1
|
Eom S, Soerensen AL, Rhee TS, Hong JK, Son P, Rho TK, Han S. Properties of inflowing Pacific and Atlantic water govern total and methylated mercury profiles in the Arctic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126254. [PMID: 40239940 DOI: 10.1016/j.envpol.2025.126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
High methylmercury (MeHg) concentrations in Arctic marine biota have been linked to high MeHg uptake driven by shallow MeHg peaks at water depths of 100-300 m in the Arctic Ocean. To understand how the biogeochemical characteristics of each basin affects the distribution of total Hg (THg) and MeHg across the Arctic Ocean, the spatial patterns of THg and MeHg were investigated using data from new transects in the Beaufort Sea (BS) and previously published Arctic Ocean expeditions covering the Canada Basin and Makarov Basin in the Pacific sector, and Amundsen Basin and Nansen Basin in the Atlantic sector. In the BS, the THg concentration in the polar mixed water increased with salinity (r = 0.87, p < 0.01), which was linked to THg transport from the Chukchi Shelf. Transport of Hg from the Chukchi Shelf also drove elevated THg concentrations in the polar mixed water and halocline water in the Canada Basin and Makarov Basin compared to other Arctic basins. The MeHg concentration in the BS was positively correlated with the biological index in the Pacific summer water (r = 0.86, p < 0.01), demonstrating that intrusion of warm and nutrient-rich Pacific water promotes MeHg production in the BS. In line with this result, chlorophyll-a showed a comparable cross-basin trend to that of MeHg, with the highest values in the Nansen Basin. In the halocline water, MeHg concentrations were highest in the Canada Basin likely due to the largest availability of Hg(II). On the contrary, MeHg concentration was highest in the Nansen Basin in the Atlantic water layer, which could be related to the higher seawater temperature and enhanced biological production. The results of this study underscore the critical role of Pacific and Atlantic inflows in modulating the profiles of THg and MeHg in the Arctic Ocean.
Collapse
Affiliation(s)
- Sangwoo Eom
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Anne L Soerensen
- Department of Environmental Monitoring and Research, Swedish Museum of Natural History, Stockholm, 11418, Sweden
| | - Tae Siek Rhee
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Jong Kuk Hong
- Division of Glacier and Earth Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Purena Son
- Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Tae Keun Rho
- Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Seunghee Han
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Luo X, Yang P, Tian X, Xiang Y, Guo Y, Shen Z, Liu Y, Li Y, Zhang Q, Song M, Yin Y, Cai Y, Jiang G. Particulate mercury (Hg) dominates the microbially available Hg pool over dissolved Hg during the decay of marine diatom Chaetoceros debilis. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138602. [PMID: 40381347 DOI: 10.1016/j.jhazmat.2025.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Phytoplankton concentrate mercury (Hg) from surface water, significantly impacting microbial production and trophic transfer of the neurotoxin methylmercury (MeHg). However, the fate and microbial availability of phytoplankton-associated Hg are poorly understood. This study investigated variations of Hg species and their microbial availability during 42 days' decay experiments using the common marine diatom Chaetoceros debilis. During aerobic decay with irradiation and low-oxygen decay in dark, the majority of phytoplankton-associated Hg remained as particulate Hg (HgP) on debris, with less Hg released as dissolved Hg (HgD), as operationally defined by 0.22 μm filtration. Microbially available Hg, measured using an Escherichia coli-based biosensor under anoxic conditions, primarily originated from HgP (aerobic decay with irradiation: 75.2 ± 22.0 %; low-oxygen decay in dark: 76.6 ± 20.7 %). Besides, HgP demonstrated notably higher microbial availability at early decay stages, with 90.4 ± 1.2 % of HgP being absorbed by biosensors after 5 days' aerobic decay with irradiation. Considering Hg was predominantly associated with thiols in phytoplankton particles, this was mainly attributed to enhanced Hg ligand exchange between thiols on particles and microbial cell surfaces, facilitated by bacteria-particle attachment and interactions. The formation of less bioavailable Hg nanoparticles in phytoplankton-associated particles also contributed to varying microbial Hg availability. This study highlights the critical role of phytoplankton-associated HgP in microbial uptake, offering insights into MeHg production and related risks in aquatic environments.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zelin Shen
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|
3
|
Armstrong GJ, Janssen SE, Lepak RF, Rosera TJ, Peterson BD, Cushing ST, Tate MT, Hurley JP. Seasonal Stratification Drives Bioaccumulation of Pelagic Mercury Sources in Eutrophic Lakes. ACS ES&T WATER 2025; 5:2444-2454. [PMID: 40371376 PMCID: PMC12070409 DOI: 10.1021/acsestwater.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025]
Abstract
Increased lake eutrophication, influenced by changing climate and land use, alters aquatic cycling and bioaccumulation of mercury (Hg). Additionally, seasonally dynamic lake circulation and plankton community composition can confound our ability to predict changes in biological Hg concentrations and sources. To assess temporal variation, we examined seasonal total Hg (THg) and methylmercury (MeHg) concentrations and stable isotope values in seston, waters, sediments, and fish from two adjacent urban eutrophic lakes in Madison, Wisconsin. In Lake Monona, surface sediment THg concentrations were elevated due to comparably higher urbanization and historical industrial inputs, whereas Lake Mendota sediments had lower concentrations corresponding with largely agricultural and suburban surrounding watershed. Surface water THg and MeHg were similar between lakes and seasonally dynamic, but water profiles exhibited elevated concentrations in the meta- and hypolimnia, highlighting water column MeHg production. Seston MeHg concentrations were often highest at shoulder seasons, possibly owing to metalimnetic MeHg delivery, but also differences in biomass and water clarity. The Δ199Hg and δ202Hg values in seston were similar between lakes, despite differing sediment THg concentrations and isotope values, suggesting a shared bioaccumulated source of MeHg. Measurement of MeHg stable isotopes further elucidated that seston and fish predominantly bioaccumulated pelagic-sourced MeHg.
Collapse
Affiliation(s)
- Grace J. Armstrong
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah E. Janssen
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - Ryan F. Lepak
- U.S.
EPA Office of Research and Development, Center for Computational Toxicology
and Exposure, Great Lakes Ecology and Toxicology
Division, 6201 Congdon Blvd., Duluth, Minnesota 55804, United States
| | - Tylor J. Rosera
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - Benjamin D. Peterson
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Environmental Toxicology, University
of California-Davis, Davis, California 95616 United States
| | - Samia T. Cushing
- Freshwater@UW
Summer Research Opportunities Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael T. Tate
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - James P. Hurley
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Aquatic Sciences Center, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Wu M, Wu X, Saiz-Lopez A, Blanchfield PJ, Ren H, Zhong H. Climate change amplifies neurotoxic methylmercury threat to Asian fish consumers. Proc Natl Acad Sci U S A 2025; 122:e2421921122. [PMID: 40127279 PMCID: PMC12002180 DOI: 10.1073/pnas.2421921122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Climate change is intricately influencing the accumulation of neurotoxic methylmercury (MeHg) in human food webs, potentially leading to uneven exposure risks across regions. Here, we reveal that climate change will elevate MeHg risks in China, with implications for regional inequalities in Asia through a climate-mercury-food-health nexus. Using a compiled fish mercury dataset from 13,000 samples and machine learning, we find that freshwater wild fish-an essential component of the Asian diet-is an underappreciated MeHg source. Specifically, MeHg concentrations in freshwater wild fish are 2.9 to 6.2 times higher than in freshwater farmed fish and 1.7 times higher than in marine wild fish. Individual climate factors influence MeHg accumulation differently, while their combined effects significantly increase MeHg concentrations in freshwater wild fish. Under SSP2-4.5 and SSP5-8.5 by 2031 to 2060, national average MeHg concentrations in freshwater wild fish are projected to increase by about 60%, adding a maximum annual economic loss of US$18 million (2022 USD) from intelligence quotient decrements in Chinese newborns. This loss may vary regionally within China and among Asian countries, disproportionately affecting less developed areas. Coordinating climate action with mercury emission reduction strategies could mitigate these overlooked regional risks, reduce regional inequalities in food safety, and ultimately contribute to sustainable development.
Collapse
Affiliation(s)
- Mengjie Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Xinda Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid28006, Spain
| | - Paul J. Blanchfield
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
5
|
Xiang Y, Liu G, Yin Y, Li Y, Wang D, Cai Y, Jiang G. Human activities shape important geographic differences in fish mercury concentration levels. NATURE FOOD 2024; 5:836-845. [PMID: 39327525 DOI: 10.1038/s43016-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Fish consumption is a major route of human exposure to mercury (Hg), yet limited understanding of how anthropogenic activities drive geographic variations in fish Hg worldwide hinders effective Hg pollution management. Here we characterized global geographic variations in total Hg (THg) and methylmercury (MeHg), compared THg and MeHg levels between the United States and China, and used a structural equation model to link the geographic variability of MeHg in fish to human activities. Despite previously reported higher Hg emissions in China, Chinese fish have lower THg and MeHg levels than fish in the United States owing to a lower trophic magnification slope, shortened food chains and shorter fish lifespans. The structural equation model revealed strong impacts of human activities on MeHg levels in fish. In the future, China may face elevated MeHg levels in fish with the ongoing recovery of food web ecology, highlighting the importance of local policies.
