1
|
Castracane E, Molnar BT, Lambert A, Harvey BG, Estevez JE, Fedick PW. Improved boron nitride nanomaterial morphologies for the enhanced photocatalytic remediation of perfluorooctanoic acid. CHEMOSPHERE 2025; 382:144466. [PMID: 40424785 DOI: 10.1016/j.chemosphere.2025.144466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Boron nitride nanotubes (BNNT), nanobarbs (BNNB), and nanoparticles (BNNP) were used as photocatalysts under 254 nm UV irradiation for the photodegradation of perfluorooctanoic acid (PFOA). Mass spectrometry was used to monitor PFOA degradation via a stepwise mechanism in which CF2 groups were excised from the parent chain. All BNNM were effective catalysts, with BNNB exhibiting the fastest photodegradation rate, and BNNT showing increased activity upon reuse. The enhanced activity of BNNB and BNNT, along with the ability to incorporate these materials into robust structures, makes them promising candidates for use in the fabrication of photocatalytic filters that can remediate aqueous per- and polyfluoroalkyl substances in flow reactors.
Collapse
Affiliation(s)
- Eleanor Castracane
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division (NAWCWD), 1900 N. Knox Rd. Stop 6303, China Lake, CA, 93555, USA
| | - Brian T Molnar
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division (NAWCWD), 1900 N. Knox Rd. Stop 6303, China Lake, CA, 93555, USA
| | - Addison Lambert
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division (NAWCWD), 1900 N. Knox Rd. Stop 6303, China Lake, CA, 93555, USA
| | - Benjamin G Harvey
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division (NAWCWD), 1900 N. Knox Rd. Stop 6303, China Lake, CA, 93555, USA
| | - Joseph E Estevez
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division (NAWCWD), 1900 N. Knox Rd. Stop 6303, China Lake, CA, 93555, USA.
| | - Patrick W Fedick
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division (NAWCWD), 1900 N. Knox Rd. Stop 6303, China Lake, CA, 93555, USA.
| |
Collapse
|
2
|
Zhang K, Li C, Xu L, He Z, Zhang Z, Sumita, Ghumro JA, Dong K. MXene and its composites combined with photocatalytic degradation of Perfluorooctanoic acid: efficiency and active species study. ENVIRONMENTAL RESEARCH 2025; 278:121690. [PMID: 40288739 DOI: 10.1016/j.envres.2025.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Perfluorooctanoic acid (PFOA), a persistent pollutant with severe environmental and health risks, demands advanced degradation strategies. This study introduces MXene-based composites combined with TiO2 for efficient photocatalytic PFOA degradation. MXene was synthesized via HCl/LiF etching, achieving a 97.68 % Al3+ conversion rate under optimized conditions (0.085 mol/L F- 50 °C, 25.248 h), minimizing Ti3+ loss. The MXene/TiO2 composite, prepared hydrothermally, demonstrated a layered structure with TiO2 nanoparticles anchored on MXene sheets, confirmed by SEM, XRD, and XPS. Adsorption studies revealed MXene rapid PFOA uptake (equilibrium in 30 min), fitting pseudo-second-order kinetics and Langmuir isotherms (qm = 16.06 mg/g), with pH-dependent efficiency linked to electrostatic interactions. Photocatalytic experiments under UV light showed the MXene/TiO2 system outperformed UV alone, UV/MXene, and UV/TiO2, achieving 94.64 % degradation and 58.4 % defluorination in 9 h. The key parameters, including catalyst dosage, initial PFOA concentration and acidic pH, were optimized. Radical quenching and EPR analysis identified ·OH, ·O2-, and h+ as active species, with contributions ranked ·OH > ·O2- > h+. The interfacial Schottky barrier between MXene and TiO2 facilitated hole transfer, enhancing electron-hole separation and catalytic longevity. This work highlights MXene/TiO2 as a robust, multifunctional material for addressing PFOA contamination, combining adsorption capacity with photocatalytic activity for sustainable water treatment. The findings provide mechanistic insights into carrier dynamics and reactive species roles, advancing the design of MXene-based composites for persistent pollutant remediation.
Collapse
Affiliation(s)
- Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Luo Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhengming He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiyuan Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sumita
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jibran Ali Ghumro
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ke Dong
- Department of Life Science, Kyonggi University, Suwon, 16227, Republic of Korea
| |
Collapse
|
3
|
Zhang G, Fu C, Gao S, Zhao H, Ma C, Liu Z, Li S, Ju Z, Huo H, Zuo P, Yin G, Liu T, Ma Y. Regulating Interphase Chemistry by Targeted Functionalization of Hard Carbon Anode in Ester-Based Electrolytes for High-Performance Sodium-Ion Batteries. Angew Chem Int Ed Engl 2025; 64:e202424028. [PMID: 39878445 DOI: 10.1002/anie.202424028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025]
Abstract
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully. Consequently, the modified HC anode delivers an excellent rate capability of 206.2 mAh g-1 at 0.5 A g-1 and a remarkable capacity retention of 92.5 % after 1000 cycles at 1.0 A g-1. Moreover, the coin-type full-cell equipped with Na2Fe[Fe(CN)6] cathode exhibits an exceptional capacity retention ratio of 80.9 % after 800 cycles at 1C. The present simple and effective interfacial modification strategy offers a promising and alternative avenue for promoting the development and practicability of HC anode in ester-based electrolytes for sodium-ion batteries.
Collapse
Affiliation(s)
- Guangxiang Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuyang Gao
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haoquan Zhao
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chi Ma
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziwei Liu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuai Li
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhijin Ju
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hua Huo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Pengjian Zuo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Geping Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tiefeng Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Quzhou Institute of Power Batteries and Energy Storage, Quzhou, 324000, China
| | - Yulin Ma
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Xu SL, Wang W, Li HT, Gao YX, Min Y, Liu P, Zheng X, Liu DF, Chen JJ, Yu HQ, Zhou X, Wu Y. Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls-Modulated Hydrogen Migration over Nonreducible Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500371. [PMID: 39962838 DOI: 10.1002/adma.202500371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Indexed: 04/03/2025]
Abstract
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
Collapse
Affiliation(s)
- Shi-Lin Xu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Wang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao-Tong Li
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Xiang Gao
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peigen Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Dong-Feng Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Zhou
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Minhas S, Pandey RP, Hasan SW. Emerging nanomaterials incorporated in membranes for polyfluoroalkyl substances (PFAS) removal from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123888. [PMID: 39736225 DOI: 10.1016/j.jenvman.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Water purification become more challenging day by day, due to novel anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFAS) used in nonstick cookware, firefighting foams, packaging etc. PFAS has adverse effects on human health and ecosystem and their physicochemical properties and unique molecular structures make the conventional water treatment methods more challenging. Among the novel PFAS removal technologies, nanomaterials incorporated in membranes are regarded as promising membrane technology for the treatment of PFAS. This review explores the incorporation of nanomaterials in membranes for PFASs removal, examining both current applications and future prospects. Nanomaterials possessing excellent features when incorporated in membranes can enhance their properties and hence makes this technology a potential candidate for PFAS removal. In this critical review, the relationships between membrane performance and properties are studied. Challenges and limitations such as high production costs, stability of nanomaterials within membranes, non-uniform distribution of nanomaterials in membrane matrices, and potential toxicity associated with nanomaterials are identified. This analysis also underscores research gap, prompting further exploration and development such as large-scale production and commercialization of mixed matrix membrane systems, optimization of membrane fabrication techniques, and the exploration of additional 2D nanomaterials.
Collapse
Affiliation(s)
- Sana Minhas
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Mabaso NSN, Tshangana CS, Muleja AA. Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors. MEMBRANES 2024; 14:217. [PMID: 39452829 PMCID: PMC11509138 DOI: 10.3390/membranes14100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent compounds characterized by stable C-F bonds giving them high thermal and chemical stability. Numerous studies have highlighted the presence of PFASs in the environment, surface waters and animals and humans. Exposure to these chemicals has been found to cause various health effects and has necessitated the need to develop methods to remove them from the environment. To date, the use of photocatalytic degradation and membrane separation to remove PFASs from water has been widely studied; however, these methods have drawbacks hindering them from being applied at full scale, including the recovery of the photocatalyst, uneven light distribution and membrane fouling. Therefore, to overcome some of these challenges, there has been research involving the coupling of photocatalysis and membrane separation to form photocatalytic membrane reactors which facilitate in the recovery of the photocatalyst, ensuring even light distribution and mitigating fouling. This review not only highlights recent advancements in the removal of PFASs using photocatalysis and membrane separation but also provides comprehensive information on the integration of photocatalysis and membrane separation to form photocatalytic membrane reactors. It emphasizes the performance of immobilized and slurry systems in PFAS removal while also addressing the associated challenges and offering recommendations for improvement. Factors influencing the performance of these methods will be comprehensively discussed, as well as the nanomaterials used for each technology. Additionally, knowledge gaps regarding the removal of PFASs using integrated photocatalytic membrane systems will be addressed, along with a comprehensive discussion on how these technologies can be applied in real-world applications.
