1
|
Ma Q, Yuan R, Wang S, Sun Y, Zhang Q, Yuan X, Wang Q, Luo C. Indigenized Characterization Factors for Health Damage Due to Ambient PM 2.5 in Life Cycle Impact Assessment in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17320-17333. [PMID: 39298624 DOI: 10.1021/acs.est.3c08122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Life cycle assessment (LCA) is a broadly used method for quantifying environmental impacts, and life cycle impact assessment (LCIA) is an important step as well as a major source of uncertainties in LCA. Characterization factors (CFs) are pivotal elements in LCIA models. In China, the health loss due to ambient PM2.5 is an important aspect of LCIA results, which, however, is generally assessed by adopting CFs developed by global models and there remains a need to integrate localized considerations and the latest information for more precise applications in China. In this study, we developed indigenized CFs for LCIA of health damage due to ambient PM2.5 in China by coupling the atmospheric chemical transport model GEOS-Chem, exposure-response model GEMM containing Chinese cohort studies, and the latest local data. Results show that CFs of four major PM2.5 precursors all exhibit significant interregional variation and monthly differences in China. Our results were generally an order of magnitude higher and show disparate spatial distribution compared to CFs currently in use, suggesting that the health damage due to ambient PM2.5 was underestimated in LCIA in China, and indigenized CFs need to be adopted for more accurate results in LCIA and LCA studies.
Collapse
Affiliation(s)
- Qiao Ma
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Sustainable Development Research Center, Shandong University, Jinan 250061, China
| | - Renxiao Yuan
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Sustainable Development Research Center, Shandong University, Jinan 250061, China
| | - Shan Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Sustainable Development Research Center, Shandong University, Jinan 250061, China
| | - Yuchen Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Sustainable Development Research Center, Shandong University, Jinan 250061, China
| | - Qianqian Zhang
- National Satellite Meteorological Center, Beijing 100089, China
| | - Xueliang Yuan
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Sustainable Development Research Center, Shandong University, Jinan 250061, China
| | - Qingsong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Sustainable Development Research Center, Shandong University, Jinan 250061, China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
2
|
Choma EF, Robinson LA, Nadeau KC. Adopting electric school buses in the United States: Health and climate benefits. Proc Natl Acad Sci U S A 2024; 121:e2320338121. [PMID: 38768355 PMCID: PMC11145267 DOI: 10.1073/pnas.2320338121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Electric school buses have been proposed as an alternative to reduce the health and climate impacts of the current U.S. school bus fleet, of which a substantial share are highly polluting old diesel vehicles. However, the climate and health benefits of electric school buses are not well known. As they are substantially more costly than diesel buses, assessing their benefits is needed to inform policy decisions. We assess the health benefits of electric school buses in the United States from reduced adult mortality and childhood asthma onset risks due to exposure to ambient fine particulate matter (PM2.5). We also evaluate climate benefits from reduced greenhouse-gas emissions. We find that replacing the average diesel bus in the U.S. fleet in 2017 with an electric bus yields $84,200 in total benefits. Climate benefits amount to $40,400/bus, whereas health benefits amount to $43,800/bus due to 4.42*10-3 fewer PM2.5-attributable deaths ($40,000 of total) and 7.42*10-3 fewer PM2.5-attributable new childhood asthma cases ($3,700 of total). However, health benefits of electric buses vary substantially by driving location and model year (MY) of the diesel buses they replace. Replacing old, MY 2005 diesel buses in large cities yields $207,200/bus in health benefits and is likely cost-beneficial, although other policies that accelerate fleet turnover in these areas deserve consideration. Electric school buses driven in rural areas achieve small health benefits from reduced exposure to ambient PM2.5. Further research assessing benefits of reduced exposure to in-cabin air pollution among children riding buses would be valuable to inform policy decisions.
Collapse
Affiliation(s)
- Ernani F. Choma
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Lisa A. Robinson
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
3
|
Zhang S, Jiang Y, Zhang S, Choma EF. Health benefits of vehicle electrification through air pollution in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169859. [PMID: 38190893 DOI: 10.1016/j.scitotenv.2023.169859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Vehicle electrification has been recognized for its potential to reduce emissions of air pollutants and greenhouse gases in China. Several studies have estimated how national-level policies of electric vehicle (EV) adoption might bring very large environmental and public health benefits from improved air quality to China. However, large-scale adoption is very costly, some regions derive more benefits from large-scale EV adoption than others, and the benefits of replacing internal combustion engines in specific cities are less known. Therefore, it is important for policymakers to design incentives based on regional characteristics - especially for megacities like Shanghai - which typically suffer from worse air quality and where a larger population is exposed to emissions from vehicles. Over the past five years, Shanghai has offered substantial personal subsidies for passenger EVs to accelerate its electrification efforts. Still, it remains uncertain whether EV benefits justify the strength of incentives. The purpose of our study is to evaluate the health and climate benefits of replacing light-duty gasoline vehicles (ICEVs) with battery EVs in the city of Shanghai. We assess health impacts due to ICEV emissions of primary fine particulate matter, NOx, and volatile organic compounds, and to powerplant emissions of NOx and SO2 due to EV charging. We incorporate climate benefits from reduced greenhouse gas emissions based on existing research. We find that the benefit of replacing the average ICEV with an EV in Shanghai is US$6400 (2400-14,700), with health impacts of EVs about 20 times lower than the average ICEV. Larger benefits ensue if older ICEVs are replaced, but replacing newer China ICEVs also achieves positive health benefits. As Shanghai plans to stop providing personal subsidies for EV purchases in 2024, our results show that EVs achieve public health and climate benefits and can help inform policymaking strategies in Shanghai and other megacities.
Collapse
Affiliation(s)
- Saiwen Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yiliang Jiang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Shaojun Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Ernani F Choma
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Morantes G, Jones B, Molina C, Sherman MH. Harm from Residential Indoor Air Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:242-257. [PMID: 38150532 PMCID: PMC10785761 DOI: 10.1021/acs.est.3c07374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
This study presents a health-centered approach to quantify and compare the chronic harm caused by indoor air contaminants using disability-adjusted life-year (DALY). The aim is to understand the chronic harm caused by airborne contaminants in dwellings and identify the most harmful. Epidemiological and toxicological evidence of population morbidity and mortality is used to determine harm intensities, a metric of chronic harm per unit of contaminant concentration. Uncertainty is evaluated in the concentrations of 45 indoor air contaminants commonly found in dwellings. Chronic harm is estimated from the harm intensities and the concentrations. The most harmful contaminants in dwellings are PM2.5, PM10-2.5, NO2, formaldehyde, radon, and O3, accounting for over 99% of total median harm of 2200 DALYs/105 person/year. The chronic harm caused by all airborne contaminants in dwellings accounts for 7% of the total global burden from all diseases.