Collapse
Affiliation(s)
- Yuping Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan, China
- Department of Chemistry and Biochemistry and Institute of Environment, Florida International University, Miami, FL, USA
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Institute of Environment and Health, Jianghan University, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Department of Chemistry and Biochemistry and Institute of Environment, Florida International University, Miami, FL, USA.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Rosati G, Solidoro C, Laurent C, Alcázar LA, Umgiesser G, Canu D. Mercury cycling in contaminated coastal environments: modeling the benthic-pelagic coupling and microbial resistance in the Venice Lagoon. WATER RESEARCH 2024; 261:121965. [PMID: 38964216 DOI: 10.1016/j.watres.2024.121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities have been releasing mercury for centuries, and despite global efforts to control emissions, concentrations in environmental media remain high. Coastal sediments can be a long-term repository for mercury, but also a secondary source, and competing processes in marine ecosystems can lead to the conversion of mercury into the toxic and bioaccumulative species methylmercury, which threatens ecosystem and human health. We investigate the fate and transport of three mercury species in a coastal lagoon affected by historical pollution using a novel high-resolution finite element model that integrates mercury biogeochemistry, sediment dynamics and hydrodynamics. The model resolves mercury dynamics in the seawater and the seabed taking into account partitioning, transport driven by water and sediment, and photochemical and microbial transformations. We simulated three years (early 2000s, 2019, and 2020) to assess the spatio-temporal distribution of mercury species concentrations and performed a sensitivity analysis to account for uncertainties. The modeled mercury species concentrations show high temporal and spatial variability, with water concentrations in some areas of the lagoon exceeding those of the open Mediterranean Sea by two orders of magnitude, consistent with available observations from the early 2000s. The results support conclusions about the importance of different processes in shaping the environmental gradients of mercury species. Due to the past accumulation of mercury in the lagoon sediments, inorganic mercury in the water is closely related to the resuspension of contaminated sediments, which is significantly reduced by the presence of benthic vegetation. The gradients of methylmercury depend on the combination of several factors, of which sediment resuspension and mercury methylation are the most relevant. The results add insights into mercury dynamics at coastal sites characterized by a combination of past pollution (i.e. sediment enrichment) and erosive processes, and suggest possible nature-based mitigation strategies such as the preservation of the integrity of benthic vegetation and morphology.
Collapse
Affiliation(s)
- Ginevra Rosati
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy.
| | - Cosimo Solidoro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy; International Centre for Theoretical Physic, ICTP, Trieste, 34010, Italy
| | - Célia Laurent
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy
| | | | | | - Donata Canu
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy
| |
Collapse
|
7
|
Fang TH, Chang FW. Temporal variation of mercury and methyl mercury in water and accumulation by phytoplankton in the eutrophic estuary, northern Taiwan. MARINE POLLUTION BULLETIN 2024; 205:116624. [PMID: 38959573 DOI: 10.1016/j.marpolbul.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
Three surveys were carried out to study the phytoplankton role in influencing the Hg distribution in a poorly eutrophic estuary by measuring the total Hg (THg) and methylHg (MeHg) concentrations in waters and four-size fractions of phytoplankton. The THg and MeHg concentrations in waters and phytoplankton varied markedly temporal during the three surveys. The total concentrations of THg and MeHg in the four-size fractions of phytoplankton ranged between 0.62 and 28.15 mg/kg and 0.022-4.411 mg/kg, respectively. The dominance of THg and MeHg phytoplankton concentrations differed from different size fractions and varied with the various surveys. The huge uptake of Hg by abundant phytoplankton decreased both Hg concentrations in waters and phytoplankton, which was attributed to the biomass dilution effect during the July survey. The Hg partition between water and phytoplankton provided substantial evidence to illustrate the huge uptake of Hg by the abundant phytoplankton.
Collapse
Affiliation(s)
- Tien Hsi Fang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| | - Fu Wei Chang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| |
Collapse
|
8
|
Pelletier M, Oczkowski A, Hagy J. Deciphering patterns in whole fish nitrogen isotopes on a continental scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172684. [PMID: 38663629 PMCID: PMC11109980 DOI: 10.1016/j.scitotenv.2024.172684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nitrogen isotopes (δ15N) have been used as an indicator of anthropogenic nitrogen loading at local and regional scales. We examined δ15N in fish from estuaries across the continental United States. In the summer of 2015, the U.S. Environmental Protection Agency's National Coastal Condition Assessment (NCCA) collected fish in 136 coastal waterbodies throughout the United States. Whole fish were analyzed by NCCA for metals, organic contaminants, and lipids. For this study, we also analyzed these fish for isotopes of nitrogen (N). NCCA collected water quality, nutrients, chlorophyll a, and sediment chemistry at each site. We used these data, along with fish life history and watershed land use, to examine how whole fish δ15N was related to these environmental variables using random forest regression models at national and ecoregional scales. At the national scale, fish δ15N were negatively related to total N:total phosphorous (P) ratios (TN:TP) in surface water and reflected differences between the P-limited, δ15N depleted sites in the Floridian ecoregion to sites in other regions. δ15N was lower on the Atlantic relative to the Pacific coast. When considered by region, TN:TP was an important predictor of fish δ15N in 4 of 9 ecoregions, with higher δ15N observed with increasing N limitation (lower TN:TP) Fish life history was also an important predictor of fish δ15N at both the national and ecoregional scale. Whole fish δ15N was positively associated with bioaccumulative contaminants such as PCBs and mercury. Although land use was related to δ15N in fish, it was location specific. This study showed that N stable isotopes reflected ecological conditions at both regional and continental scales.
Collapse
Affiliation(s)
- Marguerite Pelletier
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, United States of America.
| | - Autumn Oczkowski
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, United States of America
| | - James Hagy
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, United States of America
| |
Collapse
|
9
|
Gosnell KJ, Heimbürger-Boavida LE, Beck AJ, Ukotije-Ikwut PR, Achterberg EP. World war munitions as a source of mercury in the southwest Baltic Sea. CHEMOSPHERE 2023; 345:140522. [PMID: 37879375 DOI: 10.1016/j.chemosphere.2023.140522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Mercury (Hg) fulminate was used as a primary fuse in World War (WW) munitions, and may consequently be a Hg source for impacted environments. Mercury is a conspicuous and persistent pollutant, with methylmercury (MeHg) acting as a notorious neurotoxin. Considerable amounts of munitions were intentionally dumped in the North Sea and Baltic Sea following the First and Second WWs. After more than 70 years on the seafloor many munitions have corroded and likely release explosive compounds, including Hg fulminate. The Germany coastal city of Kiel was a manufacturing centre for submarines, and accordingly a prominent target for bombing and post-war disarmament. We collected water and sediment samples around Kiel Bay to assess regional levels and quantify any Hg contamination. The munition dump site Kolberger Heide (KH) and a former anti-aircraft training center Dänisch-Nienhof are situated in Kiel Bay, and were targeted for sampling. Sediment Hg concentrations around KH were notably elevated. Average Hg concentrations in KH sediments were 125 ± 76 ng/g, compared to 14 ± 18 ng/g at background (control) sites. In contrast, dissolved Hg in the water column exhibited no site variations, all ranging between 0.8 and 2.1 pM. Methylmercury in sediments and waters did not have enhanced concentrations amongst sites (<30 pg/g and <50 fM, respectively). Sediment-water exchange experiments showed elevated Hg and MeHg fluxes (i.e. >400 pmol m-2 d-1 MeHg) at one KH location, however remaining cores had low to no Hg and MeHg output (<0-27 pmol m-2 d-1 MeHg). Thus, sediments in Kiel Bay proximate to WW munitions could harbor and form a source of Hg, however water column mixing and removal processes attenuate any discharge from the seafloor to overlying waters.
Collapse
Affiliation(s)
| | | | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | |
Collapse
|
10
|
Seelen E, Liem-Nguyen V, Wünsch U, Baumann Z, Mason R, Skyllberg U, Björn E. Dissolved organic matter thiol concentrations determine methylmercury bioavailability across the terrestrial-marine aquatic continuum. Nat Commun 2023; 14:6728. [PMID: 37872168 PMCID: PMC10593767 DOI: 10.1038/s41467-023-42463-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The most critical step for methylmercury (MeHg) bioaccumulation in aquatic food webs is phytoplankton uptake of dissolved MeHg. Dissolved organic matter (DOM) has been known to influence MeHg uptake, but the mechanisms have remained unclear. Here we show that the concentration of DOM-associated thiol functional groups (DOM-RSH) varies substantially across contrasting aquatic systems and dictates MeHg speciation and bioavailability to phytoplankton. Across our 20 study sites, DOM-RSH concentrations decrease 40-fold from terrestrial to marine environments whereas dissolved organic carbon (DOC), the typical proxy for MeHg binding sites in DOM, only has a 5-fold decrease. MeHg accumulation into phytoplankton is shown to be directly linked to the concentration of specific MeHg binding sites (DOM-RSH), rather than DOC. Therefore, MeHg bioavailability increases systematically across the terrestrial-marine aquatic continuum as the DOM-RSH concentration decreases. Our results strongly suggest that measuring DOM-RSH concentrations will improve empirical models in phytoplankton uptake studies and will form a refined basis for modeling MeHg incorporation in aquatic food webs under various environmental conditions.
Collapse
Affiliation(s)
- Emily Seelen
- University of Connecticut, Department of Marine Sciences, Groton, CT, USA.
