities and functions in riparian sediments: Role of pollution levels in modulating effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176481. [PMID: 39341255 DOI: 10.1016/j.scitotenv.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The impact of elevated CO2 levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO2 on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location. However, the direct effects of elevated CO2 levels on microbial activity and function in riparian zone sediments remain unclear. In this study, three riparian sediments with different pollution risk levels of heavy metals and nutrients were selected to explore the direct response of microbial communities and functions to elevated CO2 excluding plants. The results showed that the short-term effects of elevated CO2 did not change the diversity of the bacterial and fungal communities, but altered the composition of their communities. Additionally, differences were observed in the responses of microbial functions to elevated CO2 levels among the three regions. Elevated CO2 promoted the activities of nitrification and denitrification enzymes and led to significant increases in N2O release in the three sediments, with the greatest increase of 76.09 % observed in the Yuyangshan Bay (YYS). Microbial carbon metabolism was promoted by elevated CO2 in YYS but was significantly inhibited by elevated CO2 in Gonghu Bay and Meiliang Bay. Moreover, TOC, TN, and Pb contents were identified as key factors contributing to the different microbial responses to elevated CO2 in sediments with different heavy metal and nutrient pollution. In conclusion, this study provides in-depth insights into the responses of bacteria and fungi in polluted riparian sediments to elevated CO2, which helps elucidate the complex interactions between microbial activity and environmental stressors.
Collapse
Affiliation(s)
- Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huilin Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yizhi Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Wang Y, Tian L, Zheng J, Tan Y, Li Y, Wei L, Zhang F, Zhu L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. WATER RESEARCH 2024; 267:122551. [PMID: 39369509 DOI: 10.1016/j.watres.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Denitrification is an important biological process in wastewater treatment plants (WWTPs). However, a low carbon-to-nitrogen (C/N) ratio limits the availability of organic carbon, potentially reducing denitrification efficiency. This study investigates the impact of sludge-derived biochar on the nitrogen removal of activated sludge for low C/N ratio municipal wastewater. Sludge-based biochar was characterized by its physicochemical properties, revealing that biochar prepared at 400 °C exhibited the highest specific surface area and the most favorable surface functional groups for electron transfer. The results from batch tests showed that adding 4 g/L of biochar dosage enhanced denitrification rates and total nitrogen (TN) removal efficiency the most. Sequencing batch reactors (SBRs) experiments further confirmed that biochar dosgae improved the removal efficiencies of COD, NH4+-N, and TN, achieving stable values of 97.2 ± 1.2 %, 99.2 ± 0.6 %, and 83.8 ± 2.4 %, respectively. Metabolic and electrochemical analyses revealed that biochar addition enhanced the activity of denitrification enzymes, increasing the ammonia oxidation rate by 12.9 ± 0.7 %, nitrite oxidation rate by 14.7 ± 1.2 %, nitrate reduction rate by 36.9 ± 1.5 %, and nitrite reduction rate by 16.4 ± 0.8 %. The relative abundance of denitrification functional genes (amoA, nirS, nirK, narG, nosZ) increased, and the activities of the corresponding enzymes (AMO, NXR, NAP, NIR) rose by 23±6 %, 53±5 %, 260±15 %, and 55±7 %, respectively. This increase in enzyme activity suggested enhanced denitrification processes, which was further supported by the 60.1 ± 3.7 % increase in electron transfer system activity (ETSA), indicating that biochar acted as an electron shuttle. This study proposes a potential sustainable approach for sludge recycling and enhanced wastewater nitrogen removal under low C/N conditions.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luling Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lecheng Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
20
|
Ma B, Tahmasbian I, Guo T, Zhou M, Tang W, Zhang M. Antagonistic Effect of Microplastic Polyvinyl Chloride and Nitrification Inhibitor on Soil Nitrous Oxide Emission: An Overlooked Risk of Microplastic to the Agrochemical Effectiveness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39568319 DOI: 10.1021/acs.jafc.4c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Microplastics are widely persistent in agricultural ecosystems and may affect soil nitrous oxide (N2O) emissions. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is applied to decelerate nitrification and reduce soil N2O emission. Nevertheless, the interactive effects of nitrification inhibitors and microplastics on soil N2O emissions have not been investigated. Sole DMPP, polyvinyl chloride (PVC), and polystyrene (PS) substantially reduced agricultural soil N2O emission rates by 25.93%, 69.04%, and 73.89%, respectively. Nevertheless, PVC and DMPP had antagonistic effects on the N2O emission rates. The observed reductions in N2O emissions could be attributed to variations in soil oxygen availability, electron transport system activities, and Firmicutes, nap, and GDH genes. Moreover, the DMPP, PVC, and PS alone or copresences significantly enhanced the soil ecosystem multifunctionality (EMF). The findings shed light on the role of microplastics in soil N2O emission, EMF, and the microbial community, expanding the understanding of microplastics' effects on agrochemical effectiveness.
