1
|
Sun H, Ye L, Yang M, Su G. High-resolution mass spectrometry recognized Tetrabromobisphenol A bis (2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) as a contaminant in sediment from a flame retardant manufacturing factory. WATER RESEARCH 2025; 283:123783. [PMID: 40373377 DOI: 10.1016/j.watres.2025.123783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/28/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Information on contamination status of tetrabromobisphenol, and triazine-based novel brominated flame retardants (NBFRs) in sediment environment is very rare. Here, by use of high performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (HPLC-Q-Orbitrap/MS), we developed an analytical method for determination of three tetrabromobisphenol, and two triazine-based FRs in sediment samples. By applying this method for analysis of n = 6 sediment samples from a flame retardant manufacturing factory, we observed that total concentrations of 6 NBFRs (∑6NBFRs) ranged from 7.46 to 1020 ng/g dry weight (dw), which were comparable to those (3.83-820 ng/g dw) of n = 11 sediment samples from e-waste recycling area. Both of them were statistically significantly (p < 0.001, one-way ANOVA) higher than those in n = 10 sediment samples from Taihu Lake (1.22-8.22 ng/g dw). With an aim to find novel tetrabromobisphenol, and triazine-based compounds, we further investigated the ionization characteristics and the fragmentation patterns in ionization source of six target NBFRs. We observed that debromination, ether bond breakage, and the breakage of inter-benzene ring C-C and C-S bonds were the main in-source fragmentation pathways for TBBPA/S derivatives. On the basis of the observed ionization characteristics and an in-house suspect screening list, we tentatively identified 71 NBFR formulas, of which ten TBBPA/S derivatives and one triazine-based BFRs were found for the first time in sediments. Among these NBFR formulas, tetrabromobisphenol A bis (2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is high of concern due to its male reproductive toxicity according to a recent study, and fully confirmed by comparing unique LC and HRMS characteristics of sediment sample with authentic standard. The work probably provides an opportunity for the structural identification of unknown TBBPA/S derivatives in environmental samples, and reports the occurrence of TBBPA-DBMPE in real environment.
Collapse
Affiliation(s)
- Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mengkai Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
2
|
Xu W, Han X, Tian Y, Liang J, Zhang Y. Identification of novel tetrabromobisphenol A byproducts in industrial chemicals and the environment near a manufacturing site: an overlooked source of novel pollutants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:950-959. [PMID: 40035190 DOI: 10.1039/d5em00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
To evaluate the migration, transformation, and fate of tetrabromobisphenol A (TBBPA) in the environment, the transformation/degradation (T/D) products of TBBPA and byproducts of industrial production should be distinguished. Herein, 7 reported T/D products (R1-R7) and 7 novel byproducts (N1-N7) of TBBPA were identified in industrial-grade TBBPA chemicals by using high-performance liquid chromatography coupled ion trap mass spectrometry and high-resolution mass spectrometry with a suspect screening strategy. The possible formation pathways of these byproducts were attributed to the bromination, debromination, methylation, demethylation, hydroxylation, substitution, and radical coupling reactions of bisphenol A (BPA), BPA impurities, and TBBPA. The detection frequencies of R1-R7 and N3 (80-100%) were higher than those of N1, N2, and N4-N7 (20-60%) in industrial-grade TBBPA chemicals, with contents extended to 2.29% and 0.0989%, respectively. In the soils and sediments near the TBBPA plants, R1-R4 and N1 were detected with the highest concentration of 1.56 × 102 ng g-1 dry weight, while in the river waters, only R1-R4 were detected with the highest concentration of 4.57 × 102 ng L-1. An in silico analysis indicated the potential toxicity of these compounds, including their hepatotoxicity and carcinogenicity. To accurately estimate the environmental effects of the T/D products of TBBPA, the contributions of byproducts in industrial-grade TBBPA chemicals should be considered separately.
Collapse
Affiliation(s)
- Weihao Xu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Xiaoxuan Han
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jiakui Liang
- Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou 646000, China.
| | - Yanfeng Zhang
- Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou 646000, China.
| |
Collapse
|
3
|
Xu M, Zheng M, Ning K, Yang R, Wang L, Liu A, Qu G. Exploring factors influencing the spatial distribution and seasonal changes of BPA, TBBPA, and 20 analogs in China's marginal seas. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137209. [PMID: 39826463 DOI: 10.1016/j.jhazmat.2025.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
As emerging pollutants, bisphenol A (BPA), tetrabromobisphenol A (TBBPA) and its analogs have become widespread in the coastal environment of China. To investigate the occurrence of these novel contaminants in Chinese marginal sea, 176 seawater and 88 sediment samples were collected from the Yellow Sea and East China Sea. In seawater and sediment, the detection rates of TBBPA are 83.9 % and 100 %, BPA and 20 analogs were within 1.7 %-93.7 % and 1.1 %-100 %, respectively. In seawater, the concentrations of TBBPA and analogs were significantly higher in winter than in summer. But in sediment, there were no significant seasonal differences. The distribution of targets in 28 sampling points of the Yellow River and Yangtze River showed that industrial point source emissions have a greater impact on concentration. Fugacity analysis showed that BPA tends to diffuse from seawater to sediment while the TBBPA did the opposite. The maximum hazard quotients (HQ) of TBBPA and its analogs for three aquatic organisms indicated that they have high ecological risks, especially for complex organisms. Five suspected metabolites were identified by non-targeted screening. This study provides novel insights into the pollution status, dispersal behavior, and ecological risk of TBBPA and its analogs in the marine environment.
Collapse
Affiliation(s)
- Mengxin Xu
- School of Environment and Geography, Qingdao University, Qingdao 266071, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ke Ning
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Ruixia Yang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Ling Wang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China.
| | - Aifeng Liu
- School of Environment and Geography, Qingdao University, Qingdao 266071, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
4
|
Zhu P, Xie T, Gong S, Jiang H, Zhang L. Interaction between Tetrabromobisphenol A and invertebrates in rigid polyurethane biodegradation: Inhibitory effects, chemical transformation and microbial adaptation. BIORESOURCE TECHNOLOGY 2025; 422:132149. [PMID: 39952618 DOI: 10.1016/j.biortech.2025.132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in electronic plastics, but its effects on invertebrate-mediated plastic biodegradation remain unclear. This study investigated the impact of TBBPA on the biodegradation of rigid polyurethane (RPU) by Galleria mellonella and Tenebrio molitor larvae, and the effects of both larvae on the chemical transformation of TBBPA. Results showed that TBBPA inhibited the uptake of RPU by both larvae, resulting in a decrease of intestinal protein-like fluorescence intensity, reduced the concentrations of certain metabolic by-products of RPU, and inhibited the growth of RPU degradation related bacteria. Most TBBPA was excreted by both larvae, and a small fraction was transformed into less toxic brominated organic compounds. Sequencing analysis suggested that Enterobacteriaceae, Enterococcus, and non-dominant gut bacteria might play a role in TBBPA degradation. This study provides detailed insights into the interactions involved in the biodegradation of TBBPA-containing RPU by two invertebrate species.
Collapse
Affiliation(s)
- Ping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| | - Teng Xie
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Shuangshuang Gong
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Haoran Jiang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Lingen Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| |
Collapse
|
5
|
Yu Y, Zhou C, Beibei Li, Zhai S, Zhong J, Wei H, Chen Z, Xiang M, Hu G, Sun B. Transformation, bound-residue formation, translocation of tribromobisphenol A, 2,2'-dibromobisphenol A, 2,6-bromobisphenol A, and monobromobisphenol A in submerged soil and soil-rice seedling systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124572. [PMID: 39986152 DOI: 10.1016/j.jenvman.2025.124572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Tetrabromobisphenol A (TBBPA)-debrominated products has attracted growing concern in recent years. The sequential anoxic-oxic incubation approaches were effective in dissipation of environments containing halogenated xenobiotics. However, few studies focused on the submerged soil-plant systems, which appear common in environment. The present study characterised the fate and metabolites of TBBPA-debrominated products such as tribromobisphenol A (TriBBPA), 2,2'-dibromobisphenol A (2,2'-DiBBPA), 2,6-bromobisphenol A (2,6-DiBBPA), and monobromobisphenol A (MoBBPA) in submerged soils with an anoxic-oxic interface, with or without rice seedlings. The dissipation and translocation of TriBBPA, 2,2'-DiBBPA, 2,6-DiBBPA, and MoBBPA were reported for the first time. 2,6-DiBBPA showed the highest dissipation rate (half-life 3-3.5 days) compared with the dissipation rates (half-life 6.4-15.7 days) of TBBPA, TriBBPA, 2,2'-DiBBPA, and MoBBPA, and the highest non-extractable residues (0.21-30.8%) in soil generally. The presence of rice seedlings accelerated the breakdown of TBBPA and the TBBPA-debrominated products into bisphenol A, thereby reducing their binding to the soil. Methyl ethers of the debromination products (i.e., diMeO-MoBBPA, and MeO-MoBBPA) in soil were revealed for the first time. The logarithms (-3.03-0.85) of the translocation factors were negatively correlated with the octanol-water partition coefficients in the planted soil, indicating the significance of hydrophobicity in their transport. These findings reveal the impact of the anoxic-oxic interface on the fate and metabolism of TBBPA and TBBPA-debrominated products, supporting environmental risk assessment.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Chang Zhou
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Beibei Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Shiming Zhai
- Chengdu ecological environment monitoring Center station, Sichuan Province, 610000, China
| | - Jie Zhong
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Guangzhou, 510275, China
| | - Hang Wei
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Guangzhou, 510275, China
| | - Zhiliang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Guangzhou, 510275, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Bingbing Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China.
| |
Collapse
|
6
|
Zhang X, Xu Z, Zhang Y, Wan H, Zhao H. Tetrabromobisphenol A biotransformation in aged soil: Mechanism analysis induced by root exudates during rhizoremediation of Helianthus annus. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136089. [PMID: 39405712 DOI: 10.1016/j.jhazmat.2024.136089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Rhizoremediation, recognized as a progressive strategy for the removal of organic pollutants in soil, prominently focused on the influence of root exudates-induced alterations within the rhizosphere on the bioavailability and transformation of pollutants. However, the influence of root exudates on the ultimate fate of tetrabromobisphenol A (TBBPA) in soil remains unclear. The current study embarked on a comprehensive examination of the biotransformation process and underlying mechanisms of TBBPA driven by root exudates of Helianthus annus in rhizospheric soil. The pot experiment underscored the constructive impact of root exudates on enhancing the TBBPA dissipation efficiency within lab-controlled, with the increments of 18.77 %∼38.64 %. The core bacterial players responsible for TBBPA biotransformation were identified, with the prominent genus being Saccharibacteria_genera_incertae_sedis, unclassified_Sphingomonadaceae, and Parcubacteria_genera_incertae_sedis. In rhizospheric soil, a comprehensive analysis disclosed the presence of 20 different biotransformation products of TBBPA. Notably, root exudates were found to predominantly drive the reductive debromination pathway. This study provided for the first concrete evidence that root exudates can promote the desorption of TBBPA from soils. The current study aimed to decipher the molecular mechanisms in biotransformation process of TBBPA mediated by root exudates, and also provided reference for the environmental behavior of organic pollutants induced by root exudates.