Collapse
Affiliation(s)
| | | | - Adolph Anga Muleja
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
7
|
Cao CS, Wang J, Yang L, Wang J, Zhang Y, Zhu L. A review on the advancement in photocatalytic degradation of poly/perfluoroalkyl substances in water: Insights into the mechanisms and structure-function relationship. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174137. [PMID: 38909806 DOI: 10.1016/j.scitotenv.2024.174137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Poly/perfluoroalkyl substances (PFAS) are persistent organic pollutants and ubiquitous in aquatic environment, which are hazardous to organisms and human health. Several countries and regions have taken actions to regulate or limit the production and emission of some PFAS. Even though a series of water treatment technologies have been developed for removal of PFAS to eliminate their potential adverse effects, the removal and degradation performance are usually unsatisfactory. Photocatalytic degradation of PFAS is considered as one of the most effective approaches due to the mild operation conditions and environmental friendliness. This review systematically summarized the recent advances in photocatalytic degradation of PFAS based on heterogeneous photocatalysts, including TiO2-, Ga2O3-, In2O3-, ZnO-, Bi-based, and others. Overall, two mainly degradation mechanisms were involved, including photo-oxidation (involving the holes and oxidative radicals) and photo-reduction types (by e- and reductive radicals). The band structures of the photocatalysts, degradation pathways, structure-function relationship, and impacting factors were further discussed to elucidate the essential reasons for the enhanced degradation of PFAS. Furthermore, the review identified the major knowledge gaps to solve the issues of photocatalysis in real application. This paper also propounded several strategies to promote the design and optimization of high-efficient photocatalysts, and meet the challenges to remove PFAS through photodegradation technologies.
Collapse
Affiliation(s)
- Chun-Shuai Cao
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingzhen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingwen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Liu T, Ma C, Hu Z, Huang Y, Wang X. Novel pillar[n]arenes magnetic nanoparticles: Preparation and application in quantitative analysis of trace perfluorinated compounds from aqueous samples. Anal Chim Acta 2024; 1323:343067. [PMID: 39182971 DOI: 10.1016/j.aca.2024.343067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Perfluorinated compounds (PFCs) are a class of widely manufactured and used emerging persistent pollutants. The recent discovered new class of macrocycles pillararenes have garnered significant attention for the applications in environmental pollutant adsorption, with abundant π electron cavities, a symmetrical rigid structure, and host-guest recognition capabilities. RESULTS In this work, we designed and synthesized novel cationic pillar [n]arenes magnetic nanoparticles (CWPA5@MNPs), and investigated its adsorption performance and mechanism as a type of new adsorbent for the enrichment of PFCs. The results indicate that CWPA5@MNPs exhibits selectively strong affinity for perfluorooctane sulfonate (PFOS) and long-chain (C9-C14) perfluorocarboxylic acids (PFCAs), with the adsorption efficiency exceeding 80 % within 12 min. The maximum adsorption capacity of CWPA5@MNPs for PFOS was measured to be 29.02 mg/g. CWPA5@MNPs can be rapidly isolated from the solution using external magnets, offering a quick and easy separation. Consequently, this study established a CWPA5@MNPs-assisted magnetic solid-phase extraction (MSPE) coupled with high-performance liquid chromatography-tandem mass spectrometry (CWPA5@MNPs-MSPE-HPLC-MS/MS) method for the rapid detection of trace levels of PFCs in environmental water samples. The analysis of 7 PFCs yielded recovery rates ranging from 86.1 % to 107.5 %, with intraday and interday relative standard deviations (RSD) of 3.6-6.4 % and 1.3-7.0 %, respectively. SIGNIFICANCE AND NOVELTY The study reveals the synthesis and application of novel cationic pillar [n]arenes magnetic nanoparticles (CWPA5@MNPs) as highly efficient adsorbents for selective perfluorinated compounds (PFCs) in water samples. It demonstrates the potential of the newly developed CWPA5@MNPs-MSPE-HPLC-MS/MS method for the quantitative analysis of PFCs in environment, with high sensitivity, accuracy and stability.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Chunfeng Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Zheng Hu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Yinghong Huang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China.
| |
Collapse
|
9
|
Lv C, Cheng H, Fan R, Sun J, Liu X, Ji Y. Fabrication of rGO/BiOI photocathode and its catalytic performance in the degradation of 4-Fluoroaniline. Heliyon 2024; 10:e37024. [PMID: 39286232 PMCID: PMC11402956 DOI: 10.1016/j.heliyon.2024.e37024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Organic fluorine compounds are acute carcinogenic and mutagenic to humans. Photoelectrocatalysis (PEC) treatment is an innovative technology in the field of the removal of fluorine compounds, and thus current research focused on improving stability and catalytic ability of photoanode. In this study, it has been synthesized a rGO/BiOI photocathode for the efficient degradation of 4-Fluoroaniline (4-FA). The physical characterization and photoelectrochemical properties of the photocathode was determined. The results indicate that the PEC treatment with the rGO/BiOI photocathode was more efficient compared with individual processes. During the optimization experiments, the PEC treatment achieved 99.58 % and 72.12 % of 4-FA degradation and defluorination within 1 h. Cyclic stability experiments show that rGO/BiOI photocathode was efficient and stable, which reached 96.91 % and 67.64 % of 4-FA degradation and defluorination after five cycles. Mechanism analysis indicates that the PEC process was based on an electrochemical reaction and photo-induced processes. The degradation product of 4-FA was mainly 2,4-di-t-butylphenol, and trapping experiments indicates that h+ is the primary oxidizing species. Therefore, PEC treatment with rGO/BiOI photocathode is a competitive green approach to remove fluorine compounds pollutants and brings new insights into development of PEC treatment.
Collapse
Affiliation(s)
- Chenhan Lv
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Haixiang Cheng
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Rui Fan
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Jingyu Sun
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yinghui Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
10
|
Chen F, Zhou Y, Wang L, Wang P, Wang T, Ravindran B, Mishra S, Chen S, Cui X, Yang Y, Zhang W. Elucidating the degradation mechanisms of perfluorooctanoic acid and perfluorooctane sulfonate in various environmental matrices: a review of green degradation pathways. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:349. [PMID: 39073492 DOI: 10.1007/s10653-024-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.
Collapse
Affiliation(s)
- Feiyu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Yi Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Liping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Pengfei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Tianyue Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| | - Wenping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| |
Collapse
|
11
|
Cheng Y, Deng B, Scotland P, Eddy L, Hassan A, Wang B, Silva KJ, Li B, Wyss KM, Ucak-Astarlioglu MG, Chen J, Liu Q, Si T, Xu S, Gao X, JeBailey K, Jana D, Torres MA, Wong MS, Yakobson BI, Griggs C, McCary MA, Zhao Y, Tour JM. Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation. Nat Commun 2024; 15:6117. [PMID: 39033169 PMCID: PMC11271446 DOI: 10.1038/s41467-024-49809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000 °C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies ( >99%) and mineralization ratios ( >90%). While retaining soil particle size, composition, water infiltration rate, and cation exchange capacity, REM facilitates an increase of exchangeable nutrient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at two kilograms per batch and promising for large-scale, on-site soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally friendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bing Deng
- Department of Chemistry, Rice University, Houston, TX, USA.
- School of Environment, Tsinghua University, Beijing, China.
| | - Phelecia Scotland
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, Houston, TX, USA
- Applied Physics Program, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | - Arman Hassan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Bo Wang
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bowen Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | - Jinhang Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Qiming Liu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Tengda Si
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaodong Gao
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
- Carbon Hub, Rice University, Houston, TX, USA
| | - Khalil JeBailey
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Debadrita Jana
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
| | - Mark Albert Torres
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemistry, Rice University, Houston, TX, USA
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Boris I Yakobson
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | | | | | - Yufeng Zhao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Corban University, Salem, OR, USA.
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Smalley-Curl Institute, Rice University, Houston, TX, USA.