Collapse
Affiliation(s)
- Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Iman Tahmasbian
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, Queensland 4350, Australia
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
21
|
Li Y, Chen Y, Kang L, Cao Z, Lv J, Wang S, Guo C, Wang J. Metagenomic analysis reveals enhanced sludge dewaterability through acidified sludge inoculation: Regulation of Fe (II) oxidation electron transport pathway. BIORESOURCE TECHNOLOGY 2024; 412:131367. [PMID: 39216705 DOI: 10.1016/j.biortech.2024.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The bioleaching utilizing indigenous microbial inoculation can continuously improve the dewaterability of sludge. In this study, metagenomic analysis was innovative employed to identify the key microorganisms and functional genes that affect the dewatering performance of sludge in the bioleaching conditioning process. The results demonstrated that long-term repeated inoculation of acidified sludge resulted in increased abundance of many functional genes associated with the transport of carbohydrate and amino acid. Additionally, genes encoding key iron transport proteins (such as afuA, fhuC, and fhuD) and genes related to electron transfer carriers in ferrous iron oxidation process (such as rus and cyc2) were significantly enriched, thereby promoting the improvement of sludge dewatering performance through enhanced iron oxidation. Notably, Acidithiobacillus, Betaproteobacteria, and Hyphomicrobium were the major sources of functional genes. This study reveals the microscopic mechanisms underlying the improvement of sludge dewaterability through bioleaching based on mixed culture from a novel perspective of gene metabolism.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Yiwen Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Lizan Kang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhong Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jinghua Lv
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shipeng Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Chao Guo
- Zhengzhou Moda Environmental Protection Technology Co., Ltd., Zhengzhou, China
| | - Junqiang Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
22
|
Liu X, Yu J, Wang H, Jin C, Zhao Y, Guo L. Effect of magnetic powder (Fe 3O 4) on heterotrophic-sulfur autotrophic denitrification efficiency and electron transport system activity for marine recirculating aquacultural wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122749. [PMID: 39368389 DOI: 10.1016/j.jenvman.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
As an efficient nitrogen removal process, heterotrophic-sulfur autotrophic denitrification (HSAD) has attracted extensive attention in wastewater treatment. However, the effects of magnetic powder (Fe3O4) on the electron transport activity in HSAD process remain unclear. Therefore, in this study, a heterotrophic-sulfur autotrophic denitrification system was established to remove nitrogen from marine recirculating aquacultural wastewater for evaluating the effects of Fe3O4. At the optimal Fe3O4 concentration of 50 mg/L, the nitrogen removal efficiency reached 100% with lower sulfate accumulation, and the start-up time was shortened. The assays of denitrifying enzymes and electron transport system activity showed that Fe3O4 improved the activities of nitrate and nitrite reductases, and increased the efficiency of electron transport. Microbial community analysis revealed that Fe3O4 enriched heterotrophic denitrifier Thauera and sulfur autotrophic denitrifier Canditatus Thiobios, and thus enhanced denitrification efficiencies. This study demonstrated that Fe3O4 is an efficient denitrification accelerator in HSAD for treating marine recirculating aquacultural wastewater.
Collapse
Affiliation(s)
- Xiangrong Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinghan Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
23
|
Wang H, Zhou Q. Electric stimulation mitigated the mixed microplastic inhibition to anaerobic digestion during wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124753. [PMID: 39153540 DOI: 10.1016/j.envpol.2024.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Science, China West Normal University, Nanchong 637009, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Wang Y, Bai Y, Su J, Xu L, Ren M, Cao M. Manganese(IV) reduction coupled with ammonium oxidation mediated by a single strain Aromatoleum evansii MAY27: Performance, metabolomics, and mechanism. BIORESOURCE TECHNOLOGY 2024; 409:131235. [PMID: 39121511 DOI: 10.1016/j.biortech.2024.131235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/11/2024]
Abstract
Manganese(IV) (Mn(IV)) reduction coupled to anaerobic ammonium (NH4+-N) oxidation (Mnammox) is a recently identified metal oxide-mediated nitrogen (N) loss pathway, holding potential value for the efficient removal of NH4+-N from wastewater. However, little is known about the application of Mnammox in wastewater treatment. Here, a novel Mnammox bacterium Aromatoleum evansii (strain MAY27) was screened. Strain MAY27 can utilize MnO2 as an electron acceptor to achieve NH4+-N removal under a low C/N condition (C/N = 0.5). The influencing factors in the Mnammox process and the Mn(IV) reduction driving effect on NH4+-N oxidation were investigated. The physiological characteristics of strain MAY27 and differential metabolic pathways were identified through whole-genome sequencing and metabolomic analyses. A significant up-regulation of several key pathways upon the addition of MnO2, including glycolysis/gluconeogenesis, transmembrane transporter activity, and oxidoreductase activity. This study contributes to the advancement of biotechnological approaches for treating N-containing wastewater.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Zhou J, Ding L, Cui C, Lindeboom REF. High nitrite accumulation in hydrogenotrophic denitrification at low temperature: Transcriptional regulation and microbial community succession. WATER RESEARCH 2024; 263:122144. [PMID: 39079193 DOI: 10.1016/j.watres.2024.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
High Pressure Hydrogenotrophic Denitrification (HPHD) provided a promising alternative for efficient and clean nitrate removal. In particular, the denitrification rates at low temperature could be compensated by elevated H2 partial pressure. However, nitrite reduction was strongly inhibited while nitrate reduction was barely affected at low temperature. In this study, the nitrate reduction gradually recovered under long-term low temperature stress, while nitrite accumulation increased from 0.1 to 41.0 mg N/L. The activities of the electron transport system (ETS), nitrate reductase (NAR), and nitrite reductase (NIR) decreased by 45.8 %, 27.3 %, and 39.3 %, respectively, as the temperature dropped from 30 °C to 15 °C. Real time quantitative PCR analysis revealed that the denitrifying gene expression rather than gene abundance regulated nitrogen biotransformation. The substantial nitrite accumulation was attributed to the significant up-regulation by 54.7 % of narG gene expression and down-regulation by 73.7 % of nirS gene expression in hydrogenotrophic denitrifiers. In addition, the nirS-gene-bearing denitrifiers were more sensitive to low temperature compared to those bearing nirK gene. The dominant populations shifted from the genera Paracoccus to Hydrogenophaga under long-term low temperature stress. Overall, this study revealed the microbial mechanism of high nitrite accumulation in hydrogenotrophic denitrification at low temperature.