Collapse
Affiliation(s)
- Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Zhenpeng Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yuqing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, 116024 Dalian, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| |
Collapse
|
7
|
Lv M, Liu Y, Wang M, Wang Y, Xiang T, Guo Y, Song XC, Yan Y, Gao J, Shi C, Pan W, Liu A, Yao L, Yan X, Chen L, Liu R, Shi J, Yan B, Cai Z, Qu G, Jiang G. Biotransformation of Tetrabromobisphenol A and Its Analogs by Selected Gut Bacteria Strains: Implications for Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20894-20905. [PMID: 39536133 DOI: 10.1021/acs.est.4c10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Knowledge of the biotransformation of tetrabromobisphenol A (TBBPA) and its related contaminants by human gut microbiota (GM) remains unexplored. Here, TBBPA and its four analogs were incubated with mixed GM strains, and nine rhamnosylated or debrominated transformation products (TPs) were discovered. Remarkably, rhamnosylation was identified as a common and unique microbial transformation pathway for these contaminants, and six of the seven rhamnosylated TPs were reported for the first time. Additionally, a kinetic transformation study also showed a rapid and strong bioaccumulation of TBBPA and TPs by Clostridium manihotivorum. Genomic analysis and phylogenetic studies identified C1.1_02053 as the gene encoding the C. manihotivorum working rhamnosyltransferase (CmRT), showing elevated gene expression with higher TBBPA exposure. Molecular docking identified five critical amino acid residues in CmRT that catalyze TBBPA rhamnosylation, and molecular dynamics simulations further confirmed the stability of the CmRT-TBBPA complex. Dynamic metabolomics analysis showed microbial growth-dependent disturbing effects in C. manihotivorum upon TBBPA exposure, and key metabolic pathways related to rhamnosyltransferase showed changes closely related to the transformation process. These findings provide insights into the unique transformation of environmental contaminants by the GM and highlight the disturbing effects of exogenous chemicals on the GM, as well as the potential impacts on overall human health.
Collapse
Affiliation(s)
- Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuhao Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiliang Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Kuang HX, Dong CY, Yan L, Zhou Y, Xiang MD, Yu YJ. Exposure to synthesized tribromobisphenol A and critical effects: Metabolic pathways, disease signature, and benchmark dose derivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173117. [PMID: 38734097 DOI: 10.1016/j.scitotenv.2024.173117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 μg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Chen-Yin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lei Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
9
|
Chi G, Zhao H, Zhang X, Li X, Deng Y, Li Z. Uptake, biotransformation and physiological response of TBBPA derivatives in Helianthus annus. CHEMOSPHERE 2024; 359:142290. [PMID: 38723691 DOI: 10.1016/j.chemosphere.2024.142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.
Collapse
Affiliation(s)
- Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Leung G, McKinney MA, Yaylayan V, Bayen S. Abiotic degradations of legacy and novel flame retardants in environmental and food matrices - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:811-832. [PMID: 38805263 DOI: 10.1080/19440049.2024.2354496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Flame retardants (FRs) are commonly added to commercial products to achieve flammability resistance. Since most of them are not chemically bonded to the materials, they could be leached to the environment during the production and disposal cycle. These FRs were categorised based on their chemical nature, including brominated, organophosphorus-, mineral- and nitrogen-based. This review summarised the abiotic degradation reactions of these four classes of FRs, with a focus on thermal and photodegradation reactions in environmental and food matrices. Only 24 papers have reported related information on abiotic degradation reactions that could be useful for predicting possible degradation pathways, and most focused on brominated FRs. Most studies also investigated the thermal degradation of FRs under high temperatures (>400 °C), which exceeds the normal cooking temperature at 100-300 °C. For photodegradation, studies have used up to five times the energy typically used in UV radiation during food processing. It is recommended that future studies investigate the fate of these FRs in foods under more realistic processing conditions, to provide a more comprehensive picture of the estimated consumption of FRs and their degradation products from foods, and facilitate a better risk assessment of the use of these novel FRs.
Collapse
Affiliation(s)
- Gabriel Leung
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Varoujan Yaylayan
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
11
|
Liu J, Xiang T, Song XC, Zhang S, Wu Q, Gao J, Lv M, Shi C, Yang X, Liu Y, Fu J, Shi W, Fang M, Qu G, Yu H, Jiang G. High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9925-9944. [PMID: 38820315 DOI: 10.1021/acs.est.3c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
Collapse
Affiliation(s)
- Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhang X, Lu H, Liu J, Tadiyose B, Wan H, Zhong Z, Deng Y, Chi G, Zhao H. Mechanism of tartaric acid mediated dissipation and biotransformation of tetrabromobisphenol A and its derivatives in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134350. [PMID: 38643580 DOI: 10.1016/j.jhazmat.2024.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Biotransformation is a major dissipation process of tetrabromobisphenol A and its derivatives (TBBPAs) in soil. The biotransformation and ultimate environmental fate of TBBPAs have been widely studied, yet the effect of root exudates (especially low-molecular weight organic acids (LMWOAs)) on the fate of TBBPAs is poorly documented. Herein, the biotransformation behavior and mechanism of TBBPAs in bacteriome driven by LMWOAs were comprehensively investigated. Tartaric acid (TTA) was found to be the main component of LMWOAs in root exudates of Helianthus annus in the presence of TBBPAs, and was identified to play a key role in driving shaping bacteriome. TTA promoted shift of the dominant genus in soil bacteriome from Saccharibacteria_genera_incertae_sedis to Gemmatimonas, with a noteworthy increase of 24.90-34.65% in relative abundance of Gemmatimonas. A total of 28 conversion products were successfully identified, and β-scission was the principal biotransformation pathway for TBBPAs. TTA facilitated the emergence of novel conversion products, including 2,4-dibromophenol, 3,5-dibromo-4-hydroxyacetophenone, para-hydroxyacetophenone, and tribromobisphenol A. These products were formed via oxidative skeletal cleavage and debromination pathways. Additionally, bisphenol A was observed during the conversion of derivatives. This study provides a comprehensive understanding about biotransformation of TBBPAs driven by TTA in soil bacteriome, offering new insights into LMWOAs-driven biotransformation mechanisms.
Collapse
Affiliation(s)
- Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bekele Tadiyose
- Department of Biology, Eastern Nazarene College, MA 02170, USA
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, 116024 Dalian, China
| | - Zhihui Zhong
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| |
Collapse
|
13
|
Sun CS, Yuan SW, Hou R, Zhang SQ, Huang QY, Lin L, Li HX, Liu S, Cheng YY, Li ZH, Xu XR. First insights into the bioaccumulation, biotransformation and trophic transfer of typical tetrabromobisphenol A (TBBPA) analogues along a simulated aquatic food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133390. [PMID: 38163409 DOI: 10.1016/j.jhazmat.2023.133390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.
Collapse
Affiliation(s)
| | - Sheng-Wu Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Si-Qi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai 264209, China.
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
14
|
Yu H, Zhang J, Liu J, Pan R, Wang Y, Jin X, Ahmed RZ, Zheng Y. TBBPA rather than its main derivatives enhanced growth of endometrial cancer via p53 ubiquitination. J Environ Sci (China) 2024; 137:82-95. [PMID: 37980057 DOI: 10.1016/j.jes.2022.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 11/20/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives widely exist in various environments and biota. Although the available data indicate that TBBPA exposure is highly associated with the increased incidence of endometrial cancer (EC), the effects of TBBPA and its main derivatives on EC proliferation and the involved crucial mechanism remain unclear. The present study aimed to investigate the effects of TBBPA and its derivatives under environmental concentrations on the proliferation of EC, and the crucial mechanism on the progression of EC caused by bromine flame retardants exposure. In this research, TBBPA and two of the most common TBBPA derivatives including TBBPA bis (2-hydroxyethyl ether) (TBBPA-BHEE) and TBBPA bis (dibromopropyl ether) (TBBPA-BDBPE) were screened for their capacities in induced EC proliferation and explored the related mechanism by in vitro cell culture model and in vivo mice model. Under environmental concentrations, TBBPA promoted the proliferation of EC, the main derivatives of TBBPA (TBBPA-BHEE and TBBPA-BDBPE) did not present the similar facilitation effects. The ubiquitination degradation of p53 was crucial in TBBPA induced EC proliferation, which resulted in the increase of downstream cell cycle and decrease of apoptosis. The further molecular docking result suggested the high affinity between TBBPA and ubiquitinated proteasome. This finding revealed the effects of TBBPA and its derivatives on EC proliferation, thus providing novel insights into the underlying mechanisms of TBBPA-caused EC.