Collapse
Affiliation(s)
- Giobertti Morantes
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Benjamin Jones
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Constanza Molina
- Escuela
de Construcción Civil, Pontificia
Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Max H. Sherman
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Dutta A, Chavalparit O. Assessment of health burden due to the emissions of fine particulate matter from motor vehicles: A case of Nakhon Ratchasima province, Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162128. [PMID: 36773925 DOI: 10.1016/j.scitotenv.2023.162128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Air pollution, owing to the ever-increasing transport vehicle fleet, and adverse health effects are increasing in provinces of Thailand. The study estimated that the vehicle fleet size of Nakhon Ratchasima (NR) province of Thailand will grow to 2 million vehicles by 2030, which was 1.36 million in 2021. In NR, the PM2.5 and PM10 concentrations already surpassed both WHO and NAAQS guidelines in 2019-2021. Using Pollution Control Department (PCD) approved Tier I and II Methodology of EMEP/EEA, this research estimated that the total tailpipe emission load will be 1039 tons of PM2.5, 16,630 tons of NO₂, 20,623 tons of CO, 195 tons NH₃, and 249 tons of SO₂ in NR during 2030. The emission load will increase to 1752 tons of PM2.5, 21,126 tons of NO2, 25,559 tons of CO, 361 tons of NH3 and 9344 tons of SO₂ during 2030 if upstream emissions are considered. This study has developed five control scenarios in line with the directives of PCD to mitigate the adverse health from vehicle-led air pollution in NR and implementation during 2024-2030. According to the study, different control scenarios to be implemented during 2024-2030, will be able to keep the fleet size of vehicles in the NR under control. The results show that the control scenarios will keep the annual tailpipe emission of PM2.5 at 604 tons in 2030, a 42 % reduction over the 2030 Business-As-Usual scenario (BAU). The health damage in the range of 6941 to 11,625 disability-adjusted life years (DALYs) under the 2030 BAU scenario in NR due to tailpipe and upstream emissions can be reduced to 4162-7318 DALYs with the implementation of different control scenarios. The control scenarios will also provide significant economic benefits ranging from 4465 to 6718 million THB during 2024-2030 through reduced DALYs and associated costs.
Collapse
Affiliation(s)
- Abhishek Dutta
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Orathai Chavalparit
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
7
|
Fantke P, von Goetz N, Jantunen M. Advancing exposure knowledge and its uptake into policy: The European exposure science strategy 2020-2030 (Special Issue). ENVIRONMENT INTERNATIONAL 2023; 172:107692. [PMID: 36526447 DOI: 10.1016/j.envint.2022.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| | - Natalie von Goetz
- Swiss Federal Office of Public Health, Schwarzenburgstr., 157, 3003 Bern, Switzerland; Swiss Federal Institute of Technology (ETH) Zurich, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | | |
Collapse
|
8
|
Xie Q, Dai Y, Zhu X, Hui F, Fu X, Zhang Q. High contribution from outdoor air to personal exposure and potential inhaled dose of PM 2.5 for indoor-active university students. ENVIRONMENTAL RESEARCH 2022; 215:114225. [PMID: 36063909 DOI: 10.1016/j.envres.2022.114225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
People spend most of their time indoors, isolated from the outdoor environment where serious air pollution usually occurs. To what extent outdoor air pollution contributes to their daily personal exposure and inhaled dose? To fill this knowledge gap, an exposure assessment study was conducted for indoor-active university students during a wintertime period of hazy and non-hazy (clear) days in Beijing. Indoor and outdoor fine particulate matter (PM2.5) samples were collected at six indoor microenvironments, and two outdoor environments representing traffic and ambient exposure in the university, respectively, to estimate the personal exposure of students. The average daily personal exposure and poteantial inhaled dose on hazy days (124.8 ± 72.3 μg m-3 and 2.74 ± 1.53 mg) were much higher than that on clear days (57.5 ± 31.9 μg m-3 and 1.26 ± 0.59 mg), indicating a significant influence from the ambient air quality. The indoor PM2.5 concentrations were significantly and positively correlated with the outdoor ones (r = 0.67-0.96) with an FINF (infiltration factor) range of 0.44-0.81 during sampling periods. The outdoor-origin air contributed 68%-95% to the total indoor PM2.5, the average of which was higher during haze events (87%) than clear periods (73%). Correspondingly, outdoor-origin PM2.5 contributed around 105.4 μg m-3 and 2.41 mg (85% and 89%) to the daily exposure and inhaled dose of college students on hazy days, respectively, compared to just 39.2 μg m-3 and 0.95 mg (68% and 75%) on clear days. Our results highlight the significant contribution of outdoor-origin PM2.5 occurred indoor to both the daily personal exposure and inhaled dose due to air pollution filtration between outdoor and indoor environments. These also suggest a continuous effort not only on ambient air quality improvements, but also on environmental friendly building for public health protection with lower exposure.
Collapse
Affiliation(s)
- Qiaorong Xie
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yuqing Dai
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xianlei Zhu
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China; Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| | - Fan Hui
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Xianqiang Fu
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Qiangbin Zhang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China; Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
9
|
Cabernard L, Pfister S. Hotspots of Mining-Related Biodiversity Loss in Global Supply Chains and the Potential for Reduction through Renewable Electricity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16357-16368. [PMID: 36279569 DOI: 10.1021/acs.est.2c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anticipated infrastructure growth and energy transition may exacerbate biodiversity loss through increased demand for mining products. This study uses an enhanced multiregional input-output database (REX, Resolved EXIOBASE) and supply chain impact mapping (SCIM) method to assess global biodiversity loss associated with mining-related land use. We identify hotspots in the supply chain of mining products, compare the impact of fossil and renewable electricity, and estimate the share of mining in total global impacts. We found that half of the global mining-related biodiversity loss occurs in Indonesia, Australia, and New Caledonia. Major international trade flows of embodied biodiversity loss involve Indonesia's coal exports to China and India, New Caledonia's nickel exports to Japan and Australia, and Australia's iron and bauxite exports to China. Key end-consumers include China's growing infrastructure and the EU's and USA's household consumption. Electricity generation accounted for 10% of global mining-related biodiversity loss in 2014. The impact of coal-fired electricity was 10 times higher than that of renewables per unit of electricity generated. Globally, mining contributes to less than 1% of the total land use-related biodiversity loss, which is dominated by agriculture. Our results provide transparency in sourcing more sustainable mining products and underline synergies in fostering renewables to meet local biodiversity and global climate targets.
Collapse
Affiliation(s)
- Livia Cabernard
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, Swiss Federal Institute of Technology, ETH Zurich, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
- Department of Humanities, Social, and Political Sciences, Institute of Science, Technology, and Policy (ISTP), Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 41, 8092 Zurich, Switzerland
| | - Stephan Pfister
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, Swiss Federal Institute of Technology, ETH Zurich, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
- Department of Humanities, Social, and Political Sciences, Institute of Science, Technology, and Policy (ISTP), Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 41, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Zhang H, Fan Y, Han Y, Yan L, Zhou B, Chen W, Cai Y, Chan Q, Zhu T, Kelly FJ, Barratt B. Partitioning indoor-generated and outdoor-generated PM 2.5 from real-time residential measurements in urban and peri-urban Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157249. [PMID: 35817115 DOI: 10.1016/j.scitotenv.2022.157249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Limited number of projects have attempted to partition and quantify indoor- and outdoor-generated PM2.5 (PM2.5ig and PM2.5og) where strong indoor sources (e.g., solid fuel, tobacco smoke, or kerosene) exist. This study aimed to apply and refine a previous recursive model used to derive infiltration efficiency (Finf) to additionally partition pollution concentrations into indoor and outdoor origins within residences challenged by elevated ambient and indoor combustion-related sources. During the winter of 2016 and summer of 2017 we collected residential measurements in 72 homes in urban and peri-urban Beijing, 12 of which had additional paired residential outdoor measurements during the summer season. Local ambient measurements were collected throughout. We then compared the calculated PM2.5ig and using (i) outdoor and (ii) ambient measurements as model inputs. The results from outdoor and ambient measurements were not significantly different, which suggests that ambient measurements can be used as a model input for pollution origin partitioning when paired outdoor measurements are not available. From the results calculated using ambient measurements, the mean percentage contribution of indoor-generated PM2.5 was 19 % (σ = 22 %), and 7 % (11 %) of the total indoor PM2.5 for peri-urban and urban homes respectively during the winter; and 18 % (18 %) and 6 % (10 %) of the total indoor PM2.5 during the summer. Partitioning pollution into PM2.5ig and PM2.5og is important to allow investigation of distinct associations between health outcomes and particulate mixes, often with different physiochemical composition and toxicity. It will also inform targeted interventions that impact indoor and outdoor sources of pollution (e.g., domestic fuel switching vs. power generation), which are typically radically different in design and implementation.
