1
|
Wang C, Gu W, Zhang S, Li L, Kong J, Zhi H, Liu J, Wang M, Miao K, Li Q, Yu J, Wang R, He R, Zhang S, Deng F, Duan S, Zhang Q, Liu Z, Yang H, Jia X, Peng H, Tang S. Multigenerational effects of disperse blue 79 at environmentally relevant concentrations on zebrafish (Danio rerio) fecundity: An integrated approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135442. [PMID: 39128150 DOI: 10.1016/j.jhazmat.2024.135442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The brominated azo dye (BAD) Disperse Blue (DB79) is a widespread environmental pollutant. The long-term toxicological effects of DB79 and the mechanisms thereof must be understood to allow assessment of the risks of DB79 pollution. A dual-omics approach employing in silico analysis, bioinformatics, and in vitro bioassays was used to investigate the transgenerational (F0-F2) toxicity of DB79 in zebrafish at environmentally relevant concentrations and identify molecular initiating events and key events associated with DB79-induced fertility disorders. Exposure to 500 µg/L DB79 decreased fecundity in the F0 and F1 generations by > 30 % and increased the condition factor of the F1 generation 1.24-fold. PPARα/RXR and PXR ligand binding activation were found to be critical molecular initiating events associated with the decrease in fecundity. Several key events (changes in fatty acid oxidation and uptake, lipoprotein metabolism, and xenobiotic metabolism and transport) involved in lipid dysregulation and xenobiotic disposition were found to be induced by DB79 through bioinformatic annotation using dual-omics data. The biomolecular underpinnings of decreased transgenerational fertility in zebrafish attributable to BAD exposure were elucidated and novel biomolecular targets in the adverse outcome pathway framework were identified. These results will inform future studies and facilitate the development of mitigation strategies.
Collapse
Affiliation(s)
- Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shaoping Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jian Kong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengmeng Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jie Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runming Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runming He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuling Duan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Zhang
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Yang
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xudong Jia
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hui Peng
- Department of Chemistry, School of Environment, University of Toronto, Toronto, Ontario, Canada
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Overdahl KE, Tighe RM, Stapleton HM, Ferguson PL. Investigating sensitization activity of azobenzene disperse dyes via the Direct Peptide Reactivity Assay (DPRA). Food Chem Toxicol 2023; 182:114108. [PMID: 37890762 PMCID: PMC10872524 DOI: 10.1016/j.fct.2023.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and have been found in indoor house dust and in children's polyester apparel. Azobenzene disperse dyes are implicated as potentially allergenic; however, little experimental data is available on allergenicity of these dyes. Here, we examine the binding of azobenzene disperse dyes to nucleophilic peptide residues as a proxy for their potential reactivity as electrophilic allergenic sensitizers. The Direct Peptide Reactivity Assay (DPRA) was utilized via both a spectrophotometric method and a high-performance liquid chromatography (HPLC) method. We tested dyes purified from commercial dyestuffs as well as several known transformation products. All dyes were found to react with nucleophilic peptides in a dose-dependent manner with pseudo-first order kinetics (rate constants as high as 0.04 h-1). Rates of binding reactivity were also found to correlate to electrophilic properties of dyes as measured by Hammett constants and electrophilicity indices. Reactivities of polyester shirt extracts were also tested for DPRA activity and the shirt extracts with high measured abundances of azobenzene disperse dyes were observed to induce greater peptide reactivity. Results suggest that azobenzene disperse dyes may function as immune sensitizers, and that clothing containing these dyes may pose risks for skin sensitization.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke School of Medicine, Duke University, Durham, NC, 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
3
|
Overdahl KE, Kassotis CD, Hoffman K, Getzinger GJ, Phillips A, Hammel S, Stapleton HM, Ferguson PL. Characterizing azobenzene disperse dyes and related compounds in house dust and their correlations with other organic contaminant classes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122491. [PMID: 37709124 PMCID: PMC10655148 DOI: 10.1016/j.envpol.2023.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and are implicated in the literature as potentially allergenic. In the indoor environment, these dyes may be shed from various textiles, including clothing and upholstery and accumulate in dust particles potentially leading to exposure in young children who have higher exposure to chemicals associated with dust due to their crawling and mouthing behaviors. Children may be more vulnerable to dye exposure due to their developing immune systems, and therefore, it is critical to characterize azobenzene disperse dyes in children's home environments. Here, we investigate azobenzene disperse dyes and related compounds in house dust samples (n = 124) that were previously analyzed for flame retardants, phthalates, pesticides and per- and polyfluoroalkyl substances (PFAS). High-resolution mass spectrometry was used to support both targeted and suspect screening of dyes in dust. Statistical analyses were conducted to determine if dye concentrations were related to demographic information. Detection frequencies for 12 target dyes ranged from 11% to 89%; of the dyes that were detected in at least 50% of the samples, geometric mean levels ranged from 32.4 to 360 ng/g. Suspect screening analysis identified eight additional high-abundance azobenzene compounds in dust. Some dyes were correlated to numerous flame retardants and several antimicrobials, and statistically higher levels of some dyes were observed in homes of non-Hispanic Black mothers than in homes of non-Hispanic white mothers. To our knowledge, this is the most comprehensive study of azobenzene disperse dyes in house dust to date. Future studies are needed to quantify additional dyes in dust and to examine exposure pathways of dyes in indoor environments where children are concerned.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202. United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Gordon J Getzinger
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Stephanie Hammel
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States.
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States.
| |
Collapse
|
4
|
Deng F, Qin G, Chen Y, Zhang X, Zhu M, Hou M, Yao Q, Gu W, Wang C, Yang H, Jia X, Wu C, Peng H, Du H, Tang S. Multi-omics reveals 2-bromo-4,6-dinitroaniline (BDNA)-induced hepatotoxicity and the role of the gut-liver axis in rats. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131760. [PMID: 37285786 DOI: 10.1016/j.jhazmat.2023.131760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
2-Bromo-4, 6-dinitroaniline (BDNA) is a widespread azo-dye-related hazardous pollutant. However, its reported adverse effects are limited to mutagenicity, genotoxicity, endocrine disruption, and reproductive toxicity. We systematically assessed the hepatotoxicity of BDNA exposure via pathological and biochemical examinations and explored the underlying mechanisms via integrative multi-omics analyses of the transcriptome, metabolome, and microbiome in rats. After 28 days of oral administration, compared with the control group, 100 mg/kg BDNA significantly triggered hepatotoxicity, upregulated toxicity indicators (e.g., HSI, ALT, and ARG1), and induced systemic inflammation (e.g., G-CSF, MIP-2, RANTES, and VEGF), dyslipidemia (e.g., TC and TG), and bile acid (BA) synthesis (e.g., CA, GCA, and GDCA). Transcriptomic and metabolomic analyses revealed broad perturbations in gene transcripts and metabolites involved in the representative pathways of liver inflammation (e.g., Hmox1, Spi1, L-methionine, valproic acid, and choline), steatosis (e.g., Nr0b2, Cyp1a1, Cyp1a2, Dusp1, Plin3, arachidonic acid, linoleic acid, and palmitic acid), and cholestasis (e.g., FXR/Nr1h4, Cdkn1a, Cyp7a1, and bilirubin). Microbiome analysis revealed reduced relative abundances of beneficial gut microbial taxa (e.g., Ruminococcaceae and Akkermansia muciniphila), which further contributed to the inflammatory response, lipid accumulation, and BA synthesis in the enterohepatic circulation. The observed effect concentrations here were comparable to the highly contaminated wastewaters, showcasing BDNA's hepatotoxic effects at environmentally relevant concentrations. These results shed light on the biomolecular mechanism and important role of the gut-liver axis underpinning BDNA-induced cholestatic liver disorders in vivo.