- University of Southern California, Earth Sciences, Los Angeles, CA, USA.
| | | | - Urban Wünsch
- Technical University of Denmark, National Institute of Aquatic Resources, Section for Oceans and Arctic, 2800, Lyngby, Denmark
| | - Zofia Baumann
- University of Connecticut, Department of Marine Sciences, Groton, CT, USA
| | - Robert Mason
- University of Connecticut, Department of Marine Sciences, Groton, CT, USA
| | - Ulf Skyllberg
- Swedish University of Agricultural Sciences, Department of Forest Ecology and Management Umeå, Umeå, Sweden
| | - Erik Björn
- Umeå University, Department of Chemistry, Umeå, Sweden.
| |
Collapse
|
11
|
Bouchet S, Soerensen AL, Björn E, Tessier E, Amouroux D. Mercury Sources and Fate in a Large Brackish Ecosystem (the Baltic Sea) Depicted by Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14340-14350. [PMID: 37698522 DOI: 10.1021/acs.est.3c03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Identifying Hg sources to aquatic ecosystems and processes controlling the levels of monomethylmercury (MMHg) is critical for developing efficient policies of Hg emissions reduction. Here we measured Hg concentrations and stable isotopes in sediment, seston, and fishes from the various basins of the Baltic Sea, a large brackish ecosystem presenting extensive gradients in salinity, redox conditions, dissolved organic matter (DOM) composition, and biological activities. We found that Hg mass dependent fractionation (Hg-MDF) values in sediments mostly reflect a mixing between light terrestrial Hg and heavier industrial sources, whereas odd Hg isotope mass independent fractionation (odd Hg-MIF) reveals atmospheric inputs. Seston presents intermediate Hg-MDF and odd Hg-MIF values falling between sediments and fish, but in northern basins, high even Hg-MIF values suggest the preferential accumulation of wet-deposited Hg. Odd Hg-MIF values in fish indicate an overall low extent of MMHg photodegradation due to limited sunlight exposure and penetration but also reveal large spatial differences. The photodegradation extent is lowest in the central basin with recurrent algal blooms due to their shading effect and is highest in the northern, least saline basin with high concentrations of terrestrial DOM. As increased loads of terrestrial DOM are expected in many coastal areas due to global changes, its impact on MMHg photodegradation needs to be better understood and accounted for when predicting future MMHg concentrations in aquatic ecosystems.
Collapse
Affiliation(s)
- Sylvain Bouchet
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| |
Collapse
|
12
|
Gojkovic Z, Simansky S, Sanabria A, Márová I, Garbayo I, Vílchez C. Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health. Microorganisms 2023; 11:2034. [PMID: 37630594 PMCID: PMC10458190 DOI: 10.3390/microorganisms11082034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios.
Collapse
Affiliation(s)
- Zivan Gojkovic
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Samuel Simansky
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Alain Sanabria
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Inés Garbayo
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Carlos Vílchez
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| |
Collapse
|
13
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
14
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
15
|
Belcher SM, Guillette MP, Robb F, Rock KD. Comparative assessment of blood mercury in American alligators (Alligator mississippiensis) from Coastal North Carolina and Florida. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1137-1146. [PMID: 35918620 PMCID: PMC9463099 DOI: 10.1007/s10646-022-02573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a widespread and harmful persistent pollutant of aquatic ecosystems. Except for the northern most populations of American alligators (Alligator Mississippiensis) found in North Carolina, the potential adverse health impacts of Hg on ecosystems and humans consuming alligator meat have been studied for over three decades. Now that alligators are being recreationally hunted and consumed across their range, it is especially important to monitor toxic contaminant levels to best understand possible adverse impacts of exposures on alligator populations and human health. In this study, we determined blood Hg concentrations in American alligators from an urbanized site in Wilmington, NC, a nearby site at Lake Waccamaw, NC, and a site on the St Johns River in Florida. Median blood total Hg (tHg) concentrations were particularly high at Lake Waccamaw (526 ng/g, range 152-946 ng/g), resulting in median muscle concentrations (0.48 mg/kg, range 0.13-0.88 mg/kg) well above US EPA screening values for fish consumption. Median concentrations at the Wilmington site (69 ng/g, range 22-336 ng/g) were generally low, and Hg concentrations from the St Johns River site (143 ng/g, range 54-244 ng/g) were comparable to those reported in previous studies. Analysis of relationships between tHg concentrations and a panel of blood chemistry biomarkers found only modest concentration-dependent impact on biomarkers of renal function. The results of this study reveal that local environmental factors greatly impact Hg bioaccumulation in alligators, findings that reaffirm local contaminant biomonitoring in alligator populations will be critical for affective management and determination of guidelines for safe consumption of harvested alligators.
Collapse
Affiliation(s)
- Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Matthew P Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Robb
- Environmental Education, Awareness, Research, Support & Services, Titusville, FL, USA
| | - Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
16
|
Puchades L, Gallego-Rios SE, Di Marzio A, Martínez-López E. Trace elements in blood of Baltic gray seal pups (Halichoerus grypus) from the Gulf of Riga and their relationship with biochemical and clinical parameters. MARINE POLLUTION BULLETIN 2022; 182:113973. [PMID: 35908491 DOI: 10.1016/j.marpolbul.2022.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Trace elements are pollutants of both natural and anthropogenic origin which can influence negatively on ecosystem and wildlife health. We evaluated trace element in blood samples of gray seal (Halichoerus grypus) stranded in the Gulf of Riga and their influence on their health status through hematological and biochemical profiles. Zn showed the highest levels followed by Cu > Se > Pb > THg > As. Cr and Cd were not detected. Most trace element levels were generally comparable to those reported in seal species; however, high Pb values were observed in those sample showing detectable concentrations (<0.046-257.6 μg/kg ww). Significant positive correlations were found between trace elements concentrations and various biochemical parameters, including Se-ASAT, Se:Hg-ASAT, Cu-TP, Cu-ALB, CuCa, Zn-ALAT, ZN-LDH, ZnP, Zn-Segment neutrophils, and Pb-CK. Nevertheless, most relationships were not strong enough (p > 0.04) to assume a toxicological implication. Despite its limitations, this information could serve as the baseline for future research.
Collapse
Affiliation(s)
- L Puchades
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - S E Gallego-Rios
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia
| | - A Di Marzio
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Rigas Nacionalais Zoologiskais Darzs (Riga Zoo), Meza prospekts 1, LV-1014 Riga, Latvia
| | - E Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
17
|
Schartup AT, Soerensen AL, Angot H, Bowman K, Selin NE. What are the likely changes in mercury concentration in the Arctic atmosphere and ocean under future emissions scenarios? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155477. [PMID: 35472347 DOI: 10.1016/j.scitotenv.2022.155477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Arctic mercury (Hg) concentrations respond to changes in anthropogenic Hg emissions and environmental change. This manuscript, prepared for the 2021 Arctic Monitoring and Assessment Programme Mercury Assessment, explores the response of Arctic Ocean Hg concentrations to changing primary Hg emissions and to changing sea-ice cover, river inputs, and net primary production. To do this, we conduct a model analysis using a 2015 Hg inventory and future anthropogenic Hg emission scenarios. We model future atmospheric Hg deposition to the surface ocean as a flux to the surface water or sea ice using three scenarios: No Action, New Policy (NP), and Maximum Feasible Reduction (MFR). We then force a five-compartment box model of Hg cycling in the Arctic Ocean with these scenarios and literature-derived climate variables to simulate environmental change. No Action results in a 51% higher Hg deposition rate by 2050 while increasing Hg concentrations in the surface water by 22% and <9% at depth. Both "action" scenarios (NP and MFR), implemented in 2020 or 2035, result in lower Hg deposition ranging from 7% (NP delayed to 2035) to 30% (MFR implemented in 2020) by 2050. Under this last scenario, ocean Hg concentrations decline by 14% in the surface and 4% at depth. We find that the sea-ice cover decline exerts the strongest Hg reducing forcing on the Arctic Ocean while increasing river discharge increases Hg concentrations. When modified together the climate scenarios result in a ≤5% Hg decline by 2050 in the Arctic Ocean. Thus, we show that the magnitude of emissions-induced future changes in the Arctic Ocean is likely to be substantial compared to climate-induced effects. Furthermore, this study underscores the need for prompt and ambitious action for changing Hg concentrations in the Arctic, since delaying less ambitious reduction measures-like NP-until 2035 may become offset by Hg accumulated from pre-2035 emissions.