Collapse
Affiliation(s)
- Hanbin Zhang
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK; Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Li Yan
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; National School of Development at Peking University, Beijing 100871, China
| | - Bingling Zhou
- Lau China Institute, King's College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yutong Cai
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK; NIHR HPRU in Environmental Exposures and Health, University of Leicester, Leicester, UK
| | - Queenie Chan
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Frank J Kelly
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK; Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Benjamin Barratt
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK; Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
11
|
Jantunen MJ. Pandemic management requires exposure science. ENVIRONMENT INTERNATIONAL 2022; 169:107470. [PMID: 36028335 PMCID: PMC9392555 DOI: 10.1016/j.envint.2022.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
COVID-19 was first detected in Wuhan, China, on 8.12.2019, and WHO announced it a pandemic on 11.3.2020. No vaccines or medical cures against COVID-19 were available in the first corona year. Instead, different combinations of generic non-pharmaceutical interventions - to slow down the spread of infections via exposure restrictions to 'flatten the curve' so that it would not overburden the health care systems, or to suppress the virus to extinction - were applied with varying levels of strictness, duration and success in the Pacific and North Atlantic regions. Due to an old misconception, almost all public health authorities dismissed the possibility that the virus would be transmitted via air. Opportunities to reduce the inhalation exposure - such as wearing effective FFP2/N95 respirators, improving ventilation and indoor air cleaning - were missed, and instead, hands were washed and surfaces disinfected. The fact that aerosols were acknowledged as the main route of COVID-19 transmission in 2021 opened avenues for more efficient and socially less disruptive exposure and risk reduction policies that are discussed and evaluated here, demonstrating that indoor air and exposure sciences are crucial for successful management of pandemics. To effectively apply environmental and personal exposure mitigation measures, exposure science needs to target the human-to-human exposure pathways of the virus.
Collapse
|
12
|
Zhao X, You F. Life Cycle Assessment of Microplastics Reveals Their Greater Environmental Hazards than Mismanaged Polymer Waste Losses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11780-11797. [PMID: 35920730 DOI: 10.1021/acs.est.2c01549] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concern about microplastic pollution sourced from mismanaged plastic waste losses to drainage basins is growing but lacks relevant environmental impact analyses. Here, we reveal and compare the environmental hazards of aquatic macro- and microplastic debris through a holistic life cycle assessment approach. Compared to polymeric debris, microplastics, especially smaller than 10 μm, exhibit higher freshwater ecotoxicity enhanced by watersheds' high average depth and low water temperature. High microplastic concentration within drainage basins can also cause air pollution regarding particulate matter formation and photochemical ozone formation. The environmental drawbacks of plastic mismanagement are then demonstrated by showing that the microplastic formulation and removal in drinking water treatment plants can pose more than 7.44% of the total ecotoxicity effect from plastic wastes' (microplastics') whole life cycle. Specifically, these two life cycle stages can also cause more than 50% of the plastic wastes' life cycle ecotoxicity effect related to organic chemical emissions. Therefore, reducing environmentally harmful plastic losses through advanced plastic waste recycling, collection, and effective microplastic removal technologies needs future investigation.
Collapse
Affiliation(s)
- Xiang Zhao
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fengqi You
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Relevance of Impact Categories and Applicability of Life Cycle Impact Assessment Methods from an Automotive Industry Perspective. SUSTAINABILITY 2022. [DOI: 10.3390/su14148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Climate change impacts have been extensively addressed in academia, politics and industry for decades. However, particularly within the scientific community, the importance of considering further impact categories to ensure holistic environmental assessment and avoid burden shifting is strongly emphasized. Since considering all impact categories might become overwhelming for industry, a prioritization approach can support practitioners to focus their efforts on the most relevant impacts. Therefore, within this paper, an approach for the identification of relevant impact categories is developed for the automotive sector together with Volkswagen AG. The evaluation is conducted using a criteria set including criteria groups “relevance for automotive sector” and “relevance for stakeholders”. For the impact categories identified as relevant, an evaluation of LCIA methods is conducted considering the methodologies CML and ReCiPe 2016 and the methods recommended by PEF. The results demonstrate that climate change is by far the most relevant impact category followed by resource use, human toxicity and ecotoxicity from both automotive and stakeholder perspective. Based on the evaluation of the LCIA methods, a combination of different methods can be recommended. This work provides guidance for the automotive sector to prioritize its focus on the most relevant impact categories and to select applicable LCIA methods for their quantification.
Collapse
|
14
|
Thind MPS, Heath G, Zhang Y, Bhatt A. Characterization factors and other air quality impact metrics: Case study for PM 2.5-emitting area sources from biofuel feedstock supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153418. [PMID: 35092782 DOI: 10.1016/j.scitotenv.2022.153418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we develop a framework and metrics for estimating the impact of emission sources on regulatory compliance and human health for applications in air quality planning and life cycle impact assessment (LCIA). Our framework is based on a pollutant's characterization factor (CF) and three new metrics: Available Regulatory Capacity for Incremental Emissions (ARCIE), Source CF Ratio, and Activity Health Impact (AHI) Ratio. ARCIE can be used to assess whether a receptor location has capacity to accommodate additional source emissions while complying with regulatory limits. We present CF as a midpoint indicator of health impacts per unit mass of emitted pollutant. Source CF Ratio enables comparison of potential new-source locations based on human health impacts. The AHI Ratio estimates the health impacts of a pollutant in relation to the utilization of the source for each unit of product or service. These metrics can be applied to any pollutant, energy source sector (e.g., agriculture, electricity), source type (point, line, area), and spatial modeling domain (nation, state, city, region). We demonstrate these metrics through a case study of fine particulate (PM2.5) emissions from U.S. corn stover harvesting and local processing at various scales, representing steps in the biofuel production process. We model PM2.5 formation in the atmosphere using a novel reduced-complexity chemical transport model called the Intervention Model for Air Pollution (InMAP). Through this case study, we present the first area-source PM2.5 CFs that address the recommendations of several LCIA studies to establish spatially explicit CFs specific to an energy source sector or type. Overall, the framework developed in this work provides multiple new ways to consider the potential impacts of air emissions through spatially differentiated metrics.
Collapse
Affiliation(s)
- Maninder P S Thind
- National Renewable Energy Laboratory, Golden, CO 80401, United States; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Garvin Heath
- National Renewable Energy Laboratory, Golden, CO 80401, United States.
| | - Yimin Zhang
- National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Arpit Bhatt
- National Renewable Energy Laboratory, Golden, CO 80401, United States
| |
Collapse
|
15
|
Mainka A, Fantke P. Preschool children health impacts from indoor exposure to PM 2.5 and metals. ENVIRONMENT INTERNATIONAL 2022; 160:107062. [PMID: 34959196 DOI: 10.1016/j.envint.2021.107062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
To better understand the relation between children health and indoor air quality, we measured the concentrations of fine particulate matter (PM2.5) and 11 metals (arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, antimony, selenium, and zinc) from air samples taken during both winter and spring, and focused on urban and rural area kindergartens of the Upper Silesia Region, Poland, typified by the use of fossil fuels for power and heat purposes. We combined related inhalation intake estimates for children and health effects using separate dose-response approaches for PM2.5 and metals. Results show that impacts on children from exposure to PM2.5 was 7.5 min/yr, corresponding to 14 μDALY/yr (DALY: disability-adjusted life years) with 95% confidence interval (CI): 0.3-164 min/yr, which is approximately 10 times lower than cumulative impacts from exposure to the metal components in the PM2.5 fraction of indoor air (median 76 min/yr; CI: 0.2-4.5 × 103 min/yr). Highest metal-related health impacts were caused by exposure to hexavalent chromium. The average combined cancer and non-cancer effects for hexavalent chromium were 55 min/yr, corresponding to 104 μDALY/yr, with CI: 0.5 to 8.0 × 104 min/yr. Health impacts on children varied by season and across urban and rural sites, both as functions of varying PM2.5 metal compositions influenced by indoor and outdoor emission sources. Our study demonstrates the need to consider indoor environments for evaluating health impacts of children, and can assist decision makers to focus on relevant impact reduction and indoor air quality improvement.
