1
|
Cui J, Hua R, Wu Y, Wang H, Wang D, Ren G, An J, Quan S, Yu Z. Identification of Hydroxylated Chlorinated Paraffins in Human Serum and Their Potential Metabolic Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5487-5495. [PMID: 40079545 DOI: 10.1021/acs.est.5c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are frequently detected in humans. However, information regarding their metabolites is still very limited. Herein, target analysis and halogenation-guided nontarget and suspect screening were conducted on serum samples using UHPLC-Orbitrap-HRMS. The median concentrations of SCCPs and MCCPs were 7.76 and 4.31 ng/mL, respectively. A series of hydroxylated chlorinated paraffins (OH-CPs) were tentatively identified with an estimated average concentration of 1.80 ng/mL, which was approximately 9.9% of the total SCCPs and MCCPs. A chlorine distribution shift was observed from chlorinated paraffins (CPs) dominated by Cl6 and Cl7 to OH-CPs dominated by Cl5, Cl6, and Cl4. In human liver cytochrome P450 (CYP) enzyme incubation assays, the CPs in commercial mixtures were mainly metabolized into OH-CPs with various carbon lengths and chlorine substituents. The results obtained from human serum and in vitro experiments suggested the oxidative metabolism of SCCPs and MCCPs in humans. The metabolic pathways were then comprehensively explored using a CP monomer (1,1,1,3,10,11-hexachloroundecane) incubated with the same CYP enzymes, demonstrating that CPs can be metabolized through successive oxidative dechlorination and direct hydroxylation, with subsequent oxidation to carboxylic acids. Further studies should focus on the long-term toxicity of OH-CPs.
Collapse
Affiliation(s)
- Juntao Cui
- State Key Laboratory of Advanced Environmental Technology, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Rui Hua
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yang Wu
- State Key Laboratory of Advanced Environmental Technology, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hua Wang
- State Key Laboratory of Advanced Environmental Technology, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dian Wang
- State Key Laboratory of Advanced Environmental Technology, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Song Quan
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhiqiang Yu
- State Key Laboratory of Advanced Environmental Technology, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
2
|
Eze OO, Ogbuene EB, Ibraheem O, Küster E, Eze CT. Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management. Toxicology 2025; 511:154037. [PMID: 39716513 DOI: 10.1016/j.tox.2024.154037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood. Exposure assessment as well as chemical safety testing should focus on prioritizing N(B)FRs for regulation and management. Here, the occurrence of N(B)FRs in the vicinity and surroundings of e-waste recycling sites are presented. Important knowledge gaps and prospects for a more integrated, harmonized, and mechanistically positioned risk assessment strategy for N(B)FRs as well as possible economically feasible and environmentally sustainable approaches for removing them from complex matrices are highlighted. Overall, data in the ng to µg-ranges of N(B)FR in soil, dust, sediment, water and fish were found. Dust and soil sample concentrations ranged from the low ng to low µg/g range while water concentrations were always in the low ng/L range (∼0.5 to ∼4 ng/L). Concentration in fish was usually in the range of 3- ∼300 ng/g with two substances in the low to medium-high µg/g range (DBDPE, BTBPE). From the 20 N(B)FR analysed in sediment samples only 10 were above detection limit. Most chemicals were found in a low ng/g range.
Collapse
Affiliation(s)
- Obianuju Oluchukwu Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany
| | - Emeka Bright Ogbuene
- Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nigeria
| | - Omodele Ibraheem
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany.
| | - Chukwuebuka ThankGod Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Chen L, Tang C, Yu Z, Zeng Y, Mai B, Luo X. A comprehensive characterization biotransformation of chlorinated paraffin by human and carp liver microsomes via liquid chromatography-high-resolution mass spectrometry and screening algorithm. ENVIRONMENT INTERNATIONAL 2025; 195:109235. [PMID: 39733590 DOI: 10.1016/j.envint.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
The chlorinated paraffin (CP) monomer 1,2,5,6,9,10-Hexachlorodecane (CP-4) was subjected to in vitro biotransformation using human and carp liver microsomes. Five types of CP-4 metabolites (OH-, keto-, enol-, aldehyde- and carboxy-CP-4) were identified in human liver microsomer while only mono-OH-CP-4 was found in the carp liver microsomes. Kinetic studies revealed that the formation of mono-, di-, tri-hydroxylated CP-4, keto-, enol-, and aldehyde-CP-4 in human liver microsomes was best described by substrate inhibition models, whereas the formation of carboxylated CP-4 metabolites best fit the Michaelis-Menten model. Notably, keto-CP-4, enol-CP-4 and aldehyde-CP-4 were the predominant metabolites. The estimated Vmax values for these metabolites were significantly higher in the human liver microsomes than in the carp liver microsomes. The intrinsic hepatic clearance (CLint) of CP-4 was higher in humans than in carp, indicating species-specific differences in its metabolism. This study also highlighted potential toxicity concerns, with computational predictions showing varying degrees of acute oral toxicity for CP-4 and its metabolites. These findings indicate significant species-specific differences in the biotransformation of CP-4, emphasizing the potential health and environmental risks associated with chlorinated paraffins and their metabolites, and underscore the need for further research to address these concerns.