Collapse
Affiliation(s)
- Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mu Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
5
|
Gong Y, Yang D, Barrett H, Sun J, Peng H. Building the Environmental Chemical-Protein Interaction Network (eCPIN): An Exposome-Wide Strategy for Bioactive Chemical Contaminant Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3486-3495. [PMID: 36827403 DOI: 10.1021/acs.est.2c02751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although advancements in nontargeted analysis have made it possible to detect hundreds of chemical contaminants in a single run, the current environmental toxicology approaches lag behind, precluding the transition from analytical chemistry efforts to health risk assessment. We herein highlighted a recently developed "top-down" bioanalytical method, protein Affinity Purification with Nontargeted Analysis (APNA), to screen for bioactive chemical contaminants at the "exposome-wide" level. To achieve this, a tagged functional protein is employed as a "bait" to directly isolate bioactive chemical contaminants from environmental mixtures, which are further identified by nontargeted analysis. Advantages of this protein-guided approach, including the discovery of new bioactive ligands as well as new protein targets for known chemical contaminants, were highlighted by several case studies. Encouraged by these successful applications, we further proposed a framework, i.e., the environmental Chemical-Protein Interaction Network (eCPIN), to construct a complete map of the 7 billion binary interactions between all chemical contaminants (>350,000) and human proteins (∼20,000) via APNA. The eCPIN could be established in three stages through strategically prioritizing the ∼20,000 human proteins, such as focusing on the 48 nuclear receptors (e.g., thyroid hormone receptors) in the first stage. The eCPIN will provide an unprecedented throughput for screening bioactive chemical contaminants at the exposome-wide level and facilitate the identification of molecular initiating events at the proteome-wide level.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Yang D, Liu Q, Wang S, Bozorg M, Liu J, Nair P, Balaguer P, Song D, Krause H, Ouazia B, Abbatt JPD, Peng H. Widespread formation of toxic nitrated bisphenols indoors by heterogeneous reactions with HONO. SCIENCE ADVANCES 2022; 8:eabq7023. [PMID: 36459560 PMCID: PMC10936053 DOI: 10.1126/sciadv.abq7023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
With numerous structurally diverse indoor contaminants, indoor transformation chemistry has been largely unexplored. Here, by integrating protein affinity purification and nontargeted mass spectrometry analysis (PUCA), we identified a substantial class of previously unrecognized indoor transformation products formed through gas-surface reactions with nitrous acid (HONO). Through the PUCA, we identified a noncommercial compound, nitrated bisphenol A (BPA), from house dust extracts strongly binding to estrogen-related receptor γ. The compound was detected in 28 of 31 house dust samples with comparable concentrations (ND to 0.30 μg/g) to BPA. Via exposing gaseous HONO to surface-bound BPA, we demonstrated it likely forms via a heterogeneous indoor chemical transformation that is highly selective toward bisphenols with electron-rich aromatic rings. We used 15N-nitrite for in situ labeling and found 110 nitration products formed from indoor contaminants with distinct aromatic moieties. This study demonstrates a previously unidentified class of chemical reactions involving indoor HONO, which should be incorporated into the risk evaluation of indoor contaminants, particularly bisphenols.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Qifan Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Sizhi Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Matin Bozorg
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Balaguer
- IRCM, INSERM U1194, Université de Montpellier, ICM, Montpellier, France
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Henry Krause
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | | | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Barrett H, Sun J, Gong Y, Yang P, Hao C, Verreault J, Zhang Y, Peng H. Triclosan is the Predominant Antibacterial Compound in Ontario Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14923-14936. [PMID: 35594374 DOI: 10.1021/acs.est.2c00406] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants (STPs) accumulate both antibiotic and nonantibiotic antimicrobial compounds that can select for antibiotic resistant bacteria. Herein, we aimed to identify the predominant antibacterial compounds impacting E. coli from Ontario sewage sludge consisting of thousands of unknown compounds. Among the 10 extracted sludge samples, 6 extracts exerted significant growth inhibition effects in E. coli. A total of 103 compounds were tentatively detected across the 10 sludge samples by suspect screening, among which the bacterial enoyl-ACP reductase (FabI) inhibitor triclocarban was detected at the highest abundance. A hypomorphic FabI knockdown E. coli strain was highly susceptible to the sludge extracts, confirming FabI inhibitors as the primary antibacterial compounds in the sludge. Protein affinity pulldown identified triclosan as the major ligand binding to a His-tagged FabI protein from the sludge, despite the higher abundance of triclocarban in the same samples. Effect-directed analysis was used to determine the contributions of triclosan to the observed antibacterial potencies. Antibacterial effects were only detected in F17 and F18 across 20 fractions, which was consistent with the elution of triclosan and triclocarban in the same two fractions. Further, potency mass balance analysis confirmed that triclosan explained the majority (58-113%) of inhibition effects from sludge extracts. This study highlighted triclosan as the predominant antibacterial compound in sewage sludge impacting E. coli despite the co-occurrence of numerous other antibiotics and nonantibiotics.
Collapse
Affiliation(s)
- Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Paul Yang
- Ontario Ministry of the Environment, Conservation and Parks (MECP), Toronto, ON M7A 1N3, Canada
| | - Chunyan Hao
- Ontario Ministry of the Environment, Conservation and Parks (MECP), Toronto, ON M7A 1N3, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, P.O. Box 2871, Beijing 100085, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
8
|
Al-Mashala HH, Boone AM, Schnitzler EG. Reactive uptake of ozone to azo dyes in a coated-wall flow tube. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:973-981. [PMID: 35616932 DOI: 10.1039/d1em00478f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azo dyes are the most common colorants in consumer products, including clothing and cosmetics. Some azo dyes and their products from reductive degradation are known to be mutagenic, so dermal exposure to these species has been studied extensively. In contrast, oxidative degradation of azo dyes in consumer products has not been studied so thoroughly. In the indoor environment, ozone is ubiquitous, so reactive uptake of ozone to azo dyes could lead to dermal exposure to other classes of degradation products. Here, we report the first measurements of the reactive uptake of ozone to thin films of three widely used commercial azo dyes: sunset yellow, amaranth, and tartrazine. Steady-state uptake was observed for all three dyes, under all conditions investigated, even at the lowest relative humidity (RH) of 0%. The uptake coefficients increased with RH. For sunset yellow at 100 ppb of ozone, the value at 80% RH, (2.0 ± 0.5) × 10-7, was 2.5 times greater than that at 0% RH, (8 ± 1) × 10-8, consistent with plasticization of the thin film due to absorption of water. The uptake coefficient of sunset yellow at 80% RH exhibited an inverse dependence on the ozone mixing ratio, approaching an asymptote of 1 × 10-7 above 250 ppb. At 80% RH and 100 ppb of ozone, the uptake coefficients for the three dyes were similar, (2.0 ± 0.5) × 10-7 for sunset yellow, (2.7 ± 0.6) × 10-7 for amaranth, and (3.2 ± 0.3) × 10-7 for tartrazine, despite differences in structural parameters related to the number of reactive sites at the surface. Together, these results are consistent with ozone diffusing into the thin film and the dye molecules mixing between the layers, such that reaction is not restricted to the surface of the film. Finally, the results are suggestive of a role for azo dyes, including the occurrence of their oxidation products, in indoor chemistry.