Collapse
Affiliation(s)
- Anna Mainka
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland.
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Kouis P, Psistaki K, Giallouros G, Michanikou A, Kakkoura MG, Stylianou KS, Papatheodorou SI, Paschalidou AΚ. Heat-related mortality under climate change and the impact of adaptation through air conditioning: A case study from Thessaloniki, Greece. ENVIRONMENTAL RESEARCH 2021; 199:111285. [PMID: 34015294 DOI: 10.1016/j.envres.2021.111285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Climate change is expected to increase heat-related mortality across the world. Health Impact Assessment (HIA) studies are used to quantify the impact of higher temperatures, taking into account the effect of population adaptation. Although air-conditioning (AC) is one of the main drivers of technological adaptation to heat, the health impacts associated with AC-induced air pollution have not been examined in detail. This study uses the city of Thessaloniki, Greece as a case study and aims to estimate the future heat-related mortality, the residential cooling demand, and the adaptation trade-off between averted heat-related and increased air pollution cardiorespiratory mortality. Using temperature and population projections under different Coupled Model Intercomparison Project Phase 6 (CIMP6) Shared Socioeconomic Pathways scenarios (SSPs), a HIA model was developed for the future heat and air pollution cardiorespiratory mortality. Counterfactual scenarios of either black carbon (BC) or natural gas (NG) being the fuel source for electricity generation were included in the HIA. The results indicate that the heat-related cardiorespiratory mortality in Thessaloniki will increase and the excess of annual heat-related deaths in 2080-2099 will range from 2.4 (95% CI: 0.0-20.9) under SSP1-2.6 to 433.7 (95% CI: 66.9-1070) under SSP5-8.5. Population adaptation will attenuate the heat-related mortality, although the latter may be counterbalanced by the higher air pollution-related mortality due to increased AC, especially under moderate SSP scenarios and coal-fired power plants. Future studies examining the health effects of warmer temperatures need to account for the impact of both adaptation and increased penetration and use of AC.
Collapse
Affiliation(s)
| | - Kyriaki Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| | - George Giallouros
- Department of Public and Business Administration, University of Cyprus, Nicosia, Cyprus.
| | | | - Maria G Kakkoura
- Medical School, University of Cyprus, Nicosia, Cyprus; Clinical Trial Service Unit and Epidemiological Studies Unit CTSU, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Katerina S Stylianou
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | | | - Anastasia Κ Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| |
Collapse
|
17
|
Fantke P, Chiu WA, Aylward L, Judson R, Huang L, Jang S, Gouin T, Rhomberg L, Aurisano N, McKone T, Jolliet O. Exposure and Toxicity Characterization of Chemical Emissions and Chemicals in Products: Global Recommendations and Implementation in USEtox. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2021; 26:899-915. [PMID: 34140756 PMCID: PMC8208704 DOI: 10.1007/s11367-021-01889-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
PURPOSE Reducing chemical pressure on human and environmental health is an integral part of the global sustainability agenda. Guidelines for deriving globally applicable, life cycle based indicators are required to consistently quantify toxicity impacts from chemical emissions as well as from chemicals in consumer products. In response, we elaborate the methodological framework and present recommendations for advancing near-field/far-field exposure and toxicity characterization, and for implementing these recommendations in the scientific consensus model USEtox. METHODS An expert taskforce was convened by the Life Cycle Initiative hosted by UN Environment to expand existing guidance for evaluating human toxicity impacts from exposure to chemical substances. This taskforce evaluated advances since the original release of USEtox. Based on these advances, the taskforce identified two major aspects that required refinement, namely integrating near-field and far-field exposure and improving human dose-response modeling. Dedicated efforts have led to a set of recommendations to address these aspects in an update of USEtox, while ensuring consistency with the boundary conditions for characterizing life cycle toxicity impacts and being aligned with recommendations from agencies that regulate chemical exposure. The proposed framework was finally tested in an illustrative rice production and consumption case study. RESULTS AND DISCUSSION On the exposure side, a matrix system is proposed and recommended to integrate far-field exposure from environmental emissions with near-field exposure from chemicals in various consumer product types. Consumer exposure is addressed via submodels for each product type to account for product characteristics and exposure settings. Case study results illustrate that product-use related exposure dominates overall life cycle exposure. On the effect side, a probabilistic dose-response approach combined with a decision tree for identifying reliable points of departure is proposed for non-cancer effects, following recent guidance from the World Health Organization. This approach allows for explicitly considering both uncertainty and human variability in effect factors. Factors reflecting disease severity are proposed to distinguish cancer from non-cancer effects, and within the latter discriminate reproductive/developmental and other non-cancer effects. All proposed aspects have been consistently implemented into the original USEtox framework. CONCLUSIONS The recommended methodological advancements address several key limitations in earlier approaches. Next steps are to test the new characterization framework in additional case studies and to close remaining research gaps. Our framework is applicable for evaluating chemical emissions and product-related exposure in life cycle assessment, chemical alternatives assessment and chemical substitution, consumer exposure and risk screening, and high-throughput chemical prioritization.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lesa Aylward
- Queensland Alliance for Environmental Health Sciences, University of Queensland, Brisbane, Australia
| | - Richard Judson
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Lei Huang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Suji Jang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, MK44 1PL, UK
| | | | - Nicolò Aurisano
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Thomas McKone
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Cabernard L, Pfister S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142587. [PMID: 33268260 DOI: 10.1016/j.scitotenv.2020.142587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Moving towards a greener economy requires detailed information on the environmental impacts of global value chains. Environmentally-extended multi-regional input-output (MRIO) analysis plays a key role in providing this information, but current databases are limited in their spatial (e.g. EXIOBASE3) or sectoral resolution (e.g. Eora26 and GTAP) as well as their indicator coverage. Here, we present an automated, transparent, and comparably time-efficient approach to improve the resolution, quality, and indicator coverage of an existing MRIO database. Applied on EXIOBASE3, we disaggregate and improve the limited spatial resolution by weighting each element with country and sector specific shares derived from Eora26, FAOSTAT, and previous studies. The resolved database covers 189 countries, 163 sectors, and a cutting-edge set of environmental and socio-economic indicators from the years 1995 to 2015. The importance of our improvements is highlighted by the EU-27 results, which reveal a significant increase in the EU's water stress and biodiversity loss footprint as a result of the spatial disaggregation and regionalized assessment. In 2015, a third of the EU's water stress and half of its biodiversity loss footprint was caused in the countries aggregated as rest of the world in EXIOBASE3. This was mainly attributed to the EU's food imports, which induce comparably high water stress and biodiversity loss in Egypt and Madagascar, respectively. In a second example, we use our database to add carbon, water stress and biodiversity loss footprints to the Green Economy Progress (GEP) Measurement Framework. Most countries have not achieved their environmental target and many countries, facing strong future population growth, show increasing footprints. Our results demonstrate that far more action is needed to move towards a greener economy globally, especially through supply chain management. The attached database provides detailed information on the environmental impacts of global value chains to plan efficient strategies for a greener economy.