Collapse
Affiliation(s)
- Amina T Schartup
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Hélène Angot
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland
| | - Katlin Bowman
- University of California Santa Cruz, Ocean Sciences Department, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue [E17-381], Cambridge. MA 02139, USA
| |
Collapse
|
18
|
Wu Z, Li Z, Shao B, Zhang Y, He W, Lu Y, Gusvitskii K, Zhao Y, Liu Y, Wang X, Tong Y. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. CHEMOSPHERE 2022; 294:133713. [PMID: 35074323 DOI: 10.1016/j.chemosphere.2022.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) input into ecosystems is estimated to have increased by twofold to fivefold since the industrial revolution. In aquatic ecosystems, methylmercury (MeHg) receives the most attentions of all the Hg species due to its neurotoxicity and strong bioaccumulation capacity in food chain. Dissolved organic matter (DOM) is crucial in impacting aquatic Hg transformation. However, only few spatially constrained studies have attempted to quantify the relative importance of DOM and other factors (e.g., Hg availability, temperature, pH, and land-use type) on MeHg concentration. In this study, we collected data of 585 water samples at 373 sites globally, including lakes, rivers, estuaries, and wetlands, and characterized the global pattern of MeHg distribution and environmental drivers of aquatic MeHg concentration. Our results showed that MeHg concentrations ranged from detection limits to 11 (geometric mean 0.11 and average 0.29) ng/L, and the highest MeHg concentration and Hg methylation potential were observed in wetlands. A positive relationship was observed between MeHg fraction in the total mercury (THg) and DOM for all the aquatic ecosystems. Using the structural equation modeling, we found that Hg availability was a dominant factor in impacting water MeHg concentration followed by DOM. According to 129 samples of specific DOM source information, we found that the percentage of THg as MeHg (%MeHg) in water dominated by the autochthonous DOM was higher than that dominated by the allochthonous DOM. Our results could advance understanding of aquatic Hg cycling and their environmental drivers, which are fundamental for predicting and mitigating MeHg productions and its potential health risks for humans.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiyan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiren Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Kair Gusvitskii
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
19
|
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, Bravo AG, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida LE. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3840-3862. [PMID: 35244390 DOI: 10.1021/acs.est.1c03044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- Ifremer, Centre Atlantique de Nantes, BP 44311, 44980 Nantes, France
| | - Daniela Bănaru
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Mireille Harmelin-Vivien
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France
| | - Ian M Hedgecock
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | | | - Ginevra Rosati
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | - Donata Canu
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | | | | | - Nicola Pirrone
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
20
|
Cossart T, Garcia-Calleja J, Worms IAM, Tessier E, Kavanagh K, Pedrero Z, Amouroux D, Slaveykova VI. Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117771. [PMID: 34271517 DOI: 10.1016/j.envpol.2021.117771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of 199iHg and 201MMHg was used to explore the accumulation, the subcellular distribution and transformations occurring in natural pico-nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg preferentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg concentrations measured in the membrane/organelles and cytosol were comparable for iHg and MMHg. Pico-nanoplankton demethylate added 201MMHg (~4 and 12% per day depending on cellular compartment), although the involved pathways are to further explore. Comparison of the concentrations of 201iHg formed from 201MMHg demethylation in whole system, medium and whole cells showed that 82% of the demethylation was biologically mediated by pico-nanoplankton. No significant methylation of iHg by pico-nanoplankton was observed. The accumulation of iHg and MMHg and the percentage of demethylated MMHg correlated positively with the relative abundance of diatoms and heterotrophic microorganisms in the pico-nanoplankton, the concentrations of TN, Mg2+, NO3-, NO2-, NH4+ and negatively with the concentrations of DOC, K+, Na+, Ca2+, SO42-. Taken together the results of the present field study confirm the role of pico-nanoplankton in Hg bioaccumulation and demethylation, however further research is needed to better understand the underlying mechanisms and interconnection between heterotrophic and autotrophic microorganisms.
Collapse
Affiliation(s)
- Thibaut Cossart
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Javier Garcia-Calleja
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Killian Kavanagh
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
21
|
Different Mercury Species Partitioning and Distribution in the Water and Sediment of a Eutrophic Estuary in Northern Taiwan. WATER 2021. [DOI: 10.3390/w13182471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The total Hg and methyl Hg in waters and sediments, as well as particulate total Hg (PTHg), were analyzed to study their distribution and partitioning in the Danshuei River Estuary (DRE), northern Taiwan. TOC and grain size were also determined in the sediment samples. The dissolved total Hg (DTHg) in waters ranged from 24.0 to 45.8 ng/L. The dissolved methyl Hg (DMeHg) concentrations contributed 0.6–30.4% of the DTHg pool, with the higher percentage appearing in the upper estuary. The DMeHg concentration positively correlated with the Chl.a within the estuary, suggesting that phytoplankton plays an important role in influencing the DMeHg concentration. The partitioning results indicated that DTHg chiefly dominates the THg (DTH + PTHg) pool, especially at a salinity of >15 psu region. The value of partition coefficient, log(KD), was within a range of 3.54 to 4.68, and the value linearly decreased with increasing salinity. The sediment total Hg (STHg) concentrations ranged from 80 to 379 ng/g, and most data exceeded the NOAA guidelines value (ERL < 150 ng/g), indicating that the DRE is contaminated with Hg. The STHg concentrations inversely and positively correlated with the grain size and TOC content, respectively, suggesting that sediment Hg distributions are strongly influenced by the both parameters.
Collapse
|
22
|
Kwasigroch U, Bełdowska M, Jędruch A, Łukawska-Matuszewska K. Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35690-35708. [PMID: 33675497 PMCID: PMC8277639 DOI: 10.1007/s11356-021-13023-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The study aimed to determine the level of mercury (Hg) and its labile and stable forms in the surface sediments of the Baltic Sea. The work considers the impact of current and historical sources of Hg on sediment pollution, together with the influence of different environmental parameters, including water inflows from the North Sea. Surface sediments (top 5 cm) were collected in 2016-2017 at 91 stations located in different areas of the Baltic Sea, including Belt Sea, Arkona Basin, Bornholm Basin, Gdańsk Basin, West Gotland Basin, East Gotland Basin, and the Bothnian Sea. Besides, the particulate matter suspended in the surface and near-bottom water was also collected. The analysis of total Hg concentration and individual Hg forms in collected samples was carried out using a 5-step thermodesorption method. This method allows for the identification of three labile and thus biologically available, fractions of Hg, which are mercury halides, organic Hg, mercury oxide and sulphate. Two stable fractions, mercury sulphide and residual Hg, were also determined. The highest Hg concentrations, reaching 341 ng g-1, were measured in the highly industrialised Kiel Bay, which was additionally a munition dumping site during and after World War II. High Hg level, ranging from 228 to 255 ng g-1, was also recorded in the surface sediments of the Arkona Basin, which was a result of the cumulative effect of several factors, such as deposition of Hg-rich riverine matter, favourable hydrodynamic conditions and military activities in the past. The relatively elevated Hg concentrations, varying from 60 to 264 ng g-1, were found in the Gdańsk Basin, a region under strong anthropopressure and dominated by soft sediments. The sum of labile Hg in sediments was high and averaged 67% (with the domination of organic Hg compounds), which means that a large part of Hg can be released to the water column. It was found that the water inflows from the North Sea intensify the remobilisation of Hg and its transformation into bioavailable labile forms. As a consequence, the load of Hg introduced into the trophic chain can increase. Despite the significant reduction of Hg emission into the Baltic in the last decades, surface sediments can be an important secondary Hg source in the marine ecosystem. This is especially dangerous in the case of the western Baltic Sea.
Collapse
Affiliation(s)
- Urszula Kwasigroch
- Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Jędruch
- Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | | |
Collapse
|
23
|
Rosati G, Solidoro C, Canu D. Mercury dynamics in a changing coastal area over industrial and postindustrial phases: Lessons from the Venice Lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140586. [PMID: 32659553 DOI: 10.1016/j.scitotenv.2020.140586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
During the industrial period, significant amounts of mercury (Hg) were discharged into the Venice Lagoon. Here, a spatially explicit model was implemented to reconstruct the temporal evolution of the total mercury (HgT) and methylmercury (MeHgT) concentrations in lagoon water and sediments over two centuries (1900-2100), from preindustrial to postindustrial phases. The model simulates the transport and transformations of particulate and dissolved Hg species. It is forced with time-variable Hg inputs and environmental conditions, including scenarios of future atmospheric deposition, reconstructed according to local and global socioeconomic scenarios. Since 1900, ~36 Mg of HgT and ~380 kg of MeHgT were delivered to the lagoon, and stored in the sediments. The deposition of Hg from the water to the seafloor increased during a period of eutrophication (1980s); however, the reverse fluxes increased during a period of high sediment resuspension caused by the unregulated fishing of Manila clams (1990s). In the current postindustrial phase, the lagoon sediments have acted as a secondary source to the lagoon waters, delivering Hg (~38 kg y-1) and MeHg (~0.07 kg y-1). The MeHg inputs from the watershed (~0.28 kg y-1) appear to be higher than the secondary fluxes from the sediments. The estimated HgT export to the Adriatic Sea is ~56 kg y-1. Since HgT and MeHgT outputs slightly exceed inputs, the concentrations are slowly decreasing. While the decreasing trend is maintained in all scenarios, the future level of atmospheric deposition will affect Hg concentrations and sediment recovery times. Though limited by inherent simplifications, this work results show that the reconstruction of historical dynamics using a holistic approach, supported by data, can improve our understanding of the pollutants distribution and the quantification of local emissions. Downscaling from trends predicted at the global scale taking into account for regional differences seems useful to investigate the pollutants fate.
Collapse
Affiliation(s)
- Ginevra Rosati
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy.
| | - Cosimo Solidoro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Donata Canu
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| |
Collapse
|
24
|
Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, Andersson AF, Buck M, Björn E. Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in Oxygen-Deficient Water and Marine Particles in the Baltic Sea. Front Microbiol 2020; 11:574080. [PMID: 33072037 PMCID: PMC7536318 DOI: 10.3389/fmicb.2020.574080] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the composition and distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the hgcAB gene cluster). We determined the relative abundance of the hgcAB genes and their taxonomic identity in 81 brackish metagenomes that cover spatial, seasonal and redox variability in the Baltic Sea water column. The hgcAB genes were predominantly detected in anoxic water, but some hgcAB genes were also detected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities of hgcAB genes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversity of the microorganisms with the potential to mediate MeHg production in the Baltic Sea and pinpoint the important ecological niches for these microorganisms within the marine water column.