Collapse
Affiliation(s)
- Habeeb H Al-Mashala
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alison M Boone
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Elijah G Schnitzler
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Han J, Gu W, Barrett H, Yang D, Tang S, Sun J, Liu J, Krause HM, Houck KA, Peng H. A Roadmap to the Structure-Related Metabolism Pathways of Per- and Polyfluoroalkyl Substances in the Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77004. [PMID: 34288731 PMCID: PMC8294803 DOI: 10.1289/ehp7169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Thousands of per- and polyfluoroalkyl substances (PFAS) with diverse structures have been detected in the ambient environment. Apart from a few well-studied PFAS, the structure-related toxicokinetics of a broader set of PFAS remain unclear. OBJECTIVES To understand the toxicokinetics of PFAS, we attempted to characterize the metabolism pathways of 74 structurally diverse PFAS samples from the U.S. Environmental Protection Agency's PFAS screening library. METHODS Using the early life stages of zebrafish (Danio rerio) as a model, we determined the bioconcentration factors and phenotypic toxicities of 74 PFAS. Then, we applied high-resolution mass spectrometry-based nontargeted analysis to identify metabolites of PFAS in zebrafish larvae after 5 d of exposure by incorporating retention time and mass spectra. In vitro enzymatic activity experiments with human recombinant liver carboxylesterase (hCES1) were employed to validate the structure-related hydrolysis of 11 selected PFAS. RESULTS Our findings identified five structural categories of PFAS prone to metabolism. The metabolism pathways of PFAS were highly related to their structures as exemplified by fluorotelomer alcohols that the predominance of β-oxidation or taurine conjugation pathways were primarily determined by the number of hydrocarbons. Hydrolysis was identified as a major metabolism pathway for diverse PFAS, and perfluoroalkyl carboxamides showed the highest in vivo hydrolysis rates, followed by carboxyesters and sulfonamides. The hydrolysis of PFAS was verified with recombinant hCES1, with strong substrate preferences toward perfluoroalkyl carboxamides. CONCLUSIONS We suggest that the roadmap of the structure-related metabolism pathways of PFAS established in this study would provide a starting point to inform the potential health risks of other PFAS. https://doi.org/10.1289/EHP7169.
Collapse
Affiliation(s)
- Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wen Gu
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jiabao Liu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Henry M. Krause
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Keith A. Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Schreckenbach SA, Anderson JSM, Koopman J, Grimme S, Simpson MJ, Jobst KJ. Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1508-1518. [PMID: 33982573 DOI: 10.1021/jasms.1c00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic pollutants can be identified by comparing their electron ionization (EI) mass spectra with those in libraries or obtained from authentic standards. Nevertheless, libraries are incomplete; standards may be unavailable or too costly, or their synthesis may be too time-consuming. This study evaluates the performance of quantum chemical electron ionization mass spectrometry (QCEIMS) vis-à-vis competitive fragmentation modeling (CFM) for suspect screening and unknown identification. EI mass spectra of 35 compounds, including halogenated organics, organophosphorus flame retardants (OPFRs), and disinfection byproducts were computed. Computational results were compared with EI mass spectra compiled in the NIST Library as well as collision-induced dissociation (CID) mass spectra obtained from radical cations M•+ generated by charge-exchange atmospheric pressure chemical ionization (APCI). The results indicate that QCEIMS performs equivalently or better than CFM. Average match factors between computed and experimental (NIST) EI mass spectra were 656 vs 503 for the halogenated organics, and on average, QCEIMS predicted 55% of the products generated by CID vs 17% predicted by CFM. QCEIMS predicted 37% of the OPFR CID products whereas CFM predicted 29%. QCEIMS performed comparably to a commercial combinatorial fragmentation method for suspect screening of a dust sample, identifying 19/20 targets. Examples of unknown pollutants, whose reference spectra were unavailable at the time of discovery, are also presented. The computational results suggest that QCEIMS can help guide the analyst in obtaining authentic standards and raise the possibility that, with advances in computing, an unknown may eventually be confirmed in hours as opposed to the days or months required to obtain authentic standards.
Collapse
Affiliation(s)
- Sophia A Schreckenbach
- Departments of Chemistry and Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - James S M Anderson
- Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jeroen Koopman
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Myrna J Simpson
- Departments of Chemistry and Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
11
|
Kutarna S, Tang S, Hu X, Peng H. Enhanced Nontarget Screening Algorithm Reveals Highly Abundant Chlorinated Azo Dye Compounds in House Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4729-4739. [PMID: 33719414 DOI: 10.1021/acs.est.0c06382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Humans spend 90% of their time indoors, but the majority of indoor pollutants remain unknown. In this study, a nontarget screening algorithm with reduced false discovery rates was developed to screen indoor pollutants using the Toxic Substances Control Act (TSCA) database. First, a putative lock mass algorithm was developed for post-acquisition calibration of Orbitrap mass spectra to sub-ppm mass accuracy. Then, a one-stop screening algorithm was developed by combining MS1 spectra, isotopic peaks, retention time prediction, and in silico MS2 spectra. A sufficient true positive rate (73%) and false discovery rate (5%) were achieved for the screening of halogenated compounds at a score cutoff of 0.28. Above this cutoff, 427 chemicals were detected from 24 house dust samples, including 39 chlorinated compounds. While some identified halogenated compounds (e.g., triclosan) are well known, 18 previously unrecognized chlorinated azo dyes were detected with high abundance as the largest class of chlorinated compounds. Two chlorinated azo dyes were confirmed with authentic standards, but the two most abundant chlorinated azo dyes were missed by the algorithm due to the limited breadth of the TSCA database. These compounds were annotated as chlorinated analogues of Disperse Blue 373 and Disperse Violet 93 using the DIPIC-Frag method. This study revealed the presence of highly abundant chlorinated azo dyes in house dusts, highlighting their potential health risks in the indoor environment.
Collapse
Affiliation(s)
- Steven Kutarna
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Liu Q, Huang C, Li W, Fang Z, Le XC. Discovery and Identification of Arsenolipids Using a Precursor-Finder Strategy and Data-Independent Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3836-3844. [PMID: 33667084 PMCID: PMC8009509 DOI: 10.1021/acs.est.0c07175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Arsenolipids are a class of lipid-soluble arsenic species. They are present in seafoods and show high potentials of cytotoxicity and neurotoxicity. Hindered by traditional low-throughput analytical techniques, the characterization of arsenolipids is far from complete. Here, we report on a sensitive and high-throughput screening method for arsenolipids in krill oil, tuna fillets, hairtail heads, and kelp. We demonstrate the detection and identification of 23 arsenolipids, including novel arsenic-containing fatty acids (AsFAs), hydroxylated AsFAs, arsenic-containing hydrocarbons (AsHCs), hydroxylated AsHCs, thiolated trimethylarsinic acids, and arsenic-containing lysophosphatidylcholines not previously reported. The new method incorporated precursor ion scan (PIS) into data-independent acquisition. High-performance liquid chromatography (HPLC) electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-qToF-MS) was used to perform the sequential window acquisition of all theoretical spectra (SWATH). Comprehensive HPLC-MS and MS/MS data were further processed using a fragment-guided chromatographic computational program Precursorfinder developed here. Precursorfinder achieved efficient peak-picking, retention time comparison, hierarchical clustering, and wavelet coherence calculations to assemble fragment features with their target precursors. The identification of arsenolipids was supported by coeluting the HPLC-MS peaks detected with the characteristic fragments of arsenolipids. Method validation using available arsenic standards and the successful identification of previously unknown arsenolipids in seafood samples demonstrated the applicability of the method for environmental research.