Collapse
Affiliation(s)
- Hongyan Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingxu Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ruonan Pan
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Rifat Zubair Ahmed
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Genetics, University of Karachi, Karachi 75270, Pakistan
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
15
|
Li Z, Li Z, Zhou Y, Meng W, Li J, Zhou Y, He C, Dong G, Yu Y. Co-occurrence of tetrabromobisphenol a and debromination products in human hair across China: Implications for exposure sources and health effects on metabolic syndrome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168514. [PMID: 37977374 DOI: 10.1016/j.scitotenv.2023.168514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The large usage of Tetrabromobisphenol A (TBBPA) in consumer products leads to ubiquitous distribution globally, however, studies on the occurrence of their debromination compounds were rather scarce. Also, though many studies illustrate the effectiveness of hair analysis to assess human exposure to organic pollutants, evidence on the associations with health implications is still fairly limited. Herein, 598 participants from across China were employed to investigate chronic, low-level exposure to TBBPA and debromination products by hair analysis. The geomean concentrations of TBBPA, 2,2',6-tribromobisphenol A (Tri-BBPA), 2,2'- and 2,6-dibromobisphenol A (Di-BBPA), and 2-monobromobisphenol A (Mo-BBPA) were 1.07, 0.145, 0.135, and 0.894 ng/g, respectively, indicating nonnegligible health risks of debromination products. Hair analyte levels correlated with population age and population density among sampling regions. Sexual- and spatial-variations were observed with higher concentrations in females and in E-waste recycling sites. Logistic regression models showed that TBBPA exposure (adjusted odds ratio (OR): 1.02, 95 % confidential interval (CI): 1.01-1.05) was positively associated with risk of metabolic syndrome by adjusting for various covariates. These findings imply usefulness of hair as an alternative biomonitoring tool to assess human exposure to TBBPA and relative health effects, which highlights public concerns on co-exposure to these chemicals.
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ying Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenjie Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jincheng Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang He
- Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
16
|
Yang Y, Li M, Zheng J, Zhang D, Ding Y, Yu HQ. Environmentally relevant exposure to tetrabromobisphenol A induces reproductive toxicity via regulating glucose-6-phosphate 1-dehydrogenase and sperm activation in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167820. [PMID: 37858812 DOI: 10.1016/j.scitotenv.2023.167820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous brominated flame-retardant environmental pollutant, has been reported to cause reproductive toxicity by chronic exposure. However, the acute reproductive risk and mechanisms of TBBPA toxicity to individuals, especially at environmentally relevant levels, remains a topic of debate. In this study, Caenorhabditis elegans was used to investigate the reproductive toxicity of acute exposure to TBBPA at environmentally relevant doses. The reproductive end points (embryonic lethality ratio and brood size), oxidative stress, sperm activation, and molecular docking were evaluated. Results showed that, after 24 h of TBBPA treatment, even at the lowest concentration (1 μg/L), the embryonic lethality ratio of C. elegans increased significantly, from 1.63 % to 3.03 %. Furthermore, TBBPA induced oxidative stress with significantly increased expression of sod-3 in C. elegans, which further raised the level of reproductive toxicity through inhibiting the activation of sperm in nematodes. In addition, molecular docking suggested TBBPA might compete for the glucose-6-phosphate-binding site of glucose-6-phosphate 1-dehydrogenase, resulting in oxidative stress generation. Accordingly, our findings indicate that even acute exposure to environmental concentrations of TBBPA may induce reproductive toxicity through reducing sperm activation in nematodes.
Collapse
Affiliation(s)
- Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Zheng
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Dewei Zhang
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Yan Ding
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Zhang S, Liu J, Hou X, Zhang H, Zhu Z, Jiang G. Sensitive method for simultaneous determination of TBBPA and its ten derivatives. Talanta 2023; 264:124750. [PMID: 37290335 DOI: 10.1016/j.talanta.2023.124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives are regarded as new contaminants, raising much attention on their environmental occurrence and fates. However, the sensitive detection of TBBPA and its main derivatives is still a great challenge. This study investigated a sensitive method for simultaneous detection of TBBPA and its ten derivatives using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-MS/MS) with atmospheric pressure chemical ionization (APCI) source. The method exhibited much better performance than previously reported methods. Furthermore, it was successfully applied in determining complicated environmental samples, including sewage sludge, river water and vegetable samples with concentration range from undetected (n.d.) to 25.8 ng g-1 dry weight (dw). For sewage sludge, river water and vegetable samples, the spiking recoveries of TBBPA and its derivatives ranged from 69.6 ± 7.0% to 86.1 ± 12.9%, 69.5 ± 13.9% to 87.5 ± 6.6%, and 68.2 ± 5.6% to 80.2 ± 8.3%, respectively; the accuracy ranged from 94.9 ± 4.6% to 113 ± 5%, 91.9 ± 10.9% to 112 ± 7%, and 92.1 ± 5.1% to 106 ± 6%, and the method quantitative limits ranged from 0.00801 to 0.224 ng g-1 dw, 0.0104-0.253 ng L-1, and 0.00524-0.152 ng g-1 dw, respectively. Moreover, the present manuscript describes for the first time the simultaneous detection of TBBPA and ten derivatives from various environmental samples, providing fundamental work for further research on their environmental occurrences, behaviors and fates.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hongrui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanao Zhu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| |
Collapse
|
18
|
Jiang Y, Wang Q, Du Y, Yang D, Xu J, Yan C. Occurrence and Distribution of Tetrabromobisphenol A and Diversity of Microbial Community Structure in the Sediments of Mangrove. BIOLOGY 2023; 12:biology12050757. [PMID: 37237569 DOI: 10.3390/biology12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), and Quanzhou Bay (QZ) in Southeast China ranging from 1.80 to 20.46, 3.47 to 40.77, and 2.37 to 19.83 ng/g dry weight (dw), respectively. Mangrove sediments from JLJ contained higher levels of TBBPA, possibly due to agricultural pollution. A correlation analysis revealed a significant correlation between total organic carbon (TOC), total nitrogen (TN), and TBBPA distribution in ZJ and JLJ mangrove sediments, but not in QZ mangrove sediments. TOC significantly affected the distribution of TBBPA in mangrove sediments, but pH had no effect. High-throughput 16S rRNA gene sequencing showed that Pseudomonadota dominated the sediment bacteria followed by Chloroflexota, Actinobacteota, Bacillota, Acidobacteriota, Bacteroidota, and Aminicenantes in mangrove sediments. Although the microbial community structure of the ZJ, JLJ, and QZ mangrove sediments was similar, the taxonomic profile of their sensitive responders differed markedly. The genus Anaerolinea was dominant in the mangrove sediments and was responsible for the in situ dissipation of TBBPA. Based on redundancy analysis, there was a correlation between TBBPA, TOC, TN, C/N, pH, and microbial community structure at the genus level. Combining TBBPA, TN, and TOC may induce variations in the microbial community of mangrove sediments.
Collapse
Affiliation(s)
- Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunling Du
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Dong Yang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongling Yan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
19
|
Yang Y, He S, Qi Z, Chai X, Zhao Q, Hu B, Li G, Yu Y. Proliferation toxicity and mechanism of novel mixed bromine/chlorine transformation products of tetrabromobisphenol A on human embryonic stem cell. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131050. [PMID: 36821903 DOI: 10.1016/j.jhazmat.2023.131050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/22/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Mixed bromine/chlorine transformation products of tetrabromobisphenol A (ClyBrxBPAs) are mixed halogenated-type compounds recently identified in electronic waste dismantling sites. There are a lack of toxicity data on these compounds. To study their development toxicity, the proliferation toxicity was investigated using human embryonic stem cells (hESC) exposed to the lowest effective dose of two ClyBrxBPA analogues (2-chloro-2',6-dibromobisphenol A and 2,2'-dichloro-6-monobromobisphenol A). For comparison, tetrabromobisphenol A, 2,2',6-tribromobisphenol A, and bisphenol A were also assessed. It was observed that ClyBrxBPAs inhibited hESCs proliferation in a concentration-dependent manner. The cell bioaccumulation efficiency of ClyBrxBPAs was higher than that of tetrabromobisphenol A. Also, ClyBrxBPAs were more toxic than tetrabromobisphenol A, with 2,2'-dichloro-6-monobromobisphenol A exhibiting the most potent toxicity. Furthermore, flow cytometry and oxidative stress results showed that increased reactive oxygen species raised the degree of apoptosis and reduced DNA synthesis. Metabolomics analysis on the effect of ClyBrxBPAs on metabolic pathway alteration showed that ClyBrxBPAs mainly interfered with four metabolic pathways related to amino acid metabolism and biosynthesis. These results provide an initial perspective on the proliferation toxicity of ClyBrxBPAs, indicating development toxicity in children.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Shiyao He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qiting Zhao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Beibei Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Su L, Guo D, Wan H, Wang P, Cao L, Long Y, Chen C, Song Y, Zhang Y, Zeng C, Guo R, Liu X. Transcriptomic and metabolomic insights into the defense response to HFRs in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114736. [PMID: 36905847 DOI: 10.1016/j.ecoenv.2023.114736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/08/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Tetrabromobisphenol A (TBBPA), Tetrachlorobisphenol A (TCBPA), Tetrabromobisphenol S (TBBPS) and their derivatives as the most widely used halogenated flame retardants (HFR), had been employed in the manufacturing industry to raise fire safety. HFRs have been shown to be developmentally toxic to animals and also affect plant growth. However, little was known about the molecular mechanism responded by when plants were treated with these compounds. In this study, when Arabidopsis was exposed to four HFRs (TBBPA, TCBPA, TBBPS-MDHP, TBBPS), the stress of these compounds had different inhibitory effects on seed germination and plant growth. Transcriptome and metabolome analysis showed that all four HFRs could influence the expression of transmembrane transporters to affect ion transport, Phenylpropanoid biosynthesis, Plant-pathogen interaction, MAPK signalling pathway and other pathways. In addition, the effects of different kinds of HFR on plants also have variant characteristics. It is very fascinating that Arabidopsis shows the response of biotic stress after exposure to these kinds of compounds, including the immune mechanism. Overall, the findings of the mechanism recovered by methods of transcriptome and metabolome analysis supplied a vital insight into the molecular perspective for Arabidopsis response to HFRs stress.