Collapse
Affiliation(s)
- Eric Capo
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea G Bravo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Caiyan Feng
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders F Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Hung JJ, Hung CS, Wann CK, Hung PY, Kuo F. Mercury distribution and speciation in two lagoons with different pollution and eutrophication conditions in Taiwan. MARINE POLLUTION BULLETIN 2020; 156:111096. [PMID: 32510352 DOI: 10.1016/j.marpolbul.2020.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
This study explored biogeochemical processes controlling the distribution of mercury (Hg) species in two lagoons with different pollution and eutrophication conditions in southwestern Taiwan. The eutrophication and pollution levels were higher in the Dapeng Bay than in the Chiku Lagoon, engendering a higher particulate Hg concentration and enrichment factor in the Dapeng Bay. The concentration range of total dissolved Hg (HgTD) and reactive Hg (HgR) was comparable between the lagoons, but the concentration of particulate Hg (HgP) was higher in the Dapeng Bay. HgR and HgTD abundance was primarily controlled by the availability of dissolved oxygen (DO) and biological absorption. In addition to pollution (which elevated HgP concentration), biological absorption and/or adsorption rather than lithogenic processes more likely regulated the HgP concentration. The effect of Hg pollution may superimpose on that of DO on the distributions of HgR and HgTD and may enhance HgP formation in the Dapeng Bay.
Collapse
Affiliation(s)
- J-J Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - C-S Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - C-K Wann
- General Education Center, Wenzao Ursuline University of Languages, Kaohsiung, Taiwan
| | - P-Y Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - F Kuo
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Ji X, Liu C, Zhang M, Yin Y, Pan G. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. WATER RESEARCH 2020; 173:115563. [PMID: 32059129 DOI: 10.1016/j.watres.2020.115563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In mercury (Hg)-polluted eutrophic waters, algal blooms are likely to aggravate methylmercury (MeHg) production by causing intensified hypoxia and enriching organic matter at the sediment-water interface. The technology of interfacial oxygen (O2) nanobubbles is proven to alleviate hypoxia and may have potential to mitigate the risks of MeHg formation. In this study, incubation column experiments were performed using sediment and overlying water samples collected from the Baihua Reservoir (China), which is currently suffering from co-contamination of Hg and eutrophication. The results indicated that after the application of O2 nanobubbles, the %MeHg (ratio of MeHg to total Hg) in the overlying water and surface sediment decreased by up to 76% and 56% respectively. In addition, the MeHg concentrations decreased from 0.54 ± 0.15 to 0.17 ± 0.01 ng L-1 in the overlying water and from 56.61 ± 9.23 to 25.48 ± 4.08 ng g-1 in the surface sediment. The decline could be attributed to the alleviation of anoxia and the decrease of labile organic matter and bioavailable Hg. In addition, hgcA gene abundances in the overlying water and surface sediment decreased by up to 69% and 44% after the addition of O2 nanobubbles, as is consistent with MeHg occurrence in such areas. Accordingly, this work proposed a promising strategy of using interfacial oxygen nanobubbles to alleviate the potentially enhanced MeHg production during algal bloom outbreaks in Hg-polluted eutrophic waters.
Collapse
Affiliation(s)
- Xiaonan Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chengbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Meiyi Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, PR China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
27
|
Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea. PLoS One 2020; 15:e0230310. [PMID: 32176728 PMCID: PMC7075563 DOI: 10.1371/journal.pone.0230310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inorganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment or settling detritus, but endogenous methylation by the gut microbiome of animals in the lower food webs is another possible source. We examined the occurrence of the bacterial gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the Northern Baltic Sea. A qPCR assay targeting the hgcA sequence in three main clades (Deltaproteobacteria, Firmicutes and Archaea) was used in the field-collected specimens of copepods (Acartia bifilosa, Eurytemora affinis, Pseudocalanus acuspes and Limnocalanus macrurus) and cladocerans (Bosmina coregoni maritima and Cercopagis pengoi). All copepods were found to carry hgcA genes in their gut microbiome, whereas no amplification was recorded in the cladocerans. In the copepods, hgcA genes belonging to only Deltaproteobacteria and Firmicutes were detected. These findings suggest a possibility that endogenous Hg methylation occurs in zooplankton and may contribute to seasonal, spatial and vertical MeHg variability in the water column and food webs. Additional molecular and metagenomics studies are needed to identify bacteria carrying hgcA genes and improve their quantification in microbiota.
Collapse
|
28
|
Ji X, Liu C, Pan G. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109888. [PMID: 31706242 DOI: 10.1016/j.ecoenv.2019.109888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Eutrophication can induce hypoxia/anoxia and rich organic matter at the sediment-water interface in surface waters. When eutrophic waters are impacted with mercury (Hg) pollution, methylmercury (MeHg) production ability (MPA) of surface sediment would increase and more MeHg might be produced. To tackle this risk, this study firstly collected samples of surface sediment and overlying water from a typical eutrophic lake-Taihu Lake. Then from a sediment-water simulation system, we demonstrated that eutrophic waters were able to methylate Hg spontaneously, and that sediment is the major Hg sink in the system. After the addition of HgCl2 solution (approximately 1 mg L-1 in the slurry), MeHg concentrations in the sediment increased by 11.7 times after 48 h. The subsequent column experiments proved that O2 nanobubbles could significantly decrease the MPA of surface sediment, by up to 48%. Furthermore, we found that O2 nanobubbles could remediate anoxia mainly by increasing dissolved oxygen (from 0 to 2.1 mg L-1), oxidation-reduction potentials (by 37% on average), and sulfate (by 31% on average) in the overlying water. In addition, O2 nanobubbles could also help decrease organic matter concentration, as was revealed by the decline of dissolved organic carbon in the overlying water (by up to 57%) and total organic carbon in surface sediment (by up to 37%). The remediation of anoxia and reduction of organic matter could contribute to the decrease of hgcA gene abundance (by up to 86%), and thus result in the reduction of MPA after the addition of O2 nanobubbles. This study revealed the risk of MeHg production in case Hg pollution occurs in eutrophic waters and proposed a feasible solution for MeHg remediation.
Collapse
Affiliation(s)
- Xiaonan Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chengbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, PR China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
29
|
Sun R, Mo Y, Feng X, Zhang L, Jin L, Li Q. Effects of typical algae species (Aphanizomenon flosaquae and Microcystis aeruginosa) on photoreduction of Hg 2+ in water body. J Environ Sci (China) 2019; 85:9-16. [PMID: 31471035 DOI: 10.1016/j.jes.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 06/10/2023]
Abstract
Photoreduction characteristics of divalent inorganic mercury (Hg2+) in the presence of specific algae species are still not well known. Laboratory experiments were conducted in the present study to identify the effects of different concentrations of living/dead algae species, including Aphanizomenon flosaquae (AF) and Microcystis aeruginosa (MA), on the photoreduction rate of Hg2+ under various light conditions. The experimental results showed that percentage reduction of Hg2+ was significantly influenced by radiation wavelengths, and dramatically decreased with the presence of algae. The highest percentage reduction of Hg2+ was induced by UV-A, followed by UV-B, visible light and dark for both living and dead AF, and the order was dark > UV-A > UV-B > visible light for both living and dead MA. There were two aspects, i.e., energy and attenuation rate of light radiation and excrementitious generated from algae metabolisms, were involved in the processes of Hg2+ photoreduction with the presence of algae under different light conditions. The percentage reduction of Hg2+ decreased from 15% to 11% when living and dead AF concentrations increased by 10 times (from 106 to 105 cells/mL), and decreased from11% to ~9% in the case of living and dead MA increased. Algae can adsorb Hg2+ and decrease the concentration of free Hg2+, thus inhibiting Hg2+ photoreduction, especially under the conditions with high concentrations of algae. No significant differences were found in percentage reduction of Hg2+ between living and dead treatments of algae species. The results are of great importance for understanding the role of algae in Hg2+ photoreduction.
Collapse
Affiliation(s)
- Rongguo Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| | - Yafei Mo
- School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Lin Jin
- School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| | - Qiuhua Li
- School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| |
Collapse
|
30
|
Buckman KL, Seelen EA, Mason RP, Balcom P, Taylor VF, Ward JE, Chen CY. Sediment organic carbon and temperature effects on methylmercury concentration: A mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1316-1326. [PMID: 30970496 PMCID: PMC6461384 DOI: 10.1016/j.scitotenv.2019.02.302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
The fate and mobility of mercury, and its bioaccumulation primarily as methylmercury (MeHg), in marine ecosystems are influenced by climate related environmental factors, including increased temperature and carbon loading. To investigate the interactions between sediment organic carbon and temperature MeHg bioaccumulation, mesocosm experiments were conducted examining relationships between sediment, water column and biota (sediment-dwelling amphipod and juvenile oyster) MeHg concentration. Experimental treatments consisted of a two by two design of high and low temperature (15 & 25 °C) and high and low sediment organic carbon (4-5% and 13% LOI, pre-experiment). Sediment organic carbon had significant individual effects on MeHg concentration in water and biota, with higher carbon associated with lower MeHg. Temperature individual effects were significant for sediment, water, and only amphipod MeHg concentration, with higher temperature treatments indicating higher MeHg concentration. There were significant temperature × carbon interactions observed for sediment, dissolved, and oyster MeHg concentration. Sediment carbon reduction had greater influence than temperature on increasing MeHg concentrations in both the water column and biota. MeHg concentrations in the bulk sediment were not correlated with MeHg in the water column or in the biota, indicating that even when sediments are the only source of MeHg, bulk sediment measurements do not provide a good proxy for bioaccumulation and that the concentration in bulk sediments is not the primary determinant of MeHg entry into the food web.