Collapse
Affiliation(s)
- Livia Cabernard
- Swiss Federal Institute of Technology, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland; Swiss Federal Institute of Technology, ETH Zurich, Department of Humanities, Social and Political Sciences, Institute of Science, Technology, and Policy (ISTP), Universitätstrasse 41, 8092 Zurich, Switzerland.
| | - Stephan Pfister
- Swiss Federal Institute of Technology, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland; Swiss Federal Institute of Technology, ETH Zurich, Department of Humanities, Social and Political Sciences, Institute of Science, Technology, and Policy (ISTP), Universitätstrasse 41, 8092 Zurich, Switzerland.
| |
Collapse
|
19
|
Wu T, Fu M, Valkonen M, Täubel M, Xu Y, Boor BE. Particle Resuspension Dynamics in the Infant Near-Floor Microenvironment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1864-1875. [PMID: 33450149 DOI: 10.1021/acs.est.0c06157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carpet dust contains microbial and chemical material that can impact early childhood health. Infants may be exposed to greater quantities of resuspended dust, given their close proximity to floor surfaces. Chamber experiments with a robotic infant were integrated with a material balance model to provide new fundamental insights into the size-dependency of infant crawling-induced particle resuspension and exposure. The robotic infant was exposed to resuspended particle concentrations from 105 to 106 m-3 in the near-floor (NF) microzone during crawling, with concentrations generally decreasing following vacuum cleaning of the carpets. A pronounced vertical variation in particle concentrations was observed between the NF microzone and bulk air. Resuspension fractions for crawling are similar to those for adult walking, with values ranging from 10-6 to 10-1 and increasing with particle size. Meaningful amounts of dust are resuspended during crawling, with emission rates of 0.1 to 2 × 104 μg h-1. Size-resolved inhalation intake fractions ranged from 5 to 8 × 103 inhaled particles per million resuspended particles, demonstrating that a significant fraction of resuspended particles can be inhaled. A new exposure metric, the dust-to-breathing zone transport efficiency, was introduced to characterize the overall probability of a settled particle being resuspended and delivered to the respiratory airways. Values ranged from less than 0.1 to over 200 inhaled particles per million settled particles, increased with particle size, and varied by over 2 orders of magnitude among 12 carpet types.
Collapse
Affiliation(s)
- Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manjie Fu
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maria Valkonen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Martin Täubel
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Oberschelp C, Pfister S, Hellweg S. Globally Regionalized Monthly Life Cycle Impact Assessment of Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16028-16038. [PMID: 33226786 DOI: 10.1021/acs.est.0c05691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work provides a globally regionalized approach for quantifying particulate matter (PM2.5) health impacts. Atmospheric transport and pollutant chemistry of primary particulate matter, sulfur dioxide (SO2), nitrogen oxide (NOx), and ammonia (NH3) from stack emissions were modeled and used to calculate monthly high-resolution maps of global characterization factors that can be used for life cycle impact assessment (LCIA) and risk assessment. These characterization factors are applied to a global data set of coal power emissions. The results show large regional and temporal differences in health impacts per kg of emission and per amount of coal power generation (5-1300 DALY TWh-1). While small emission reductions of PM2.5 and SO2 from coal power lead to similar health benefits across densely populated areas of Asia and Europe, we find that larger emission reductions result in up to three times higher health benefits in parts of Asia because of the nonlinear health responses to pollution exposure changes. Hence, many regions in Asia benefit disproportionately much from large coal power PM2.5 and SO2 emission reductions. NOx emission reductions can lead to equally high health benefits, where unfavorable atmospheric conditions coincide with elevated NH3 background pollution and large population (e.g., in Central Europe, Indonesia, or Japan but also numerous other places).
Collapse
Affiliation(s)
- Christopher Oberschelp
- ETH Zürich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, CH-8093 Zurich, Switzerland
| | - Stephan Pfister
- ETH Zürich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, CH-8093 Zurich, Switzerland
| | - Stefanie Hellweg
- ETH Zürich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, CH-8093 Zurich, Switzerland
| |
Collapse
|
21
|
Beloin-Saint-Pierre D, Albers A, Hélias A, Tiruta-Barna L, Fantke P, Levasseur A, Benetto E, Benoist A, Collet P. Addressing temporal considerations in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140700. [PMID: 32758829 DOI: 10.1016/j.scitotenv.2020.140700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 05/27/2023]
Abstract
In life cycle assessment (LCA), temporal considerations are usually lost during the life cycle inventory calculation, resulting in an aggregated "snapshot" of potential impacts. Disregarding such temporal considerations has previously been underlined as an important source of uncertainty, but a growing number of approaches have been developed to tackle this issue. Nevertheless, their adoption by LCA practitioners is still uncommon, which raises concerns about the representativeness of current LCA results. Furthermore, a lack of consistency can be observed in the used terms for discussions on temporal considerations. The purpose of this review is thus to search for common ground and to identify the current implementation challenges while also proposing development pathways. This paper introduces a glossary of the most frequently used terms related to temporal considerations in LCA to build a common understanding of key concepts and to facilitate discussions. A review is also performed on current solutions for temporal considerations in different LCA phases (goal and scope definition, life cycle inventory analysis and life cycle impact assessment), analysing each temporal consideration for its relevant conceptual developments in LCA and its level of operationalisation. We then present a potential stepwise approach and development pathways to address the current challenges of implementation for dynamic LCA (DLCA). Three key focal areas for integrating temporal considerations within the LCA framework are discussed: i) define the temporal scope over which temporal distributions of emissions are occurring, ii) use calendar-specific information to model systems and associated impacts, and iii) select the appropriate level of temporal resolution to describe the variations of flows and characterisation factors. Addressing more temporal considerations within a DLCA framework is expected to reduce uncertainties and increase the representativeness of results, but possible trade-offs between additional data collection efforts and the increased value of results from DLCAs should be kept in mind.
Collapse
Affiliation(s)
| | - Ariane Albers
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Arnaud Hélias
- ITAP, Irstea, Montpellier SupAgro, Univ Montpellier, ELSA Research Group, Montpellier, France
| | | | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annie Levasseur
- École de technologie supérieure, Construction Engineering Department, 1100 Notre-Dame West, Montréal, Québec, Canada
| | - Enrico Benetto
- Environmental Sustainability Assessment and Circularity Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
| | | | - Pierre Collet
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| |
Collapse
|
22
|
Choma EF, Evans JS, Hammitt JK, Gómez-Ibáñez JA, Spengler JD. Assessing the health impacts of electric vehicles through air pollution in the United States. ENVIRONMENT INTERNATIONAL 2020; 144:106015. [PMID: 32858467 DOI: 10.1016/j.envint.2020.106015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The environmental consequences of electric vehicles (EV) have been extensively studied, but the literature on their health impacts is scant. At the same time, fine particulate matter (PM2.5), for which transportation is a major source, remains an important public health issue in the United States. Motivated by recent developments in epidemiology and reduced-form air pollution modeling, as well as reductions in power plant emissions, we conduct an updated assessment of health benefits of light-duty vehicle electrification in large metropolitan areas (MSAs) in the United States. We first calculate MSA-specific mortality impacts per mile attributable to fine particles from internal combustion engine vehicle (ICEV) tailpipe emissions of PM2.5, SO2, NOx, NH3, and volatile organic compounds, and power plant emissions of PM2.5, SO2, and NOx. We complement these with changes in greenhouse-gas emissions associated with vehicle electrification. We find that electrification leads to large benefits, even with EVs powered exclusively by fossil fuel plants. VMT-weighted mean benefits in the 53 MSAs are 6.9 ¢/mile ($10,400 per 150,000 miles), 83% of which (5.7 ¢/mile or $8600 per 150,000 miles) comes from reductions in PM2.5-attributable mortality. Variability among the MSAs is large, with benefits ranging from 3.4 ¢/mile ($5100 per 150,000 miles) in Rochester, NY, to 11.5 ¢/mile ($17,200 per 150,000 miles) in New York, NY. This large variability suggests incentives should vary by MSA and presents an opportunity to target areas for EV deployment aimed at maximizing public health benefits. Impacts are smaller when EVs disproportionately replace newer ICEV models but EVs still lead to positive benefits in all MSAs. Vehicle electrification in urban areas is an opportunity to achieve large public health benefits in the United States in the short term.