Collapse
Affiliation(s)
- Liujun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
4
|
Ma G, Ma K, Zhang J, Zhao X, Wang Q, Chen Y, Lu J, Wei X, Wang X, Yu H. Mechanistic insight into biotransformation of novel triazine-based flame retardant 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione by human cytochrome P450s. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123883. [PMID: 38548154 DOI: 10.1016/j.envpol.2024.123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Kan Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jing Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xianglong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jiayu Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shuren Street 8, 310015, Hangzhou, China.
| |
Collapse
|
5
|
Wang YY, Luo WK, Tang SX, Xiang J, Dang Y, Tang B, Lu QY, Cai FS, Ren MZ, Yu YJ, Zheng J. Bioaccumulation and biotransformation of 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123460. [PMID: 38290655 DOI: 10.1016/j.envpol.2024.123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-β-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.
Collapse
Affiliation(s)
- Yu-Yu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Song-Xiong Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jun Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Qi-Yuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
6
|
Guo X, Liu B, Liu H, Du X, Chen X, Wang W, Yuan S, Zhang B, Wang Y, Guo H, Zhang H. Research advances in identification procedures of endocrine disrupting chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83113-83137. [PMID: 37347330 DOI: 10.1007/s11356-023-27755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bing Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
7
|
Lin L, Abdallah MAE, Chen LJ, Luo XJ, Mai BX, Harrad S. Comparative in vitro metabolism of short chain chlorinated paraffins (SCCPs) by human and chicken liver microsomes: First insight into heptachlorodecanes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158261. [PMID: 36030865 DOI: 10.1016/j.scitotenv.2022.158261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are emerging persistent organic pollutants of great concern due to their ubiquitous distribution in the environment. However, little information is available on the biotransformation of SCCPs in organisms. In this study, a chlorinated decane: 1, 2, 5, 5, 6, 9, 10-heptachlorodecanes (HeptaCDs) was subjected to in vitro metabolism by human and chicken liver microsomes at environmentally relevant concentration. Using ultra-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry, two metabolites: monohydroxylated hexachlorodecane (HO-HexCD) and monohydroxy heptachlorodecane (HO-HeptaCD) were detected in human liver microsomal assays, while only one metabolite (HO-HexCD) was identified in chicken liver microsomal assays. The formation of HO-HexCD was fitted to a Michaelis-Menten model for chicken liver microsomes with a Vmax (maximum metabolic rate) value of 4.52 pmol/mg/min. Metabolic kinetic parameters could not be obtained for human liver microsomes as steady state conditions were not reached under our experimental conditions. Notwithstanding this, the observed average biotransformation rate of HeptaCDs was much faster for human liver microsomes than for chicken liver microsomes. Due to the lack of authentic standards for the identified metabolites, the detailed structure of each metabolite could not be confirmed due to the possibility of conformational isomers. This study provides first insights into the biotransformation of SCCPs, providing potential biomarkers and enhancing understanding of bioaccumulation studies.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B5 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Liu-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B5 2TT, United Kingdom
| |
Collapse
|
8
|
Yang E, Wen B, Zhang Z, Huang H, Zhang S. Diastereomer- and enantiomer-selective accumulation and depuration of 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexanes (DBE-DBCHs) and 1,2,5,6-tetrabromocyclooctanes (TBCOs) in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154145. [PMID: 35227722 DOI: 10.1016/j.scitotenv.2022.154145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Due to the regulation of hexabromocyclododecane (HBCD), much attention has been paid to its potential substitutes, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (DBE-DBCH) and 1,2,5,6-tetrabromocyclooctane (TBCO). DBE-DBCH and TBCO contain several diastereomers and enantiomers, which may exhibit different environmental behaviors and biological effects. In this study, the accumulation and depuration of individual DBE-DBCH and TBCO diastereomers by earthworms (Eisenia fetida) from diastereomer-contaminated soils were evaluated. The accumulation and depuration kinetics of DBE-DBCH and TBCO diastereomers followed one-compartment first-order kinetics. The biota soil accumulation factor (BSAF) of β-DBE-DBCH (2.74 goc glip-1) was 1.26 times that of α-DBE-DBCH (2.18 goc glip-1), while the BSAF of β-TBCO (2.15 goc glip-1) was 1.62 times that of α-TBCO (1.3 goc glip-1), showing the diastereomer-specific accumulation of DBE-DBCH and TBCO. DBE-DBCH and TBCO diastereomers appeared to be transformed in earthworm-soil systems; however, no evidence of bioisomerization of the four diastereomers in earthworms was found, and no potential metabolites of debromination and hydroxylation were detected. Furthermore, the selective enrichment of E1-α-DBE-DBCH and E1-β-DBE-DBCH (E1 represents the first enantiomer eluted) occurred in earthworms as the enantiomer fractions (EFs) for α-DBE-DBCH (0.562-0.763) and β-DBE-DBCH (0.516-0.647) were significantly greater than those in the technical products (0.501 for α-DBE-DBCH and 0.497 for β-DBE-DBCH, p < 0.05), especially in the depuration stage. The results demonstrated the diastereomer- and enantiomer-selective accumulation of DBE-DBCH and the diastereomer-selective accumulation of TBCO in the earthworm.