Collapse
Affiliation(s)
- Qingqing Liu
- College
of Resources and Environment, Southwest
University, Tiansheng Road No.2, Beibei, Chongqing 400716, China
- Key
Laboratory of Luminescent and Real-Time Analytical System (Southwest
University), Chongqing Science and Technology Bureau, College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Chengzhi Huang
- Key
Laboratory of Luminescent and Real-Time Analytical System (Southwest
University), Chongqing Science and Technology Bureau, College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Wenhui Li
- College
of Electronic and Information Engineering, Southwest University, Tiansheng Road No.2, Beibei, Chongqing 400715, China
| | - Zhenzheng Fang
- College
of Resources and Environment, Southwest
University, Tiansheng Road No.2, Beibei, Chongqing 400716, China
| | - X. Chris Le
- Department
of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
13
|
Barrett H, Du X, Houde M, Lair S, Verreault J, Peng H. Suspect and Nontarget Screening Revealed Class-Specific Temporal Trends (2000-2017) of Poly- and Perfluoroalkyl Substances in St. Lawrence Beluga Whales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1659-1671. [PMID: 33444015 DOI: 10.1021/acs.est.0c05957] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The global use of >3000 per- and polyfluoroalkyl substances (PFASs) has given rise to chemical regulatory action. However, limited information exists regarding current and historical emissions for the majority of PFASs under currently implemented regulations. This study employed suspect and nontarget screening to examine the temporal trends of legacy and unregulated PFASs in liver of the endangered beluga whale (Delphinapterus leucas) population from the St. Lawrence Estuary in Canada collected from 2000 to 2017. A suite of 54 PFASs were tentatively identified, and were grouped into nine structurally distinct classes. Single-hydrogenated perfluoro carboxylic acids (H-PFCAs), single-hydrogenated sulfonamides (H-Sulfonamides), as well as other select sulfonamides were detected for the first time in wildlife. Greater concentrations of the majority of PFASs were determined in newborns and juveniles than in adults, suggesting effective placental and lactational transfer of PFASs. Legacy per- and polyfluoroalkyl acids and perfluorooctane sulfonamide in beluga whale liver were found to significantly decrease in concentration between 2000 and 2017, while unregulated short-chain PFAS alternatives, H-PFCAs, and odd-chain FTCAs were found to increase over time. The implementation of suspect and nontarget screening revealed class-specific temporal trends of PFASs in SLE beluga whales, and supported continuous emissions of unregulated PFASs into the environment.
Collapse
Affiliation(s)
- Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xuan Du
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montréal, Québec H2Y 2E7, Canada
| | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 7C6, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'Environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, M5S3H6 Ontario, Canada
| |
Collapse
|
14
|
Liu Y, Zhang S, Wu Y, Li W, Yang Y. A 3D Adenine‐based Cd‐MOF: Synthesis, Structure and Photoluminescent Sensing for an Aromatic Azo Compound. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Liu
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Shi‐Ting Zhang
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Yan‐Bin Wu
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Wei Li
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| | - Ying‐Qun Yang
- Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science Hengyang Normal University Hengyang City Hunan Province P. R. China
| |
Collapse
|
15
|
Blanchard P, Babichuk N, Sarkar A. Evaluating the use of synchrotron X-ray spectroscopy in investigating brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42168-42174. [PMID: 32860190 DOI: 10.1007/s11356-020-10623-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Brominated flame retardants (BFRs) are commonly used in consumer products and they shed off these products and eventually build up in household dust. Polybrominated diphenyl ethers (PBDEs), in particular, are known endocrine-disrupting chemicals affecting various hormone syntheses. Portable X-ray fluorescence spectroscopy (XRF) is the most common non-destructive method in identifying BFRs in environmental samples. However, the method is insensitive to bromine speciation. Synchrotron-based XRF has been shown to have very low detection limits (< 1 μg/g) that is suitable for detecting BFRs and can be combined with X-ray absorption near-edge spectroscopy (XANES) to identify the bromine species present in the household dust. Twenty indoor dust samples were collected from rural homes in Newfoundland (Canada) to assess the use of synchrotron-based techniques to identify BFRs. Synchrotron-based XRF analysis identified bromine in all the samples, with concentrations ranging from 2-19 μg/g. XANES analysis identified organic-based bromine species in several samples that are likely BFRs based on the spectral line shape. The accuracy of using XANES to identify BFRs is highly dependent on the source and size of the dust samples. Therefore, for future research, it is important to take into account the sources of dust sample and to focus on fine dust particles.
Collapse
Affiliation(s)
| | - Nicole Babichuk
- Division of Community Health Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Atanu Sarkar
- 4M110, Health Sciences Centre, Division of Community Health Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
16
|
Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105620. [PMID: 32932042 PMCID: PMC11106729 DOI: 10.1016/j.aquatox.2020.105620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29631, United States.
| | - Lisa J Bain
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Seth Kullman
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Charles D Rice
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Amy H Ringwood
- Biological Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, United States.
| | - Peter van den Hurk
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| |
Collapse
|
17
|
Han J, Yang D, Hall DR, Liu J, Sun J, Gu W, Tang S, Alharbi HA, Jones PD, Krause HM, Peng H. Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish ( Danio rerio) Is Prone to Aromatic Substituent Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4421-4431. [PMID: 32146810 DOI: 10.1021/acs.est.9b07178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brominated azo dyes (BADs) have been identified as predominant indoor brominated pollutants in daycare dust; thus, their potential health risk to children is of concern. However, the toxicities of BADs remain elusive. In this study, the toxicokinetics of two predominant BADs, Disperse Blue 373 (DB373) and Disperse Violet 93 (DV93), and their suspect metabolite 2-bromo-4,6-dinitroaniline (BDNA) was investigated in embryos of zebrafish (Danio rerio). The bioconcentration factor of DV93 at 120 hpf is 6.2-fold lower than that of DB373. The nontarget analysis revealed distinct metabolism routes between DB373 and DV93 by reducing nitro groups to nitroso (DB373) or amine (DV93), despite their similar structures. NAD(P)H quinone oxidoreductase 1 (NQO1) and pyruvate dehydrogenase were predicted as the enzymes responsible for the reduction of DB373 and DV93 by correlating time courses of the metabolites and enzyme development. Further in vitro recombinant enzyme and in vivo inhibition results validated NQO1 as the enzyme specifically reducing DB373, but not DV93. Global proteome profiling revealed that the expression levels of proteins from the "apoptosis-induced DNA fragmentation" pathway were significantly upregulated by all three BADs, supporting the bioactivation of BADs to mutagenic aromatic amines. This study discovered the bioactivation of BADs via distinct eukaryotic enzymes, implying their potential health risks.