Collapse
Affiliation(s)
- Jianmin Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Ding
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Changzheng Cui
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft 2628 CN, the Netherlands.
| |
Collapse
|
26
|
Dong X, Lin H, Wang F, Shi S, Wang Z, Sharifi S, Ma J, He X. Impacts of Elevated CO 2 and a Nitrogen Supply on the Growth of Faba Beans ( Vicia faba L.) and the Nitrogen-Related Soil Bacterial Community. PLANTS (BASEL, SWITZERLAND) 2024; 13:2483. [PMID: 39273967 PMCID: PMC11397150 DOI: 10.3390/plants13172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Ecosystems that experience elevated CO2 (eCO2) are crucial interfaces where intricate interactions between plants and microbes occur. This study addressed the impact of eCO2 and a N supply on faba bean (Vicia faba L.) growth and the soil microbial community in auto-controlled growth chambers. In doing so, two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/460 ppm; eCO2, 550/610 ppm) and two N supplement levels (without a N supply-N0-and 100 mg N as urea per kg of soil-N100) were applied. The results indicated that eCO2 mitigated the inhibitory effects of a N deficiency on legume photosynthesis and affected the CO2 assimilation efficiency, in addition to causing reduced nodulation. While the N addition counteracted the reductions in the N concentrations across the faba beans' aboveground and belowground plant tissues under eCO2, the CO2 concentrations did not significantly alter the soil NH4+-N or NO3--N responses to a N supply. Notably, under both aCO2 and eCO2, a N supply significantly increased the relative abundance of Nitrososphaeraceae and Nitrosomonadaceae, while eCO2 specifically reduced the Rhizobiaceae abundance with no significant changes under aCO2. A redundancy analysis (RDA) highlighted that the soil pH (p < 0.01) had the most important influence on the soil microbial community. Co-occurrence networks indicated that the eCO2 conditions mitigated the impact of a N supply on the reduced structural complexity of the soil microbial communities. These findings suggest that a combination of eCO2 and a N supply to crops can provide potential benefits for managing future climate change impacts on crop production.
Collapse
Affiliation(s)
- Xingshui Dong
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Songmei Shi
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhihui Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering and College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Sharifullah Sharifi
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinhua He
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 90616, USA
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
27
|
Dong X, Lin H, Wang F, Shi S, Sharifi S, Wang S, Ma J, He X. Elevated CO 2 and Nitrogen Supply Boost N Use Efficiency and Wheat ( T. aestivum cv. Yunmai) Growth and Differentiate Soil Microbial Communities Related to Ammonia Oxidization. PLANTS (BASEL, SWITZERLAND) 2024; 13:2345. [PMID: 39273829 PMCID: PMC11397272 DOI: 10.3390/plants13172345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Elevated CO2 levels (eCO2) pose challenges to wheat (Triticum aestivum L.) growth, potentially leading to a decline in quality and productivity. This study addresses the effects of two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/450 ± 30 ppm and eCO2, 550/600 ± 30 ppm) and two nitrogen (N) supplements (without N supply-N0 and with 100 mg N supply as urea per kg soil-N100) on wheat (T. aestivum cv. Yunmai) growth, N accumulation, and soil microbial communities related to ammonia oxidization. The data showed that the N supply effectively mitigated the negative impacts of eCO2 on wheat growth by reducing intercellular CO2 concentrations while enhancing photosynthesis parameters. Notably, the N supply significantly increased N concentrations in wheat tissues and biomass production, thereby boosting N accumulation in seeds, shoots, and roots. eCO2 increased the agronomic efficiency of applied N (AEN) and the physiological efficiency of applied N (PEN) under N supply. Plant tissue N concentrations and accumulations are positively related to plant biomass production and soil NO3--N. Additionally, the N supply increased the richness and evenness of the soil microbial community, particularly Nitrososphaeraceae, Nitrosospira, and Nitrosomonas, which responded differently to N availability under both aCO2 and eCO2. These results underscore the importance and complexity of optimizing N supply and eCO2 for enhancing crop tissue N accumulation and yield production as well as activating nitrification-related microbial activities for soil inorganic N availability under future global environment change scenarios.
Collapse
Affiliation(s)
- Xingshui Dong
- Centre of Excellence for Soil Biology, School of Resource and Environment, Southwest University, Chongqing 400715, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Songmei Shi
- Centre of Excellence for Soil Biology, School of Resource and Environment, Southwest University, Chongqing 400715, China
| | - Sharifullah Sharifi
- Centre of Excellence for Soil Biology, School of Resource and Environment, Southwest University, Chongqing 400715, China
| | - Shuai Wang
- Centre of Excellence for Soil Biology, School of Resource and Environment, Southwest University, Chongqing 400715, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, School of Resource and Environment, Southwest University, Chongqing 400715, China
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 90616, USA
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
28
|
Brenzinger K, Glatter T, Hakobyan A, Meima-Franke M, Zweers H, Liesack W, Bodelier PLE. Exploring modes of microbial interactions with implications for methane cycling. FEMS Microbiol Ecol 2024; 100:fiae112. [PMID: 39122657 PMCID: PMC11370633 DOI: 10.1093/femsec/fiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Methanotrophs are the sole biological sink of methane. Volatile organic compounds (VOCs) produced by heterotrophic bacteria have been demonstrated to be a potential modulating factor of methane consumption. Here, we identify and disentangle the impact of the volatolome of heterotrophic bacteria on the methanotroph activity and proteome, using Methylomonas as model organism. Our study unambiguously shows how methanotrophy can be influenced by other organisms without direct physical contact. This influence is mediated by VOCs (e.g. dimethyl-polysulphides) or/and CO2 emitted during respiration, which can inhibit growth and methane uptake of the methanotroph, while other VOCs had a stimulating effect on methanotroph activity. Depending on whether the methanotroph was exposed to the volatolome of the heterotroph or to CO2, proteomics revealed differential protein expression patterns with the soluble methane monooxygenase being the most affected enzyme. The interaction between methanotrophs and heterotrophs can have strong positive or negative effects on methane consumption, depending on the species interacting with the methanotroph. We identified potential VOCs involved in the inhibition while positive effects may be triggered by CO2 released by heterotrophic respiration. Our experimental proof of methanotroph-heterotroph interactions clearly calls for detailed research into strategies on how to mitigate methane emissions.
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Anna Hakobyan
- Research group of Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Institute of Crop Science and Resource Conservation (INRES)
, Molecular Biology of the Rhizosphere, Nussallee 13, 53115 Bonn, Germany
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Werner Liesack
- Research group of Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
29
|
Shi HT, Zeng QY, Feng XC, Xiao ZJ, Jiang CY, Wang WQ, Zhang X, Wang HC, Guo WQ, Ren NQ. How denitrifiers defense ciprofloxacin: Insights from intracellular and extracellular stress response. WATER RESEARCH 2024; 259:121851. [PMID: 38851110 DOI: 10.1016/j.watres.2024.121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.