Collapse
Affiliation(s)
- Ernani F Choma
- Population Health Sciences, Harvard University, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
| | - John S Evans
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - James K Hammitt
- Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Toulouse School of Economics, Université Toulouse Capitole, France
| | | | - John D Spengler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
23
|
Fantke P, von Goetz N, Schlüter U, Bessems J, Connolly A, Dudzina T, Ahrens A, Bridges J, Coggins MA, Conrad A, Hänninen O, Heinemeyer G, Kephalopoulos S, McLachlan M, Meijster T, Poulsen V, Rother D, Vermeire T, Viegas S, Vlaanderen J, Jeddi MZ, Bruinen de Bruin Y. Building a European exposure science strategy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:917-924. [PMID: 31792311 PMCID: PMC7704392 DOI: 10.1038/s41370-019-0193-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 11/02/2019] [Indexed: 05/22/2023]
Abstract
Exposure information is a critical element in various regulatory and non-regulatory frameworks in Europe and elsewhere. Exposure science supports to ensure safe environments, reduce human health risks, and foster a sustainable future. However, increasing diversity in regulations and the lack of a professional identity as exposure scientists currently hamper developing the field and uptake into European policy. In response, we discuss trends, and identify three key needs for advancing and harmonizing exposure science and its application in Europe. We provide overarching building blocks and define six long-term activities to address the identified key needs, and to iteratively improve guidelines, tools, data, and education. More specifically, we propose creating European networks to maximize synergies with adjacent fields and identify funding opportunities, building common exposure assessment approaches across regulations, providing tiered education and training programmes, developing an aligned and integrated exposure assessment framework, offering best practices guidance, and launching an exposure information exchange platform. Dedicated working groups will further specify these activities in a consistent action plan. Together, these elements form the foundation for establishing goals and an action roadmap for successfully developing and implementing a 'European Exposure Science Strategy' 2020-2030, which is aligned with advances in science and technology.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs, Lyngby, Denmark.
| | | | - Urs Schlüter
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - Jos Bessems
- Flemish Institute for Technological Research, Mol, Belgium
| | - Alison Connolly
- School of Physics and the Ryan Institute, National University of Ireland, Galway, Ireland
| | | | | | - Jim Bridges
- Research for Sustainability, University of Surrey, Guildford, UK
| | - Marie A Coggins
- School of Physics and the Ryan Institute, National University of Ireland, Galway, Ireland
| | - André Conrad
- German Environment Agency, Dessau-Roßlau, Germany
| | | | | | - Stylianos Kephalopoulos
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | | | | | | | - Dag Rother
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - Theo Vermeire
- National Institute for Public Health and the Environment, Utrecht, Netherlands
| | - Susana Viegas
- H&TRC Health & Technology Research Center, ESTeSL Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CISP Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jelle Vlaanderen
- Institutes for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Maryam Zare Jeddi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Yuri Bruinen de Bruin
- European Commission, Joint Research Centre, Directorate E-Space, Security and Migration, Ispra, Italy.
| |
Collapse
|
24
|
Cabernard L, Pfister S, Hellweg S. A new method for analyzing sustainability performance of global supply chains and its application to material resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:164-177. [PMID: 31154209 DOI: 10.1016/j.scitotenv.2019.04.434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Supply chains become increasingly globalized. Multi-regional input-output databases contain all the information to assess impacts along the value chain, but standard calculation routines to track the impacts of any sector along the global upstream and downstream value chain are missing. Mapping the impacts of materials has been a particular challenge owing to difficulties with double-counting. This is attributed to the strong intertwining of the material supply chain meaning that different materials occur in the supply chains of other materials. Here, we present a new method which can be applied to any MRIO system to track the impacts of any sector or region without double-counting upstream and downstream the global value chain. We apply this approach to EXIOBASE3 and implement a cutting-edge set of regionalized environmental impact categories and socio-economic indicators. Applied to global material production, our method shows that the issue of double-counting (prevented in this study) would overestimate global impacts of materials by up to 30%. In contrast, assessing only the direct impacts would lead to an underestimation by ~20%. Our evaluation further reveals that 25-35% of global material-related impacts are embodied in trade among ten world regions. Thereby, we identify the major international trade relations of key materials and found a clear trend of industrialized nations causing impacts in less developed economies. It was further revealed that during 1995-2011, the share of materials in total global climate change impacts has remained almost constant at ~50%, but total impacts have significantly increased for minerals and fossils. Our results demonstrate the importance for improved environmental policy strategies that target several stages of the global value chain. The methodology is provided as Matlab tool and can be applied to any material, industrial sector and region to track the related impacts upstream and downstream the global value chain.
Collapse
Affiliation(s)
- Livia Cabernard
- Swiss Federal Institute of Technology, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland; Swiss Federal Institute of Technology, ETH Zurich, Department of Humanities, Social and Policital Sciences, Institute of Science, Technology and Policy (ISTP), Universitätsstrasse 41, 8092 Zürich, Switzerland..
| | - Stephan Pfister
- Swiss Federal Institute of Technology, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland; Swiss Federal Institute of Technology, ETH Zurich, Department of Humanities, Social and Policital Sciences, Institute of Science, Technology and Policy (ISTP), Universitätsstrasse 41, 8092 Zürich, Switzerland..
| | - Stefanie Hellweg
- Swiss Federal Institute of Technology, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland; Swiss Federal Institute of Technology, ETH Zurich, Department of Humanities, Social and Policital Sciences, Institute of Science, Technology and Policy (ISTP), Universitätsstrasse 41, 8092 Zürich, Switzerland..