Collapse
Affiliation(s)
- Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Jiabao Liu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Wen Gu
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hattan A Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Henry M Krause
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3E8, Canada
| |
Collapse
|
18
|
Peter KT, Wu C, Tian Z, Kolodziej EP. Application of Nontarget High Resolution Mass Spectrometry Data to Quantitative Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12257-12268. [PMID: 31603663 DOI: 10.1021/acs.est.9b04481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High resolution mass spectrometry (HRMS) analyses provide expansive chemical characterizations of environmental samples. To date, most research efforts have developed tools to expedite labor- and time-intensive contaminant identification efforts. However, even without chemical identity, the richness of nontarget HRMS data sets represents a significant opportunity to chemically differentiate samples and delineate source contributions. To develop this potential, we evaluated the use of unidentified HRMS detections to define sample uniqueness and provide additional statistical resolution for quantitative source apportionment, overcoming a critical limitation of existing approaches based on targeted contaminants. By creating a series of sample mixtures that mimic pollution sources in a representative watershed, we assessed the fidelity of HRMS source fingerprints during dilution and mixing. This approach isolated 8-447 nontarget compounds per sample for source apportionment and yielded accurate source concentration estimates (between 0.82 and 1.4-fold of actual values), even in multisource systems with <1% source contributions. Furthermore, we mined the nontarget data to identify five source-specific chemical end-members amenable to apportionment. While additional development studies are needed to fully evaluate the myriad factors affecting method accuracy and capabilities, this study provides a conceptual foundation for novel applications of nontarget HRMS data to confidently distinguish and quantify source impacts in complex systems.
Collapse
Affiliation(s)
- Katherine T Peter
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
| | - Christopher Wu
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
| | - Zhenyu Tian
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
| | - Edward P Kolodziej
- Interdisciplinary Arts and Science , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Center for Urban Waters , Tacoma , Washington 98421 , United States
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
19
|
Xie X, Jin Y, Ma Z, Tang S, Peng H, Giesy JP, Liu H. Underlying mechanisms of reproductive toxicity caused by multigenerational exposure of 2, bromo-4, 6-dinitroaniline (BDNA) to Zebrafish (Danio rerio) at environmental relevant levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105285. [PMID: 31546070 DOI: 10.1016/j.aquatox.2019.105285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
2-bromo-4, 6-dinitroaniline (BDNA) is a mutagenic aromatic amine involved in the production and degradation of Disperse blue 79, one of the most extensively used brominated azo dyes. In our previous study, a multigenerational exposure of BDNA (0.5, 5, 50 and 500 μg/L) to zebrafish from F0 adult to F2 larvae including a recovery group in F2 larvae was conducted. The effects on apical points observed in individuals and the long-term effects predicted on population were all related to reproduction. In this study, we performed molecular analysis to elucidate the underlying mechanisms of the reproductive toxicity of BDNA. In F1 generation, measurement of vitellogenin and transcription levels of genes associated with hypothalamus-pituitary-gland (HPG) axis, estrogen receptor (ER) and androgen receptor (AR) were conducted. There was a decrease in VTG level in the blood of F1 female fish and transcription of genes related to ER was more affected than that of genes related to AR. These results were consistent with adverse effects that sexual differentiation was biased towards males and fecundity was impaired in a concentration-dependent manner in adults of F1 generation after 150 days exposure. In F2 generation, global gene transcriptions of F2 larvae were investigated. It was uncovered that processes related to apoptosis, development and DNA damage were strongly affected. Alterations to these biological pathways accounted for the irreversible parental influence on a significant decrease in hatchability and increase in abnormality of F2 larvae. All evidence suggested that the multigenerational exposure of BDNA posed lasting effects transmitted from parents to offspring that persisted after exposure ceased.
Collapse
Affiliation(s)
- Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Ontario, M5S 3H6, Canada
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SKS7N 5B3, Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Zhang X, Di Lorenzo RA, Helm PA, Reiner EJ, Howard PH, Muir DCG, Sled JG, Jobst KJ. Compositional space: A guide for environmental chemists on the identification of persistent and bioaccumulative organics using mass spectrometry. ENVIRONMENT INTERNATIONAL 2019; 132:104808. [PMID: 31182229 PMCID: PMC6754779 DOI: 10.1016/j.envint.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 05/11/2023]
Abstract
Since 2001, twenty-eight halogenated groups of persistent organic pollutants (POPs) have been banned or restricted by the Stockholm Convention. Identifying new POPs among the hundreds of thousands of anthropogenic chemicals is a major challenge that is increasingly being met by state-of-the-art mass spectrometry (MS). The first step to identification of a contaminant molecule (M) is the determination of the type and number of its constituent elements, viz. its elemental composition, from mass-to-charge (m/z) measurements and ratios of isotopic peaks (M + 1, M + 2 etc.). Not every combination of elements is possible. Boundaries exist in compositional space that divides feasible and improbable compositions as well as different chemical classes. This study explores the compositional space boundaries of persistent and bioaccumulative organics. A set of ~305,134 compounds (PubChem) was used to visualize the compositional space occupied by F, Cl, and Br compounds, as defined by m/z and isotope ratios. Persistent bioaccumulative organics, identified by in silico screening of 22,049 commercial chemicals, reside in more constrained regions characterized by a higher degree of halogenation. In contrast, boundaries surrounding non-halogenated chemicals could not be defined. Finally, a script tool (R code) was developed to select potential POPs from high resolution MS data. When applied to household dust (SRM 2585), this approach resulted in the discovery of previously unknown chlorofluoro flame retardants.
Collapse
Affiliation(s)
- Xianming Zhang
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Robert A Di Lorenzo
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
| | - Paul A Helm
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Philip H Howard
- SRC, Environmental Science Center, 6502 Round Pond Road, North Syracuse, New York, United States of America
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
| | - Karl J Jobst
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton L8S 4M1, Canada.
| |
Collapse
|
21
|
Gnanaprakasam M, Saranya G, Bandaru S, English NJ, Senthilkumar K. Atmospheric oxidation mechanism and kinetics of 2-bromo-4,6-dinitroaniline by OH radicals - a theoretical study. Phys Chem Chem Phys 2019; 21:21109-21127. [PMID: 31528950 DOI: 10.1039/c9cp04271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Bromo-4,6-dinitroaniline (BNA) is identified as a domestic-dust pollutant in urban environments, with deleterious atmospheric effects. In the present work, we studied the reaction pathways and kinetics for BNA oxidation by the OH radical using quantum-chemical methods and canonical-variational transition-state theory with small-curvature tunneling correction (CVT/SCT). OH-radial-mediated BNA oxidation was studied by considering OH addition to carbon atoms (C1 to C6) of BNA and H-atom abstraction at the -NH2 group and carbon atoms (C3 and C5) of BNA by OH radicals. It is observed that an OH-addition reaction is energetically more favorable. In addition, the rate constant was calculated for the favorable initial OH-addition reactions over the temperature range of 278 to 1000 K. The subsequent reactions for the favorable BNA-OH adduct intermediate with O2, HO2 and NO radicals are studied. We have identified the following possible end products from this BNA-oxidation reaction: (i) 2-amino-3-bromo-6-hydroperoxy-5-methyl-1-nitro-cyclohexa-2,4 dienol, (ii) 2-amino-1-bromo-6-hydroperoxy-5-methyl-3-nitro-cyclohexa-2,4-dienol, (iii) 2-amino-1-bromo-6-hydroperoxy-5-methyl-3-nitro-cyclohexa-2,4-dienol, (iv) 3-amino-4-bromo-4-hydroperoxy-8-methyl-2-nitro-6,7-dioxa-bicyclo oct-2-en-8-ol, (v) 2-amino-1-bromo-6-hydroperoxy-5-methyl-3-nitro-cyclohexa-2,4-dienol, and (vi) 3-amino-2-bromo-8-methyl-4-nitro-6,7-dioxa-bicyclo oct-3-ene-2,8-diol.