Collapse
Affiliation(s)
- Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qin-Yao Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
30
|
Effendi SW, Ng IS. Non-native Pathway Engineering with CRISPRi for Carbon Dioxide Assimilation and Valued 5-Aminolevulinic Acid Synthesis in Escherichia coli Nissle. ACS Synth Biol 2024; 13:2038-2044. [PMID: 38954490 PMCID: PMC11264323 DOI: 10.1021/acssynbio.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Carbon dioxide emission and acidification during chemical biosynthesis are critical challenges toward microbial cell factories' sustainability and efficiency. Due to its acidophilic traits among workhorse lineages, the probiotic Escherichia coli Nissle (EcN) has emerged as a promising chemical bioproducer. However, EcN lacks a CO2-fixing system. Herein, EcN was equipped with a simultaneous CO2 fixation system and subsequently utilized to produce low-emission 5-aminolevulinic acid (5-ALA). Two different artificial CO2-assimilating pathways were reconstructed: the novel ribose-1,5-bisphosphate (R15P) route and the conventional ribulose-5-phosphate (Ru5P) route. CRISPRi was employed to target the pfkAB and zwf genes in order to redirect the carbon flux. As expected, the CRISPRi design successfully strengthened the CO2 fixation. The CO2-fixing route via R15P resulted in high biomass, while the engineered Ru5P route acquired the highest 5-ALA and suppressed the CO2 release by 77%. CO2 fixation during 5-ALA production in EcN was successfully synchronized through fine-tuning the non-native pathways with CRISPRi.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
31
|
Zhang L, Cui Y, Dou Q, Peng Y, Yang J. Sulfur-carbon loop enhanced efficient nitrogen removal mechanism from iron sulfide-mediated mixotrophic partial denitrification/anammox systems. BIORESOURCE TECHNOLOGY 2024; 403:130882. [PMID: 38788805 DOI: 10.1016/j.biortech.2024.130882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
This study successfully established Iron Sulfide-Mediated mixotrophic Partial Denitrification/Anammox system, achieving nitrogen and phosphorus removal efficiency of 97.26% and 78.12%, respectively, with COD/NO3--N of 1.00. Isotopic experiments and X-ray Photoelectron Spectroscopy analysis confirmed that iron sulfide enhanced autotrophic Partial Denitrification performance. Meanwhile, various sulfur valence states functioned as electron buffers, reinforcing nitrogen and sulfur cycles. Microbial community analysis indicated reduced heterotrophic denitrifiers (OLB8, OLB13) under lower COD/NO3--N, creating more niche space for autotrophic bacteria and other heterotrophic denitrifiers. The prediction of functional genes illustrated that iron Sulfide upregulated genes related to carbon metabolism, denitrification, anammox and sulfur oxidation-reduction, facilitating the establishment of carbon-nitrogen-sulfur cycle. Furthermore, this cycle primarily produced electrons via nicotinamide adenine dinucleotide and sulfur oxidation-reduction processes, subsequently utilized within the electron transfer chain. In summary, the Partial Denitrification/Anammox system under the influence of iron sulfide achieved effient nitrogen removal by expediting electron transfer through the carbon-nitrogen-sulfur cycle.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Yufei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| |
Collapse
|
32
|
Fei Y, Zhang B, Zhang Q, Chen D, Cao W, Borthwick AGL. Multiple pathways of vanadate reduction and denitrification mediated by denitrifying bacterium Acidovorax sp. strain BoFeN1. WATER RESEARCH 2024; 257:121747. [PMID: 38733964 DOI: 10.1016/j.watres.2024.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Contamination of aquifers by a combination of vanadate [V(V)] and nitrate (NO3-) is widespread nowadays. Although bioremediation of V(V)- and nitrate-contaminated environments is possible, only a limited number of functional species have been identified to date. The present study demonstrates the effectiveness of V(V) reduction and denitrification by a denitrifying bacterium Acidovorax sp. strain BoFeN1. The V(V) removal efficiency was 76.5 ± 5.41 % during 120 h incubation, with complete removal of NO3- within 48 h. Inhibitor experiments confirmed the involvement of electron transport substances and denitrifying enzymes in the bioreduction of V(V) and NO3-. Cyt c and riboflavin were important for extracellular V(V) reduction, with quinone and EPS more significant for NO3- removal. Intracellular reductive compounds including glutathione and NADH directly reduce V(V) and NO3-. Reverse transcription quantitative PCR confirmed the important roles of nirK and napA genes in regulating V(V) reduction and denitrification. Bioaugmentation by strain BoFeN1 increased V(V) and NO3- removal efficiency by 55.3 % ± 2.78 % and 42.1 % ± 1.04 % for samples from a contaminated aquifer. This study proposes new microbial resources for the bioremediation of V(V) and NO3-contaminated aquifers, and contributes to our understanding of coupled vanadium, nitrogen, and carbon biogeochemical processes.