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
12
|
Zhang Y, Guan Z, Liao X, Huang Y, Huang Z, Mo Z, Yin B, Zhou X, Dai W, Liang J, Sun S. Defluorination of perfluorooctanoic acid and perfluorooctane sulfonic acid by heterogeneous catalytic system of Fe-Al 2O 3/O 3: Synergistic oxidation effects and defluorination mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169675. [PMID: 38211856 DOI: 10.1016/j.scitotenv.2023.169675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
In this study, catalytic ozonation by Fe-Al2O3 was used to investigate the defluorination of PFOA and PFOS, assessing the effects of different experimental conditions on the defluorination efficiency of the system. The oxidation mechanism of the Fe-Al2O3/O3 system and the specific degradation and defluorination mechanisms for PFOA and PFOS were determined. Results showed that compared to the single O3 system, the defluorination rates of PFOA and PFOS increased by 2.32- and 5.92-fold using the Fe-Al2O3/O3 system under optimal experimental conditions. Mechanistic analysis indicated that in Fe-Al2O3, the variable valence iron (Fe) and functional groups containing C and O served as important reaction sites during the catalytic process. The co-existence of 1O2, OH, O2- and high-valence Fe(IV) constituted a synergistic oxidation system consisting of free radicals and non-radicals, promoting the degradation and defluorination of PFOA and PFOS. DFT theoretical calculations and the analysis of intermediate degradation products suggested that the degradation pathways of PFOA and PFOS involved Kolbe decarboxylation, desulfonation, alcoholization and intramolecular cyclization reactions. The degradation and defluorination pathways of PFOA and PFOS consisted of the stepwise removal of -CF2-, with PFOS exhibiting a higher defluorination rate than PFOA due to its susceptibility to electrophilic attack. This study provides a theoretical basis for the development of heterogeneous catalytic ozonation systems for PFOA and PFOS treatment.
Collapse
Affiliation(s)
- Yumin Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Baixuan Yin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingfan Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
13
|
Dey D, Shafi T, Chowdhury S, Dubey BK, Sen R. Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 351:141164. [PMID: 38215829 DOI: 10.1016/j.chemosphere.2024.141164] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) (also known as 'forever chemicals') have emerged as trace pollutants of global concern, attributing to their persistent and bio-accumulative nature, pervasive distribution, and adverse public health and environmental impacts. The unregulated discharge of PFAS into aquatic environments represents a prominent threat to the wellbeing of humans and marine biota, thereby exhorting unprecedented action to tackle PFAS contamination. Indeed, several noteworthy technologies intending to remove PFAS from environmental compartments have been intensively evaluated in recent years. Amongst them, adsorption and photocatalysis demonstrate remarkable ability to eliminate PFAS from different water matrices. In particular, carbon-based materials, because of their diverse structures and many exciting properties, offer bountiful opportunities as both adsorbent and photocatalyst, for the efficient abatement of PFAS. This review, therefore, presents a comprehensive summary of the diverse array of carbonaceous materials, including biochar, activated carbon, carbon nanotubes, and graphene, that can serve as ideal candidates in adsorptive and photocatalytic treatment of PFAS contaminated water. Specifically, the efficacy of carbon-mediated PFAS removal via adsorption and photocatalysis is summarised, together with a cognizance of the factors influencing the treatment efficiency. The review further highlights the neoteric development on the novel innovative approach 'concentrate and degrade' that integrates selective adsorption of trace concentrations of PFAS onto photoactive surface sites, with enhanced catalytic activity. This technique is way more energy efficient than conventional energy-intensive photocatalysis. Finally, the review speculates the cardinal challenges associated with the practical utility of carbon-based materials, including their scalability and economic feasibility, for eliminating exceptionally stable PFAS from water matrices.
Collapse
Affiliation(s)
- Debanjali Dey
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Tajamul Shafi
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; School of Water Resources, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| |
Collapse
|
14
|
Kalidasan K, Mallapur S, Munirathnam K, Nagarajaiah H, Reddy MBM, Kakarla RR, Raghu AV. Transition metals-doped g-C 3N 4 nanostructures as advanced photocatalysts for energy and environmental applications. CHEMOSPHERE 2024; 352:141354. [PMID: 38311034 DOI: 10.1016/j.chemosphere.2024.141354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
Graphitic carbon nitride (g-C3N4)-based heterostructured photocatalysts have received significant attention for its potential applications in the treatment of wastewater and hydrogen evolution. The utilization of semiconductor materials in heterogeneous photocatalysis has recently received great attention due to their potential and eco-friendly properties. Doping with metal ions plays a crucial role in altering the photochemical characteristics of g-C3N4, effectively enhancing photoabsorption into the visible range and thus improving the photocatalytic performance of doped photocatalysts. As an emerging nanomaterial, nanostructured g-C3N4 represents a visible light-active semiconducting photocatalyst that has attracted significant interest in the photocatalysis field, particularly for its practical water treatment applications. To the best of our knowledge, investigations of functionalized photocatalytic (PC) materials on 3d transition metal-doped g-C3N4 remain unexplored in the existing literature. g-C3N4 based heterohybrid photocatalysts have demonstrated excellent reusability, making them highly promising for wastewater treatment applications. This paper describes the overview of numerous studies conducted on the heterostructured g-C3N4 photocatalysts with various 3d metals. Research studies have revealed that the introduction of element doping with various 3d transition metals (e.g., Ti, Mn, Fe, Co, Ni, Cu, Zn, etc.) into g-C3N4 is an efficient approach to enhance degradation efficacy and boost photocatalytic activity (PCA) of doped g-C3N4 catalysts. Moreover, the significance of g-C3N4 heterostructured nanohybrids is highlighted, particularly in the context of wastewater treatment applications. The study concludes by providing insights into future perspectives in this developing area of research, with a specific focus on the degradation of various organic contaminants.
Collapse
Affiliation(s)
- Kavya Kalidasan
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - Srinivas Mallapur
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India.
| | - K Munirathnam
- Department of Physics, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - H Nagarajaiah
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - M B Madhusudana Reddy
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Anjanapura V Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, 586103, Karnataka, India.
| |
Collapse
|
15
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
16
|
Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169279. [PMID: 38123092 DOI: 10.1016/j.scitotenv.2023.169279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.
Collapse
Affiliation(s)
- Manavi Yadav
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Francis J Osonga
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America.
| |
Collapse
|
17
|
Juve JMA, Donoso Reece JA, Wong MS, Wei Z, Ateia M. Photocatalysts for chemical-free PFOA degradation - What we know and where we go from here? JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132651. [PMID: 37827098 DOI: 10.1016/j.jhazmat.2023.132651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a toxic and recalcitrant perfluoroalkyl substance commonly detected in the environment. Its low concentration challenges the development of effective degradation techniques, which demands intensive chemical and energy consumption. The recent stringent health advisories and the upgrowth and advances in photocatalytic technologies claim the need to evaluate and compare the state-of-the-art. Among these systems, chemical-free photocatalysis emerges as a cost-effective and sustainable solution for PFOA degradation and potentially other perfluorinated carboxylic acids. This review (I) classifies the state-of-the-art of chemical-free photocatalysts for PFOA degradation in families of materials (Ti, Fe, In, Ga, Bi, Si, and BN), (II) describes the evolution of catalysts, identifies and discusses the strategies to enhance their performance, (III) proposes a simplified cost evaluation tool for simple techno-economical analysis of the materials; (IV) compares the features of the catalysts expanding the classic degradation focus to other essential parameters, and (V) identifies current research gaps and future research opportunities to enhance the photocatalyst performance. We aim that this critical review will assist researchers and practitioners to develop rational photocatalyst designs and identify research gaps for green and effective PFAS degradation.
Collapse
Affiliation(s)
- Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Juan A Donoso Reece
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Center for Environmental Solutions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Verma S, Mezgebe B, Hejase CA, Sahle-Demessie E, Nadagouda MN. Photodegradation and photocatalysis of per- and polyfluoroalkyl substances (PFAS): A review of recent progress. NEXT MATERIALS 2024; 2:1-12. [PMID: 38840836 PMCID: PMC11151751 DOI: 10.1016/j.nxmate.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are oxidatively recalcitrant organic synthetic compounds. PFAS are an exceptional group of chemicals that have significant physical characteristics due to the presence of the most electronegative element (i.e., fluorine). PFAS persist in the environment, bioaccumulate, and have been linked to toxicological impacts. Epidemiological and toxicity studies have shown that PFAS pose environmental and health risks, requiring their complete elimination from the environment. Various separation technologies, including adsorption with activated carbon or ion exchange resin; nanofiltration; reverse osmosis; and destruction methods (e.g., sonolysis, thermally induced reduction, and photocatalytic dissociation) have been evaluated to remove PFAS from drinking water supplies. In this review, we will comprehensively summarize previous reports on the photodegradation of PFAS with a special focus on photocatalysis. Additionally, challenges associated with these approaches along with perspectives on the state-of-the-art approaches will be discussed. Finally, the photocatalytic defluorination mechanism of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) following complete mineralization will also be examined in detail.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus Technical Services INC., Cincinnati, OH 45219, USA
| | - Bineyam Mezgebe
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, US EPA, Ada, OK 74820, USA
| | - Charifa A. Hejase
- Pegasus Technical Services INC., Cincinnati, OH 45219, USA
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Endalkachew Sahle-Demessie
- Land Remediation and Technology Division, Center for Environmental Solutions and Emergency Response, US EPA, Cincinnati, OH 45268, USA
| | - Mallikarjuna N. Nadagouda
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, US EPA, Cincinnati, OH 45268, USA
| |
Collapse
|
19
|
Li K, You W, Wang W, Gong K, Liu Y, Wang L, Ge Q, Ruan X, Ao J, Ji M, Zhang L. Significantly Accelerated Photochemical Perfluorooctanoic Acid Decomposition at the Air-Water Interface of Microdroplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21448-21458. [PMID: 38047763 DOI: 10.1021/acs.est.3c05470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 μg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.