Collapse
Affiliation(s)
- M Gnanaprakasam
- Department of Physics, Bharathiar University, Coimbatore-641 046, India.
| | - G Saranya
- Beijing Computational Science Research Center, Beijing, 100084, China
| | - S Bandaru
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - N J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - K Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore-641 046, India.
| |
Collapse
|
22
|
Dhungana B, Peng H, Kutarna S, Umbuzeiro G, Shrestha S, Liu J, Jones PD, Subedi B, Giesy JP, Cobb GP. Abundances and concentrations of brominated azo dyes detected in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:784-793. [PMID: 31200204 DOI: 10.1016/j.envpol.2019.05.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 05/26/2023]
Abstract
Dust samples were collected from four indoor environments, including childcare facilities, houses, hair salons, and a research facility from the USA and were analyzed for brominated compounds using full scan liquid chromatography high-resolution mass spectrometry. A total of 240 brominated compounds were detected in these dust samples, and elemental formulas were predicted for 120 more abundant ions. In addition to commonly detected brominated flame retardants (BFRs), nitrogen-containing brominated azo dyes (BADs) were among the most frequently detected and abundant. Specifically, greater abundances of BADs were detected in indoor dusts from daycares and salons compared to houses and the research facility. Using authentic standards, a quantitative method was established for two BADs (DB373: Disperse Blue 373 and DV93: Disperse Violet 93) and 2-bromo-4,6-dinitroaniline, a commonly used precursor in azo dye production, in indoor dust. Generally, greater concentrations of DB373 (≤3850 ng/g) and DV93 (≤1190 ng/g) were observed in indoor dust from daycares highlighting children as a susceptible population to potential health risk from exposure to BADs. These data are important because, to date, targeted analysis of brominated compounds in indoor environments has focused mainly on BFRs and appears to underestimate the total amount of brominated compounds.
Collapse
Affiliation(s)
- Birendra Dhungana
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Gisela Umbuzeiro
- School of Technology, FT-UNICAMP, Sate University of Campinas, Limeira, Brazil
| | - Sujan Shrestha
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Jing Liu
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bikram Subedi
- Department of Chemistry, Murray State University, Murray, KY, United States
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| |
Collapse
|
23
|
Turner A. Trace elements in laundry dryer lint: A proxy for household contamination and discharges to waste water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:568-573. [PMID: 30776628 DOI: 10.1016/j.scitotenv.2019.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Seventy samples of laundry dryer lint from 19 households have been analysed for trace elements (As, Br, Cu, Fe, Ni, Pb, Sb, Zn) by energy-dispersive portable X-ray fluorescence (XRF) spectrometry. Bromine, Fe and Zn were detected in more than sixty samples encompassing all households, with dry weight concentrations ranging from 5.5 to 213 μg g-1, 76 to 3580 μg g-1 and 24 to 3540 μg g-1, respectively. Lead and Sb were detected in twenty and eight samples from ten and seven households, respectively, with concentrations ranging from about 8 to 110 μg g-1 for Pb and 40 to 90 μg g-1 for Sb. In contrast, As was only detected in six samples from the same household with concentrations ranging from about 10 to 250 μg g-1. Analysis of 72 items of new or clean clothing and linen revealed the ubiquity of Sb in synthetic (largely polyester-based) articles and the presence of Br in a variety of natural and synthetic articles, suggesting that the dominant source of these elements in dryer lint is derived from clothing fibres themselves; specifically, Sb2O3 is employed as a catalyst in the manufacture of polyester and various brominated compounds appear to be used as disperse dyes. No detectable As or Pb in the clothing-linen samples indicates that their presence in dryer lint arises from contamination of laundry from extraneous sources (e.g. household dust and material accumulated from outdoor activities) and suggests that concentrations can be used as proxies for exposure or household contamination. Since dryer lint is representative of material shed during the washing of clothes and linen, its composition also serves as a proxy for contaminants entering the environment from this process. Of particular significance in this respect is the discharge of chemicals specific to textiles or associated with microfibers.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
24
|
Teng Y, Zhou Q. Response of soil enzymes, functional bacterial groups, and microbial communities exposed to sudan I-IV. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:328-335. [PMID: 30278394 DOI: 10.1016/j.ecoenv.2018.09.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
As an important type of typical synthetic azo dyes, the use of sudan I-IV dyes has been of concern worldwide because of their wide applications and illegal addition into various foodstuffs, potentially resulting in water and soil pollution and having adverse effects on human health and ecosystems. However, to date, little has been reported regarding the environmental levels of these dyes and the risks that they pose to human health and ecosystems. Understanding the responses of soil enzymes, functional groups of bacteria and microbial communities to sudan dyes is of great importance to reveal their effect on the soil environment. In this study, we performed a toxicological study on the specific and overall effects of sudan I-IV dyes on the activity of soil enzymes including catalase, urease, and alkaline phosphatase after a 2- and 7-day exposure, functional groups of soil bacteria including nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria on day 14, and the structure and diversity of soil microbial community compositions on day 30. The results showed that sudan I-IV affected the activity of the soil enzymes, the abundance of the bacterium functional groups, and the structure and diversity of microbial community compositions, and the effects varied by sudan dyes I-IV, the exposure concentration, and the exposure time.
Collapse
Affiliation(s)
- Yong Teng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, & Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, & Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
25
|
Kollitz EM, Kassotis CD, Hoffman K, Ferguson PL, Sosa JA, Stapleton HM. Chemical Mixtures Isolated from House Dust Disrupt Thyroid Receptor β Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11857-11864. [PMID: 30212187 PMCID: PMC6433547 DOI: 10.1021/acs.est.8b03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
House dust is a source of exposure to chemicals that can impact hormone regulation. This study was designed to evaluate the potential of house dust mixtures ( n = 137) to disrupt thyroid hormone nuclear receptor signaling in a cell-based reporter assay and to examine associations with thyroid hormones (TH) measured in residents of the homes. Approximately 41% of the extracts (ranging from 10.5 to 4.097 μg of dust/mL) significantly antagonized thyroid receptor β (TRβ) signaling by 20-67% relative to the hormone control. The concentrations of 12 flame retardants (FRs) quantified in the mixtures were significantly correlated with TRβ antagonism; however, they were inactive when tested individually. We hypothesize that the observed antagonism is due to mixture effects or unidentified compounds that co-occur with FRs. Dust extract potency was significantly associated with free thyroxine (FT4, rs = -0.64, p < 0.001), suggesting that more potent dust samples are associated with higher FT4 levels in residents. Overall, these results suggest that house dust is a significant source of exposure to TH-disrupting chemicals, and TRβ may have a role in mediating effects of exposure on TH levels. Additional studies are needed to identify the chemical(s) driving the observed effects on TRβ and to determine if these changes lead to any adverse outcomes.