Collapse
Affiliation(s)
- Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Qinghao Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, PR China
| | - Alistair G L Borthwick
- St Edmund Hall, Queen's Lane, Oxford OX1 4AR, UK; School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK; School of Engineering, Computing and Mathematics, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
33
|
Hu R, Chen X, Xia M, Chen B, Lu X, Luo G, Zhang S, Zhen G. Identification of extracellular polymeric substances layer barrier in chloroquine phosphate-disturbed anammox consortia and mechanism dissection on cytotoxic behavior by computational chemistry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134335. [PMID: 38657504 DOI: 10.1016/j.jhazmat.2024.134335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
The over-dosing use of chloroquine phosphate (CQ) poses severe threats to human beings and ecosystem due to the high persistence and biotoxicity. The discharge of CQ into wastewater would affect the biomass activity and process stability during the biological processes, e.g., anammox. However, the response mechanism of anammox consortia to CQ remain unknown. In this study, the accurate role of extracellular polymeric substances barrier in attenuating the negative effects of CQ, and the mechanism on cytotoxic behavior were dissected by molecular spectroscopy and computational chemistry. Low concentrations (≤6.0 mg/L) of CQ hardly affected the nitrogen removal performance due to the adaptive evolution of EPS barrier and anammox bacteria. Compact protein of EPS barrier can bind more CQ (0.24 mg) by hydrogen bond and van der Waals force, among which O-H and amide II region respond CQ binding preferentially. Importantly, EPS contributes to the microbiota reshape with selectively enriching Candidatus_Kuenenia for self-protection. Furthermore, the macroscopical cytotoxic behavior was dissected at a molecular level by CQ fate/distribution and computational chemistry, suggesting that the toxicity was ascribed to attack of CQ on functional proteins of anammox bacteria with atom N17 (f-=0.1209) and C2 (f+=0.1034) as the most active electrophilic and nucleophilic sites. This work would shed the light on the fate and risk of non-antibiotics in anammox process.
Collapse
Affiliation(s)
- Rui Hu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mengting Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
34
|
Chi Q, Wang J, Tu Y, Xu J, Pan L, Shen J. Effects of nitrate reduction on the biotransformation of 1H-1,2,4-triazole: Mechanism and community evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134329. [PMID: 38640679 DOI: 10.1016/j.jhazmat.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Due to the refractory of 1 H-1,2,4-triazole (TZ), conventional anaerobic biological treatment technology is usually restricted by low removal efficiency and poor system stability. In this study, TZ biodegradation and nitrate reduction was coupled to improve the removal efficiency of TZ from polluted wastewater. Batch assay was performed with pure culture strain Raoultella sp. NJUST42, which was reported to have the capability to degrade TZ in our previous study. Based on batch assay result, complete removal of TZ could be achieved in the presence of nitrate, whereas only 50% of TZ could be removed in the control system. Long-term stability experiment indicated that the relative abundance of microorganisms (Bacteroidetes_vadinHA17, Georgenia, Anaerolinea, etc) was obviously enhanced under nitrate reduction condition. During long-term period, major intermediates for TZ biodegradation such as [1,2,4]Triazolidine-3,5-diol, hydrazine dibasic carboxylic acid and carbamic acid were detected. A novel TZ biotransformation approach via hydration, TZ-ring cleavage, deamination and oxidation was speculated. PICRUSt1 and KEGG pathway analyses indicated that hydration (dch), oxidation (adhD, oah, pucG, fdhA) of TZ and nitrate reduction (Nar, napA, nrfA, nirBK, norB, nosZ) were significantly enhanced in the presence of nitrate. Moreover, the significant enrichment of TCA cycle (gab, sdh, fum, etc.) indicated that carbon and energy metabolism were facilitated with the addition of nitrate, thus improved TZ catabolism. The proposed mechanism demonstrated that TZ biodegradation coupled with nitrate reduction would be a promising approach for efficient treatment of wastewater contaminated by TZ.
Collapse
Affiliation(s)
- Qiang Chi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yong Tu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210094, China
| | - Jing Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
35
|
Zhong L, Yang SS, Sun HJ, Cui CH, Wu T, Pang JW, Zhang LY, Ren NQ, Ding J. New insights into substrates shaped nutrients removal, species interactions and community assembly mechanisms in tidal flow constructed wetlands treating low carbon-to-nitrogen rural wastewater. WATER RESEARCH 2024; 256:121600. [PMID: 38640563 DOI: 10.1016/j.watres.2024.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group Co., Ltd., Beijing 100096, China; China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Zhou K, Zhang H, Guo D, Gao S, Pei Y, Hou L. Amorphous Fe substrate enhances nitrogen and phosphorus removal in sulfur autotrophic process. WATER RESEARCH 2024; 256:121581. [PMID: 38614032 DOI: 10.1016/j.watres.2024.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
The autotrophic denitrification of coupled sulfur and natural iron ore can remove nitrogen and phosphorus from wastewater with low C/N ratios. However, the low solubility of crystalline Fe limits its bioavailability and P absorption capacity. This study investigated the effects of amorphous Fe in drinking water treatment residue (DWTR) and crystalline Fe in red mud (RM) on nitrogen and phosphorus removal during sulfur autotrophic processes. Two types of S-Fe cross-linked filler particles with three-dimensional mesh structures were obtained by combining sulfur with the DWTR/RM using the hydrogel encapsulation method. Two fixed-bed reactors, sulfur-DWTR autotrophic denitrification (SDAD) and sulfur-RM autotrophic denitrification (SRAD), were constructed and stably operated for 236 d Under a 5-8-h hydraulic retention time, the average NO3--N, TN, and phosphate removal rates of SDAD and SRAD were 99.04 %, 96.29 %, 94.03 % (SDAD) and 97.33 %, 69.97 %, 82.26 % (SRAD), respectively. It is important to note that fermentative iron-reducing bacteria, specifically Clostridium_sensu_stricto_1, were present in SDAD at an abundance of 58.17 %, but were absent from SRAD. The presence of these bacteria facilitated the reduction of Fe (III) to Fe (II), which led to the complete denitrification of the S-Fe (II) co-electron donor to produce Fe (III), completing the iron cycle in the system. This study proposes an enhancement method for sulfur autotrophic denitrification using an amorphous Fe substrate, providing a new option for the efficient treatment of low-C/N wastewater.
Collapse
Affiliation(s)
- Kebing Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hao Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dong Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shuocheng Gao
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Li'an Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
37
|
Feng K, Lu Y, Zhou W, Xu Z, Ye J, Zhang S, Chen J, Zhao J. Metagenomics revealing biomolecular insights into the enhanced toluene removal and electricity generation in PANI@CNT bioanode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172402. [PMID: 38608888 DOI: 10.1016/j.scitotenv.2024.172402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.