Collapse
Affiliation(s)
- Entai Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenying Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. ENVIRONMENTAL RESEARCH 2022; 207:112658. [PMID: 34990614 DOI: 10.1016/j.envres.2021.112658] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Many classes of compounds are known or suspected to disrupt the endocrine system of vertebrate and invertebrate organisms. This review of the sources and fate of selected endocrine disrupting chemicals (EDCs) in the environment includes classes of compounds that are "legacy" contaminants, as well as contaminants of emerging concern. EDCs included for discussion are organochlorine compounds, halogenated aromatic hydrocarbons, brominated flame retardants, per- and polyfluoroalkyl substances, alkylphenols, phthalates, bisphenol A and analogues, pharmaceuticals, drugs of abuse and steroid hormones, personal care products, and organotins. An exhaustive survey of the fate of these contaminants in all environmental media (e.g., air, water, soil, biota, foods and beverages) is beyond the scope of this review, so the priority is to highlight the fate of EDCs in environmental media for which there is a clear link between exposure and endocrine effects in humans or in biota from other taxa. Where appropriate, linkages are also made between the fate of EDCs and regulatory limits such as environmental quality guidelines for water and sediments and total daily intake values for humans.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques du Québec. Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Hou R, Huang Q, Pan Y, Lin L, Liu S, Li H, Xu X. Novel Brominated Flame Retardants (NBFRs) in a Tropical Marine Food Web from the South China Sea: The Influence of Hydrophobicity and Biotransformation on Structure-Related Trophodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3147-3158. [PMID: 35175039 DOI: 10.1021/acs.est.1c08104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing discharge and ubiquitous occurrence of novel brominated flame retardants (NBFRs) in aquatic environments have initiated intense global concerns; however, little information is available regarding their structure-related trophodynamics in marine food webs. In this study, a tropical marine food web including 29 species (18 fish and 11 invertebrate species) was collected from coral reef waters of the Xisha Islands, the South China Sea, for an analysis of 11 representative NBFRs. The mean ∑NBFR concentrations generally increased in the following sequence: sea cucumbers (0.330 ng/g lw) < crabs (0.380 ng/g lw) < shells (2.10 ng/g lw) < herbivorous fishes (2.30 ng/g lw) < carnivorous fishes (4.13 ng/g lw), with decabromodiphenyl ethane (DBDPE) and hexabromobenzene (HBB) as the predominant components. Trophic magnification was observed for all of the investigated NBFRs, with trophic magnification factors (TMFs) ranging from 1.53 (tetrabromobisphenol A bis(dibromopropyl ether)) to 5.32 (HBB). Significant negative correlations were also found between the TMFs and the tested in vitro transformation clearance rates (CLin vitro) for the target NBFRs except for bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH) (p < 0.05). Multiple linear regression analysis confirmed that the transformation rate is a more powerful predictor for TMFs than the hydrophobicity of NBFRs in this marine food web.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
11
|
Huang H, Guo B, Wang D, Kang Y, Cao D, Geng F, Rao Z, Lv J, Wen B. Bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize (Zea mays L.): Stereoselective driving roles of plant biomacromolecules. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127610. [PMID: 34775311 DOI: 10.1016/j.jhazmat.2021.127610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize were investigated. Furthermore, the roles of plant biomacromolecules such as lipid transfer proteins (LTPs), CYP and GST enzymes in driving the biological processes of TBECH stereoisomers were explored. The uptake and translocation of TBECH in maize were diastereo- and enantio-selective. Isomerization from α- to δ-TBECH and β- to γ-TBECH, and metabolites of debromination, hydroxylation and TBECH-GSH adducts were identified in maize roots. The gene expressions of LTPs, CYPs and GSTs were extensively changed in maize after exposure to technical TBECH. CYP and GST enzyme activities as well as GST31 and CYP71C3v2 gene expressions were selectively induced or inhibited by TBECH diastereomers over time. TBECH was able to dock into the active sites and bind with specific residues of the typical biomacromolecules ZmLTP1.6, GST31 and CYP71C3v2, indicating their roles in the bioaccumulation and metabolization of TBECH. Binding modes and affinities to biomacromolecules were significantly different between α- and β-TBECH, which contributed to their stereo-selectivity. This study provided a deep understanding of the biological fate of TBECH, and revealed the driving molecular mechanisms of the selectivity of TBECH stereoisomers in plants.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Bin Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Yunshui Haorui Environmental Technology Co. LTD, Beijing 100195, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wang N, He L, Lv G, Sun X. Potential environmental fate and risk based on the hydroxyl radical-initiated transformation of atmospheric 1,2-dibromo-4-(1,2dibromoethyl)cyclohexane stereoisomers. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126031. [PMID: 34020355 DOI: 10.1016/j.jhazmat.2021.126031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), as an emerging brominated flame retardant (EBFR) pollutant, has been often observed in the air, and to comprehend its fate in the environment is still challenging due to the diversity of its stereoisomers. In this work, the environmental transformation behavior and potential toxicological implications of TBECH stereoisomers under the oxidation of OH· in the gas phase were investigated by computational chemistry. Our results indicate the complexity of the TBECH transformation reactions and the diversity of its transformation products in the atmosphere. Although the reactions of TBECH enantiomers with OH· exhibit highly consistency, it is obvious that the reactions of the four diastereoisomers of TBECH with OH· and their subsequent reactions have both specificity and similarity. The dehydrogenation intermediates produced by H-abstraction of OH· in the initial reactions may undergo oxidative debromination, hydroxylation and decomposition reactions, leading to the transformation into low bromine and monohydroxy substituted compounds, as well as debrominated or unbrominated unsaturated fatty ketones. The toxicity assessments show that all transformation products are less toxic to aquatic organisms than TBECH, but some of them are still classified at toxic or harmful levels. More importantly, some transformation products still exhibit carcinogenic and teratogenic activity. To our knowledge, this study provides, for the first time, a deep insight into the transformation mechanism, kinetics, and environmental impacts of atmospheric TBECH by theoretical calculations.