Collapse
Affiliation(s)
- Erin M. Kollitz
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| | - Christopher D. Kassotis
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| | - P. Lee Ferguson
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| | - Julie Ann Sosa
- Department of Surgery, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94117, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
- Corresponding Author Information: Phone: (919) 613-8717,
| |
Collapse
|
26
|
Ma Z, Peng H, Jin Y, Zhang X, Xie X, Jian K, Liu H, Su G, Tang S, Yu H. Multigenerational Effects and Demographic Responses of Zebrafish ( Danio rerio) Exposed to Organo-Bromine Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8764-8773. [PMID: 29984988 DOI: 10.1021/acs.est.8b00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-term exposure to toxic chemicals often has deleterious effects on aquatic organisms. In order to support appropriate environmental management of chemicals, a mathematical model was developed to characterize the effects of chemicals on multigenerational population dynamics in aquatic animals. To parametrize the model, we conducted a multigenerational laboratory toxicity test in zebrafish ( Danio rerio) exposed to 2-bromo-4,6-dinitroaniline (BDNA). Long-term exposure to BDNA considerably reduced the fecundity of adult zebrafish (F0 and F1) and caused deformities in the offspring (F2). Life history data, including changes in fecundity and population growth, were then integrated into the model to predict population dynamics of zebrafish exposed to two novel brominated flame retardants, bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB). The model predicted that the fecundity of adult zebrafish would be significantly impaired after exposure to 90.36 μM TBPH and 99.16 μM TBB. Thus, prolonged exposure to such levels over multiple generations could result in population extinction within 20 years. Our results provide an intensive temporal perspective to investigate a keystone that connects with individual response to chemicals, population dynamics, and ultimately ecosystem influences.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hui Peng
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Xianming Zhang
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Song Tang
- National Institute of Environmental Health Chinese Center for Disease Control and Prevention , No.7 Panjiayuan Nanli Chaoyang District , Beijing 100021 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
27
|
Moschet C, Anumol T, Lew BM, Bennett DH, Young TM. Household Dust as a Repository of Chemical Accumulation: New Insights from a Comprehensive High-Resolution Mass Spectrometric Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2878-2887. [PMID: 29437387 PMCID: PMC7239036 DOI: 10.1021/acs.est.7b05767] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical exposure in household dust poses potential risks to human health but has been studied incompletely thus far. Most analytical studies have focused on one or several compound classes, with analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). However, a comprehensive investigation of individual dust samples is missing. The present study comprehensively characterizes chemicals in dust by applying a combination of target, suspect, and nontarget screening approaches using both LC and GC with quadrupole time-of-flight (Q/TOF) MS. First, the extraction method was optimized to streamline detection of LC-Q/TOF and GC-Q/TOF amenable compounds and was successfully validated with over 100 target compounds. Nontarget screening with GC-Q/TOF was done by spectral deconvolution followed by a library search. Suspect screening by LC-Q/TOF was carried out with an accurate mass spectral library. Finally, LC-Q/TOF nontarget screening was carried out by extracting molecular features, acquiring tandem mass spectrometric (MS/MS) spectra, and performing compound identification by use of in silico fragmentation software tools. In total, 271 chemicals could be detected in 38 dust samples, 163 of which could be unambiguously confirmed by a reference standard. Many of them, such as the plastic leachable 7,9-di- tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (CAS 82304-66-3) and three organofluorine compounds, are of emerging concern and their presence in dust has been underestimated. Advantages and drawbacks of the different approaches and analytical instruments are critically discussed.
Collapse
Affiliation(s)
- Cristoph Moschet
- University of California Davis, Department of Civil and Environmental Engineering, Davis, CA
| | | | - Bonny M. Lew
- University of California Davis, Department of Civil and Environmental Engineering, Davis, CA
| | - Deborah H. Bennett
- University of California Davis, Department of Public Health Sciences and Center for Health and the Environment, Davis, CA
| | - Thomas M. Young
- University of California Davis, Department of Civil and Environmental Engineering, Davis, CA
- Corresponding Author: Tel: +1 (530) 754-9399;
| |
Collapse
|
28
|
Josephy PD, Dhanoa J, Elzawy G, Heney K, Petrie L, Senis C. Structure-activity investigation of the potentiating effect of cyano substitution on nitroaniline mutagenicity in the ames test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:114-122. [PMID: 29178210 DOI: 10.1002/em.22161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
2,6-Dicyano-4-nitroaniline and 2-cyano-4-nitroaniline (CNNA; 2-amino-5-nitrobenzonitrile) are potent mutagens in the Ames test, even though unsubstituted nitroanilines (NAs) are no more than weak mutagens. These compounds are putative reduction products of many commercial azo dyes, including Disperse Blue 165, Disperse Blue 337, Disperse Red 73, Disperse Red 82, Disperse Violet 33, and Disperse Violet 63. We have examined the mutagenicity in strains TA98 and YG1024 of a series of commercially-available isomers of CNNA, and some related compounds, to probe the relationship between structure and genotoxic activity in this class of compounds. The potentiating effect of the cyano substituent is seen in many cases; e.g. 2-amino-4-nitrobenzonitrile is a much more potent mutagen than 3-NA. 2,4-Dinitrobenzonitrile is also highly mutagenic. Possible mechanisms for the "cyano effect" are considered, with respect to the likely structures of cyanonitroaniline-DNA adducts and the roles of the enzymes (nitroreductase and acetyl CoA:arylamine N-acetyltransferase) believed to be involved in the activation of nitroaromatic compounds. Environ. Mol. Mutagen. 59:114-122, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Joban Dhanoa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - George Elzawy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Heney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laurenne Petrie
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chantel Senis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Vacchi FI, Vendemiatti JADS, da Silva BF, Zanoni MVB, Umbuzeiro GDA. Quantifying the contribution of dyes to the mutagenicity of waters under the influence of textile activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:230-236. [PMID: 28554114 DOI: 10.1016/j.scitotenv.2017.05.103] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 04/15/2023]
Abstract
The combination of chemical analyses and bioassays allows the identification of potentially mutagenic compounds in different types of samples. Dyes can be considered as emergent contaminants and were detected in waters, under the influence of textile activities. The objective of this study was to evaluate the contribution of 9 azo dyes to the mutagenicity of representative environmental samples. Samples were collected along one year in the largest conglomerate of textile industries of Brazil. We analyzed water samples from an important water body, Piracicaba River, upstream and downstream two main discharges, the effluent of a wastewater treatment plant (WWTP) and the tributary Quilombo River, which receives untreated effluent from local industries. Samples were analyzed using a LC-MS/MS and tested for mutagenicity in the Salmonella/microsome microsuspension assay with TA98 and YG1041. Six dyes were detected in the collected samples, Disperse Blue 291, Disperse Blue 373, Disperse Orange 30, Disperse Red 1, Disperse Violet 93, and Disperse Yellow 3. The most sensitive condition for the detection of the mutagenicity was the strain YG1041 with S9. The concentration of dyes and mutagenicity levels varied along time and the dry season represented the worst condition. Disperse Blue 373 and Disperse Violet 93 were the major contributors to the mutagenicity. We conclude that dyes are contributing for the mutagenicity of Piracicaba River water; and both discharges, WWTP effluent and Quilombo River, increase the mutagenicity of Piracicaba River waters in about 10-fold. The combination of chemical analysis and bioassays were key in the identification the main drivers of the water mutagenicity and allows the selection of priority compounds to be included in monitoring programs as well for the enforcing actions required to protect the water quality for multiple uses.