Collapse
Affiliation(s)
- Ke Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weikang Zhou
- Zhejiang Engineering Survey and Design Institute Group Co., Ltd., Ningbo 315012, China
| | - Zijiong Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
38
|
Wu M, Xu Y, Zhao C, Huang H, Liu C, Duan X, Zhang X, Zhao G, Chen Y. Efficient nitrate and Cr(VI) removal by denitrifier: The mechanism of S. oneidensis MR-1 promoting electron production, transportation and consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133675. [PMID: 38508109 DOI: 10.1016/j.jhazmat.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
39
|
Wu H, Zeng W, Wu L, Lu S, Peng Y. Mechanisms of endogenous and exogenous partial denitrification in response to different carbon/nitrogen ratios: Transcript levels, nitrous oxide production, electron transport. BIORESOURCE TECHNOLOGY 2024; 399:130558. [PMID: 38460557 DOI: 10.1016/j.biortech.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Nitrite as an important substrate for Anammox can be provided by partial denitrification (PD). In this study, endogenous partial denitrification (EdPD) and exogenous partial denitrification (ExPD) sludge were domesticated and their nitrite transformation rate reached 74.4% and 83.4%, respectively. The impact of four carbon/nitrogen (C/N) ratios (1.5, 3.0, 5.0 and 6.0) on nitrous oxide (N2O) emission and denitrification functional genes expression in both PD systems were investigated. Results showed that elevated C/N ratios enhanced most denitrification genes expression, but in EdPD, high nitrite levels suppressed nosZ genes expression (from 9.4% to 1.4%), leading to increased N2O emission (0 to 3.4%). EdPD also exhibited lower electron transfer system activity, resulting in slower nitrogen oxide conversion efficiency and more stable nitrite accumulation compared to ExPD. These findings offer insights for optimizing PD systems under varying water quality conditions.
Collapse
Affiliation(s)
- Hongan Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Sijia Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
40
|
Li X, Qi M, Li Q, Wu B, Fu Y, Liang X, Yin G, Zheng Y, Dong H, Liu M, Hou L. Acidification Offset Warming-Induced Increase in N 2O Production in Estuarine and Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4989-5002. [PMID: 38442002 DOI: 10.1021/acs.est.3c10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Global warming and acidification, induced by a substantial increase in anthropogenic CO2 emissions, are expected to have profound impacts on biogeochemical cycles. However, underlying mechanisms of nitrous oxide (N2O) production in estuarine and coastal sediments remain rarely constrained under warming and acidification. Here, the responses of sediment N2O production pathways to warming and acidification were examined using a series of anoxic incubation experiments. Denitrification and N2O production were largely stimulated by the warming, while N2O production decreased under the acidification as well as the denitrification rate and electron transfer efficiency. Compared to warming alone, the combination of warming and acidification decreased N2O production by 26 ± 4%, which was mainly attributed to the decline of the N2O yield by fungal denitrification. Fungal denitrification was mainly responsible for N2O production under the warming condition, while bacterial denitrification predominated N2O production under the acidification condition. The reduced site preference of N2O under acidification reflects that the dominant pathways of N2O production were likely shifted from fungal to bacterial denitrification. In addition, acidification decreased the diversity and abundance of nirS-type denitrifiers, which were the keystone taxa mediating the low N2O production. Collectively, acidification can decrease sediment N2O yield through shifting the responsible production pathways, partly counteracting the warming-induced increase in N2O emissions, further reducing the positive climate warming feedback loop.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Boshuang Wu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuxuan Fu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
41
|
He Y, Yun H, Peng L, Ji J, Wang W, Li X. Deciphering the potential role of quorum quenching in efficient aerobic denitrification driven by a synthetic microbial community. WATER RESEARCH 2024; 251:121162. [PMID: 38277828 DOI: 10.1016/j.watres.2024.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Low efficiency is one of the main challenges for the application of aerobic denitrification technology in wastewater treatment. To improve denitrification efficiency, a synthetic microbial community (SMC) composed of denitrifiers Acinetobacter baumannii N1 (AC), Pseudomonas aeruginosa N2 (PA) and Aeromonas hydrophila (AH) were constructed. The nitrate (NO3--N) reduction efficiency of the SMC reached 97 % with little nitrite (NO2--N) accumulation, compared to the single-culture systems and co-culture systems. In the SMC, AH proved to mainly contribute to NO3--N reduction with the assistance of AC, while PA exerted NO2--N reduction. AC and AH secreted N-hexanoyl-DL-homoserine lactone (C6-HSL) to promote the electron transfer from the quinone pool to nitrate reductase. The declined N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL), resulting from quorum quenching (QQ) by AH, stimulated the excretion of pyocyanin, which could improve the electron transfer from complex III to downstream denitrifying enzymes for NO2--N reduction. In addition, C6-HSL mainly secreted by PA led to the up-regulation of TCA cycle-related genes and provided sufficient energy (such as NADH and ATP) for aerobic denitrification. In conclusion, members of the SMC achieved efficient denitrification through the interactions between QQ, electron transfer, and energy metabolism induced by N-acyl-homoserine lactones (AHLs). This study provided a theoretical basis for the engineering application of synthetic microbiome to remove nitrate wastewater.
Collapse
Affiliation(s)
- Yue He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China.
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China.
| |
Collapse
|
42
|
Gan X, Hu H, Fu Q, Zhu J. Nitrate reduction coupling with As(III) oxidation in neutral As-contaminated paddy soil preserves nitrogen, reduces N 2O emissions and alleviates As toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169360. [PMID: 38104836 DOI: 10.1016/j.scitotenv.2023.169360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In arsenic (As)-contaminated paddy soil, microbial-driven nitrate (NO3-) reduction coupled with arsenite (As(III)) oxidation can reduce As toxicity, but the whereabouts of NO3- remain unclear. In this study, the experiments were established using selective streptomycin (STP) and cyclohexylamine to inhibit bacterial and fungal functional responses, respectively, and metagenomic sequencing techniques were used to explain the biological mechanisms of NO3- reduction coupled with As(III) oxidation in neutral As-contaminated paddy soil. The results indicated that fungal denitrification resulted in stronger nitrous oxide (N2O) emissions (321.6 μg kg-1) than bacterial denitrification (175.9 μg kg-1) in neutral As-contaminated paddy soil, but NO3- reduction coupled with As(III) oxidation reduced the N2O emissions. Only adding STP led to ammonium (NH4+) generation (17.7 mg kg-1), and simultaneously more NH4+ appeared in NO3- reduction coupled with As(III) oxidation; this may be because it improved the electron transfer efficiency by 18.2 %. Achromobacter was involved in denitrification coupled with As(III) oxidation. Burkholderiales was responsible for NO3- reduction to NH4+ coupled with As(III) oxidation. This study provided a theoretical basis for NO3- reduction coupled with As(III) oxidation reducing N2O emissions, promoting the reduction of NO3- to NH4+, and reducing As toxicity in paddy soil.