Collapse
Affiliation(s)
- K L Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America.
| | - E A Seelen
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America
| | - R P Mason
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America
| | - P Balcom
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
| | - V F Taylor
- Department of Earth Science, Dartmouth College, Hanover, NH, United States of America
| | - J E Ward
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America
| | - C Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
31
|
Lei P, Nunes LM, Liu YR, Zhong H, Pan K. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments. ENVIRONMENT INTERNATIONAL 2019; 126:279-288. [PMID: 30825746 DOI: 10.1016/j.envint.2019.02.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 05/25/2023]
Abstract
Eutrophication is a major environmental concern in lake systems, impacting the ecological risks of contaminants and drinking water safety. It has long been believed that eutrophication and thus algal blooms would reduce methylmercury (MeHg) levels in water, as well as MeHg bioaccumulation and trophic transfer (e.g., by growth dilution). In this study, however, we demonstrated that algae settlement and decomposition after algal blooms increased MeHg levels in sediments (54-514% higher), as evidenced by the results from sediments in 10 major lakes in China. These could in turn raise concerns about enhanced trophic transfer of MeHg and deterioration of water quality after algal blooms, especially considering that 9 out of the 10 examined lakes also serve as drinking water sources. The enhanced microbial MeHg production in sediments could be explained by the algal organic matter (AOM)-enhanced abundances of microbial methylators as well as the input of algae-inhabited microbes into sediments, but not Hg speciation in sediments: (1) Several AOM components (e.g., aromatic proteins and soluble microbial by product-like material with generally low molecular weights), rather than the bulk AOM, played key roles in enhancing the abundances of microbial methylators. The copies of Archaea-hgcA methylation genes were 51-397% higher in algae-added sediments; thus, MeHg production was also higher. (2) Input of algal biomass-inhabited microbial methylators contributed to 2-21% of total Archaea-hgcA in the 10 lake sediments with added algal biomass. (3) However, AOM-induced changes in Hg speciation, with implications on Hg availability to microbial methylators, played a minor role in enhancing microbial Hg methylation in sediments as seen in X-ray absorption near edge structure (XANES) data. Our results suggest the need to better understand the biogeochemistry and risks of contaminants in eutrophic lakes, especially during the period of algae settlement and decomposition following algal blooms.
Collapse
Affiliation(s)
- Pei Lei
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Luís M Nunes
- Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
32
|
Taylor VF, Buckman KL, Seelen EA, Mazrui NM, Balcom PH, Mason RP, Chen CY. Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:639-649. [PMID: 30605819 PMCID: PMC6363875 DOI: 10.1016/j.envpol.2018.12.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Estuaries are dynamic ecosystems which vary widely in loading of the contaminant methylmercury (MeHg), and in environmental factors which control MeHg exposure to the estuarine foodweb. Inputs of organic carbon and rates of primary production are important influences on MeHg loading and bioaccumulation, and are predicted to increase with changes in climate and land use pressures. To further understand these influences on MeHg levels in estuarine biota, we used a field study approach in sites across different temperature regions, and with varying organic carbon levels. In paired comparisons of sites with high vs. low organic carbon, fish had lower MeHg bioaccumulation factors (normalized to water concentrations) in high carbon sites, particularly subsites with large coastal wetlands and large variability in dissolved organic carbon levels in the water column. Across sites, MeHg level in the water column was strongly tied to dissolved organic carbon, and was the major driver of MeHg concentrations in fish and invertebrates. Higher primary productivity (chlorophyll-a) was associated with increased MeHg partitioning to suspended particulates, but not to the biota. These findings suggest that increased inputs of MeHg and loss of wetlands associated with climate change and anthropogenic land use pressure will increase MeHg concentrations in estuarine food webs.
Collapse
Affiliation(s)
- V F Taylor
- Department of Earth Science, Dartmouth College, Hanover, NH, USA.
| | - K L Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - E A Seelen
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - N M Mazrui
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - P H Balcom
- Harvard John A. Paulson School of Engineering & Applied Sciences, Cambridge, MA, USA
| | - R P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - C Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
33
|
Živković I, Fajon V, Kotnik J, Shlyapnikov Y, Obu Vazner K, Begu E, Šestanović S, Šantić D, Vrdoljak A, Jozić S, Šolić M, Lušić J, Veža J, Kušpilić G, Ordulj M, Matić F, Grbec B, Bojanić N, Ninčević Gladan Ž, Horvat M. Relations between mercury fractions and microbial community components in seawater under the presence and absence of probable phosphorus limitation conditions. J Environ Sci (China) 2019; 75:145-162. [PMID: 30473280 DOI: 10.1016/j.jes.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/09/2023]
Abstract
Microbial transformations of toxic monomethylmercury (MMHg) and dissolved gaseous mercury (DGM) at the lower levels of the marine food web are not well understood, especially in oligotrophic and phosphorus-limited seas. To examine the effects of probable phosphorus limitation (PP-limitation) on relations between mercury (Hg) fractions and microorganisms, we determined the total mercury (THg), total methylated mercury (MeHg), DGM, and microbiological and chemical parameters in the Central Adriatic Sea. Using statistical analysis, we assessed the potential microbial effects on Hg transformations and bioaccumulation. Only in the absence of PP-limitation conditions (NO-PP-limitation) is MeHg significantly related to most chemical and microbial parameters, indicating metabolism-dependent Hg transformations. The heterotrophic activity of low nucleic acid bacteria (abundant in oligotrophic regions) seems responsible for most of Hg methylation under NO-PP-limitation. Under these conditions, DGM is strongly related to microbial fractions and chlorophyll a, indicating biological DGM production, which is probably not metabolically induced, as most of these relations are also observed under PP-limitation. MMHg biomagnification was observed through an increased bioaccumulation factor from microseston to mesozooplankton. Our results indicate that Hg transformations and uptake might be enhanced under NO-PP-limitation conditions, emphasizing their impact on the transfer of Hg to higher trophic levels.
Collapse
Affiliation(s)
- Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Yaroslav Shlyapnikov
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Kristina Obu Vazner
- Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia; Ecological Engineering Institute, Maribor 2000, Slovenia
| | - Ermira Begu
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Stefanija Šestanović
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Danijela Šantić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Ana Vrdoljak
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Slaven Jozić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Mladen Šolić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Jelena Lušić
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Jere Veža
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Grozdan Kušpilić
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Marin Ordulj
- Department of Marine Studies, University of Split, Split 21000, Croatia
| | - Frano Matić
- Laboratory of Physical Oceanography, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Branka Grbec
- Laboratory of Physical Oceanography, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Natalia Bojanić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Živana Ninčević Gladan
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia.
| |
Collapse
|
34
|
Buckman KL, Lane O, Kotnik J, Bratkic A, Sprovieri F, Horvat M, Pirrone N, Evers DC, Chen CY. Spatial and taxonomic variation of mercury concentration in low trophic level fauna from the Mediterranean Sea. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1341-1352. [PMID: 30315417 PMCID: PMC6345403 DOI: 10.1007/s10646-018-1986-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Studies of mercury (Hg) in the Mediterranean Sea have focused on pollution sources, air-sea mercury exchange, abiotic mercury cycling, and seafood. Much less is known about methylmercury (MeHg) concentrations in the lower food web. Zooplankton and small fish were sampled from the neuston layer at both coastal and open sea stations in the Mediterranean Sea during three cruise campaigns undertaken in the fall of 2011 and the summers of 2012 and 2013. Zooplankton and small fish were sorted by morphospecies, and the most abundant taxa (e.g. euphausiids, isopods, hyperiid amphipods) analyzed for methylmercury (MeHg) concentration. Unfiltered water samples were taken during the 2011 and 2012 cruises and analyzed for MeHg concentration. Multiple taxa suggested elevated MeHg concentrations in the Tyrrhenian and Balearic Seas in comparison with more eastern and western stations in the Mediterranean Sea. Spatial variation in zooplankton MeHg concentration is positively correlated with single time point whole water MeHg concentration for euphausiids and mysids and negatively correlated with maximum chlorophyll a concentration for euphausiids, mysids, and "smelt" fish. Taxonomic variation in MeHg concentration appears driven by taxonomic grouping and feeding mode. Euphausiids, due to their abundance, relative larger size, importance as a food source for other fauna, and observed relationship with surface water MeHg are a good candidate biotic group to evaluate for use in monitoring the bioavailability of MeHg for trophic transfer in the Mediterranean and potentially globally.