| |
Collapse
|
25
|
Fantke P, McKone TE, Tainio M, Jolliet O, Apte JS, Stylianou KS, Illner N, Marshall JD, Choma EF, Evans JS. Global Effect Factors for Exposure to Fine Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6855-6868. [PMID: 31132267 PMCID: PMC6613786 DOI: 10.1021/acs.est.9b01800] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 05/21/2023]
Abstract
We evaluate fine particulate matter (PM2.5) exposure-response models to propose a consistent set of global effect factors for product and policy assessments across spatial scales and across urban and rural environments. Relationships among exposure concentrations and PM2.5-attributable health effects largely depend on location, population density, and mortality rates. Existing effect factors build mostly on an essentially linear exposure-response function with coefficients from the American Cancer Society study. In contrast, the Global Burden of Disease analysis offers a nonlinear integrated exposure-response (IER) model with coefficients derived from numerous epidemiological studies covering a wide range of exposure concentrations. We explore the IER, additionally provide a simplified regression as a function of PM2.5 level, mortality rates, and severity, and compare results with effect factors derived from the recently published global exposure mortality model (GEMM). Uncertainty in effect factors is dominated by the exposure-response shape, background mortality, and geographic variability. Our central IER-based effect factor estimates for different regions do not differ substantially from previous estimates. However, IER estimates exhibit significant variability between locations as well as between urban and rural environments, driven primarily by variability in PM2.5 concentrations and mortality rates. Using the IER as the basis for effect factors presents a consistent picture of global PM2.5-related effects for use in product and policy assessment frameworks.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kongens Lyngby, Denmark
| | - Thomas E. McKone
- School
of Public Health, University of California, Berkeley, California 94720, United States
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marko Tainio
- UKCRC
Centre for Diet and Activity Research, University
of Cambridge, Cambridge, United Kingdom
- Systems
Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Jolliet
- School of
Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua S. Apte
- Department
of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Katerina S. Stylianou
- School of
Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole Illner
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kongens Lyngby, Denmark
| | - Julian D. Marshall
- Department
of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98122, United States
| | - Ernani F. Choma
- Department
of Environmental Health, Harvard Chan School
of Public Health, Boston, Massachusetts 02115, United States
| | - John S. Evans
- Department
of Environmental Health, Harvard Chan School
of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Huang L, Anastas N, Egeghy P, Vallero DA, Jolliet O, Bare J. Integrating exposure to chemicals in building materials during use stage. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2019; 24:1009-1026. [PMID: 32632341 PMCID: PMC7336532 DOI: 10.1007/s11367-018-1551-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PURPOSE There do not currently exist scientifically defensible ways to consistently characterize the human exposures (via various pathways) to near-field chemical emissions and associated health impacts during the use stage of building materials. The present paper thus intends to provide a roadmap which summarizes the current status and guides future development for integrating into LCA the chemical exposures and health impacts on various users of building materials, with a focus on building occupants. METHODS We first review potential human health impacts associated with the substances in building materials and the methods used to mitigate these impacts, also identifying several of the most important online data resources. A brief overview of the necessary steps for characterizing use stage chemical exposures and health impacts for building materials is then provided. Finally, we propose a systematic approach to integrate the use stage exposures and health impacts into building material LCA and describe its components, and then present a case study illustrating the application of the proposed approach to two representative chemicals: formaldehyde and methylene diphenyl diisocyanate (MDI) in particleboard products. RESULTS AND DISCUSSION Our proposed approach builds on the coupled near-field and far-field framework proposed by Fantke et al. (Environ Int 94:508-518, 2016), which is based on the product intake fraction (PiF) metric proposed by Jolliet et al. (Environ Sci Technol 49:8924-8931, 2015), The proposed approach consists of three major components: characterization of product usage and chemical content, human exposures, and toxicity, for which available methods and data sources are reviewed and research gaps are identified. The case study illustrates the difference in dominant exposure pathways between formaldehyde and MDI and also highlights the impact of timing and use duration (e.g., the initial 50 days of the use stage vs. the remaining 15 years) on the exposures and health impacts for the building occupants. CONCLUSIONS The proposed approach thus provides the methodological basis for integrating into LCA the human health impacts associated with chemical exposures during the use stage of building materials. Data and modeling gaps which currently prohibit the application of the proposed systematic approach are discussed, including the need for chemical composition data, exposure models, and toxicity data. Research areas that are not currently focused on are also discussed, such as worker exposures and complex materials. Finally, future directions for integrating the use stage impacts of building materials into decision making in a tiered approach are discussed.
Collapse
Affiliation(s)
- Lei Huang
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Nicholas Anastas
- National Risk Management Research Laboratory, US EPA Office of Research and Development, 5 Post Office Square, Boston, MA, 02109, USA
| | - Peter Egeghy
- National Exposure Research Laboratory, US EPA Office of Research and Development, Research Triangle Park, NC, 27711, USA
| | - Daniel A Vallero
- National Exposure Research Laboratory, US EPA Office of Research and Development, Research Triangle Park, NC, 27711, USA
| | - Olivier Jolliet
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jane Bare
- National Risk Management Research Laboratory, US EPA, Office of Research and Development, 26 West MLK Dr, Cincinnati, OH, 45268, USA
| |
Collapse
|
27
|
Mutel C, Liao X, Patouillard L, Bare J, Fantke P, Frischknecht R, Hauschild M, Jolliet O, de Souza DM, Laurent A, Pfister S, Verones F. Overview and recommendations for regionalized life cycle impact assessment. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2019; 24:856-865. [PMID: 33122880 PMCID: PMC7592718 DOI: 10.1007/s11367-018-1539-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/05/2018] [Indexed: 05/05/2023]
Abstract
PURPOSE Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread application, robustness, and validity still faces multiple challenges. Under the umbrella of UNEP/SETAC Life Cycle Initiative, a dedicated cross-cutting working group on regionalized LCIA aims to provides an overview of the status of regionalization in LCIA methods. We give guidance and recommendations to harmonize and support regionalization in LCIA for developers of LCIA methods, LCI databases, and LCA software. METHOD A survey of current practice among regionalized LCIA method developers was conducted. The survey included questions on chosen method spatial resolution and scale, the spatial resolution of input parameters, choice of native spatial resolution and limitations, operationalization and alignment with life cycle inventory data, methods for spatial aggregation, the assessment of uncertainty from input parameters and model structure, and variability due to spatial aggregation. Recommendations are formulated based on the survey results and extensive discussion by the authors. RESULTS AND DISCUSSION Survey results indicate that majority of regionalized LCIA models have global coverage. Native spatial resolutions are generally chosen based on the availability of global input data. Annual modelled or measured elementary flow quantities are mostly used for aggregating characterization factors (CFs) to larger spatial scales, although some use proxies, such as population counts. Aggregated CFs are mostly available at the country level. Although uncertainty due to input parameter, model structure, and spatial aggregation are available for some LCIA methods, they are rarely implemented for LCA studies. So far, there is no agreement if a finer native spatial resolution is the best way to reduce overall uncertainty. When spatially differentiated models CFs are not easily available, archetype models are sometimes developed. CONCLUSIONS Regionalized LCIA methods should be provided as a transparent and consistent set of data and metadata using standardized data formats. Regionalized CFs should include both uncertainty and variability. In addition to the native-scale CFs, aggregated CFs should always be provided, and should be calculated as the weighted averages of constituent CFs using annual flow quantities as weights whenever available. This paper is an important step forward for increasing transparency, consistency and robustness in the development and application of regionalized LCIA methods.
Collapse
Affiliation(s)
- Chris Mutel
- Paul Scherrer Institute, 5232 PSI Villigen, Switzerland
| | - Xun Liao
- Industrial Process and Energy Systems Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- Quantis, EPFL Innovation Park (EIP-D), Lausanne, Switzerland
| | - Laure Patouillard
- CIRAIG, Polytechnique Montréal, P.O. Box 6079, Montréal, Québec H3C 3A7, Canada
- IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
- UMR 0210 INRA-AgroParisTech Economie publique, INRA, Thiverval-Grignon, France
| | - Jane Bare
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | | | - Michael Hauschild
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Maia de Souza
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
- Département de Stratégie, Responsabilité Sociale et Environnementale, Université du Québec à Montréal, Montreal, H3C 3P8, QC, Canada
| | - Alexis Laurent
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Stephan Pfister
- Institute of Environmental Engineering, ETH Zurich, Switzerland
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
28
|
Zou B, You J, Lin Y, Duan X, Zhao X, Fang X, Campen MJ, Li S. Air pollution intervention and life-saving effect in China. ENVIRONMENT INTERNATIONAL 2019; 125:529-541. [PMID: 30612707 DOI: 10.1016/j.envint.2018.10.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 05/12/2023]
Abstract
As a critical air pollutant, PM2.5 is proved to be associated with numerous adverse health impacts and pose serious challenges to human life. This situation is especially important for China as the most populous and one of the heaviest PM2.5 polluted country in the world. However, health burden estimations reported for China in previous studies may be biased due to the usage of PM2.5 concentrations at a coarsely spatial resolution, as well as the ignorance of the spatial discrepancies of parameters (e.g. respiratory rate) employed in the exposure-response function. This study therefore utilized a hybrid remote sensing-geostatistical approach to refine PM2.5 concentrations at 1 km resolution across mainland China from 2013 to 2017. Meanwhile, nationwide exposure parameters were for the first time introduced to weight the integrated exposure response (IER) function to calculate and spatially reallocate the corresponding PM2.5-attributable premature deaths at 1 km resolution. Results showed that annually averaged PM2.5 concentrations in mainland China decreased by 39.5%, from 59.1 μg/m3 in 2013 to 35.8 μg/m3 in 2017. Subsequently, PM2.5 attributable premature deaths reduced 12.6%, from 1.20 million (95% CI: 0.57; 1.71) in 2013 to 1.05 million (95% CI: 0.44; 1.44) in 2017. This declining trend was found in most parts of China except some areas in Xinjiang, Jilin, and Heilongjiang provinces. As a result, 214,821 (95% CI: 96,675; 302,897) life were saved with an estimated monetary value of US$ 210.14 billion (2011 values). However, it has to be acknowledged that, the central and northern China within priority areas of air pollution control were still experiencing high numbers of premature deaths due to the severe PM2.5 pollution and high-density population. But more worrying than these priority areas are those Harbin-Changchun Metropolitan Region, City Belt in Central Henan and Yangtze-Huaihe City Belt in non-priority areas, which also have been seriously suffering PM2.5 attributable premature deaths over 28, 000 cases per year. In conclusion, despite the huge gain in life-saving effects in China over the past five years with the help of air pollution intervention policy, future work on cleaner air and better human health is still strongly needed, especially in non-priority areas of air pollution control.