Collapse
Affiliation(s)
- Xuelian Gan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
43
|
Li Q, Lu H, Tian T, Fu Z, Dai Y, Li P, Zhou J. Insights into the Acceleration Mechanism of Intracellular N and Fe Co-doped Carbon Dots on Anaerobic Denitrification Using Proteomics and Metabolomics Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2393-2403. [PMID: 38268063 DOI: 10.1021/acs.est.3c08625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
44
|
Chen J, Xue Y, Yang D, Ma S, Lin Y, Wang H, Wang Y, Ren H, Xu K. Optimizing waste molasses utilization to enhance electron transfer via micromagnetic carriers: Mechanisms and high-nitrate wastewater denitrification performance. ENVIRONMENTAL RESEARCH 2024; 242:117709. [PMID: 37993049 DOI: 10.1016/j.envres.2023.117709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The biological denitrification of high-nitrate wastewater (HNW) is primarily hindered by insufficient carbon sources and excessive nitrite accumulation. In this study, micromagnetic carriers with varying micromagnetic field (MMF) strengths (0.0, 0.3, 0.6, 0.9 mT) were employed to enhance the denitrification of HNW using waste molasses (WMs) as a carbon source. The results revealed that 0.6 mT MMF significantly improved the total nitrogen removal (TN) efficiency at 96.3%. A high nitrate (NO3--N) removal efficiency at 99.3% with a low nitrite (NO2--N) accumulation at 25.5 mg/L was achieved at 0.6 mT MMF. The application of MMF facilitated the synthesis of adenosine triphosphate (ATP) and stimulated denitrifying enzymes (e.g., nitrate reductase (NAR), nitrite reductase (NIR), and nitric oxide reductase (NOR)), which thereby promoting denitrification. Moreover, the effluent chemical oxygen demand (COD), tryptophan and fulvic-like substances exhibited their lowest levels at 0.6 mT MMF. Analysis through 16S ribosomal ribonucleic acid gene sequencing indicated a significant enrichment of denitrifying bacteria including Castellaniella Klebsiella under the influence of MMF. Besides, the proliferation of Acholeplasma, Klebsiella and Proteiniphilum at 0.6 mT MMF promoted the hydrolysis and acidification of WMs. This study offers new insights into the enhanced utilization of WMs and the denitrification of HNW through the application of MMF.
Collapse
Affiliation(s)
- Jiahui Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yi Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
45
|
Zhang Y, He Y, Jia L, Xu L, Wang Z, He Y, Xiong L, Lin X, Chen H, Xue G. Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe 0 in mixotrophic advanced denitrification: Proof of concept from simulated to authentic secondary effluent. WATER RESEARCH 2024; 249:120924. [PMID: 38029486 DOI: 10.1016/j.watres.2023.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
To offset the imperfections of higher cost and emission of CO2 greenhouse gas in heterotrophic denitrification (HDN) as well as longer start-up time in autotrophic denitrification (ADN), we synergized the potential ternary electron donors of organic carbon source, thiosulfate and zero-valent iron (Fe0) to achieve efficient mixotrophic denitrification (MDN) of oligotrophic secondary effluent. When the influent chemical oxygen demand to nitrogen (COD/N) ratio ascended gradually in the batch operation with sufficient sulfur to nitrogen (S/N) ratio, the MDN with thiosulfate and Fe0 added achieved the highest TN removal for treating simulated and authentic secondary effluents. The external carbon is imperative for initiating MDN, while thiosulfate is indispensable for promoting TN removal efficiency. Although Fe0 hardly donated electrons for denitrification, the suitable circumneutral environment for denitrification was implemented by OH- released from Fe0 corrosion, which neutralized H+generated during thiosulfate-driven ADN. Meanwhile, Fe0 corrosion consumed the dissolved oxygen (DO) and created the low DO environment suitable for anoxic denitrification. This process was further confirmed by the continuous flow operation for treating authentic secondary effluent. The TN removal efficiency achieved its maximum under the combination condition of influent COD/N ratio of 3.1-3.5 and S/N ratio of 2.0-2.1. Whether in batch or continuous flow operation, the coordination of thiosulfate and Fe0 maintained the dominance of Thiobacillus for ADN, with the dominant heterotrophic denitrifiers (e.g., Plasticicumulans, Terrimonas, Rhodanobacter and KD4-96) coexisting in MDN system. The interaction insights of ternary electron donors in MDN established a pathway for realizing high-efficiency nitrogen removal of secondary effluent.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongtao He
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Linchun Jia
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Xiong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
46
|
Zhang L, Fan R, Dong T, Dou Q, Peng Y, Ni SQ, Yang J. Efficient photocatalytic reduction of nitrate byproducts during anammox process by novel extracellular polymeric substances-embedded NH 2-MIL-101(Fe) photocatalysts. BIORESOURCE TECHNOLOGY 2024; 394:130280. [PMID: 38176594 DOI: 10.1016/j.biortech.2023.130280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient nitrogen removal process; however, nitrate byproducts hampered its development. In this study, extracellular polymeric substances (EPS) were embedded into NH2-MIL-101(Fe), creating NH2-MIL-101(Fe)@EPS to reduce nitrate. Results revealed that chemical nitrate reduction efficiency of NH2-MIL-101(Fe)@EPS surpassed that of NH2-MIL-101(Fe) by 17.3 %. After adding 0.5 g/L NH2-MIL-101(Fe)@EPS within the anammox process, nitrate removal efficiency reached63.9 %, consequently elevating the total nitrogen removal efficiency to 92.4 %. 16S rRNA sequencing results elucidated the predominant role of Candidatus Brocadia within NH2-MIL-101(Fe)@EPS-anammox system. Concurrently, sufficient photogenerated electrons were transferred to microorganisms, promoting the growth of Desnitratisoma and OLB17. Additionally, photogenerated electrons activated flavin and Complex III, thereby up-regulating crucial genes involved in intra/extracellular electron transfer. Subsequently, denitrification and dissimilatory nitrate reduction to ammonium were activated to reduce nitrate. In summary, this study achieved a notable rate of photocatalytic nitrate reduction within anammox process through the NH2-MIL-101(Fe)@EPS photocatalysts.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Running Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| |