Collapse
Affiliation(s)
- Ning Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin He
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Guochun Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Seyoum A, Kharlyngdoh JB, Paylar B, Olsson PE. Sublethal effects of DBE-DBCH diastereomers on physiology, behavior, and gene expression of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117091. [PMID: 33901980 DOI: 10.1016/j.envpol.2021.117091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH) is a brominated flame retardant used in commercial and industrial applications. The use of DBE-DBCH containing products has resulted in an increased release into the environment. However, limited information is available on the long-term effects of DBE-DBCH and its effects in aquatic invertebrates. Thus, the present study was aimed at determining how DBE-DBCH diastereomers (αβ and γδ) affects aquatic invertebrates using Daphnia magna as a model organism. Survival, reproduction, feeding, swimming behavior and toxicogenomic responses to environmental relevant concentrations of DBE-DBCH were analyzed. Chronic exposure to DBE-DBCH resulted in decreased lifespan, and reduced fecundity. Expression of genes involved in reproductive processes, vtg1 and jhe, were also inhibited. DBE-DBCH also induced hypoxia by inhibiting the transcription of genes involved in heme biosynthesis and oxygen transport. Furthermore, DBE-DBCH also inhibited feeding resulting in emptiness of the alimentary canal. Increased expression of the stress response biomarkers was observed following DBE-DBCH exposure. In addition, DBE-DBCH diastereomers also altered the swimming behavior of Daphnia magna. The present study demonstrates that DBE-DBCH cause multiple deleterious effects on Daphnia magna, including effects on reproduction and hormonal systems. These endocrine disrupting effects are in agreement with effects observed on vertebrates. Furthermore, as is the case in vertebrates, DBE-DBCH γδ exerted stronger effects than DBE-DBCH αβ on Daphnia magna. This indicate that DBE-DBCH γδ has properties making it more toxic to all so far studied animals than DBE-DBCH αβ.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Joubert Banjop Kharlyngdoh
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Berkay Paylar
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
14
|
The brominated flame retardants TBECH and DPTE alter prostate growth, histology and gene expression patterns in the mouse. Reprod Toxicol 2021; 102:43-55. [PMID: 33848595 DOI: 10.1016/j.reprotox.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and β, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαβ and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαβ affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαβ group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.