Collapse
Affiliation(s)
- Francine Inforçato Vacchi
- Faculty of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil; School of Technology, State University of Campinas, UNICAMP, Limeira, SP, Brazil
| | | | | | | | - Gisela de Aragão Umbuzeiro
- Faculty of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil; School of Technology, State University of Campinas, UNICAMP, Limeira, SP, Brazil.
| |
Collapse
|
30
|
Ginsberg GL, Belleggia G. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust. ENVIRONMENT INTERNATIONAL 2017; 109:101-113. [PMID: 28890219 DOI: 10.1016/j.envint.2017.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment.
Collapse
Affiliation(s)
- Gary L Ginsberg
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA.
| | - Giuliana Belleggia
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA
| |
Collapse
|
31
|
Gadaleta D, Porta N, Vrontaki E, Manganelli S, Manganaro A, Sello G, Honma M, Benfenati E. Integrating computational methods to predict mutagenicity of aromatic azo compounds. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:239-257. [PMID: 29027864 DOI: 10.1080/10590501.2017.1391521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Azo dyes have several industrial uses. However, these azo dyes and their degradation products showed mutagenicity, inducing damage in environmental and human systems. Computational methods are proposed as cheap and rapid alternatives to predict the toxicity of azo dyes. A benchmark dataset of Ames data for 354 azo dyes was employed to develop three classification strategies using knowledge-based methods and docking simulations. Results were compared and integrated with three models from the literature, developing a series of consensus strategies. The good results confirm the usefulness of in silico methods as a support for experimental methods to predict the mutagenicity of azo compounds.
Collapse
Affiliation(s)
- Domenico Gadaleta
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milano , Italy
| | - Nicola Porta
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milano , Italy
| | - Eleni Vrontaki
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milano , Italy
- b Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Athens , Greece
| | - Serena Manganelli
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milano , Italy
| | | | - Guido Sello
- d Department of Chemistry , University of Milano , Milan , Italy
| | - Masamitsu Honma
- e Division of Genetics & Mutagenesis National Institute of Health Sciences , Setagaya-ku , Tokyo , Japan
| | - Emilio Benfenati
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milano , Italy
| |
Collapse
|
32
|
Peng H, Sun J, Saunders DMV, Codling G, Wiseman S, Jones PD, Giesy JP. Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic potencies with several nuclear receptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:578-586. [PMID: 28505588 DOI: 10.1016/j.envpol.2017.04.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
In the current study, by combining ultra-high resolution (UHR) MS1 spectra, MS2 spectra, and derivatization, three hydroxylated isomers of 2-ethylhexyl tetrabromobenzoate (OH-TBB) were identified in Firemaster® 550 and BZ-54 technical products. Also, a new LC-UHRMS method, using atmospheric pressure chemical ionization (APCI), was developed for simultaneous analysis of OH-TBB, TBB, hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) and TBPH in 23 samples of dust collected from houses in Saskatoon, SK, Canada. OH-TBBs were detected in 91% of samples, with a geometric mean concentration of 0.21 ng/g, which was slightly less than those of OH-TBPH (0.35 ng/g). TBB was detected in 100% of samples of dust with a geometric mean concentration of 992 ng/g. Significant (p < 0.001) log-linear relationships between concentrations of OH-TBBs, TBB, or OH-TBPHs and TBPH in dust support the hypothesis of a common source of these compounds. OH-TBBs were found to be strong agonists of peroxisome proliferator-activated receptor gamma (PPARγ) and weaker agonists of the estrogen receptor (ER), but no agonistic potencies was observed with the androgen receptor (AR). Occurrence of OH-TBBs in technical products and house dust, together with their relatively strong PPARγ potencies, indicated their potential risk to health of humans.
Collapse
Affiliation(s)
- Hui Peng
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Jianxian Sun
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| | - David M V Saunders
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, People's Republic of China; School of Biological Sciences, University of Hong Kong, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Y Kimura S, Zheng W, N Hipp T, M Allen J, D Richardson S. Total organic halogen (TOX) in human urine: A halogen-specific method for human exposure studies. J Environ Sci (China) 2017; 58:285-295. [PMID: 28774619 DOI: 10.1016/j.jes.2017.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 05/19/2023]
Abstract
Disinfection by-products (DBPs) are a complex mixture of compounds unintentionally formed as a result of disinfection processes used to treat drinking water. Effects of long-term exposure to DBPs are mostly unknown and were the subject of recent epidemiological studies. However, most bioanalytical methods focus on a select few DBPs. In this study, a new comprehensive bioanalytical method has been developed that can quantify mixtures of organic halogenated compounds, including DBPs, in human urine as total organic chlorine (TOCl), total organic bromine (TOBr), and total organic iodine (TOI). The optimized method consists of urine dilution, adsorption to activated carbon, pyrolysis of activated carbon, absorption of gases in an aqueous solution, and halide analysis with ion chromatography and inductively coupled plasma-mass spectrometry. Spike recoveries for TOCl, TOBr, and TOI measurements ranged between 78% and 99%. Average TOCl, TOBr, and TOI concentrations in five urine samples from volunteers who consumed tap water were 1850, 82, and 21.0μg/L as X-, respectively. Volunteers who consumed spring water (control) had TOCl, TOBr, and TOI average concentrations in urine of 1090, 88, and 10.3μg/L as X-, respectively. TOCl and TOI in the urine samples from tap water consumers were higher than the control. However, TOBr was slightly lower in tap water urine samples compared to mineral water urine samples, indicating other sources of environmental exposure other than drinking water. A larger sample population that consumes tap water from different cities and mineral water is needed to determine TOCl, TOBr, and TOI exposure from drinking water.
Collapse
Affiliation(s)
- Susana Y Kimura
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Weiwei Zheng
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Taylor N Hipp
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
34
|
Kim S, Durand P, André E, Carteret C. Enhanced photocatalytic ability of Cu, Co doped ZnAl based mixed metal oxides derived from layered double hydroxides. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Ferguson PL, Stapleton HM. Comment on "Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3588-3590. [PMID: 28282131 DOI: 10.1021/acs.est.7b00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
36
|
Peng H, Saunders DMV, Jones PD, Giesy JP. Response to Comment on "Mutagenic Azo Dyes, Rather than Flame Retardants, are the Predominant Brominated Compounds in House Dust". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3591-3592. [PMID: 28282130 DOI: 10.1021/acs.est.7b00675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Hui Peng
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK Canada
| | - David M V Saunders
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK Canada
- School of Environment and Sustainability, University of Saskatchewan , 117 Science Place, Saskatoon, SK Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, People's Republic of China
- Zoology Department, Center for Integrative Toxicology, Michigan State University , 1129 Farm Lane Road, East Lansing, Michigan United States
- School of Biological Sciences, University of Hong Kong , Hong Kong Special Administrative Region, Peoples republic of China
| |
Collapse
|