Collapse
|
47
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
48
|
Yang Z, Deng Y, Zhong L, Xiao R, Su X. Responses of soil bacterial and fungal denitrification and associated N 2O emissions to organochloride pesticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167321. [PMID: 37748606 DOI: 10.1016/j.scitotenv.2023.167321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The extensive application of organochloride pesticides in agriculture has raised concerns about their potential negative impacts on soil microbial denitrification and associated N2O emissions. However, most studies have primarily focused on bacteria, and the contribution of fungi to N2O emissions and their response to organochloride pesticides have often been overlooked. In this study, 15N tracing combined with the respiration inhibition method was applied to examine the impacts of chlorothalonil on both fungal and bacterial denitrification. The results demonstrated that fungal N2O emissions dominated in the absence of chlorothalonil, accounting for 73 % of total N2O emissions. Chlorothalonil inhibited fungal and bacterial denitrification via different mechanisms and altered the main pathways of soil N2O emissions. Amplicon sequencing analyses indicated that chlorothalonil significantly reduced the abundances of N2O-producing fungi owing to its fungicidal effect and fungal N2O emissions significantly dropped. Molecular biological analyses revealed that chlorothalonil induced lower electron generation, transport, and consumption efficiencies, which led to the inhibition of denitrifying enzymes in bacteria. Bacterial N2O emissions dramatically increased and became the dominant source. These findings provide insights into the mechanisms by which N2O emissions from fungal and bacterial denitrification are influenced by chlorothalonil.
Collapse
Affiliation(s)
- Zhi Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
49
|
Wang S, Zhang B, Fei Y, Liu H, Zhao Y, Guo H. Elucidating Multiple Electron-Transfer Pathways for Metavanadate Bioreduction by Actinomycetic Streptomyces microflavus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19921-19931. [PMID: 37934564 DOI: 10.1021/acs.est.3c07288] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
While microbial reduction has gained widespread recognition for efficiently remediating environments polluted by toxic metavanadate [V(V)], the pool of identified V(V)-reducing strains remains rather limited, with the vast majority belonging to bacteria and fungi. This study is among the first to confirm the V(V) reduction capability of Streptomyces microflavus, a representative member of ubiquitous actinomycetes in environment. A V(V) removal efficiency of 91.0 ± 4.35% was achieved during 12 days of operation, with a maximum specific growth rate of 0.073 d-1. V(V) was bioreduced to insoluble V(IV) precipitates. V(V) reduction took place both intracellularly and extracellularly. Electron transfer was enhanced during V(V) bioreduction with increased electron transporters. The electron-transfer pathways were revealed through transcriptomic, proteomic, and metabolomic analyses. Electrons might flow either through the respiratory chain to reduce intracellular V(V) or to cytochrome c on the outer membrane for extracellular V(V) reduction. Soluble riboflavin and quinone also possibly mediated extracellular V(V) reduction. Glutathione might deliver electrons for intracellular V(V) reduction. Bioaugmentation of the aquifer sediment with S. microflavus accelerated V(V) reduction. The strain could successfully colonize the sediment and foster positive correlations with indigenous microorganisms. This study offers new microbial resources for V(V) bioremediation and improve the understanding of the involved molecular mechanisms.
Collapse
Affiliation(s)
- Shixiang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huan Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yi Zhao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
50
|
Zhang Y, Bao J, Du J, Mao Q, Cheng B. Comprehensive metagenomic and enzyme activity analysis reveals the inhibitory effects and potential toxic mechanism of tetracycline on denitrification in groundwater. WATER RESEARCH 2023; 247:120803. [PMID: 37922638 DOI: 10.1016/j.watres.2023.120803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The widespread use of tetracycline (TC) inevitably leads to its increasing emission into groundwater. However, the potential risks of TC to denitrification in groundwater remain unclear. In this study, the effects of TC on denitrification in groundwater were systematically investigated at both the protein and gene levels from the electron behavior aspect for the first time. The results showed that increasing TC from 0 to 10 µg·L-1 decreased the nitrate removal rate from 0.41 to 0.26 mg·L-1·h-1 while enhancing the residual nitrite concentration from 0.52 mg·L-1 to 50.60 mg·L-1 at the end of the experiment. From a macroscopic view, 10 µg·L-1 TC significantly inhibited microbial growth and altered microbial community structure and function in groundwater, which induced the degeneration of denitrification. From the electron behavior aspect (the electron production, electron transport and electron consumption processes), 10 µg·L-1 TC decreased the concentration of electron donors (nicotinamide adenine dinucleotide, NADH), electron transport system activity, and denitrifying enzyme activities at the protein level. At the gene level, 10 µg·L-1 TC restricted the replication of genes related to carbon metabolism, the electron transport system and denitrification. Moreover, discrepant inhibitory effects of TC on individual denitrification steps, which led to the accumulation of nitrite, were observed in this study. These results provide the information that is necessary for evaluating the potential environmental risk of antibiotics on groundwater denitrification and bring more attention to their effects on geochemical nitrogen cycles.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|