Collapse
Affiliation(s)
- Kate L Buckman
- Dartmouth College, Department of Biological Sciences, Hanover, NH, USA.
| | - Oksana Lane
- Biodiversity Research Institute, Portland, Maine, USA
| | - Jože Kotnik
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Arne Bratkic
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
- Vrije Universiteit Brussel, Analytical, Environmental, and Geo-Chemistry, Brussels, Belgium
| | | | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
| | | | - David C Evers
- Biodiversity Research Institute, Portland, Maine, USA
| | - Celia Y Chen
- Dartmouth College, Department of Biological Sciences, Hanover, NH, USA
| |
Collapse
|
35
|
Zaferani S, Pérez-Rodríguez M, Biester H. Diatom ooze—A large marine mercury sink. Science 2018; 361:797-800. [DOI: 10.1126/science.aat2735] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/07/2018] [Indexed: 11/02/2022]
Affiliation(s)
- Sara Zaferani
- Institut für Geoökologie AG Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marta Pérez-Rodríguez
- Institut für Geoökologie AG Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Harald Biester
- Institut für Geoökologie AG Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
36
|
Wu P, Bishop K, von Brömssen C, Eklöf K, Futter M, Hultberg H, Martin J, Åkerblom S. Does forest harvest increase the mercury concentrations in fish? Evidence from Swedish lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1353-1362. [PMID: 29890601 DOI: 10.1016/j.scitotenv.2017.12.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
A number of studies have evaluated the effects of forest harvest on mercury (Hg) concentrations and exports in surface waters, but few studies have tested the effect from forest harvest on the change in fish Hg concentrations over the course of several years after harvest. To address this question, mercury (Hg) concentrations in perch (Perca fluviatilis) muscle tissue from five lakes were analyzed for two years before (2010-2011) and three years after (2013-2015) forest harvest conducted in 2012. Fish Hg concentrations in the clear-cut catchments (n=1373 fish specimens) were related to temporal changes of fish Hg in reference lakes (n=1099 fish specimen) from 19 lakes in the Swedish National Environmental Monitoring Programme. Small (length<100mm) and large perch (length≥100mm) were analyzed separately, due to changing feeding habitats of fish over growing size. There was considerable year-to-year and lake-to-lake variation in fish Hg concentrations (-14%-121%) after forest harvest in the clearcut lakes, according to our first statistical model that count for fish Hg changes. While the effect ascribed to forest harvest varied between years, after three years (in 2015), a significant increase of 26% (p<0.0001) in Hg concentrations of large fish was identified in our second statistical model that pooled all 5 clearcut lakes. The large fish Hg concentrations in the 19 reference lakes also varied, and in 2015 had decreased by 7% (p=0.03) relative to the concentrations in 2010-2011. The majority of the annual changes in fish Hg concentrations in the clearcut lakes after harvest were in the lower range of earlier predictions for high-latitude lakes extrapolated primarily from the effects of forest harvest operations on Hg concentrations in water. Since the risk of forest harvest impacts on Hg extends to fish and not just surface water concentrations, there is even more reason to consider Hg effects in forestry planning, alongside other ecosystem effects.
Collapse
Affiliation(s)
- Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Claudia von Brömssen
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martyn Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hans Hultberg
- IVL Swedish Environmental Research Institute, Gothenburg, Sweden
| | - Jaclyn Martin
- Environmental Resources Management, Charlotte, NC, USA
| | - Staffan Åkerblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
37
|
Rosati G, Heimbürger LE, Melaku Canu D, Lagane C, Laffont L, Rijkenberg MJA, Gerringa LJA, Solidoro C, Gencarelli CN, Hedgecock IM, De Baar HJW, Sonke JE. Mercury in the Black Sea: New Insights From Measurements and Numerical Modeling. GLOBAL BIOGEOCHEMICAL CYCLES 2018; 32:529-550. [PMID: 29861543 PMCID: PMC5969270 DOI: 10.1002/2017gb005700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 05/21/2023]
Abstract
Redox conditions and organic matter control marine methylmercury (MeHg) production. The Black Sea is the world's largest and deepest anoxic basin and is thus ideal to study Hg species along the extended redox gradient. Here we present new dissolved Hg and MeHg data from the 2013 GEOTRACES MEDBlack cruise (GN04_leg2) that we integrated into a numerical 1-D model, to track the fate and dynamics of Hg and MeHg. Contrary to a previous study, our new data show highest MeHg concentrations in the permanently anoxic waters. Observed MeHg/Hg percentage (range 9-57%) in the anoxic waters is comparable to other subsurface maxima in oxic open-ocean waters. With the modeling we tested for various Hg methylation and demethylation scenarios along the redox gradient. The results show that Hg methylation must occur in the anoxic waters. The model was then used to simulate the time evolution (1850-2050) of Hg species in the Black Sea. Our findings quantify (1) inputs and outputs of HgT (~31 and ~28 kmol yr-1) and MeHgT (~5 and ~4 kmol yr-1) to the basin, (2) the extent of net demethylation occurring in oxic (~1 kmol yr-1) and suboxic water (~6 kmol yr-1), (3) and the net Hg methylation in the anoxic waters of the Black Sea (~11 kmol yr-1). The model was also used to estimate the amount of anthropogenic Hg (85-93%) in the Black Sea.
Collapse
Affiliation(s)
- G. Rosati
- OGS, National Institute of Oceanography and Experimental Geophysics, OCE Research Section, ECHO GroupTriesteItaly
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - L. E. Heimbürger
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography UM 110MarseilleFrance
| | - D. Melaku Canu
- OGS, National Institute of Oceanography and Experimental Geophysics, OCE Research Section, ECHO GroupTriesteItaly
| | - C. Lagane
- Observatoire Midi‐Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul‐SabatierToulouseFrance
| | - L. Laffont
- Observatoire Midi‐Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul‐SabatierToulouseFrance
| | - M. J. A. Rijkenberg
- NIOZ, Royal Institute for Sea Research, department of GCOUtrecht UniversityDen BurgNetherlands
| | - L. J. A. Gerringa
- NIOZ, Royal Institute for Sea Research, department of GCOUtrecht UniversityDen BurgNetherlands
| | - C. Solidoro
- OGS, National Institute of Oceanography and Experimental Geophysics, OCE Research Section, ECHO GroupTriesteItaly
- ICTP, The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - C. N. Gencarelli
- CNR, Institute of Atmospheric Pollution Research, Division of Rende, UNICAL‐PolifunzionaleRendeItaly
| | - I. M. Hedgecock
- CNR, Institute of Atmospheric Pollution Research, Division of Rende, UNICAL‐PolifunzionaleRendeItaly
| | - H. J. W. De Baar
- NIOZ, Royal Institute for Sea Research, department of GCOUtrecht UniversityDen BurgNetherlands
| | - J. E. Sonke
- Observatoire Midi‐Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul‐SabatierToulouseFrance
| |
Collapse
|
38
|
Hsu-Kim H, Eckley CS, Achá D, Feng X, Gilmour CC, Jonsson S, Mitchell CPJ. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. AMBIO 2018; 47:141-169. [PMID: 29388127 PMCID: PMC5794684 DOI: 10.1007/s13280-017-1006-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The environmental cycling of mercury (Hg) can be affected by natural and anthropogenic perturbations. Of particular concern is how these disruptions increase mobilization of Hg from sites and alter the formation of monomethylmercury (MeHg), a bioaccumulative form of Hg for humans and wildlife. The scientific community has made significant advances in recent years in understanding the processes contributing to the risk of MeHg in the environment. The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbations that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation. We focus on the major challenges associated with each type of alteration, as well as management opportunities that could lessen both MeHg levels in biota and exposure to humans. For example, our understanding of approximate response times to changes in Hg inputs from various sources or landscape alterations could lead to policies that prioritize the avoidance of certain activities in the most vulnerable systems and sequestration of Hg in deep soil and sediment pools. The remediation of Hg pollution from historical mining and other industries is shifting towards in situ technologies that could be less disruptive and less costly than conventional approaches. Contemporary artisanal gold mining has well-documented impacts with respect to Hg; however, significant social and political challenges remain in implementing effective policies to minimize Hg use. Much remains to be learned as we strive towards the meaningful application of our understanding for stakeholders, including communities living near Hg-polluted sites, environmental policy makers, and scientists and engineers tasked with developing watershed management solutions. Site-specific assessments of MeHg exposure risk will require new methods to predict the impacts of anthropogenic perturbations and an understanding of the complexity of Hg cycling at the local scale.
Collapse
Affiliation(s)
- Heileen Hsu-Kim
- Department of Civil & Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC 27708 USA
| | - Chris S. Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101 USA
| | - Dario Achá
- Unidad de Calidad Ambiental, Instituto de Ecología, Carrera de Biología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 China
| | - Cynthia C. Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037-0028 USA
| | - Sofi Jonsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| | - Carl P. J. Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| |
Collapse
|
39
|
Schartup AT, Qureshi A, Dassuncao C, Thackray CP, Harding G, Sunderland EM. A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:654-662. [PMID: 29227685 DOI: 10.1021/acs.est.7b03821] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Methylmercury (MeHg) concentrations can increase by 100 000 times between seawater and marine phytoplankton, but levels vary across sites. To better understand how ecosystem properties affect variability in planktonic MeHg concentrations, we develop a model for MeHg uptake and trophic transfer at the base of marine food webs. The model successfully reproduces measured concentrations in phytoplankton and zooplankton across diverse sites from the Northwest Atlantic Ocean. Highest MeHg concentrations in phytoplankton are simulated under low dissolved organic carbon (DOC) concentrations and ultraoligotrophic conditions typical of open ocean regions. This occurs because large organic complexes bound to MeHg inhibit cellular uptake and cell surface area to volume ratios are greatest under low productivity conditions. Modeled bioaccumulation factors for phytoplankton (102.4-105.9) are more variable than those for zooplankton (104.6-106.2) across ranges in DOC (40-500 μM) and productivities (ultraoligotrophic to hypereutrophic) typically found in marine ecosystems. Zooplankton growth dilutes their MeHg body burden, but they also consume greater quantities of MeHg enriched prey at larger sizes. These competing processes lead to lower variability in MeHg concentrations in zooplankton compared to phytoplankton. Even under hypereutrophic conditions, modeled growth dilution in marine zooplankton is insufficient to lower their MeHg concentrations, contrasting findings from freshwater ecosystems.
