1
|
Tang H, Liu Z, Hu B, Zhu L. Hierarchical activation of resistance genes under tetracyclines selective pressure in complex microbial community. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138399. [PMID: 40300515 DOI: 10.1016/j.jhazmat.2025.138399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
The pervasive use of antibiotics exerts selective pressure in both natural and anthropogenic environments, driving the propagation and evolution of antibiotic resistance genes (ARGs) in microbial communities. Understanding the succession of resistome under varying antibiotic stresses is crucial for mitigating the spread of ARGs. This study investigates the succession of resistome under exposure to four structurally different tetracyclines (TC) across concentrations ranging from environmental to clinical levels. A clear hierarchical activation of ARGs was observed, starting with the upregulation of multidrug and TC-specific efflux pump genes, followed by those involved in TC inactivation and ribosomal protection. By identifying the specific thresholds of transcriptional onset times and critical TC concentration ranges that triggered ARG abundance increases, it was found that all ARGs as a whole did not significantly increase when TC concentrations were maintained below 10-5 of the initial minimum inhibitory concentration (MIC0) within 2 h. Similarly, high-risk TC resistance genes do not proliferate when TC concentrations were kept below 10-3 × MIC0 within 24 h. These findings provide quantifiable benchmarks for concentration-time thresholds that can inform the establishment of environmental discharge limits and guide the implementation of targeted treatment technologies to mitigate ARG dissemination.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Furlan JPR, Ramos MS, Rosa RDS, Dos Santos LDR, Savazzi EA, Stehling EG. Unveiling transposon-mediated multidrug resistance in OXA-23-producing Acinetobacter baumannii ST79/ST233 subclone KL9-OCL10 in Brazil. Gene 2025; 958:149489. [PMID: 40245960 DOI: 10.1016/j.gene.2025.149489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
The global dissemination of antimicrobial resistance (AMR) is a critical public health concern. The persistence of AMR in the environmental sector, exemplified by carbapenem-resistant Acinetobacter baumannii (CRAB), underscores the critical interconnectedness between human activity, environmental contamination, and the global spread of multidrug-resistant bacterial pathogens. In this study, A. baumannii strain EW779 was isolated from a water sample from a stream impacted by anthropogenic activities in São Paulo State, Brazil, exhibited an extensive drug resistance profile, and harbored chromosome-borne blaOXA-23 gene. Genomic analysis revealed that EW779 belongs to the hospital-associated high-risk ST79/ST233 subclone KL9-OCL10. This strain harbored a wide resistome associated with mobile genetic elements such as Tn2008, Tn7::In2-4, and Tn3. Virulence genes mainly related to biofilm formation, immune evasion, and cell invasion were found, evidencing its pathogenicity as putative hypervirulent. Comparative genomic analysis revealed that many AMR and virulence traits were shared among ST79/ST233 subclone KL9-OCL10 circulating in Brazil, indicating the occurrence of a successful and potentially epidemic subclone capable of spreading across different regions. The analysis of single nucleotide polymorphism differences among all ST79/ST233 subclone KL9-OCL10 showed a genetic similarity among strains from the same Brazilian state, indicating geographic separation. These findings highlight the environmental persistence and dissemination of a hospital-associated high-risk CRAB clone, emphasizing their epidemiological importance. Therefore, this study contributes to understanding the genomic dynamics of ST79/ST233 subclone KL9-OCL10 and reinforces the need for monitoring the spread of CRAB strains across clinical and environmental settings.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
3
|
Lan L, Wang Y, Chen Y, Wang T, Zhang J, Tan B. A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. TOXICS 2025; 13:263. [PMID: 40278579 PMCID: PMC12031161 DOI: 10.3390/toxics13040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Antibiotic resistance is a global environmental and health threat. Approximately 4.95 million deaths were associated with antibiotic resistance in 2019, including 1.27 million deaths that were directly attributable to bacterial antimicrobial resistance. Hospital wastewater is one of the key sources for the spread of clinically relevant antibiotic resistance genes (ARGs) into the environment. Understanding the current situation of ARGs in hospital wastewater is of great significance. Here, we review the prevalence of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater and wastewater from other places and the treatment methods used. We further discuss the intersection between ARGs and COVID-19 during the pandemic. This review highlights the issues associated with the dissemination of critical ARGs from hospital wastewater into the environment. It is imperative to implement more effective processes for hospital wastewater treatment to eliminate ARGs, particularly during the current long COVID-19 period.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Yixin Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Biqin Tan