Collapse
|
15
|
Marteinson SC, Bodnaryk A, Fry M, Riddell N, Letcher RJ, Marvin C, Tomy GT, Fernie KJ. A review of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity. ENVIRONMENTAL RESEARCH 2021; 195:110497. [PMID: 33232751 DOI: 10.1016/j.envres.2020.110497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Following the ban of many historically-used flame retardants (FRs), numerous replacement chemicals have been produced and used in products, with some being identified as environmental contaminants. One of these replacement flame retardants is 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH), which to date has not been identified for risk assessment and potential regulation. DBE-DBCH technical mixtures consist largely of α- and β-diastereomers with trace amounts of γ- and δ-DBE-DBCH. The α- and β-isomers are known contaminants in various environmental media. While current global use and production volumes of DBE-DBCH are unknown, recent studies identified that DBE-DBCH concentrations were among the highest of the measured bromine-based FRs in indoor and urban air in Europe. Yet our mass balance fugacity model and modeling of the physical-chemical properties of DBE-DBCH estimated only 1% partitioning to air with a half-life of 2.2 d atmospherically. In contrast, our modeling characterized DBE-DBCH adsorbing strongly to suspended particulates in the water column (~12%), settling onto sediment (2.5%) with minimal volatilization, but with most partitioning and adsorbing strongly to soil (~85%) with negligible volatilization and slow biodegradation. Our modeling further predicted that organisms would be exposed to DBE-DBCH through partitioning from the dissolved aquatic phase, soil, and by diet, and given its estimated logKow (5.24) and a half-life of 1.7 d in fish, DBE-DBCH is expected to bioaccumulate into lipophilic tissues. Low concentrations of DBE-DBCH are commonly measured in biota and humans, possibly because evidence suggests rapid metabolism. Yet toxicological effects are evident at low exposure concentrations: DBE-DBCH is a proven endocrine disruptor of sex and thyroid hormone pathways, with in vivo toxic effects on reproductive, metabolic, and other endpoints. The objectives of this review are to identify the current state of knowledge concerning DBE-DBCH through an evaluation of its persistence, potential for bioaccumulation, and characterization of its toxicity, while identifying areas for future research.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Anjelica Bodnaryk
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Nicole Riddell
- Wellington Laboratories, 345 Southgate Dr., Guelph, ON, N1G 3M5, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Chris Marvin
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, R3T 2N2, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
16
|
Gao B, Zhao S, Shi H, Zhang Z, Li L, He Z, Wen Y, Covaci A, Wang M. Enantioselective disposition and metabolic products of isofenphos-methyl in rats and the hepatotoxic effects. ENVIRONMENT INTERNATIONAL 2020; 143:105940. [PMID: 32663714 DOI: 10.1016/j.envint.2020.105940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Isofenphos-methyl (IFP), a chiral organophosphorus pesticide, is one of the main chemicals used to control underground insects and nematodes. Recently, the use of IFP on vegetables and fruits has been prohibited due to its high toxicity. In this study, we investigated the enantioselective distribution and metabolism of IFP and its metabolites, namely, isofenphos-methyl oxon (IFPO) and isocarbophos oxon (ICPO), in male Sprague Dawley (SD) rats. Forty eight hours (48 h) after exposure, ICPO was the main detectable compound in blood (up to 75%) and urine (up to 77%), and we found that (S)-ICPO was significantly more stable than (R)-ICPO (p < 0.05). Therefore, (S)-ICPO was proposed as a suitable candidate biomarker for the biomonitoring of IFP in human urine and blood. After 48 h exposure, 21.2-41.0%, 4.1-15.1%, and 8.6-18.7% of dosed IFP was detected in the liver of racemic, R and S enantiomer-exposed rats, respectively, and R-IFP and R-IFPO showed a faster degradation (p < 0.05). Our results showed that after one week of consecutive exposure to IFP, ICPO was accumulated in the liver of rats in both racemic and enantiopure groups (no difference between the groups, p > 0.05). We found that cytochrome P450 (CYP) (i.e. CYP2C11, CYP2D2 and CYP3A2 enzymes and carboxylesterases) is responsible for the enantioselective metabolism of IFP in liver. In addition, rats exposed to (S)-IFP exhibited hepatic lipid peroxidation, liver inflammation and hepatic fibrosis. This study provides useful information and a reference for the biomonitoring and risk assessment of IFP and organophosphorus pesticide exposure.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Shuangshuang Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Yong Wen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
Ma G, Yu H, Han C, Jia Y, Wei X, Wang Z. Binding and Metabolism of Brominated Flame Retardant β-1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Human Microsomal P450 Enzymes: Insights from Computational Studies. Chem Res Toxicol 2020; 33:1487-1496. [DOI: 10.1021/acs.chemrestox.0c00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cenyang Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Jia
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
18
|