Collapse
Affiliation(s)
- Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Wenbo You
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Longqian Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiuyue Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuejun Ruan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
20
|
Ji Y, Choi YJ, Fang Y, Pham HS, Nou AT, Lee LS, Niu J, Warsinger DM. Electric Field-Assisted Nanofiltration for PFOA Removal with Exceptional Flux, Selectivity, and Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18519-18528. [PMID: 36657468 DOI: 10.1021/acs.est.2c04874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and human health risks and thus require solutions for their removal and destruction. However, PFAS cannot be destroyed by widely used removal processes like nanofiltration (NF). A few scarcely implemented advanced oxidation processes can degrade PFAS. In this study, we apply an electric field to a membrane system by placing a nanofiltration membrane between reactive electrodes in a crossflow configuration. The performance of perfluorooctanoic acid (PFOA) rejection, water flux, and energy consumption were evaluated. The reactive and robust SnO2-Sb porous anode was created via a sintering and sol-gel process. The characterization and analysis techniques included field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), ion chromatography, mass spectroscopy, porosimeter, and pH meter. The PFOA rejection increased from 45% (0 V) to 97% (30 V) when the electric field and filtration were in the same direction, while rejection capabilities worsened in opposite directions. With saline solutions (1 mM Na2SO4) present, the induced electro-oxidation process could effectively mineralize PFOA, although this led to unstable removal and water fluxes. The design achieved an exceptional performance in the nonsaline feed of 97% PFOA rejection and water flux of 68.4 L/m2 hr while requiring only 7.31 × 10-5 kWh/m3/order of electrical energy. The approach's success is attributed to the proximity of the electrodes and membrane, which causes a stronger electric field, weakened concentration polarization, and reduced mass transfer distances of PFOA near the membrane. The proposed electric field-assisted nanofiltration design provides a practical membrane separation method for PFAS removal from water.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youn Jeong Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuhang Fang
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hoang Son Pham
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alliyan Tan Nou
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - David M Warsinger
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Chen Z, Zhang S, Wang X, Mi N, Zhang M, Zeng G, Dong H, Liu J, Wu B, Wei S, Gu C. Amine-Functionalized A-Center Sphalerite for Selective and Efficient Destruction of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37406161 DOI: 10.1021/acs.est.3c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Perfluorochemicals (PFCs), especially perfluorooctanoic acid (PFOA), have contaminated the ground and surface waters throughout the world. Efficient removal of PFCs from contaminated waters has been a major challenge. This study developed a novel UV-based reaction system to achieve fast PFOA adsorption and decomposition without addition of sacrificial chemicals by using synthetic photocatalyst sphalerite (ZnS-[N]) with sufficient surface amination and defects. The obtained ZnS-[N] has the capability of both reduction and oxidation due to the suitable band gap and photo-generated hole-trapping properties created by surface defects. The cooperated organic amine functional groups on the surface of ZnS-[N] play a crucial role in the selective adsorption of PFOA, which guarantee the efficient destruction of PFOA subsequently, and 1 μg L-1 PFOA could be degraded to <70 ng L-1 after 3 h in the presence of 0.75 g L-1 ZnS-[N] under 500 W UV irradiation. In this process, the photogenerated electrons (reduction) and holes (oxidation) on the ZnS-[N] surface work in a synergistic manner to achieve complete defluorination of PFOA. This study not only provides promising green technology for PFC-pollution remediation but also highlights the significance of developing a target system capable of both reduction and oxidation for PFC degradation.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
22
|
Zango ZU, Khoo KS, Garba A, Kadir HA, Usman F, Zango MU, Da Oh W, Lim JW. A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115326. [PMID: 36690243 DOI: 10.1016/j.envres.2023.115326] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been identified as the most toxic specie of the family of perfluorinated carboxylic acids (PFCAs). It has been widely distributed and frequently detected in environmental wastewater. The compound's unique features such as inherent stability, rigidity, and resistance to harsh chemical and thermal conditions, due to its multiple and strong C-F bonds have resulted in its resistance to conventional wastewater remediations. Photolysis and bioremediation methods have been proven to be inefficient in their elimination, hence this article presents intensive literature studies and summarized findings reported on the application of advanced oxidation processes (AOPs) and photocatalytic degradation techniques as the best alternatives for the PFOA elimination from wastewater. Techniques of persulfate, photo-Fenton, electrochemical, photoelectrochemical and photocatalytic degradation have been explored and their mechanisms for the degradation and defluorination of the PFOA have been demonstrated. The major advantage of AOPs techniques has been centralized on the generation of active radicals such as sulfate (SO4•-) hydroxyl (•OH). While for the photocatalytic process, photogenerated species (electron (e) and holes (h + vb)) initiated the process. These active radicals and photogenerated species possessed potentiality to attack the PFOA molecule and caused the cleavage of the C-C and C-F bonds, resulting in its efficient degradation. Shorter-chain PFCAs have been identified as the major intermediates detected and the final stage entails its complete mineralization to carbon dioxide (CO2) and fluoride ion (F-). The prospects and challenges associated with the outlined techniques have been highlighted for better understanding of the subject matter for the PFOA elimination from real wastewaters.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi, Nigeria
| | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
23
|
Yuan Y, Feng L, He X, Wu M, Ai Z, Zhang L, Gong J. Nitrate promoted defluorination of perfluorooctanoic acid in UV/sulfite system: Coupling hydrated electron/reactive nitrogen species-mediated reduction and oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120172. [PMID: 36115490 DOI: 10.1016/j.envpol.2022.120172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
A significantly accelerated defluorination of recalcitrant perfluorooctanoic acid (PFOA) was explored with the co-present nitrate (20 mg L-1) by UV/sulfite treatment (UV/sulfite-nitrate). The deep defluorination of PFOA and complete denitrification of nitrate were simultaneously achieved in UV/sulfite-nitrate system. At the initial 30 min, PFOA defluorination exhibited an induction period, exactly corresponding to the removal of the co-existed nitrate. Upon the induction period passed, an accelerated removal of PFOA (5 mg L-1) occurred, nearly 100% defluorination ratio reached within 2 h. Compared with those in UV/sulfite, the kinetics of PFOA decay, defluorination, and transformation product formations were greatly enhanced in UV/sulfite-nitrate system. Reactive nitrogen species (RNS) generated from eaq--induced reduction of nitrate were found to play significant roles on the promoted defluorination apart from eaq--mediated reductive defluorination. The investigations on solution pH (7.0-11.0) confirmed that the reductive defluorination of PFOA was more efficient under alkaline conditions, however, the presence of nitrate can promote the defluorination even under neutral pH. Theoretical calculations of Fukui function demonstrated that RNS could easily launch electrophilic attack toward H-rich moieties of fluorotelomer carboxylates (FTCAs, CnF2n+1-(CH2)m-COO-), more persistent intermediates (formed via H/F exchange), and convert FTCAs into shorter-chain perfluorinated carboxylic acids, thus facilitating the deep defluorination. Along with the analysis on the denitrification products, the liberation of fluoride ions and generated intermediates, possible decomposition pathways were proposed. This work highlights the indispensable synergy from eaq-/RNS with integrated reduction and oxidation on PFOA defluorination and will advance remediation technologies of perfluorinated compound contaminated water.