Collapse
Affiliation(s)
- Lufang Su
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Dandan Guo
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Ping Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Lan Cao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yanmin Long
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Chaohui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Yangyang Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China.
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
21
|
Wei D, Yuan K, Ai F, Li M, Zhu N, Wang Y, Zeng K, Yin D, Bu Y, Zhang Z. Occurrence, spatial distributions, and temporal trends of bisphenol analogues in an E-waste dismantling area: Implications for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161498. [PMID: 36638703 DOI: 10.1016/j.scitotenv.2023.161498] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The environmental occurrences of bisphenol analogues (BPs) have been extensively reported, whereas their concentration profile, spatial distribution, and temporal trend in e-waste dismantling area are still poorly understood. Herein, typical BPs (BPA, BPS, TBBPA, TBBPA-DHEE, and TBBPA-MHEE) were investigated in water, soil, and biological samples from three representative regions (FJT, JJP, and RIB) in e-waste recycling area in Taizhou, Zhejiang Province. Overall, the detection frequency of BPs in all samples was 100 %, confirming widespread presence of BPs in e-waste recycling area. Wherein, BPA was the predominant BPs in water (33.3 %) and soil samples (34.9 %), but TBBPA accounted for the largest proportion (41.3 %) in biological samples. In addition, the concentration of BPs in FJT was lower than that in JJP and RIB owing to the renovations on FJT by the local government in recent years, whereas the higher BPs level in RIB implied that elevated BPs contents was related to massive e-waste dismantling activities. From 2017 to 2021, a decreased trend of BPs concentration was observed in FJT, but aggravation of BPs levels in RIB was caused by the ongoing e-waste dismantling. The risk assessment revealed that the BPs in e-waste recycling area posed a low ecological and human health risk. Our finding could provide a valuable reference for the development of strict legislation systems related to e-waste management in China.
Collapse
Affiliation(s)
- Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kuijing Yuan
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingwei Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Dong ZJ, Jiang CC, Zhou Y, Duan JB, Wang LH, Pang SY, Jiang J, Sun XH. Transformation of hydroxylamine to nitrosated and nitrated products during advanced oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130537. [PMID: 36493640 DOI: 10.1016/j.jhazmat.2022.130537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Recently, hydroxylamine (HAm) was introduced to drive advanced oxidation processes (AOPs) for removing organic contaminants. However, we found that HAm-driven Cu(II)/peroxymonosulfate oxidation of phenol produced p-nitrosophenol, 2-nitrophenol and 4-nitrophenol. The total nitro(so) products accounted for approximately 25.0 % of the phenol transformation at certain condition. SO4•- and •OH were identified as the primary and second significant oxidants, respectively. Reactive nitrogen species (RNS) were involved in phenol transformation. The pathway and mechanism of HAm transformation in HAm-driven transition metal ion-catalyzed AOPs were proposed for the first time in this study. The product of HAm via twice single-electron oxidation by Cu(II) is nitroxyl (HNO/NO-), which is a critical oxidation intermediate of HAm. Further oxidation of HNO by SO4•- or •OH is the initial step in propagating radical chain reactions, leading to nitric oxide radical (•NO) and nitrogen dioxide radical (•NO2) as the primary RNS. HAm is a critical intermediate in natural nitrogen cycle, suggesting that HAm can drive the oxidation processes of pollutants in natural environments. Nitro(so) products will be readily produced when AOPs are applied for ecological remediation. This study highlights the formation of toxic nitrosated and nitrated products in HAm-driven AOPs, and the requirement of risk assessments to evaluate the possible health and ecological impacts.
Collapse
Affiliation(s)
- Zi-Jun Dong
- College of Civil and Transportation Engineering, the Underground Polis Academy, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen, Guangdong 518060, China
| | - Cheng-Chun Jiang
- School of Material and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Yue Zhou
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jie-Bin Duan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li-Hong Wang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Su-Yan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Hui Sun
- College of Civil and Transportation Engineering, the Underground Polis Academy, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen, Guangdong 518060, China
| |
Collapse
|
23
|
Okeke ES, Feng W, Song C, Mao G, Chen Y, Xu H, Qian X, Luo M, Wu X, Yang L. Transcriptomic profiling reveals the neuroendocrine-disrupting effect and toxicity mechanism of TBBPA-DHEE exposure in zebrafish (Danio rerio) during sexual development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160089. [PMID: 36370800 DOI: 10.1016/j.scitotenv.2022.160089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in the environment has raised serious public health concerns due to its potential neuroendocrine-disrupting effects. The neuroendocrine-disrupting effects of TBBPA-DHEE on marine spices, on the other hand, have received little attention. The behavioral, neuroendocrine-disrupting, and possible reproductive toxicity of TBBPA-DHEE were assessed in sexual developing zebrafish treated for 40 days by examining locomotor activity, Gonadotrophin releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, and quantifying gene expression. In addition, transcriptome profiling was carried out to explore the possible mechanisms. According to our findings, TBBPA-DHEE treated zebrafish showed altered locomotor activity, a potential neuroendocrine-disrupting effect via the toxic effect on the hypothalamus and pituitary gland, which is evident in decreased levels of GnRH, FSH, and LH, according to our findings. The transcriptomic profiling reveals that a total of 216 DEGs were detected (5 upregulated and 211 down-regulated). Transcriptomic analysis shows that TBBPA-DHEE exposure caused decreased transcript levels of genes (cyp11a1, ccna1, ccnb2, ccnb1, cpeb1b, wee2) involved in cell cycle oocyte meiosis, progesterone mediated oocyte maturation, and ovarian steroidogenesis, which are known reproduction-related pathways. Overall, these findings add to our understanding of the impact of TBBPA-DHEE and biomonitoring in the maritime environment.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Chang Song
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China.
| |
Collapse
|
24
|
Okeke ES, Feng W, Mao G, Chen Y, Qian X, Luo M, Xu H, Qiu X, Wu X, Yang L. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109527. [PMID: 36442598 DOI: 10.1016/j.cbpc.2022.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17β-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria. https://twitter.com/Okeke
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China
| |
Collapse
|
25
|
Li T, Lü F, Qiu J, Zhang H, He P. Substance flow analysis on the leachate DOM molecules along five typical membrane advanced treatment processes. WATER RESEARCH 2023; 228:119348. [PMID: 36403296 DOI: 10.1016/j.watres.2022.119348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The processes combining biological treatment with membrane separation technologies have been widely adopted for leachate treatment. However, dissolved organic matter (DOM) of leachate membrane concentrates generated from various membrane separation technologies has not been systematically investigated in field scale. Therefore, substance flow analysis based on DOM molecular information of leachate membrane concentrates from primary membrane systems (i.e. nanofiltration (NF) and reverse osmosis (RO)) and secondary membrane systems (i.e. disk-tube reverse osmosis (DTRO) and humic substance filtration system (HSF)) in five engineering-scale leachate treatment facilities, obtained via ultra-performance liquid chromatography coupled with hybrid quadrupole Orbitrap mass spectrometry, was given and simultaneously compared. In NF concentrates (NFC), 45.1-98.5% of DOM originated from raw leachate (L-DOM) was concentrated, showing poor biodegradability. The L-DOM interception characteristics of NFC-fed HSF were mainly based on volume reduction but concentration effect. L-DOM in RO concentrates (ROC) showed a higher proportion of peak intensity reduced components, accounting for 50.3-96.8%, and organic composition changes were more dependent on water quality characteristics than membrane types. ROC-fed DTRO intercepted 49.3-72.6% of L-DOM, but DTRO may be less effective at intercepting DOM molecules in landfill leachate with higher oxidation levels. Considering risks from feasible treatment technologies, the difficulty for the treatment of leachate membrane concentrates followed the order of DTRO concentrates > ROC > NFC. This study suggests that ROC-fed DTRO need to be controlled to avoid amplifying the treatment difficulty. Besides, treatment technologies for RO and DTRO concentrates with low-concentrated but refractory DOM and high salts should be explored.