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| |
Collapse
|
4
|
Mohany M, Aslam J, Ali MA, Khattak B, Fozia F, Ahmad I, Khan MD, Al-Rejaie SS, Ziaullah Z, Milošević M. Wastewater microbiology: occurrence and prevalence of antibiotic-resistant extended-spectrum β-lactamase-producing Enterobacteriaceae in the district wastewater system. JOURNAL OF WATER AND HEALTH 2025; 23:26-42. [PMID: 39882852 DOI: 10.2166/wh.2024.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/08/2024] [Indexed: 01/31/2025]
Abstract
Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, including Klebsiella pneumoniae and Escherichia coli, pose a serious risk to human health because of antibiotic resistance. Wastewater serves as a reservoir for these bacteria, contributing to the evolution and transmission of antibiotic-resistant strains. The research aims to identify ESBL bacterium in wastewater samples from District Kohat. K. pneumoniae and E. coli were confirmed as ESBL-producing bacteria through a comprehensive array of diagnostic procedures, including Gram staining, biochemical analyses, and antibiotic susceptibility testing. Fecal coliform count (FCC) analyses revealed varying microorganism levels. Both E. coli and K. pneumoniae isolates showed ESBL enzyme expression, indicating antibiotic resistance. Resistance patterns included ciprofloxacin, ampicillin, cefotaxime, cefoxitin, and amoxicillin-clavulanic acid for both species. E. coli displayed higher sensitivity for chloramphenicol, trimethoprim- sulfamethoxazole, and gentamicin. Ceftazidime minimum inhibitory concentration results showed E. coli's higher resistance. The study accentuates the presence of antibiotic-resistant strains, emphasizing the value of effective wastewater treatment. The study provides crucial insights into microbial characteristics, fecal contamination, ESBL production, and antibiotic resistance in E. coli and K. pneumoniae isolates, advocating for monitoring and mitigation strategies.
Collapse
Affiliation(s)
- Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Jawad Aslam
- Department of Microbiology, Kohat University of Science and Technology, Kohat, KP 26000, Pakistan
| | - Muhammad Adnan Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 19200, Pakistan
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat, KP 26000, Pakistan
| | - Fozia Fozia
- Department of Biochemistry, KMU Institute of Dental Sciences, Kohat, KP 26000, Pakistan E-mail:
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Muhammad Daud Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Ziaullah Ziaullah
- College of Professional Studies, Northeastern University, Boston, MA, USA
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
5
|
Stefaniak K, Kiedrzyński M, Korzeniewska E, Kiedrzyńska E, Harnisz M. Preliminary insights on carbapenem resistance in Enterobacteriaceae in high-income and low-/middle-income countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177593. [PMID: 39551200 DOI: 10.1016/j.scitotenv.2024.177593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The emergence of carbapenem-resistant Enterobacteriaceae in the hospital sector as well as in the natural environment is a problem that affects both high-income countries (HICs) and low-/middle-income countries (LMICs). The observed differences in the prevalence of carbapenem-resistant strains between HICs and LMICs can be attributed mainly to antibiotic consumption in healthcare facilities and the quantity of treated wastewater. Hospital wastewater is a major hotspot for the spread of carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem resistance genes (CRGs) between the hospital sector and the environment. In this review article, attempts were made to describe and compare antibiotic consumption in hospitals, antimicrobial concentrations in both hospital and municipal wastewater, and the prevalence of CRE and CRGs in patients and in hospital and municipal wastewater in HICs and LMICs. A review of the literature has shown that carbapenems are more widely used in LMICs, but Saudi Arabia, an HIC, is a country with the highest carbapenem consumption in the world. The results of research conducted in both groups of countries indicate that Klebsiella sp./K. pneumoniae is the most common CRE in samples isolated from patients. Escherichia coli was the dominant pathogen in hospital and municipal wastewater in HICs, whereas Enterobacter spp. were most prevalent in LMICs. An analysis of the prevalence of CRGs demonstrated that the same genes are present in both groups of countries (blaKPC, blaKPC-2, blaVIM, blaVIM-1,2, blaNDM, blaIMP, blaIMP-8, blaOXA-48,181, blaNDM-1,5, blaGES, blaGES-5,6, blaIMI-1). The fact that the same CRGs are most prevalent in countries with different levels of economic development could suggest that these genes have a high potential to persist in the natural environment. These findings underscore the need for enhanced monitoring, effective control techniques, and a better understanding of carbapenem resistance pathways to mitigate public health hazards, notwithstanding the constraints of data analysis.