Collapse
Affiliation(s)
- Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Xianqin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Mengsi Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
24
|
Zhao Y, Zhang C, Chu L, Zhou Q, Huang B, Ji R, Zhou X, Zhang Y. Hydrated electron based photochemical processes for water treatment. WATER RESEARCH 2022; 225:119212. [PMID: 36223677 DOI: 10.1016/j.watres.2022.119212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Hydrated electron (eaq-) based photochemical processes have emerged as a promising technology for contaminant removal in water due to the mild operating conditions. This review aims to provide a comprehensive and up-to-date summary on eaq- based photochemical processes for the decomposition of various oxidative contaminants. Specifically, the characteristics of different photo-reductive systems are first elaborated, including the environment required to generate sufficient eaq-, the advantages and disadvantages of each system, and the comparison of the degradation efficiency of contaminants induced by eaq-. In addition, the identification methods of eaq- (e.g., laser flash photolysis, scavenging studies, chemical probes and electron spin resonance techniques) are summarized, and the influences of operating conditions (e.g., solution pH, dissolved oxygen, source chemical concentration and UV type) on the performance of contaminants are also discussed. Considering the complexity of contaminated water, particular attention is paid to the influence of water matrix (e.g., coexisting anions, alkalinity and humic acid). Moreover, the degradation regularities of various contaminants (e.g., perfluorinated compounds, disinfection by-products and nitrate) by eaq- are summarized. We finally put forward several research prospects for the decomposition of contaminants by eaq- based photochemical processes to promote their practical application in water treatment.
Collapse
Affiliation(s)
- Yunmeng Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Liquan Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Baorong Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ruixin Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
25
|
Liu F, Guan X, Xiao F. Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129580. [PMID: 35905606 DOI: 10.1016/j.jhazmat.2022.129580] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, mobile, and toxic chemicals that are hazardous to human health and the environment. Several countries, including the United States, plan to set an enforceable maximum contamination level for certain PFAS compounds in drinking water sources. Among the available treatment options, photocatalytic treatment is promising for PFAS degradation and mineralization in the aqueous solution. In this review, recent advances in the abatement of PFAS from water using photo-oxidation and photo-reduction are systematically reviewed. Degradation mechanisms of PFAS by photo-oxidation involving the holes (hvb+) and oxidative radicals and photo-reduction using the electrons (ecb-) and hydrated electrons (eaq-) are integrated. The recent development of innovative heterogeneous photocatalysts and photolysis systems for enhanced degradation of PFAS is highlighted. Photodegradation mechanisms of alternative compounds, such as hexafluoropropylene oxide dimer acid (GenX) and chlorinated polyfluorinated ether sulfonate (F-53B), are also critically evaluated. This paper concludes by identifying major knowledge gaps and some of the challenges that lie ahead in the scalability and adaptability issues of photocatalysis for natural water treatment. Development made in photocatalysts design and system optimization forges a path toward sustainable treatment of PFAS-contaminated water through photodegradation technologies.
Collapse
Affiliation(s)
- Fuqiang Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Feng Xiao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, ND 58202, United States.
| |
Collapse
|
26
|
Namie M, Nishimura F, Kim JH, Yonezawa S. Surface modification of SiC substrates via direct fluorination to promote adhesion of electroless-deposited Ni film. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Wang M, Cai Y, Zhou B, Yuan R, Chen Z, Chen H. Removal of PFASs from water by carbon-based composite photocatalysis with adsorption and catalytic properties: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155652. [PMID: 35508243 DOI: 10.1016/j.scitotenv.2022.155652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic pollutants widely distributed in aquatic environments. The adsorption and photocatalytic methods have been widely used to remove PFASs in water because of their respective advantages. Still, they have apparent defects when used alone. Therefore, the adsorption and photocatalytic technologies are combined through suitable preparation methods, and the excellent properties of the two are used to synergize the treatment of organic pollutants. This strategy of "concentrating" pollutants and then degrading them in a centralized manner plays an essential role in removing trace PFASs. Nevertheless, a review focusing on this kind of adsorption photocatalyst system is lacking. This review will fill this gap and provide a reference for developing a carbon-based composite photocatalyst. Firstly, different carbon-based composite photocatalysts are reviewed in detail, focusing on the differences in various composite materials' excellent adsorption and catalytic properties. Secondly, the factors influencing the removal effect of carbon-based composite photocatalysts are discussed. Thirdly, the removal mechanism of carbon-based composite photocatalysts is summarized in detail. The removal process involves two steps: adsorption and photodegradation. The adsorption process involves multiple cooperative adsorption mechanisms, and photocatalytic degradation includes oxidative and reductive degradation. Fourthly, the comparison of adsorption-photocatalysis with common treatment techniques (including removal rate, range of adaptation, cost, and the possibility of expanding application) is summarized. Finally, the prospects of carbon-based composite photocatalysts for repairing PFASs are given by evaluating the performance of different composites.
Collapse
Affiliation(s)
- Mingran Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanping Cai
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
28
|
Arana Juve JM, Li F, Zhu Y, Liu W, Ottosen LDM, Zhao D, Wei Z. Concentrate and degrade PFOA with a photo-regenerable composite of In-doped TNTs@AC. CHEMOSPHERE 2022; 300:134495. [PMID: 35390412 DOI: 10.1016/j.chemosphere.2022.134495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
"Concentrate-and-degrade" is an effective strategy to promote mass transfer and degradation of pollutants in photocatalytic systems, yet suitable and cost-effective photocatalysts are required to practice the new concept. In this study, we doped a post-transition metal of Indium (In) on a novel composite adsorptive photocatalyst, activated carbon-supported titanate nanotubes (TNTs@AC), to effectively degrade perfluorooctanoic acid (PFOA). In/TNTs@AC exhibited both excellent PFOA adsorption (>99% in 30 min) and photodegradation (>99% in 4 h) under optimal conditions (25 °C, pH 7, 1 atm, 1 g/L catalyst, 0.1 mg/L PFOA, 254 nm). The heterojunction structure of the composite facilitated a cooperative adsorption mode of PFOA, i.e., binding of the carboxylic head group of PFOA to the metal oxide and attachment of the hydrophobic tail to AC. The resulting side-on adsorption mode facilitates the electron (e‒) transfer from the carboxylic head to the photogenerated hole (h+), which was the major oxidant verified by scavenger tests. Furthermore, the presence of In enables direct electron transfer and facilitates the subsequent stepwise defluorination. Finally, In/TNTs@AC was amenable to repeated uses in four consecutive adsorption-photodegradation runs. The findings showed that adsorptive photocatalysts can be prepared by hybridization of carbon and photoactive semiconductors and the enabled "concentrate-and-degrade" strategy is promising for the removal and degradation of trace levels of PFOA from polluted waters.
Collapse
Affiliation(s)
- Jan-Max Arana Juve
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Fan Li
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Yangmo Zhu
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Lars D M Ottosen
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark.
| |
Collapse
|
29
|
Yin S, Villagrán D. Design of nanomaterials for the removal of per- and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanisms, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154939. [PMID: 35367257 DOI: 10.1016/j.scitotenv.2022.154939] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Due to their persistent and pervasive distribution and their adverse effects on human health, the removal of per- and polyfluoroalkyl substances (PFAS) from the environment has been the focus of current research. Recent studies have shown that engineered nanomaterials provide great opportunities for their removal by chemical, physical and electrochemical adsorption methods, or as photo- or electrocatalysts that promote their degradation. This review summarizes and discusses the performance of recently reported nanomaterials towards PFAS removal in water treatment applications. We discuss the performance, mechanisms, and PFAS removal conditions of a variety of nanomaterials, including carbon-based, non-metal, single-metal, and multi-metal nanomaterials. We show that nanotechnology provides significant opportunities for PFAS remediation and further nanomaterial development can provide solutions for the removal of PFAS from the environment. We also provide an overview of the current challenges.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA.
| |
Collapse
|
30
|
Sun C, Yu M, Li Y, Niu B, Qin F, Yan N, Xu Y, Zheng Y. MoS2 nanoflowers decorated natural fiber-derived hollow carbon microtubes for boosting perfluorooctanoic acid degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
32
|
Liu G, Feng C, Shao P. Degradation of Perfluorooctanoic Acid with Hydrated Electron by a Heterogeneous Catalytic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6223-6231. [PMID: 34941262 DOI: 10.1021/acs.est.1c06793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrated electron (eaq-)-induced reduction protocols have bright prospects for the decomposition of recalcitrant organic pollutants. However, traditional eaq- production involves homogeneous sulfite photolysis, which has a pH-dependent reaction activity and might have potential secondary pollution risks. In this study, a heterogeneous UV/diamond catalytic system was proposed to decompose of a typical persistent organic pollutant, perfluorooctanoic acid (PFOA). In contrast to the rate constant of the advanced reduction process (ARP) of a UV/SO32-, the kobs of PFOA decomposition in the UV/diamond system showed only minor pH dependence, ranging from 0.01823 ± 0.0014 min-1 to 0.02208 ± 0.0013 min-1 (pH 2 to pH 11). As suggested by the electron affinity (EA) and electron configuration of the diamond catalyst, the diamond catalyst yields facile energetic photogenerated electron emission into water without a high energy barrier after photoexcitation, thus inducing eaq- production. The impact of radical scavengers, electron spin resonance (ESR), and transient absorption (TA) measurements verified the formation of eaq- in the UV/diamond system. The investigation of diamond for ejection of energetic photoelectrons into a water matrix represents a new paradigm for ARPs and would facilitate future applications of heterogeneous catalytic processes for efficient recalcitrant pollutant removal by eaq-.