Collapse
Affiliation(s)
- Tianqi Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, PR China
| | - Junjie Qiu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, PR China.
| |
Collapse
|
26
|
Liu X, Lu Q, Du M, Xu Q, Wang D. Hormesis-Like Effects of Tetrabromobisphenol A on Anaerobic Digestion: Responses of Metabolic Activity and Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11277-11287. [PMID: 35905436 DOI: 10.1021/acs.est.2c00062] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) has extensive applications in various fields; its release into ecosystems and the potential toxic effects on organisms are becoming major concerns. Here, we investigated the effects of TBBPA on anaerobic digestion, whose process is closely related to the carbon cycles under anaerobic conditions. The results revealed that TBBPA exhibited dose-dependent hormesis-like effects on methane production from glucose, i.e., the presence of 0.1 mg/L TBBPA increased the methane production rate by 8.79%, but 1.0-4.0 mg/L TBBPA caused 3.45-28.98% of decrement. We found that TBBPA was bound by the tyrosine-like proteins of the extracellular polymeric substances of anaerobes and induced the increase of reactive oxygen species, whose slight accumulation stimulated the metabolism activities but high accumulation increased the apoptosis of anaerobes. Owing to the differences between individual anaerobes in tolerance, TBBPA at 0.1 mg/L stimulated the acidogenesis and hydrogenotrophic methanogenesis, whereas higher levels (i.e., 1.0-4.0 mg/L) severely restrained all of the processes of acidogenesis, acetogenesis, and methanogenesis. Along with the accumulation of bisphenol A (BPA) produced from TBBPA by Longilinea sp. and Pseudomonas sp., the methanogenic pathway was partly shifted from acetate-dependent to hydrogen-dependent direction, and the activities of carbon monoxide dehydrogenase and acetyl-CoA decarbonylase/synthase were inhibited, while acetate kinase and F420 were hormetically affected. These findings elucidated the mechanism of anaerobic syntrophic consortium responses to TBBPA, supplementing the potential environmental risks of brominated flame retardants.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
27
|
Yang Y, Zhang M, Gao Y, Chen H, Cui J, Yu Y, Ma S. Identification and occurrence of TBBPA and its debromination and O-methylation transformation products in sediment, fish and whelks from a typical e-waste dismantling site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155249. [PMID: 35427616 DOI: 10.1016/j.scitotenv.2022.155249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its debromination (∑BBPA) and O-methylation (∑MeO-TBBPA) products were widely detected in matched sediments, fish, and whelks samples collected from a typical electronic waste (e-waste) dismantling site in Southern China, with concentrations ranging from 19.8 to 1.52 × 104, 8.05 to 1.84 × 103, and 0.08 to 11.9 ng/g dry weight in sediments, and 6.96 to 1.97 × 105, 3.84 to 7.07 × 103, and 3.42 to 472 ng/g lipid in biotas, for TBBPA, ∑BBPA, and ∑MeO-TBBPA, respectively. Significantly higher concentrations of these targets were found in samples collected close to the e-waste site, indicating their potential e-waste sources. Tri-BBPA was the most abundant debromination products in sediments, whereas diMeO-TBBPA was the dominant O-methylation product in biotas. Relatively higher levels of diMeO-TBBPA found in liver and kidneys, suggesting these chemicals might be mainly derived from the in vivo biotransformation. Furthermore, significantly higher biota-sediment accumulation factor values were found for diMeO-TBBPA than these of TBBPA, indicating that O-methylation would increases their accumulation in aquatic organisms. Our study provides insights into the accumulation and biotransformation of TBBPA in aquatic systems. Further studies should pay attention to the occurrence as well as potential health risks of these transformation products.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Mengdi Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Haojia Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Juntao Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China.
| |
Collapse
|
28
|
Porous covalent organic frameworks-improved solid phase microextraction ambient mass spectrometry for ultrasensitive analysis of tetrabromobisphenol-A analogs. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Yao Y, Yin L, He C, Li J, Ponprasit C, Zhang Y, Cheng X, He H, Yang S, Li S. Removal kinetics and mechanisms of tetrabromobisphenol A (TBBPA) by HA-n-FeS colloids in the absence and presence of oxygen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114885. [PMID: 35287078 DOI: 10.1016/j.jenvman.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The colloid of ferrous sulfide modified by humic acid (HA-n-FeS) shows good reduction and immobilization efficiency for variable-valence heavy metals in wastewater. The removal efficiency of HA-n-FeS for halogenated organic pollutants, however, remains unclear, especially in the absence and presence of oxygen. This study addressed this issue by exploring the effect and mechanism of dissolved oxygen on the degradation of tetrabromobisphenol A (TBBPA) by the HA-n-FeS colloid in water. The results showed that the removal efficiency of different concentrations of TBBPA (5,10, and 20 μm) by the HA-n-FeS colloid was 33.16%, 20.48%, and 22.37% in the absence of oxygen, respectively. When TBBPA reacted with the HA-n-FeS colloid, the concentration of Fe(II) and S(-II) remained stable. The adsorption of HA-n-FeS was the main mechanism of removing TBBPA in the absence of oxygen. In the presence of oxygen, the removal efficiency of TBBPA by the HA-n-FeS colloid was 82.37%, 56.80%, and 43.78% (for the above-mentioned TBBPA concentrations), respectively. In addition, the removal capacity of TBBPA by HA-n-FeS was 39.63, 52.21, and 89.75 mg/g, respectively. The concentration of Fe(II) and S(-II) decreased rapidly in time. Among them, the HA-n-FeS colloid removed part of the TBBPA through chemical adsorption. The main way of chemical adsorption was pore adsorption and functional group (olefin CC, phenolic hydroxyl group O-H, alcohol group C-O) combination. Besides, the HA-n-FeS colloid degraded part of the TBBPA into BPA through reduction, in which 17.72% of TBBPA was removed by the reduction of HA-n-FeS colloid. Fe(II) was the main contributor to the reductive degradation of TBBPA. Furthermore, active species (1O2 and •O2-) played a minor role in the removal of TBBPA by the HA-n-FeS colloids with oxygen, where 13% of TBBPA was removed by 1O2 and •O2-. Therefore, in practical applications, the aeration method can be used to significantly improve the removal efficiency of TBBPA by HA-n-FeS colloids in water.
Collapse
Affiliation(s)
- Youru Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Cheng He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200082, China.
| | - Jing Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Chaloemporn Ponprasit
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
30
|
Michałowicz J, Włuka A, Bukowska B. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152289. [PMID: 34902422 DOI: 10.1016/j.scitotenv.2021.152289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Brominated phenols (BPs) of anthropogenic origin are aromatic substances widely used in the industry as flame retardants (FRs) and pesticides as well as the components of FRs and polymers. In this review, we have focused on describing 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP), which are the most commonly used in the industry and are the most often detected in the air, aquatic and terrestrial ecosystems and the human body. This review describes human-related sources of these BPs that influence their occurrence in the environment (atmosphere, surface water, sediment, soil, biota), indoor air and dust, food, drinking water and the human organism. Data from in vitro and in vivo studies showing 2,4-DBP, 2,4,6-TBP and PBP toxicity, including their estrogenic activity, effects on development and reproduction, perturbations of cellular redox balance and cytotoxic action have been described. Moreover, the processes of BPs transformation that occur in human and other mammals, plants and bacteria have been discussed. Finally, the effect of abiotic factors (e.g. UV irradiation and temperature) on BPs conversion to highly toxic brominated dioxins and brominated furans as well as polybrominated biphenyls and polybrominated diphenyl ethers has been presented.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland.
| | - Anna Włuka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
31
|
Rani M, Shanker U. Efficient removal of plastic additives by sunlight active titanium dioxide decorated Cd-Mg ferrite nanocomposite: Green synthesis, kinetics and photoactivity. CHEMOSPHERE 2022; 290:133307. [PMID: 34929280 DOI: 10.1016/j.chemosphere.2021.133307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Large use of flame retardants or additives in plastic industries have caused scientific attention as their leaching from consumer products is indicative of environmental concern. Moreover, plastic additives have proven features of endocrine disruptors, genotoxicity and persistence. Therefore, photodegradation of tetrabromobisphenol A (TBBPA) and bisphenol A (BPA) were explored in water. Seeing environmental safety, titanium dioxide decorated magnesium substituted cadmium ferrite (CdMgFe2O4@TiO2) was synthesized by using plant extract of M. koenigii via co-precipitation. Sharp peaks obtained in PXRD ensured high crystallinity and purity of distorted spherical nanocomposite (5-25 nm). Subsequently, CdMgFe2O4@TiO2 nanocatalyst was evaluated for the effective elimination of plastic additives at variable reaction parameters (pollutant: 2-10 mgL-1; catalyst: 5-25 mg; pH: 3-7, dark-sunlight). With 20 mg of catalytic dose, CdMgFe2O4@TiO2 showed maximum degradation of 2 mgL-1 of TBBPA (91%) and BPA (94%) at neutral pH under sunlight. Considerable reduction in persistence of TBBPA (t1/2:2.4 h) and BPA (t1/2:2.1 h) indicated admirable photoactivity of CdMgFe2O4@TiO2. Results were supported by BET, zeta potential, band reflectance and photoluminescence analysis that indicated for higher surface area (90 m2g-1), larger particle stability (-20 mV), lower band gap (1.9 eV) and inhibited charge-pairs recombination in nanocomposite. Degradation consisted of initial Langmuir-adsorption followed by first order kinetics. Scavenger analysis revealed the role of hydroxyl radical in photodegradation studies. Nanocomposite was effective up to eight cycles without any significant loss of activity that advocated its high-sustainability and cost-effectiveness. Overall, with excellent surface characteristics, green synthesized CdMgFe2O4@TiO2 nanocomposite is a promising and alternative photocatalyst for industrial applications.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
32
|
Ge X, Ma S, Huo Y, Yang Y, Luo X, Yu Y, An T. Mixed bromine/chlorine transformation products of tetrabromobisphenol A: Potential specific molecular markers in e-waste dismantling areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127126. [PMID: 34523476 DOI: 10.1016/j.jhazmat.2021.127126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Mixed bromine/chlorine transformation products (ClyBrxBPAs) of tetrabromobisphenol A (TBBPA) were recently identified for the first time in an electronic waste (e-waste) dismantling site. To determine whether these compounds can be used as specific molecular markers of e-waste dismantling activities, the environmental occurrences and distributions of TBBPA and its transformation products including debromination products (BrxBPAs) and ClyBrxBPAs were analyzed in soil samples from three sites in China: Guiyu (an e-waste site), Qingyuan (a former e-waste site now mainly used for old wire and cable recycling), and Shouguang (a flame retardant production base). Levels of the target analytes in Guiyu were significantly higher than in Qingyuan and Shouguang. BrxBPAs and ClyBrxBPAs were widely detected in Guiyu at concentrations between 1 and 4 orders of magnitude lower than their parent compound TBBPA. The highest concentration was found in an e-waste dismantling park, with lower concentrations in surrounding area. The levels of ClyBrxBPAs in Qingyuan were much lower, indicating that the ClyBrxBPAs may come from the processing of wires and cables, but not rule out the incubation on their own in soils. None of ClyBrxBPAs were detected in Shouguang. ClyBrxBPAs may thus be useful as specific molecular markers for determining the intensity of e-waste dismantling activities.