Wang X, Wei L, Zhu J, He B, Kong B, Jin Y, Fu Z. Tetrabromoethylcyclohexane (TBECH) exhibits immunotoxicity in murine macrophages. ENVIRONMENTAL TOXICOLOGY 2020; 35:159-166. [PMID: 31696622 DOI: 10.1002/tox.22852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromoethylcyclohexane (TBECH) has been linked to endocrine disruption, hepatotoxicity, and reproductive toxicity. However, its immunotoxicity remains largely unknown. In the present study, RAW 264.7 cells, mouse macrophage cell line, were exposed to TBECH. MTT assays showed that TBECH significantly enhanced lactate dehydrogenase (LDH) release in RAW 264.7 cells. The mRNA expression of some proapoptotic genes was upregulated by TBECH. Accordingly, TBECH elevated caspase-3 activity. In addition, TBECH upregualted the mRNA levels of some pro-inflammatory cytokines, whereas it downregulated LPS-stimulated mRNA expression of these cytokines. Moreover, TBECH downregulated the mRNA expression of selected antigen presenting-related genes. Furthermore, TBECH increased reactive oxygen species level, reduced glutathione content and the activities of superoxide dismutase and catalase, and upregulated the mRNA expression of selected oxidative stress-related genes. The obtained data demonstrated that TBECH exhibits immunotoxicity in macrophages, and will help to evaluate its health risks.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
19
|
Xiong P, Yan X, Zhu Q, Qu G, Shi J, Liao C, Jiang G. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13551-13569. [PMID: 31682424 DOI: 10.1021/acs.est.9b03159] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Use of legacy brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD), has been reduced due to adverse effects of these chemicals. Several novel brominated flame retardants (NBFRs), such decabromodiphenyl ethane (DBDPE) and bis(2,4,6-tribromophenoxy) ethane (BTBPE), have been developed as replacements for PBDEs. NBFRs are used in various industrial and consumer products, which leads to their ubiquitous occurrence in the environment. This article reviews occurrence and fate of a select group of NBFRs in the environment, as well as their human exposure and toxicity. Occurrence of NBFRs in both abiotic, including air, water, dust, soil, sediment and sludge, and biotic matrices, including bird, fish, and human serum, have been documented. Evidence regarding the degradation, including photodegradation, thermal degradation and biodegradation, and bioaccumulation and biomagnification of NBFRs is summarized. The toxicity data of NBFRs show that several NBFRs can cause adverse effects through different modes of action, such as hormone disruption, endocrine disruption, genotoxicity, and behavioral modification. The primary ecological risk assessment shows that most NBFRs exert no significant environmental risk, but it is worth noting that the result should be carefully used owing to the limited toxicity data.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
20
|
Stojak BL, van Ginkel RA, Ivanco TL, Tomy GT, Fry WM. Acute β-tetrabromoethylcyclohexane (β-TBECH) treatment inhibits the electrical activity of rat Purkinje neurons. CHEMOSPHERE 2019; 231:301-307. [PMID: 31129411 DOI: 10.1016/j.chemosphere.2019.05.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Brominated flame-retardants are environmentally pervasive and persistent synthetic chemicals, some of which have been demonstrated to disrupt neuroendocrine signaling and electrical activity of neurons. 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) lacks the toxicity of other classes of BFRs, however its safety is still questioned, as little is known of its neurological effects. Therefore, we sought to determine if TBECH could acutely alter the electrical activity of Purkinje neurons maintained in vitro. Briefly, cerebella from gestational day 20 rats were dissociated and maintained for up to three weeks in culture. Action potentials of Purkinje neurons were detected by cell-attached patch clamp before, during, and after application of β-TBECH. β-TBECH decreased action potential activity in a dose-dependent manner with an apparent EC50 of 396 nM. β-TBECH did not significantly alter the coefficient of variation, a measure of the regularity of firing, suggesting that the mechanism of β-TBECH's effects on firing frequency may be independent of Purkinje neuron intracellular calcium handling. Because levels of β-TBECH in exposed individuals may not approach the EC50, these data suggest that any abnormal neurodevelopment or behavior linked with β-TBECH exposure may result from endocrinological effects as opposed to direct disruption of electrical activity.
Collapse
Affiliation(s)
- Brittany L Stojak
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rebecca A van Ginkel
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tammy L Ivanco
- Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Ruan Y, Zhang K, Lam JCW, Wu R, Lam PKS. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:211-218. [PMID: 31005053 DOI: 10.1016/j.jhazmat.2019.04.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the occurrence and fate of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), two chiral brominated flame retardants (BFRs) with sixteen different stereoisomers, in four Hong Kong wastewater treatment plants (WWTPs) featuring diverse treatment processes during a two-year sampling campaign. More effective HBCD removal was achieved via biodegradation as compared to sludge sorption, whereas both chemically enhanced primary treatment and secondary treatment yielded high TBECH elimination (>90%). α-HBCD (54-75%) predominated in all samples, and its proportions were increased in effluent as compared to influent and sludge. α- and β-TBECH (72.3-84.4% in total) were the predominant TBECH diastereomers, with a proportional shift from the latter to the former diastereomer mostly observed after treatment. More rapid biodegradation and preferential sorption of γ-HBCD as compared to α-HBCD as well as β-TBECH as compared to α-TBECH might account for this changing pattern. This is the first study to report the enantiomer-specific behavior of chiral BFRs in different wastewater treatment processes. A preferential elimination of (+)-α- and (+)-γ-HBCD and E2-β-TBECH (the second enantiomeric elution order) took place consistently after biological treatment, possibly due to enantioselective adsorption and microbial degradation. Our results highlight the importance of conducting enantiospecific analysis for chiral pollutants in wastewater samples.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Science and Environmental Studies, The Education University of Hong of Kong, Hong Kong Special Administrative Region, China.