Collapse
Affiliation(s)
- Guoshuai Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cuijie Feng
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle and National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
33
|
Yuan Y, Feng L, He X, Liu X, Xie N, Ai Z, Zhang L, Gong J. Efficient removal of PFOA with an In 2O 3/persulfate system under solar light via the combined process of surface radicals and photogenerated holes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127176. [PMID: 34555762 DOI: 10.1016/j.jhazmat.2021.127176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The environmental persistence, high toxicity and wide spread presence of perfluorooctanoic acid (PFOA) in aquatic environment urgently necessitate the development of advanced technologies to eliminate PFOA. Here, the simultaneous application of a heterogeneous In2O3 photocatalyst and homogeneous persulfate oxidation (In2O3/PS) was demonstrated for PFOA degradation under solar light irradiation. The synergistic effect of direct hole oxidation and in-situ generated radicals, especially surface radicals, was found to contribute significantly to PFOA defluorination. Fourier infrared transform (FTIR) spectroscopy, Raman, electrochemical scanning microscope (SECM) tests and density functional theory (DFT) calculation showed that the pre-adsorption of PFOA and PS onto In2O3 surface were dramatically critical steps, which could efficiently facilitate the direct hole oxidation of PFOA, and boost PS activation to yield high surface-confined radicals, thus prompting PFOA degradation. Response surface methodology (RSM) was applied to regulate the operation parameters for PFOA defluorination. Outstanding PFOA decomposition (98.6%) and near-stoichiometric equivalents of fluorides release were achieved within illumination 10 h. An underlying mechanism for PFOA destruction was proposed via a stepwise losing CF2 unit. The In2O3/PS remediation system under solar light provides an economical, sustainable and environmentally friendly approach for complete mineralization of PFOA, displaying a promising potential for treatment of PFOA-containing water.
Collapse
Affiliation(s)
- Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xianqin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiufan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ning Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
34
|
Liao H, Liu C, Zhong J, Li J. Fabrication of BiOCl with adjustable oxygen vacancies and greatly elevated photocatalytic activity by using bamboo fiber surface embellishment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Zhu J, Chen Y, Gu Y, Ma H, Hu M, Gao X, Liu T. Feasibility study on the electrochemical reductive decomposition of PFOA by a Rh/Ni cathode. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126953. [PMID: 34449337 DOI: 10.1016/j.jhazmat.2021.126953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The discharge of widely used per- and poly-fluorinated compounds (PFCs) leads to their environmental prevalence, bioaccumulation and biotoxicity; and attracts researches focusing on their treatment in wastewater. Electrochemical reductive treatment is a promising alternative due to its milder reaction conditions and easy operation. The feasibility of electrochemical reductive decomposition of PFOA using a Rh/Ni cathode was explored. The Rh/Ni cathode was fabricated by coating Rh3+ on Ni foil through electrodeposition. The Rh coating was primarily elemental and in a Rh(111) crystalline form. PFOA decomposition and defluorination were observed when using the Rh/Ni cathode where DMF was the solvent and the cathode potential was -1.25 V. A hydrodefluorination reaction was considered having occurred. Because possessing d electrons and empty d orbitals, the Rh coating enhanced PFOA adsorption onto the cathode surface and facilitated CF bond activation through Rh···F interactions. Moreover, the Rh(111) crystal helped chemisorb the generated H* and supply it participating in PFOA decomposition. With the continuous interaction of cathode-supplied electrons, CF bond would ultimately dissociate and transform to CH bond by H* substitution. Adding FeCp2* as a supporting electrolyte enhanced PFOA decomposition by working as the shuttle facilitating PFOA migration to the cathode surface.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yurong Gu
- Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Mingyue Hu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xinlei Gao
- Guangdong Water Co., Ltd, Shenzhen 518021, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
36
|
Gu M, Li S, Fan X, Huang J, Yu G. Effective Breaking of the Fluorocarbon Chain by the Interface Bi 2O 2X···PFOA Complex Strategy via Coordinated Se on Construction of the Internal Photogenerated Carrier Pathway. ACS APPLIED MATERIALS & INTERFACES 2022; 14:654-667. [PMID: 34962761 DOI: 10.1021/acsami.1c17406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The destruction of perfluorooctanoic acid (PFOA) from outside was inhibited by the "barrel spiral" barrier, but the construction of the photocatalyst-PFOA complex provided a direct attack on photogenerated reactive species (RSs). Here, we investigated the bridging ability of bismuth oxychalcogenide (Bi2O2X) for constructing an effective photocarrier pathway to PFOA. The experimental results and DFT calculations showed that a more intense internal access of Bi2O2Se was built via the terminal carboxylate tail, and the weaker electrostatic interaction of Bi-Se bonds helped realize the smaller band gap and slower recombination of photocarriers, thereby inhibiting the invalid annihilation of holes with H2O and facilitating the transformation of electrons to O2-•. The pseudo-first-order rate coefficient (kobs) was 2 and 4 times higher than Bi2O2S and TiO2, respectively, showing the outstanding photocatalytic activity of Bi2O2Se. A broad pH (4-8) adaptability of Bi2O2Se was observed for defluorination, especially in alkali condition. This new understanding may inspire the development of Se-coordinated catalysts.
Collapse
Affiliation(s)
- Mengbin Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Shangyi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Xueqi Fan
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|
37
|
Wang W, Zhang H, Jiang J, He Y, He J, Liu J, Yu K, Liu Q, Qiao L. Thin interfacial film spontaneously produces hydrogen peroxide: mechanism and application for perfluorooctanoic acid degradation. NEW J CHEM 2022. [DOI: 10.1039/d1nj04791d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have unambiguously demonstrated spontaneous formation of hydrogen peroxide (H2O2) in thin film formats by evaporating almost all the water and its effective for perfluorooctanoic acid (PFOA) degradation without catalysts.
Collapse
Affiliation(s)
- Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jing He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Junyu Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Qianhui Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong 264209, China
| |
Collapse
|
38
|
Kim HH, Gilak Hakimabadi S, Pham ALT. Treatment of electrochemical plating wastewater by heterogeneous photocatalysis: the simultaneous removal of 6:2 fluorotelomer sulfonate and hexavalent chromium. RSC Adv 2021; 11:37472-37481. [PMID: 35496389 PMCID: PMC9043800 DOI: 10.1039/d1ra06235b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
6:2 fluorotelomer sulfonate (6:2 FtS) is being widely used as a mist suppressant in the chromate (Cr(vi)) plating process. As a result, it is often present alongside Cr(vi) in the chromate plating wastewater (CPW). While the removal of Cr(vi) from CPW has been studied for decades, little attention has been paid to the treatment of 6:2 FtS. In this study, the removal of Cr(vi) and 6:2 FtS by Ga2O3, In2O3, and TiO2 photocatalysts was investigated. In the Ga2O3/UVC system, over 95% of Cr(vi) was reduced into Cr(iii) after only 5 min. Simultaneously, 6:2 FtS was degraded into F- and several perfluorocarboxylates. The predominant reactive species responsible for the degradation of 6:2 FtS in the Ga2O3 system were identified to be hVB + and O2˙-. In addition, it was observed that the presence of Cr(vi) helped accelerate the degradation of 6:2 FtS. This synergy between Cr(vi) and 6:2 FtS was attributable to the scavenging of eCB - by Cr(vi), which retarded the recombination of eCB - and hVB +. The In2O3/UVC system was also capable of removing Cr(vi) and 6:2 FtS, although at significantly slower rates. In contrast, poor removal of 6:2 FtS was achieved with the TiO2/UVC system, because Cr(iii) adsorbed on TiO2 and inhibited its reactivity. Based on the results of this study, it is proposed that CPW can be treated by a treatment train that consists of an oxidation-reduction step driven by Ga2O3/UVC, followed by a neutralization step that converts dissolved Cr(iii) into Cr(OH)3(S).