Collapse
Affiliation(s)
- Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
33
|
Fu L, Peng X, Chen Q, Ding Y, Jiang J. Photochemical degradation and debromination of bromophenols: Overlooked role of hydrated electron. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Chen P, Ma S, Yang Y, Qi Z, Wang Y, Li G, Tang J, Yu Y. Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112717. [PMID: 34478981 DOI: 10.1016/j.ecoenv.2021.112717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the prohibition of polybrominated diphenyl ethers, organophosphate flame retardants (OPFRs) and tetrabromobisphenol A (TBBPA) have become emerging flame retardants. However, knowledge about their occurrence, especially their transformation products, is still limited. This study collected sediment samples from two rivers, i.e., Lianjiang River (located at an e-waste dismantling area) and Xiaoqing River (situated at a flame retardant production base), to investigate the occurrence, composition, and spatiality distribution of OPFRs, TBBPA, and their transformation products. Both targets were detected in the Lianjiang River in the range of 220-1.4 × 104 and 108-3.1 × 103 ng/g dw (dry weight) for OPFRs and TBBPA, and 0.11-2.35 and 4.8-414 ng/g dw for their respective transformation products, respectively. The concentrations of OPFRs and TBBPA in the Xiaoqing River ranged from 4.15 to 31.5 and 0.76-2.51 ng/g dw, respectively, and no transformation products were detected. Different compositional characteristics of OPFRs and distinct spatial distribution from mainstream and tributary observed between the two rivers are attributed to the difference in the local industries. Spatial distribution and principal component analysis indicated that e-waste dismantling activities could be a vital source of local pollution. Besides, the confluence of tributaries seemed to determine the contaminant levels in the Xiaoqing River. Also, concentration ratios and Spearman's correlation between metabolites and parent chemicals were analyzed. Low concentration ratios (3.6 ×10-4 to 0.16) indicated a low transformation degree, and Spearman's correlation analysis suggested transformation products were partly stemming from commercial products. Considering the limited study of these transformation products, more studies on their sources, transform mechanism, and toxicity are required.
Collapse
Affiliation(s)
- Peng Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
35
|
Pei S, Shi H, Zhang J, Wang S, Ren N, You S. Electrochemical removal of tetrabromobisphenol A by fluorine-doped titanium suboxide electrochemically reactive membrane. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126434. [PMID: 34323737 DOI: 10.1016/j.jhazmat.2021.126434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study reports fluorine-doped titanium suboxide anode for electrochemical mineralization of hydrophobic micro-contaminant, tetrabromobisphenol A. Fluorinated TiSO anode promoted electro-generated hydroxyl radicals (•OH) with higher selectivity and activity, due to increased O2 evolution potential and more loosely interaction with hydrophobic electrode surface. For electro-oxidation process, fluorine doping had an insignificant impact on outer-sphere reaction and exerted inhibition on inner-sphere reaction, as indicated by cyclic voltammogram performed on Ru(NH3)63+/2+, Fe(CN)63-/4- and Fe3+/2+ redox couple. This facilitated electrochemical conversion of TBBPA and intermediates via more efficient outer-sphere reaction and hydroxylation route. Additionally, generated O2 micro-bubbles could be stabilized on hydrophobic F-doped TiSO anode, which extended the three-phase boundary available for interfacial enrichment of TBBPA and subsequent mineralization. Under action of these comprehensive factors, 0.5% F-doped TiSO electrochemically reactive membrane could achieve 99.7% mineralization of TBBPA upon energy consumption of 0.52 kWh m-3 at current density of 7.8 ± 0.24 mA cm-2 (3.75 V vs SHE) and flow rate of 1628 LHM based on flow-through electrolysis. The modified anode exhibited superior performances compared with un-modified one with more efficient TBBPA removal, less toxic intermediate accumulation and lower energy consumption. The results may have important implications for electrochemical removal and detoxification of hydrophobic micro-pollutants.
Collapse
Affiliation(s)
- Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Han Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shengli Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
36
|
Jin X, Su H, Xu L, Wang Y, Su R, Zhang Z, Guan G, Li Z. Different co-culture models reveal the pivotal role of TBBPA-promoted M2 macrophage polarization in the deterioration of endometrial cancer. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125337. [PMID: 33609860 DOI: 10.1016/j.jhazmat.2021.125337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA), an emerging organic pollutant widely detected in human samples, has a positive correlation with the development of endometrial cancer (EC), but its underlying mechanisms have not yet been fully elucidated. Tumor-associated macrophages (TAM), one of the most vital components in tumor microenvironment (TME), play regulatory roles in the progression of EC. Consequently, this study mainly focuses on the macrophage polarization in TME to unveil the influence of TBBPA on the progression of EC and involved mechanisms. Primarily, low doses of TBBPA treatment up-regulated M2-like phenotype biomarkers in macrophage. The data from in vitro co-culture models suggested TBBPA-driven M2 macrophage polarization was responsible for the EC deterioration. Results from in vivo study further confirmed the malignant proliferation of EC promoted by TBBPA. Mechanistically, TBBPA-mediated miR-19a bound to the 3'-UTR regions of SOCS1, resulting in down-regulation of SOCS1 followed by the phosphorylation of JAK and STAT6. The present study not only revealed for the first time the molecular mechanism of TBBPA-induced EC's deterioration based on macrophage polarization, but also established co-culture models, thus providing a further evaluation method for the exploration of environmental pollutants-induced tumor effects from the role of TME.
Collapse
Affiliation(s)
- Xiaoting Jin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; School of Public Health, Qingdao University, Qingdao, China
| | - Huilan Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Liting Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Ze Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.
| |
Collapse
|
37
|
Yao L, Wang Y, Shi J, Liu Y, Guo H, Yang X, Liu Y, Ma J, Li D, Wang Z, Li Z, Luo Q, Fu J, Zhang Q, Qu G, Wang Y, Jiang G. Toxicity of Tetrabromobisphenol A and Its Derivative in the Mouse Liver Following Oral Exposure at Environmentally Relevant Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8191-8202. [PMID: 34086441 DOI: 10.1021/acs.est.1c01726] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As typical brominated flame retardants (BFRs), tetrabromobisphenol A (TBBPA) and its derivative TBBPA-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE) are ubiquitous in various environmental compartments. However, the potential health risk posed by these compounds, especially at environmentally relevant levels, remains unclear. In this study, using adult male mice, we investigated the toxicity of orally administered TBBPA and TBBPA-BDBPE at an environmentally relevant dose (57 nmol/kg body weight). After a single exposure and daily exposure, we assessed lipid metabolism homeostasis, the transcriptome, and immune cell components in the liver. We found that the single exposure to TBBPA or TBBPA-BDBPE alone increased the number of hepatic macrophages, induced alterations in the levels of lipids, including triacylglycerol and free fatty acids, and caused transcriptome perturbation. The results from the daily administration groups showed that TBBPA and TBBPA-BDBPE both significantly increased the triacylglycerol content; however, the elevation of hepatic macrophages was observed only in the TBBPA-BDBPE treatment group. This study confirmed that environmentally relevant levels of TBBPA and TBBPA-BDBPE are toxic to the liver. Our findings revealed that dysfunction of the liver is a health concern, following exposure to BFRs, even at very low concentrations. The chronic effects induced by TBBPA and its derivatives should be further investigated.
Collapse
Affiliation(s)
- Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Determination of tetrabromobisphenol-A/S and their eight derivatives in abiotic (soil/dust) samples using ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1647:462152. [PMID: 33957348 DOI: 10.1016/j.chroma.2021.462152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022]
Abstract
Tetrabromobisphenol-A and Tetrabromobisphenol-S (TBBPA/S) and their derivatives have attracted widespread attention owing to their environmental risks and adverse effects on human health. In this study, we developed an analytical method based on ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of TBBPA/S and their eight derivatives in soil samples. After ultrasonic extraction, TBBPA/S and their derivatives were purified using an LC-Si cartridge with 1 mL acetone and 30 mL dichloromethane/n-hexane (1/1, v/v) as the eluent. In the multiple reaction monitoring (MRM) mode, TBBPA and TBBPS were quantified with electrospray ionization (ESI), whereas their derivatives were quantified with atmospheric pressure chemical ionization (APCI). The proposed method was verified with blank spiking and matrix spiking experiments. All target compounds were recovered at the range of 78-124% and the average recoveries of surrogate standard 13C12-labeled TBBPA were 103% and 99% in spiked blank and soil samples, respectively. The method quantitative limits (MQLs) of TBBPA/S and their derivatives in soil samples ranged from 0.22 to 8.8 pg/g dw. These results indicated that an effective method was provided for the analysis of TBBPA/S and their derivatives in abiotic matrices.