Collapse
Affiliation(s)
- Amina T Schartup
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University , Boston, Massachusetts 02214, United States
| | - Asif Qureshi
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University , Boston, Massachusetts 02214, United States
- Department of Civil Engineering, IIT Hyderabad , Kandi, Sangareddy, TS 502285, India
| | - Clifton Dassuncao
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University , Boston, Massachusetts 02214, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Gareth Harding
- Bedford Institute of Oceanography , Dartmouth, NS B2Y 4A2, Canada
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University , Boston, Massachusetts 02214, United States
| |
Collapse
|
40
|
Guédron S, Point D, Acha D, Bouchet S, Baya PA, Tessier E, Monperrus M, Molina CI, Groleau A, Chauvaud L, Thebault J, Amice E, Alanoca L, Duwig C, Uzu G, Lazzaro X, Bertrand A, Bertrand S, Barbraud C, Delord K, Gibon FM, Ibanez C, Flores M, Fernandez Saavedra P, Ezpinoza ME, Heredia C, Rocha F, Zepita C, Amouroux D. Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:262-270. [PMID: 28806691 DOI: 10.1016/j.envpol.2017.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota.
Collapse
Affiliation(s)
- S Guédron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France; Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario de Cota-Cota, Casilla 3161, La Paz, Bolivia.
| | - D Point
- Géosciences Environnement Toulouse, UMR5563 - IRD UR 234, Université Paul Sabatier, 14 Avenue Edouard Belin 31400 Toulouse, France; Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia.
| | - D Acha
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia.
| | - S Bouchet
- CNRS, Univ. Pau & Pays Adour, Institut des sciences analytiques et de Physico-chimie pour l'Environnement et les Matériaux, MIRA, UMR5254, 64000 PAU, France
| | - P A Baya
- Géosciences Environnement Toulouse, UMR5563 - IRD UR 234, Université Paul Sabatier, 14 Avenue Edouard Belin 31400 Toulouse, France
| | - E Tessier
- CNRS, Univ. Pau & Pays Adour, Institut des sciences analytiques et de Physico-chimie pour l'Environnement et les Matériaux, MIRA, UMR5254, 64000 PAU, France
| | - M Monperrus
- CNRS, Univ. Pau & Pays Adour, Institut des sciences analytiques et de Physico-chimie pour l'Environnement et les Matériaux, MIRA, UMR5254, 64000 PAU, France
| | - C I Molina
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - A Groleau
- Institut de Physique du Globe de Paris (IPGP), 1, rue Jussieu, 75238 Paris Cedex 05, France
| | - L Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, IUEM Technopôle Brest-Iroise, rue Dumont d'Urville, 29280 Plouzané, France
| | - J Thebault
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, IUEM Technopôle Brest-Iroise, rue Dumont d'Urville, 29280 Plouzané, France
| | - E Amice
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, IUEM Technopôle Brest-Iroise, rue Dumont d'Urville, 29280 Plouzané, France
| | - L Alanoca
- Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario de Cota-Cota, Casilla 3161, La Paz, Bolivia
| | - C Duwig
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, IGE, 38000 Grenoble, France
| | - G Uzu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, IGE, 38000 Grenoble, France
| | - X Lazzaro
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia; Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Institut de Recherche pour le Développement (IRD), UMR 7208, Paris, France
| | - A Bertrand
- MARine Biodiversity, Exploitation and Conservation (MARBEC), Institut de Recherche pour le Développement (IRD), Univ. Montpellier, Place Eugène Bataillon, bât 24, CC093 34 095 Montpellier Cedex 5, France
| | - S Bertrand
- MARine Biodiversity, Exploitation and Conservation (MARBEC), Institut de Recherche pour le Développement (IRD), Univ. Montpellier, Place Eugène Bataillon, bât 24, CC093 34 095 Montpellier Cedex 5, France
| | - C Barbraud
- Laboratoire du Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372, CNRS, Université de La Rochelle 405 Route de La Canauderie, 79360 Villiers-en-Bois, France
| | - K Delord
- Laboratoire du Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372, CNRS, Université de La Rochelle 405 Route de La Canauderie, 79360 Villiers-en-Bois, France
| | - F M Gibon
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Institut de Recherche pour le Développement (IRD), UMR 7208, Paris, France
| | - C Ibanez
- UPA, Universidad Pública de El Alto, Ecología y Recursos Naturales, El Alto, Bolivia
| | - M Flores
- Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario de Cota-Cota, Casilla 3161, La Paz, Bolivia; Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - P Fernandez Saavedra
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - M E Ezpinoza
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - C Heredia
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - F Rocha
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - C Zepita
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia
| | - D Amouroux
- Unidad de Calidad Ambiental (UCA), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla 3161, La Paz, Bolivia; CNRS, Univ. Pau & Pays Adour, Institut des sciences analytiques et de Physico-chimie pour l'Environnement et les Matériaux, MIRA, UMR5254, 64000 PAU, France.
| |
Collapse
|
41
|
Kuss J, Cordes F, Mohrholz V, Nausch G, Naumann M, Krüger S, Schulz-Bull DE. The Impact of the Major Baltic Inflow of December 2014 on the Mercury Species Distribution in the Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11692-11700. [PMID: 28885012 DOI: 10.1021/acs.est.7b03011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Baltic Sea is a marginal sea characterized by stagnation periods of several years. Oxygen consumption in its deep waters leads to the buildup of sulfide from sulfate reduction. Some of the microorganisms responsible for these processes also transform reactive ionic mercury to neurotoxic methylmercury. Episodic inflows of oxygenated saline water from the North Sea temporally re-establish oxic life in deep waters of the Baltic Sea. Thus, this sea is an especially important region to better understand mercury species distributions in connection with variable redox conditions. Mercury species were measured on three Baltic Sea campaigns, during the preinflow, ongoing inflow, and subsiding inflow of water, respectively, to the central basin. The inflowing water caused the removal of total mercury by 600 nmol m-2 and of methylmercury by 214 nmol m-2 in the Gotland Deep, probably via attachment of the mercury compounds to sinking particles. It appears likely that the consequences of the oxygenation of Baltic Sea deep waters, which are the coprecipitation of mercury species and the resettlement of the oxic deep waters, could lead to the enhanced transfer of accumulated mercury and methylmercury to the planktonic food chain and finally to fish.
Collapse
Affiliation(s)
- Joachim Kuss
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Florian Cordes
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Volker Mohrholz
- Department of Physical Oceanography and Measurement & Instrumentation, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Günther Nausch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Measurement & Instrumentation, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Siegfried Krüger
- Department of Physical Oceanography and Measurement & Instrumentation, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| | - Detlef E Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research (IOW) , Seestrasse 15, D-18119 Rostock-Warnemünde, Germany
| |
Collapse
|
42
|
Soerensen AL, Schartup AT, Skrobonja A, Björn E. Organic matter drives high interannual variability in methylmercury concentrations in a subarctic coastal sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017. [PMID: 28646796 DOI: 10.1016/j.envpol.2017.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Levels of neurotoxic methylmercury (MeHg) in phytoplankton are strongly associated with water MeHg concentrations. Because uptake by phytoplankton is the first and largest step of bioaccumulation in aquatic food webs many studies have investigated factors driving seasonal changes in water MeHg concentrations. Organic matter (OM) is widely accepted as an important driver of MeHg production and uptake by phytoplankton but is also known for strong interannual variability in concentration and composition within systems. In this study, we explore the role of OM on spatial and interannual variability of MeHg in a subarctic coastal sea, the northern Baltic Sea. Using MeHg (2014: 80 ± 25 fM; 2015: <LOD; 2016: 21 ± 9 fM) and OM measurements during late summer/early fall, we find that dissolved organic carbon (DOC) and humic matter content explain 60% of MeHg variability. We find that while labile DOC increases MeHg levels in the water, humic content reduces it. We propose that the positive association between MeHg and labile DOC shows that labile DOC is a proxy for OM remineralization rate in nearshore and offshore waters. This is consistent with other studies finding that in situ MeHg production in the water column occurs during OM remineralization. The negative association between water humic content and MeHg concentration is most likely due to humic matter decreasing inorganic mercury (HgII) bioavailability to methylating microbes. With these relationships, we develop a statistical model and use it to calculate MeHg concentrations in late summer nearshore and offshore waters between 2006 and 2016 using measured values for water DOC and humic matter content. We find that MeHg concentrations can vary by up to an order of magnitude between years, highlighting the importance of considering interannual variability in water column MeHg concentrations when interpreting both short and long term MeHg trends in biota.
Collapse
Affiliation(s)
- A L Soerensen
- Stockholm University, Department of Environmental Science and Analytical Chemistry, Stockholm, Sweden.
| | - A T Schartup
- Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge MA, USA
| | - A Skrobonja
- Umeå University, Department of Chemistry, Umeå, Sweden
| | - E Björn
- Umeå University, Department of Chemistry, Umeå, Sweden
| |
Collapse
|
43
|
Li T, Chu C, Zhang Y, Ju M, Wang Y. Contrasting Eutrophication Risks and Countermeasures in Different Water Bodies: Assessments to Support Targeted Watershed Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E695. [PMID: 28661417 PMCID: PMC5551133 DOI: 10.3390/ijerph14070695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022]
Abstract
Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures.
Collapse
Affiliation(s)
- Tong Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chunli Chu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yinan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuqiu Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|