Collapse
Affiliation(s)
- Hak-Hyeon Kim
- Department of Civil and Environmental Engineering, University of Waterloo Waterloo ON N2L 3G1 Canada +1-519-888-4567 ext. 30337
| | - Seyfollah Gilak Hakimabadi
- Department of Civil and Environmental Engineering, University of Waterloo Waterloo ON N2L 3G1 Canada +1-519-888-4567 ext. 30337
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo Waterloo ON N2L 3G1 Canada +1-519-888-4567 ext. 30337
| |
Collapse
|
39
|
Verma S, Varma RS, Nadagouda MN. Remediation and mineralization processes for per- and polyfluoroalkyl substances (PFAS) in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148987. [PMID: 34426018 DOI: 10.1016/j.scitotenv.2021.148987] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organic molecules used to manufacture various consumer and industrials products. In PFAS, the CF bond is stable, which renders these compounds chemically stable and prevents their breakdown. Several PFAS treatment processes such as adsorption, photolysis and photocatalysis, bioremediation, sonolysis, electrochemical oxidation, etc., have been explored and are being developed. The present review article has critically summarized degradative technologies and provides in-depth knowledge of photodegradation, electrochemical degradation, chemical oxidation, and reduction mineralization mechanism. Also, novel non-degradative technologies, including nano-adsorbents, natural and surface-modified clay minerals/zeolites, calixarene-based polymers, and molecularly imprinted polymers and adsorbents derived from biomaterials are discussed in detail. Of these novel approaches photocatalysis combined with membrane filtration or electrochemical oxidation via a treatment train approach shows promising results in removing PFAS in natural waters. The photocatalytic mineralization mechanism of PFOA is discussed, leading to recommendations for future research on novel remediation strategies for removing PFAS from water.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH 45219, USA
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
40
|
Salavati-Fard T, Wang B. Significant Role of Oxygen Dopants in Photocatalytic PFCA Degradation over h-BN. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46727-46737. [PMID: 34570478 DOI: 10.1021/acsami.1c13922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The activation of the C(sp3)-F bond is extremely difficult due to its unreactive nature. The importance of this bond activation is recently highlighted because extensive distribution of perfluorocarboxylic acids (PFCAs) (CnF2n+1COOH) has emerged as a challenging environmental issue. Photocatalytic degradation of PFCAs over a few semiconducting light absorbers is known to remove these water and soil resilient contaminants but with limited efficiency. This work reports density functional theory calculations, through which we present a detailed mechanistic study of photocatalytic degradation of CF3COOH (the shortest member of the PFCA family) over hexagonal boron nitride (h-BN). Our results clearly demonstrate that the existence of point defects is necessary to activate the h-BN plane for photocatalytic dissociation of the C-F bond. Specifically, we show that vacancies create strong Lewis acid or base sites (B or N vacancy, respectively) that facilitate the activation of the C(sp3)-F bond considerably. Furthermore, this study presents vivid theoretical evidence for the significant role of oxygen dopants, which mitigate the strength of the active sites and promote PFCA degradation over h-BN. Our calculations suggest that while the very stable intermediates generated during the reaction, in the case of h-BN with B or N vacancies, practically poison the catalyst, oxygen dopants make the degradation much more plausible and controllable. This work thus provides both an explanation for recently observed photocatalytic activity of h-BN to decompose PFCAs and valuable insights for exploring defected two-dimensional materials for activating and removing the fluorine-containing contaminants from water and soil.
Collapse
Affiliation(s)
- Taha Salavati-Fard
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73069, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73069, United States
| |
Collapse
|
41
|
Verma S, Mezgebe B, Sahle-Demessie E, Nadagouda MN. Photooxidative decomposition and defluorination of perfluorooctanoic acid (PFOA) using an innovative technology of UV-vis/Zn xCu 1-xFe 2O 4/oxalic acid. CHEMOSPHERE 2021; 280:130660. [PMID: 33962294 DOI: 10.1016/j.chemosphere.2021.130660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of perfluorinated organic molecules that have been in use since the 1940s for industrial, commercial, and consumer applications. PFAS are a growing concern because some of them have shown persistent, bioaccumulative and toxic effects. Herein, we demonstrate an innovative technology of UV-vis/ZnxCu1-xFe2O4/oxalic acid for the degradation of perfluorooctanoic acid (PFOA) in water. The magnetically retrievable nanocrystalline heterogeneous ferrite catalysts, ZnxCu1-xFe2O4 were synthesized using a sol-gel auto-combustion process followed by calcination at 400 °C. The combination of ZnxCu1-xFe2O4 and oxalic acid generate reactive species under UV light irradiation. These reactive species are then shown to be capable of the photodegradation of PFOA. The degree of degradation is tracked by identifying transformation products using liquid chromatography coupled with quadrupole time-of-flight mass spectroscopy (LC-QTOF-MS).
Collapse
Affiliation(s)
- Sanny Verma
- Oak Ridge Institute for Science and Education, P. O. Box 117, Oak Ridge, TN, 37831, USA; Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH, 45219, USA
| | - Bineyam Mezgebe
- Oak Ridge Institute for Science and Education, P. O. Box 117, Oak Ridge, TN, 37831, USA
| | - Endalkachew Sahle-Demessie
- Land Remediation and Technology Division, Center for Environmental Solutions and Emergency Response, U. S. EPA, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| | - Mallikarjuna N Nadagouda
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. EPA, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| |
Collapse
|
42
|
Wang D, Mueses MA, Márquez JAC, Machuca-Martínez F, Grčić I, Peralta Muniz Moreira R, Li Puma G. Engineering and modeling perspectives on photocatalytic reactors for water treatment. WATER RESEARCH 2021; 202:117421. [PMID: 34390948 DOI: 10.1016/j.watres.2021.117421] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The debate on whether photocatalysis can reach full maturity at commercial level as an effective and economical process for treatment and purification of water and wastewater has recently intensified. Despite a bloom of scientific investigations in the last 30 years, particularly with regards to innovative photocatalytic materials, photocatalysis has so far seen a few industrial applications. Regardless of the points of view, it has been realized that research on reactor design and modeling are now equally urgent to match the extensive research carried out on innovative photocatalytic materials. In reality, the development of photocatalytic reactors has advanced steadily in terms of modeling and reactor design over the last two decades, though this topic has captured a smaller specialized audience. In this critical review, we introduce the latest developments on photocatalytic reactors for water treatment from an engineering perspective. The focus is on the modeling and design of photocatalytic reactors for water treatment at pilot- or at greater scale. Photocatalytic reactors utilizing both natural sunlight and UV irradiation sources are comprehensively discussed. The most promising photoreactor designs and models are examined giving key design guidelines. Other engineering considerations, such as operation, cost analysis, patents, and several industrial applications of photocatalytic reactors for water treatment are also presented. The dissemination of key photocatalytic reactor design principles among the scientific community and the water industry is currently one of the greatest obstacles in translating PWT research into widespread real-world application.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miguel Angel Mueses
- Photocatalysis & Solar Photoreactors Engineering, Modeling & Application of AOPs, Chemical Engineering Program, Universidad de Cartagena, Zip code 1382-Postal 195, Cartagena, Colombia
| | - José Angel Colina Márquez
- Photocatalysis & Solar Photoreactors Engineering, Modeling & Application of AOPs, Chemical Engineering Program, Universidad de Cartagena, Zip code 1382-Postal 195, Cartagena, Colombia
| | | | - Ivana Grčić
- Faculty of Geotechnical Engineering, Department for Environmental Engineering, University of Zagreb, Hallerova aleja 7, Varaždin HR-42000, Croatia
| | - Rodrigo Peralta Muniz Moreira
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
43
|
Tuci G, Liu Y, Rossin A, Guo X, Pham C, Giambastiani G, Pham-Huu C. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? Chem Rev 2021; 121:10559-10665. [PMID: 34255488 DOI: 10.1021/acs.chemrev.1c00269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.
Collapse
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Xiangyun Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Charlotte Pham
- SICAT SARL, 20 place des Halles, 67000 Strasbourg, France
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy.,Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
44
|
Fu L, Chen Q, Nishihara Y. Recent Advances in Transition-metal-catalyzed C-C Bond Formation via C(sp 2 )-F Bond Cleavage. CHEM REC 2021; 21:3394-3410. [PMID: 33852203 DOI: 10.1002/tcr.202100053] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
The activation of a carbon-fluorine bond is one of the most challenging topics in modern synthetic organic chemistry due to their low reactivity compared to other carbon-halogen bonds. In this review, we present the recent developments since 2015 on cross-coupling reactions that form C-C bonds via cleavage of C(sp2 )-F bonds. Not only the conventional activation of C(sp2 )-F bonds, but also decarbonylative or carbonyl-retentive cleavage of C(acyl)-F bonds will be introduced. This paper mainly describes new protocols for the formation of C(sp2 )-C(sp3 ), C(sp2 )-C(sp2 ), and C(sp2 )-C(sp) bonds via transition-metal-catalyzed cleavage of C(sp2 )-F bonds.