Collapse
|
39
|
Gao W, Li G, Liu H, Tian Y, Li WT, Fa Y, Cai Y, Zhao Z, Yu YL, Qu G, Jiang G. Covalent organic frameworks with tunable pore sizes enhanced solid-phase microextraction direct ionization mass spectrometry for ultrasensitive and rapid analysis of tetrabromobisphenol A derivatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144388. [PMID: 33387764 DOI: 10.1016/j.scitotenv.2020.144388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Selective adsorption via the size matching effect is one of the most effective strategies for separating and analyzing low levels of organic molecules. Herein, multicomponent covalent organic frameworks (MC-COFs) with tunable pore sizes are constructed by using one knot (1,3,5-triformylphloroglucinol, Tp) and two organic linkers (p-phenylenediamine, Pa; benzidine, BD). The pore sizes of the MC-COFs composed of TpPaBDX (X = [BD]/([Pa] + [BD]) × 100 = 0, 25, 50, 75, and 100) range from 0.5-1.5 to 0.5-2.2 nm due to variations in the initial organic linker ratios. When coupling TpPaBDX-based solid-phase microextraction (SPME) with constant flow desorption ionization mass spectrometry (CFDI-MS), these MC-COFs feature better selective adsorption performance for tetrabromobisphenol A (TBBPA) derivatives than TpPa with a smaller pore size, TpBD with a larger pore size and even some commercial fibers (e.g., polydimethylsiloxane/divinylbenzene (PDMS/DVB)-, polyacrylate (PA)- and PDMS-coated fibers). The improved method involving MC-COF TpPaBD50 also presents favorable stability with relative standard deviations (RSD, 1 μg L-1) for single fibers of 5.5-7.9% (n = 7) and fiber-to-fiber of 6.6-7.8% (n = 7). Due to the decreased limits of detection and quantification (0.5-12 and 1.6-40 ng L-1), and reduced separation and detection time (7 min), ultratrace levels of TBBPA derivatives in real water samples are successfully detected. The proposed method shows great potential for the rapid tracing of the distribution, transportation and transformation of TBBPA derivatives to better understand their ecotoxicological effects in environmental media.
Collapse
Affiliation(s)
- Wei Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huan Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yong Tian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wei-Tao Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yun Fa
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongshan Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
40
|
Xu H, Zheng M, Wang L, Zhao W, Hua Y, Fang L, Liu A, Zhao Z. High throughput extraction strategy for simultaneous analysis of 19 tetrabromobisphenol A and halogenated carbazole analogs in seafood. Food Chem 2021; 350:129214. [PMID: 33601093 DOI: 10.1016/j.foodchem.2021.129214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/02/2021] [Accepted: 01/24/2021] [Indexed: 11/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA), halogenated carbazole (HCZ), and their analogs are the emerging pollutants invading the marine environment. So far, a few methods have been reported for the simultaneous analysis of these pollutants due to their large polarity difference. In this study, an effective extraction and cleanup strategy was developed for the simultaneous determination of 19 TBBPA and HCZ congeners in seafood. The 19 analytes could be directly analyzed through high performance liquid chromatography after ultrasonic extraction (methanol, duplicate ethyl acetate-acetone (1:1, v/v)) and gel permeation chromatography cleanup. The acceptable spike-recoveries were within 65.7-118.3%; the precision was intra-/inter-day RSDs: 0.0-6.7%/0.0-8.5%; and the matrix effects were between -14.1% and 12.4%. The detection limits and quantification limits were 0.002-0.014 and 0.020-0.200 µg g-1 dw, respectively. Additionally, this method successfully analyzed the seafood samples and the concentrations of these analytes were in range of nd-5.4 µg g-1 dw.
Collapse
Affiliation(s)
- Hongyan Xu
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Wucai Zhao
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Yi Hua
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Lidan Fang
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Aifeng Liu
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| |
Collapse
|
41
|
Macêdo WV, Bernegossi AC, Sabatini CA, Corbi JJ, Zaiat M. Application of Dispersive Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography/Tandem Mass Spectrometry Analysis to Determine Tetrabromobisphenol A in Complex Matrices. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2147-2157. [PMID: 32744726 DOI: 10.1002/etc.4837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
An accurate and sensitive ultrasound-dispersive liquid-liquid microextraction technique followed by high-performance liquid chromatography separation coupled with electrospray ionization tandem mass spectrometry detection method to determine the presence of tetrabromobisphenol A (TBBPA) in complex environmental matrices is proposed. The miniaturized procedure was used to extract and quantify the analyte in domestic sewage, anaerobic sludge, and the aquatic test organism species Daphnia magna and Chironomus sancticaroli, which are standardized organisms for ecotoxicity bioassays. Limits of detection of 2 ng L-1 (domestic sewage), 2 ng g-1 (anaerobic sludge), 0.25 ng g-1 (D. magna), and 5 ng g-1 (C. tentans) were obtained. The presence of TBBPA was determined in domestic sewage and anaerobic sludge from an anaerobic batch bioreactor at a concentration of 0.2 ± 0.03 μg L-1 and 507 ± 79 ng g-1 , respectively. In D. magna and C. sancticaroli exposed to TBBPA in an acute toxicity bioassay, the micropollutant accumulated at 3.74 and 8.87 μg g-1 , respectively. The proposed method is a simple and cost-effective tool to determine TBBPA environmental occurrence and biomagnification potential compared with conventional extraction methods. To the best of our knowledge, this is the first liquid-liquid miniaturized extraction method to be applied to D. magna and C. sancticaroli. Environ Toxicol Chem 2020;39:2147-2157. © 2020 SETAC.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, Santa Angelina, São Carlos, São Paulo, Brazil
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic Engineering and Sanitation, School of Engineering of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Carolina Aparecida Sabatini
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, Santa Angelina, São Carlos, São Paulo, Brazil
| | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic Engineering and Sanitation, School of Engineering of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, Santa Angelina, São Carlos, São Paulo, Brazil
| |
Collapse
|
42
|
Guo R, Cao M, Hu M, Deng W, Zhang W, Gao Y, Ye S, Zhou W, Shi J. Synthesis and Toxicity of Halogenated Bisphenol Monosubstituted-Ethers: Establishing a Library for Potential Environmental Transformation Products of Emerging Contaminant. Chem Biodivers 2020; 17:e2000481. [PMID: 32924325 DOI: 10.1002/cbdv.202000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/12/2020] [Indexed: 11/05/2022]
Abstract
As an important branch of halogenated bisphenol compounds, the halogenated bisphenol monosubstituted-ether compounds have received a lot of attention in environmental health science because of their toxicity and variability. In this study, a synthetic method for bisphenol monosubstituted-ether byproduct libraries was developed. By using the versatile and efficient method, tetrachlorobisphenol A, tetrabromobisphenol A, and tetrabromobisphenol S monosubstituted alkyl-ether compounds were accessed in 39-82 % yield. Subsequently, the cytotoxicity of 27 compounds were screened using three different cell lines (HepG2, mouse primary astrocytes and Chang liver cells). Compound 2,6-dibromo-4-[3,5-dibromo-4-(2-hydroxyethoxy)benzene-1-sulfonyl]phenol was more toxic than other compounds in various cells, and the sensitivity of this compound to the normal hepatocytes and cancer cells was inconsistent. The compounds 2,6-dichloro-4-(2-{3,5-dichloro-4-[(prop-2-en-1-yl)oxy]phenyl}propan-2-yl)phenol and 2,6-dibromo-4-(2-{3,5-dibromo-4-[(prop-2-en-1-yl)oxy]phenyl}propan-2-yl)phenol were the most toxic to HepG2 cells, and most of the other compounds inhibited cell proliferation. Moreover, typical compounds were also reproductive and developmental toxic to zebrafish embryos at different concentrations. The synthetic byproduct libraries could be used as pure standard compounds and applied in research on environmental behavior and the transformation of halogenated flame retardants.