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
22
|
Abdallah MAE, Nguyen KH, Moehring T, Harrad S. First insight into human extrahepatic metabolism of flame retardants: Biotransformation of EH-TBB and Firemaster-550 components by human skin subcellular fractions. CHEMOSPHERE 2019; 227:1-8. [PMID: 30981098 DOI: 10.1016/j.chemosphere.2019.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and a mixture of EH-TBB, Bis(2-ethylhexyl)tetrabromphthalate (BEH-TEBP) and Triphenyl phosphate (TPhP), prepared in a ratio similar to the Firemaster-550™ (FM550) flame retardant formulation, were exposed to human skin subcellular fractions (S9) to evaluate their dermal in vitro metabolism for the first time. After 60 min of incubation, tetrabromobenzoic acid (TBBA) and diphenyl phosphate (DPhP) were identified as the major metabolites of EH-TBB and TPhP, respectively using UPLC-Q-Exactive Orbitrap™-MS analysis. Dermal biotransformation of EH-TBB and TPhP was catalyzed by skin carboxylesterases rather than CYP450 enzymes, while no stable metabolites could be identified for BEH-TEBP. Metabolite formation rates of EH-TBB as individual compound and as a component of FM550 fitted the Michaelis-Menten model, while no steady state could be reached for TPhP under experimental conditions. Estimated maximum metabolic rate (Vmax) for TBBA formation upon exposure to FM550 was lower than Vmax for EH-TBB (1.08 and 15.2 pmol min-1 mg protein-1, respectively). This indicates dermal metabolism would contribute less to the clearance of EH-TBB body burden than hepatic metabolism (Vmax = 644 pmol min-1 mg protein-1). Implications for human exposure include EH-TBB accumulation in skin tissue and human exposure to dermal metabolic products, which may have different toxicokinetic and toxicodynamic parameters than parent flame retardants.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526, Assiut, Egypt.
| | - Khanh-Hoang Nguyen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom
| | - Thomas Moehring
- Thermo Fisher Scientific (GmbH) Bremen, Hanna-Kunath-Str. 11, 28199, Bremen, Germany
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom
| |
Collapse
|
23
|
Lee HJ, Jung JH, Kwon JH. Evaluation of the bioaccumulation potential of selected alternative brominated flame retardants in marine fish using in vitro metabolic transformation rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1333-1342. [PMID: 30759573 DOI: 10.1016/j.scitotenv.2018.10.432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The global consumption of alternative brominated flame retardants (BFRs) has increased with the restriction of the first generation BFRs such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). However, many alternative BFRs are suspected to be persistent in the environment and possibly bioaccumulative after their release into the environment because of their chemical properties, which are similar to those of the already banned BFRs. In this study, the bioaccumulation potential of selected alternative BFRs (1,2-bis(2,4,6‑tribromophenoxy)ethane (BTBPE), 1,2,3,4,5,6‑hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), 2,3,4,5,6‑pentabromotoluene (PBT), 2‑ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), and 2,3,4,5‑tetrabromo-6-chlorotoluene (TBCT)) was evaluated. The in vitro depletion rate constants (kdepl) were measured for the alternative BFRs using liver S9 fractions isolated from five marine fish species (Epinephelus septemfasciatus, Konosirus punctatus, Lateolabrax japonicus, Mugil cephalus, and Sebastes schlegelii) that inhabit the oceans off the Korean coast. The measured kdepl values were converted to in vitro intrinsic clearance rate constants (CLin vitro) to estimate whole-body metabolic rate constants (kMET) using an in vitro to in vivo extrapolation (IVIVE) model. Finally, the bioconcentration factors (BCF) were determined using a one-compartment model. The transformation kinetics for obtaining kdepl agreed well with first-order chemical kinetics, regardless of initial BFR concentrations. The values of CLin vitro were lower in the selected marine fish species than those in freshwater fish species, implying slower metabolic transformation. The derived BCF values based on the total concentration in water (BCFTOT) ranged from 16 (TBB in M. cephalus) to 27,000 (HBB in K. punctatus). The BCF values for HBB and PBT were >2000 except for those in M. cephalus suggesting further investigation of BCF values of BFRs whose log KOW is between 6 and 7.
Collapse
Affiliation(s)
- Hyun-Jeoung Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jee-Hyun Jung
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
24
|
Transformation Products of Organic Contaminants and Residues-Overview of Current Simulation Methods. Molecules 2019; 24:molecules24040753. [PMID: 30791496 PMCID: PMC6413221 DOI: 10.3390/molecules24040753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton’s reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods.
Collapse
|
25
|
Marler H, Adams DH, Wu Y, Nielsen CK, Shen L, Reiner EJ, Chen D. Maternal Transfer of Flame Retardants in Sharks from the Western North Atlantic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12978-12986. [PMID: 30226756 DOI: 10.1021/acs.est.8b01613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present work represents a comprehensive study of in utero maternal transfer of legacy and emerging flame retardants (FRs) in marine predators. We analyzed liver tissues from pregnant sharks of five viviparous species, including blacknose shark ( Carcharhinus acronotus; n = 12), blacktip shark ( Carcharhinus limbatus; n = 2), bonnethead ( Sphyrna tiburo; n = 2), Atlantic sharpnose shark ( Rhizoprionodon terraenovae; n = 2), and spinner shark ( Carcharhinus brevipinna; n = 2), as well as their embryos ( n = 84 in total from five species), collected from the western North Atlantic Ocean. Concentrations of frequently detected emerging FRs in adult female blacknose sharks were determined to be 6.1-83.3 ng/g lipid weight (lw) for dechlorane analogues, 2.5-29.8 ng/g lw for tetrabromo- o-chlorotoluene, and nondetection -32.6 ng/g lw for hexabromobenzene. These concentrations were 1-2 orders of magnitude lower than those of legacy polybrominated diphenyl ether flame retardants (85.7-398 ng/g lw). Similar contamination profiles were also found in the other four species, although FR concentrations varied in different species. A total of 21 FRs were commonly found in developing embryos of female sharks from five species, demonstrating maternal transfer in utero. The maternal transfer ratio (i.e., ratio of the mean litter concentration to their mother's concentration) determined in blacknose shark mother/embryo groups for each FR chemical was negatively associated with its octanol-water partition coefficient. Our work lays a solid foundation for future investigation of the underlying mechanisms of in utero transfer and additional physical or chemical factors that affect maternal transfer.