Collapse
Affiliation(s)
- Liyan Fu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
45
|
Chen Z, Teng Y, Mi N, Jin X, Yang D, Wang C, Wu B, Ren H, Zeng G, Gu C. Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermolecular Interaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3996-4006. [PMID: 33635627 DOI: 10.1021/acs.est.0c07927] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl substances (PFASs) are highly toxic synthetic chemicals, which are considered the most persistent organic contaminants in the environment. Previous studies have demonstrated that hydrated electron based techniques could completely destruct these compounds. However, in the reactions, alkaline and anaerobic conditions are generally required or surfactants are involved. Herein, we developed a simple binary composite, only including PFAS and hydrated electron source chemical. The system exhibited high efficiency for the utilization of hydrated electrons to decompose PFASs. By comparing the degradation processes of perfluorooctanoic acid (PFOA) in the presence of seven indole derivatives with different chemical properties, we could conclude that the reaction efficiency was dependent on not only the yield of hydrated electrons but also the interaction between PFOA and indole derivative. Among these derivatives, indole showed the highest degradation performance due to its relatively high ability to generate hydrated electrons, and more importantly, indole could form a hydrogen bonding with PFOA to accelerate the electron transfer. Moreover, the novel composite demonstrated high reaction efficiency even with coexisting humic substance and in a wide pH range (4-10). This study would deepen our understanding of the design of hydrated electron based techniques to treat PFAS-containing wastewater.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Deshuai Yang
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Guixiang Zeng
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
46
|
Wang K, Huang D, Wang W, Li Y, Xu L, Li J, Zhu Y, Niu J. Enhanced decomposition of long-chain perfluorocarboxylic acids (C9-C10) by electrochemical activation of peroxymonosulfate in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143666. [PMID: 33257073 DOI: 10.1016/j.scitotenv.2020.143666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The decomposition of long-chain perfluorocarboxylic acids (PFCAs), including perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were investigated by electrochemical activation of peroxymonosulfate (PMS) on porous Ti/SnO2-Sb membrane anode. The results indicated that PMS activation could efficiently promote PFNA/PFDA decomposition, with pseudo-first-order rate constants about 3.12/2.06 times as compared with that of direct electro-oxidations. The energy consumptions of PFNA and PFDA decomposition were 36.31 and 37.46 kWh·m-3·order-1, respectively. The quantitative detection results of •OH with electron paramagnetic resonance (EPR) demonstrated that PMS activation promoted •OH formation. The inhibited performance in radical scavengers indicated both •OH and SO4•- might be mainly involved in PFNA decomposition, while SO4•- might be mainly involved in PFDA decomposition during PMS activation process. The mineralization mechanism for long-chain PFCAs decomposition which was mainly by repeating CF2-unzipping cycle via radical reaction based on the intermediates verification and mass balance of C and F, was proposed. These results suggested that electrochemical activation of PMS on porous Ti/SnO2-Sb membrane anode exhibited high efficiency in mineralizing PFNA and PFDA under mild conditions. This work might provide an efficient way for persistent organic pollutants, including, but not limited to long-chain PFCAs elimination from wastewater.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Dahong Huang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Jiayin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
47
|
Zhou Y, Xu M, Huang D, Xu L, Yu M, Zhu Y, Niu J. Modulating hierarchically microporous biochar via molten alkali treatment for efficient adsorption removal of perfluorinated carboxylic acids from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143719. [PMID: 33221019 DOI: 10.1016/j.scitotenv.2020.143719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
This work presented a three-dimensional (3D) hierarchically microporous biochar (HMB) via molten alkali treatment that achieved efficient adsorption of perfluorinated carboxylic acids (PFCAs), which was a significant environment concern due to the global distribution and potential health risks. The systematic optimization of fabrication process rendered the HMB large surface area and uniform microporous structure, leading to a high adsorption capacity and adsorption rate of 1269 mg/g and 197 mg/(g·min), respectively, when perfluorooctanoic acid (PFOA) was as a representative. The adsorption mechanisms were explored via controlling the interaction between PFCAs and the HMB900-2.4. Specifically, hydrophobic effect was verified by the enhanced adsorption performance with the increase of the PFCAs homologues hydrophobicity. The observed highly pH-dependent adsorption capacity additionally suggested the dominant contribution of electrostatic interaction. For long-chain PFCAs (CnF2n+1COOH, n > 5), the HMB900-2.4 presented a high removal efficiency (> 90%) within 30 min. Even for short-chain PFCAs (CnF2n+1COOH, n = 4-5), the removal efficiency reached to over 60%. The synthesized HMB900-2.4 exhibited high stability during recycling experiments and superior performance over commercial adsorbents, suggested a promise of utilizing it to remove PFCAs from wastewater.
Collapse
Affiliation(s)
- Yufei Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Manman Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Dahong Huang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Mingchuan Yu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
48
|
Olatunde OC, Kuvarega AT, Onwudiwe DC. Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl substances. Heliyon 2020; 6:e05614. [PMID: 33305052 PMCID: PMC7718166 DOI: 10.1016/j.heliyon.2020.e05614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
The increase in the presence of highly recalcitrant poly- and per- fluoroalkyl substances (PFAS) in the environment, plant tissues and animals continues to pose serious health concerns. Several treatment methods such as physical, biological and chemical processes have been explored to deal with these compounds. Current trends have shown that the destructive treatment processes, which offer degradation and mineralization of PFASs, are the most desirable process among researchers and policy makers. This article, therefore, reviews the degradation and defluorination processes, their efficiencies and the degradation mechanism of photon-based processes. It shows that high degradation and defluorination efficiency of PFASs could be achieved by photon driven processes such as photolysis, photochemical, photocatalysis and photoreduction. The efficiency of these processes is greatly influenced by the nature of light and the reactive radical generated in the system. The limitation of these processes, however, include the long reaction time required and the use of anoxic reaction conditions, which are not obtainable at ambient conditions.
Collapse
Affiliation(s)
- Olalekan C. Olatunde
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Alex T. Kuvarega
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida 1709, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
49
|
Chen Z, Mi N, Li C, Teng Y, Chen Y, Gu C. Effects of different variables on photodestruction of perfluorooctanoic acid in self-assembled micelle system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140438. [PMID: 32623161 DOI: 10.1016/j.scitotenv.2020.140438] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substance (PFAS) is a class of anionic surfactants with superior stability in the environment. Due to the harmful health effect, PFASs have been listed as the priority controlled pollutants. Our recent study had developed a cationic surfactant induced ternary self-assembled micelle system to effectively degrade PFASs. In this study, using perfluorooctanoic acid (PFOA) as the model pollutant, we further investigated the effects of different variables on the degradation processes. According to the results of laser flash photolysis and dynamic light scattering, the degradation of PFOA was positively correlated with the chain length of the surfactants. While for double-chain surfactant, the steric effect might hinder the reaction. Our results also indicated that in the presence of high concentration of NaCl, the electrostatic attraction between Cl- and the positively charged micelle made the micelle structure loose and thus slightly reduced the degradation efficiency. Similarly, the presence of NOM could also affect the degradation process via regulating the micelle structure. Furthermore, the optimal degradation efficiency for PFOA was obtained at neutral pH by the compromise of hydrated electron yield and self-assembled micelle structure. This composite showed good adaptability under ambient conditions and would have great potential for treatment of industrial PFAS containing wastewater, e.g., in the ternary micelle system, 18.95 mg L-1 PFOA could be completely degraded within 8 h without any pretreatments.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ying Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
50
|
Li C, Mi N, Chen Z, Gu C. Photodegradation of Hexafluoropropylene Oxide Trimer Acid under UV Irradiation. J Environ Sci (China) 2020; 97:132-140. [PMID: 32933728 DOI: 10.1016/j.jes.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
As a novel alternative to traditional perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), hexafluoroproplyene oxide trimer acid (HFPO-TA) has been detected worldwide in surface water. Moreover, recent researches have demonstrated that HFPO-TA has stronger bioaccumulation potential and higher hepatotoxicity than PFOA. To treat these contaminants e.g. PFOA and PFOS, some photochemical techniques by adding exogenous substances had been reported. However, there is still no report for the behavior of HFPO-TA itself under direct UV irradiation. The current study investigated the photo-transformation of HFPO-TA under UV irradiation in aqueous solution. After 72 hr photoreaction, 75% degradation ratio and 25% defluorination ratio were achieved under ambient condition. Reducing active species, i.e., hydrated electrons and active hydrogen atoms, generated from water splitting played dominant roles in degradation of HFPO-TA, which was confirmed by different effects of reaction atmospheres and quenching experiments. A possible degradation pathway was proposed based on the products identification and theoretical calculations. In general, HFPO-TA would be transformed into shorter-chain PFASs, including hexafluoropropylene oxide dimer acid (HFPO-DA), perfluoropropionic acid (PFA) and trifluoroacetate (TFA). This research provides basic information for HFPO-TA photodegradation process and is essential to develop novel remediation techniques for HFPO-TA and other alternatives with similar structures.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|