Collapse
Affiliation(s)
- Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Haidian District, Beijing, 100085, P. R. China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Ming Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Wenchao Deng
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Shihan Ye
- College of Life Sciences, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Weixiang Zhou
- College of Life Sciences, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China
| | - Jianbo Shi
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 8 Sanjiaohu Road, Economic and Technological Development District, Wuhan, 430056, P. R. China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Haidian District, Beijing, 100085, P. R. China
| |
Collapse
|
43
|
Liu J, Ma S, Lin M, Tang J, Yue C, Zhang Z, Yu Y, An T. New Mixed Bromine/Chlorine Transformation Products of Tetrabromobisphenol A: Synthesis and Identification in Dust Samples from an E-Waste Dismantling Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12235-12244. [PMID: 32885965 DOI: 10.1021/acs.est.0c04494] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale production and usage of tetrabromobisphenol A (TBBPA) and its analogues have caused widespread contamination, raising concern about their potential endocrine disruption effects on both humans and ecosystems. In the present study, debromination and unknown mixed bromine/chlorine transformation products of TBBPA (X-BBPA) were screened in dust samples from an e-waste dismantling site. Five monochloro products (2-chloro-2',6,6'-TriBBPA, 2-chloro-2',6-DiBBPA, 2-chloro-2',6'-DiBBPA, 2-chloro-2'-MoBBPA, and 2-chloro-6-MoBBPA) and two dichloro products (2,2'-dichloro-6,6'-DiBBPA and 2,2'-dichloro-6-MoBBPA) were successfully synthesized and structurally identified. TBBPA and its transformation products were detected by comparison of their mass spectra and retention times with those of synthetic standards. The mean concentration of X-BBPA was 1.63 × 104 ng/g in e-waste dismantling workshop dust samples based on dry weight, which was at a similar level to TBBPA. However, it was 1 order of magnitude lower than the concentrations of the debromination congeners. Thus, both debromination and chlorine-bromine exchange may be important reactions during the thermal processing of e-waste. The results on mixed chlorinated/brominated TBBPA transformation products provided new insights into TBBPA transformation. The elevated levels of the transformation products of TBBPA suggested that these products should be targeted to avoid underestimation of possible health risks.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Meiqing Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Congcong Yue
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
44
|
Ren XM, Yao L, Xue Q, Shi J, Zhang Q, Wang P, Fu J, Zhang A, Qu G, Jiang G. Binding and Activity of Tetrabromobisphenol A Mono-Ether Structural Analogs to Thyroid Hormone Transport Proteins and Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107008. [PMID: 33095664 PMCID: PMC7584160 DOI: 10.1289/ehp6498] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tetrabromobisphenol A (TBBPA) mono-ether structural analogs, identified as the by-products or transformation products of commercial TBBPA bis-ether derivatives, have been identified as emerging widespread pollutants. However, there is very little information regarding their toxicological effects. OBJECTIVE We aimed to explore the potential thyroid hormone (TH) system-disrupting effect of TBBPA mono-ether structural analogs. METHODS The binding potencies of chemicals toward human TH transport proteins [transthyretin (TTR) and thyroxine-binding globulin (TBG)] and receptors [TRα ligand-binding domain (LBD) and TRβ-LBD] were determined by fluorescence competitive binding assays. Molecular docking was used to simulate the binding modes of the chemicals with the proteins. The cellular TR-disrupting potencies of chemicals were assessed by a GH3 cell proliferation assay. The intracellular concentrations of the chemicals were measured by high-performance liquid chromatography and mass spectrometry. RESULTS TBBPA mono-ether structural analogs bound to TTR with half maximal inhibitory concentrations ranging from 0.1μM to 1.0μM but did not bind to TBG. They also bound to both subtypes of TR-LBDs with 20% maximal inhibitory concentrations ranging from 4.0μM to 50.0μM. The docking results showed that the analogs fit into the ligand-binding pockets of TTR and TR-LBDs with binding modes similar to that of TBBPA. These compounds likely induced GH3 cell proliferation via TR [with the lowest effective concentrations (LOECs) ranging from 0.3μM to 2.5μM] and further enhanced TH-induced GH3 cell proliferation (with LOECs ranging from 0.3μM to 1.2μM). Compared with TBBPA, TBBPA-mono(2,3-dibromopropyl ether) showed a 4.18-fold higher GH3 cell proliferation effect and 105-fold higher cell membrane transportation ability. CONCLUSION This study provided a possible mechanism underlying the difference in TTR or TR binding by novel TBBPA structural analogs. These compounds might exert TH system-disrupting effects by disrupting TH transport in circulation and TR activity in TH-responsive cells. https://doi.org/10.1289/EHP6498.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Pu Wang
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
45
|
Chen X, Huang G, Li Y, An C, Feng R, Wu Y, Shen J. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery. WATER RESEARCH 2020; 181:115952. [PMID: 32497754 DOI: 10.1016/j.watres.2020.115952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol-A (TBBPA) is one of the most important brominated flame retardants (BFRs), accounting for 60% of the total commercial BFR market. Increasing amounts of TBBPA and byproducts are released to the aquatic environment due to their extensive utilization in various sectors. However, research on the treatment of TBBPA contaminated wastewater using membrane filtration is still lacked. Herein, a PVDF10-PAA-ZrO2 membrane was successfully developed and applied for the treatment of high-concentration TBBPA wastewater with super-high water recovery. The membrane was obtained through surface functionalization with nano-ZrO2 from commercial PVDF ultrafiltration (UF) membrane. Compared to the commercial PVDF membrane, the developed membrane exhibited 4 times of permeate flux which was up to 200 L/m2 min with comparable TBBPA rejection rate. Furthermore, the mechanisms of membrane development and TBBPA rejection were explored through synchrotron-based ATR-FTIR and X-ray analyses. It was revealed that ZrO2 NPs were immobilized into membrane surface through binding with PAA layer, where the O of the carboxyl group combined with the Zr4+ on the ZrO2 NP surface to form C-O-Zr bond through monodentate and bridging-bidentate modes. The sieving function of membrane could be the main mechanism of TBBPA removal. This research demonstrated a practical route and solid insight toward the development of highly efficient membrane for TBBPA removal. The proposed PVDF10-PAA-ZrO2 membrane can also be promising for other industrial separation and purification applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Gordon Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; International Society for Environmental Information Sciences, 9803A Jingshidasha-BNU, 19 Xinwaidajie, Beijing 100875, China.
| | - Yongping Li
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Yinghui Wu
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Jian Shen
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
46
|
Zeng K, Zhang Z, Liu L, Shao J, Gu L, Liu H, Qu G, Shi J, Jiang GB. A typical derivative and byproduct of tetrabromobisphenol A: Development of novel high-throughput immunoassays and systematic investigation of their distributions in Taizhou, an e-waste recycling area in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114382. [PMID: 32229371 DOI: 10.1016/j.envpol.2020.114382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Environmental distribution and concentration of tetrabromobisphenol A bis- (2-hydroxyethyl) ether (TBBPA-DHEE) and tetrabromobisphenol A mono- (hydroxyethyl) ether (TBBPA-MHEE), are obscure due to the lack of available analytical methods. Here two novel immunoassays were established to systematically investigate their distributions in Taizhou, Eastern China. Five monoclonal antibodies against pollutants were generated with two designed haptens through animal immunization. After matched with different coating antigens/antibodies, ELISAs were established (LOD for TBBPA-DHEE, 0.12 ng/mL, based on OVA-M3/mAb-D4G6; LOD for TBBPA-MHEE, 0.79 ng/mL, based on OVA-M3/mAb-D2G6) and applied for investigation of their occurrences at a typical e-waste recycling area after 2-year samples collection, where the total 33 water, 32 soil and 16 biological samples were collected with the highest concentrations of 3.46 ng/mL, 2.76 ng/g (dry weight, dw) and 5.01 ng/g (dw), respectively. Meanwhile, our study also indicated that at the centralizing e-waste recycling sites the serious pollution for both chemicals still existed despite of various efforts. Besides, obvious improvements were observed at an abandoned e-waste recycling region treated and remedied for many years by the local Chinese government. These findings highlight the importance of policy decisions in treatment of pollutants to reduce organic pollutant-related health risks.
Collapse
Affiliation(s)
- Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Liyuan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Shao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lantian Gu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huizi Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| |
Collapse
|
47
|
Liu QS, Sun Z, Ren X, Ren Z, Liu A, Zhang J, Zhou Q, Jiang G. Chemical Structure-Related Adipogenic Effects of Tetrabromobisphenol A and Its Analogues on 3T3-L1 Preadipocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6262-6271. [PMID: 32314580 DOI: 10.1021/acs.est.0c00624] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, is reported to potentially possess risks in inducing obesity or obesity-related metabolic diseases. Considering the increasing environmental contamination of TBBPA analogues and their high structural similarities to the parent compound, whether they could influence adipogenesis or not remains to be elucidated. In this study, two of the most prevalent TBBPA derivatives [i.e., TBBPA bis(allyl ether) (TBBPA-BAE) and TBBPA bis(2,3-dibromopropyl ether) (TBBPA-BDBPE)] and their byproducts [i.e., TBBPA mono(allyl ether) (TBBPA-MAE) and TBBPA mono(2,3-dibromopropyl ether) (TBBPA-MDBPE)], together with TBBPA, were screened for their capacities in activating peroxisome proliferator-activated receptor-γ (PPARγ) and glucocorticoid receptor (GR), the key nuclear receptors involved in adipogenesis, and their structure-related effects on differentiation of 3T3-L1 preadipocytes were explored. The results indicated that the binding affinities of TBBPA and its analogues for the PPARγ ligand-binding domain (PPARγ-LBD) and GR, as well as their effects on PPARγ transactivation, followed the order of TBBPA > TBBPA-MAE > TBBPA-MDBPE > TBBPA-BAE, TBBPA-BDBPE. Nevertheless, TBBPA-MAE and TBBPA-MDBPE showed higher potentials in promoting adipogenesis in 3T3-L1 cells than did TBBPA, as evidenced by intracellular triglyceride contents and adipogenic biomarkers at both protein and transcriptional levels. The etherified group at position 4 of TBBPA phenolic rings was crucial in chemical-induced adipogenic effects, which was related with the recruitment of PPARγ and GR-mediated networks and some other unidentified signaling pathways. The findings on the disturbance of TBBPA analogues on adipogenesis revealed their potential risk in causing obesity and other lipid metabolism-related human health concerns.
Collapse
Affiliation(s)
- Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Aifeng Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, P.R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, P.R. China
| |
Collapse
|
48
|
Tan F, Lu B, Liu Z, Chen G, Liu Y, Cheng F, Zhou Y. Identification and quantification of TBBPA and its metabolites in adult zebrafish by high resolution liquid chromatography tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Chemiluminescence imaging immunoassay for simultaneous determination of TBBPA-DHEE and TBBPA-MHEE in aquatic environments. Anal Bioanal Chem 2020; 412:3673-3681. [DOI: 10.1007/s00216-020-02604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/19/2023]
|
50
|
Qiu J, Lü F, Zhang H, Liu W, Chen J, Deng Y, Shao L, He P. UPLC Orbitrap MS/MS-based fingerprints of dissolved organic matter in waste leachate driven by waste age. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121205. [PMID: 31627183 DOI: 10.1016/j.jhazmat.2019.121205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Waste leachate is a pool of complicated metabolites from waste treatment and disposal as a global environmental problem. The recognition of dissolved organic matter (DOM) in leachate is crucial to improve leachate treatment efficiency and comprehend waste stabilization process. The present study acquired the molecular information for DOM in 22 waste leachate samples using ultra-performance liquid chromatography coupled with hybrid quadrupole Orbitrap mass spectrometry (UPLC Orbitrap MS/MS) based on two dimensions of retention time and mass-to-charge ratio. Unique mass peaks occupied more than 20% of the detected mass peaks in each leachate, implying that the molecular information for DOM could be the fingerprint of waste landfills and storage pits. Waste age and composition predominately accounted for this unique DOM. The double-bond equivalent increased and the H/C decreased with waste age. We further found that 57 precursor ion peaks and artificial matter (confirmed as N-butylbenzenesulfonamide) were significantly correlated with waste age by multiple test and non-target screening. These molecular characteristics of raw leachate were first determined to compensate for the evolution of leachate with waste age. The fingerprints of waste leachate can be further applied in environmental monitoring scenarios, e.g., tracing landfill leakage.
Collapse
Affiliation(s)
- Junjie Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Wanying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Junlan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Yingtao Deng
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|