Collapse
Affiliation(s)
- Kornelia Stefaniak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Marcin Kiedrzyński
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Edyta Kiedrzyńska
- European Regional Center for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| |
Collapse
|
6
|
Too RJ, Kariuki SM, Gitao GC, Bebora LC, Mollenkopf DF, Wittum TE. Carbapenemase-producing bacteria recovered from Nairobi River, Kenya surface water and from nearby anthropogenic and zoonotic sources. PLoS One 2024; 19:e0310026. [PMID: 39541397 PMCID: PMC11563437 DOI: 10.1371/journal.pone.0310026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Carbapenem-resistant bacteria (CRB) present a significant global public health concern. Sub-Saharan Africa has borne a heavy burden of CRB with a reported prevalence of up to 60% in some patient populations. es in Africa focus on clinical CRB isolates, with limited data on their spread in the natural environment. Therefore, the purpose of this study was to report the recovery of CRB from Nairobi River surface waters and nearby anthropogenic and zoonotic sources in Nairobi County, Kenya. A total of 336 CRB were recovered from 336 (250 mL) samples, with 230 of the samples (68.5%) producing one or more CRB isolates. CRB were recovered most commonly from untreated sewage influent (100% of 36 samples; 79 total isolates), treated effluent (93% of 118 samples; 116 total isolates), Nairobi River surface waters upstream (100% of 36 samples; 57 total isolates), downstream (100% of 36 samples; 45 total isolates), and way downstream from the wastewater treatment plant (73% of 11 samples; 19 total isolates), slaughterhouse effluent discharges 1.5%, (5/336), animal contact areas 0.9%, (3/336), a manhole sewer from the affluent neighborhood of Karen at 2.7%, (9/336) respectively. The CRB included Escherichia coli (158, 47%), Klebsiella pneumoniae (74, 22%), and Enterobacter spp (43, 13%). Aeromonas spp (29, 9%) Acinetobacter baumannii (12, 3.6%), Citrobacter freundii (7, 2.1%), Pseudomonas aeruginosa (5, 1.5%) and other species (8, 2.4%). CRB genotypes included blaNDM (246, 73.2%), blaKPC (40, 12%), blaVIM (51, 15.2%), blaOXA-48-like (65, 19.3%), blaIMP (15, 4.5%), and blaGES (7, 2.1%). Sixty-nine of the CRB isolates (20.5%) harbored multiple carbapenemase-encoding genes. Our results indicate that clinically important CRB are commonly present in Nairobi River surface water and from nearby wastewater and livestock sources. These pose an important public health threat that requires urgent intervention strategies and additional investigation.