Collapse
Affiliation(s)
- Bin Zou
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China.
| | - Jiewen You
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
| | - Yan Lin
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Fang
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Shenxin Li
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
29
|
Fantke P, Aylward L, Bare J, Chiu WA, Dodson R, Dwyer R, Ernstoff A, Howard B, Jantunen M, Jolliet O, Judson R, Kirchhübel N, Li D, Miller A, Paoli G, Price P, Rhomberg L, Shen B, Shin HM, Teeguarden J, Vallero D, Wambaugh J, Wetmore BA, Zaleski R, McKone TE. Advancements in Life Cycle Human Exposure and Toxicity Characterization. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:125001. [PMID: 30540492 PMCID: PMC6371687 DOI: 10.1289/ehp3871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA). OBJECTIVES The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops, namely considering near-field exposures and improving dose–response modeling. DISCUSSION The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with existing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose–response, the task force was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the use of a (linear) dose–response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential. CONCLUSIONS Further research efforts are required based on our proposed set of recommendations for improving the characterization of human exposure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lesa Aylward
- National Centre for Environmental Toxicology, University of Queensland, Brisbane, Australia
| | - Jane Bare
- U.S. EPA (Environmental Protection Agency), Cincinnati, Ohio, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Robin Dodson
- Silent Spring Institute, Newton, Massachusetts, USA
| | - Robert Dwyer
- International Copper Association, New York, New York, USA
| | | | | | - Matti Jantunen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Olivier Jolliet
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nienke Kirchhübel
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dingsheng Li
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Aubrey Miller
- National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Greg Paoli
- Risk Sciences International, Ottawa, Ontario, Canada
| | - Paul Price
- U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Beverly Shen
- School of Public Health, University of California, Berkeley, California, USA
| | | | - Justin Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - John Wambaugh
- U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Rosemary Zaleski
- ExxonMobil Biomedical Sciences, Inc., Annandale, New Jersey, USA
| | - Thomas E McKone
- School of Public Health, University of California, Berkeley, California, USA
| |
Collapse
|
30
|
Holnicki P, Kałuszko A, Nahorski Z, Tainio M. Intra-urban variability of the intake fraction from multiple emission sources. ATMOSPHERIC POLLUTION RESEARCH 2018; 9:1184-1193. [PMID: 30740016 PMCID: PMC6358147 DOI: 10.1016/j.apr.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/30/2018] [Accepted: 05/11/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ambient air pollution and associated adverse health effects are among most acute environmental problems in many cities worldwide. The intake fraction (iF) approach can be applied for evaluating the health benefits of reducing emissions, especially when rapid decisions are needed. Intake fraction is a metric that represents emission-to-intake relationship and characterizes abatement of exposure potential attributed to specific emission sources. AIM In this study, the spatial variability of iF in Warsaw agglomeration, Poland, is discussed. METHODS The iF analysis is based on the earlier air quality modeling results, that include the main pollutants characterizing an urban atmospheric environment (SO2, NOx, PM10, PM2.5, CO, C6H6, B(a)P, heavy metals). The annual mean concentrations were computed by the CALPUFF modeling system (spatial resolution 0.5 × 0.5 km2) on the basis of the emission and meteorological data from year 2012. The emission field comprised 24 high (power generation) and 3880 low (industry) point sources, 7285 mobile (transport) sources, and 6962 area (housing) sources. RESULTS The aggregated iFs values are computed for each emission class and the related polluting compounds. Intra-urban variability maps of iFs are attributed to an emission sources by emission category and pollutant. CONCLUSIONS Intake fraction is shown as a decision support tool for implementing the cost-effective emission policy and reducing the health risk of air pollution.
Collapse
Affiliation(s)
- Piotr Holnicki
- Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Kałuszko
- Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Nahorski
- Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Warsaw School of Information Technology (WIT), Warsaw, Poland
| | - Marko Tainio
- Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
- UKCRC Centre for Diet and Activity Research (CEDAR), MRC Epidemiology Unit, University of Cambridge, UK
| |
Collapse
|
31
|
Bastos J, Marques P, Batterman SA, Freire F. Environmental impacts of commuting modes in Lisbon: a life-cycle assessment addressing particulate matter impacts on health. INTERNATIONAL JOURNAL OF SUSTAINABLE TRANSPORTATION 2018; 13:652-663. [PMID: 31588202 PMCID: PMC6777580 DOI: 10.1080/15568318.2018.1501519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 06/10/2023]
Abstract
A life-cycle assessment of commuting alternatives is conducted that compares six transportation modes (car, bus, train, subway, motorcycle and bicycle) for eight impact indicators. Fine particulate matter (PM2.5) emissions and health impacts are incorporated in the assessment using intake fractions that differentiate between urban and non-urban emissions, combined with an effect factor. The potential benefits of different strategies for reducing environmental impacts are illustrated. The results demonstrate the need for comprehensive approaches that avoid problem-shifting among transportation-related strategies. Policies aiming to improve the environmental performance of urban transportation should target strategies that decrease local emissions, life-cycle impacts and health effects.
Collapse
Affiliation(s)
- Joana Bastos
- ADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Pólo II Campus, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Pedro Marques
- ADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Pólo II Campus, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Stuart A. Batterman
- Department of Environmental Health Sciences, University of Michigan, 109 Observatory Drive, Ann Arbor, MI 48109-2029, USA
| | - Fausto Freire
- ADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Pólo II Campus, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| |
Collapse
|
32
|
Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? SUSTAINABILITY 2018. [DOI: 10.3390/su10082898] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main goal of the European product environmental footprint (PEF) method is to increase comparability of environmental impacts of products within certain product categories by decreasing flexibility and therefore achieving reproducibility of results. Comparability is supposed to be further increased by developing product category specific rules (PEFCRs). The aim of this paper is to evaluate if the main goal of the PEF method has been achieved. This is done by a comprehensive analysis of the PEF guide, the current PEFCR guide, the developed PEFCRs, as well as the insights gained from participating in the pilot phase. The analysis reveals that the PEF method as well as its implementation in PEFCRs are not able to guarantee fair comparability due to shortcomings related to the (1) definition of product performance; (2) definition of the product category; (3) definition and determination of the representative product; (4) modeling of electricity; (5) requirements for the use of secondary data; (6) circular footprint formula; (7) life cycle impact assessment methods; and (8) approach to prioritize impact categories. For some of these shortcomings, recommendations for improvement are provided. This paper demonstrates that the PEF method has to be further improved to guarantee fair comparability.
Collapse
|