Collapse
Affiliation(s)
- Hillary Marler
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Douglas H Adams
- Cape Canaveral Scientific Inc., 220 Surf Road , Melbourne Beach , Florida 32951 , United States
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Clayton K Nielsen
- Cooperative Wildlife Research Laboratory and Department of Forestry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Li Shen
- Ontario Ministry of the Environment, Conservation and Parks, Toronto , Ontario M9P 3V6 , Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment, Conservation and Parks, Toronto , Ontario M9P 3V6 , Canada
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
26
|
Ruan Y, Zhang X, Qiu JW, Leung KMY, Lam JCW, Lam PKS. Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8183-8193. [PMID: 29939731 DOI: 10.1021/acs.est.8b02206] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) were determined in sediments and 30 marine species in a marine food web to investigate their trophic transfer. Lipid content was found to affect the bioaccumulation of ΣHBCD and ΣTBECH in these species. Elevated biomagnification of each diastereomer from prey species to marine mammals was observed. For HBCD, biota samples showed a shift from γ- to α-HBCD when compared with sediments and technical mixtures; trophic magnification potential of (-)-α- and (+)-α-HBCD were observed in the food web, with trophic magnification factors (TMFs) of 11.8 and 8.7, respectively. For TBECH, the relative abundance of γ- and δ-TBECH exhibited an increasing trend from abiotic matrices to biota samples; trophic magnification was observed for each diastereomer, with TMFs ranging from 1.9 to 3.5. The enantioselective bioaccumulation of the first eluting enantiomer of δ-TBECH in organisms at higher TLs was consistently observed across samples. This is the first report on the trophic transfer of TBECH in the food web. The estimated daily intake of HBCD for Hong Kong residents was approximately 16-times higher than that for the general population in China, and the health risk to local children was high, based on the relevant available reference dose.
Collapse
Affiliation(s)
| | - Xiaohua Zhang
- Department of Science and Environmental Studies , The Education University of Hong of Kong , Hong Kong SAR , China
| | - Jian-Wen Qiu
- Department of Biology , Hong Kong Baptist University , Hong Kong SAR , China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong of Kong , Hong Kong SAR , China
| | | |
Collapse
|
27
|
Zheng G, Wan Y, Shi S, Zhao H, Gao S, Zhang S, An L, Zhang Z. Trophodynamics of Emerging Brominated Flame Retardants in the Aquatic Food Web of Lake Taihu: Relationship with Organism Metabolism across Trophic Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4632-4640. [PMID: 29608280 DOI: 10.1021/acs.est.7b06588] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the increasing use and discharge of novel brominated flame retardants, little information is available about their trophodynamics in the aquatic food web, and their subsequent relationships to compound metabolism. In this study, concentrations of 2,4,6-tribromophenyl allyl ether (ATE), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromo- o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) were measured in 17 species, including plankton, invertebrates, and fish from Lake Taihu, South China. Trophodynamics of the compounds were assessed, and metabolic rates were measured in the liver microsomes of crucian (trophic level [TL]: 2.93), catfish (TL: 3.86), and yellow-head catfish (TL: 4.3). Significantly positive relationships were found between trophic levels and lipid-normalized concentrations of ATE, BTBPE, and TBPH; their trophic magnification factors (TMFs) were 2.85, 2.83, and 2.42, respectively. Consistently, the three chemicals were resistant to metabolism in all fish microsomes. No significant relationship was observed for βTBECH ( p = 0.116), and DBDPE underwent trophic dilution in the food web (TMFs = 0.37, p = 0.021). Moreover, these two chemicals showed steady metabolism with incubation time in all fish microsomes. TBCT and PBBA exhibited significant trophic magnifications in the food web (TMF = 4.56, 2.01). Though different metabolic rates were observed for the two compounds among the tested fish species, TBCT and PBBA both showed metabolic resistance in high-trophic-level fish. These results indicated that metabolism of organisms at high trophic levels plays an important role in the assessment of trophic magnification potentials of these flame retardant chemicals.
Collapse
Affiliation(s)
- Guomao Zheng
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Sainan Shi
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Haoqi Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shiyi Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|