Collapse
Affiliation(s)
- Rael J. Too
- Centre for Microbiology (KEMRI-CMR), Kenya Medical Research Institute, Nairobi, Kenya
- The University of Nairobi, Department of Veterinary, Pathology, Microbiology and Parasitology (UoN-Kenya)
- The Ohio State University, Department of Veterinary Preventive Medicine (OSU-VPM, OH, USA)
| | - Samuel M. Kariuki
- Centre for Microbiology (KEMRI-CMR), Kenya Medical Research Institute, Nairobi, Kenya
| | - George C. Gitao
- The University of Nairobi, Department of Veterinary, Pathology, Microbiology and Parasitology (UoN-Kenya)
| | - Lilly C. Bebora
- The University of Nairobi, Department of Veterinary, Pathology, Microbiology and Parasitology (UoN-Kenya)
| | - Dixie F. Mollenkopf
- The Ohio State University, Department of Veterinary Preventive Medicine (OSU-VPM, OH, USA)
| | - Thomas E. Wittum
- The Ohio State University, Department of Veterinary Preventive Medicine (OSU-VPM, OH, USA)
| |
Collapse
|
7
|
Yao S, Yu J, Zhang T, Xie J, Yan C, Ni X, Guo B, Cui C. Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla NDM-1-carrying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173907. [PMID: 38906294 DOI: 10.1016/j.scitotenv.2024.173907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of blaNDM-1-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 blaNDM-1 carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded blaNDM-1Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of blaNDM-1-bleMBL gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of blaNDM-1-carrying bacteria and its potential horizontal gene transfer risk deserve good control.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqin Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingbing Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Ramírez-Coronel AA, Mohammadi MJ, Majdi HS, Zabibah RS, Taherian M, Prasetio DB, Gabr GA, Asban P, Kiani A, Sarkohaki S. Hospital wastewater treatment methods and its impact on human health and environments. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:423-434. [PMID: 36805668 DOI: 10.1515/reveh-2022-0216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The scientific development and economic advances have led to the identification of many pathogenic agents in hospital effluents. Hospital wastewaters are qualitatively similar to municipal wastewaters, with the difference that these wastewaters contain toxic and infectious substances and compounds that can be dangerous for the health of the environment, employees of these centers, and the entire community. Therefore, in the last few years, it has been emphasized that all hospitals and medical and health centers should have a treatment facility for their produced wastewater so that the health of the society and people is not threatened. An issue that is not paid attention to has become one of the environmental problems and concerns of the world today. The present study focused on the investigate hospital wastewater treatment methods and its impact on human health and the environment. In this narrative study, the first literature search was performed with four hundred and twenty-three articles were retrieved based on PubMed, Elsevier, Web of science, Spring, and Google Scholar databases. The results of this study showed that wastewater from hospitals and medical centers can play a significant impress in polluting soil and aquatic environments and spreading infectious diseases. According to the mentioned contents, collection and treatment of hospital wastewater is essential. In addition, if hospital wastewater enters the wastewater collection network without knowing its characteristics or with incomplete treatment and finally enters the municipal wastewater treatment plant. It causes many problems, including disturbing the balance of the biological system of the treatment plant. Purification and disposal of hospital wastewater is considered a vital action based on environmental standards. The results of this study also showed that the treatment methods of this type of hospital wastewater can play a significant role in reducing the spread of diseases caused by hospital wastewater treatment, including infectious diseases. The results of this study can be very useful for politicians, the managers of the Ministry of Energy and Health and the Environmental Organization in choosing the appropriate methods and process to reduce hospital wastewater and increase the efficiency of hospital wastewater treatment plants.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Masoume Taherian
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Diki Bima Prasetio
- Occupational Safety and Health Department, Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Parisa Asban
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Kiani
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Sarkohaki
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Męcik M, Stefaniak K, Harnisz M, Korzeniewska E. Hospital and municipal wastewater as a source of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48813-48838. [PMID: 39052110 PMCID: PMC11310256 DOI: 10.1007/s11356-024-34436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The increase in the prevalence of carbapenem-resistant Gram-negative bacteria, in particular Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA), poses a serious threat for public health worldwide. This article reviews the alarming data on the prevalence of infections caused by CRAB and CRPA pathogens and their presence in hospital and municipal wastewater, and it highlights the environmental impact of antibiotic resistance. The article describes the key role of antibiotic resistance genes (ARGs) in the acquisition of carbapenem resistance and sheds light on bacterial resistance mechanisms. The main emphasis was placed on the transfer of ARGs not only in the clinical setting, but also in the environment, including water, soil, and food. The aim of this review was to expand our understanding of the global health risks associated with CRAB and CRPA in hospital and municipal wastewater and to analyze the spread of these micropollutants in the environment. A review of the literature published in the last decade will direct research on carbapenem-resistant pathogens, support the implementation of effective preventive measures and interventions, and contribute to the development of improved strategies for managing this problem.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Kornelia Stefaniak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
10
|
Bombaywala S, Bajaj A, Dafale NA. Meta-analysis of wastewater microbiome for antibiotic resistance profiling. J Microbiol Methods 2024; 223:106953. [PMID: 38754482 DOI: 10.1016/j.mimet.2024.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The microbial composition and stress molecules are main drivers influencing the development and spread of antibiotic resistance bacteria (ARBs) and genes (ARGs) in the environment. A reliable and rapid method for identifying associations between microbiome composition and resistome remains challenging. In the present study, secondary metagenome data of sewage and hospital wastewaters were assessed for differential taxonomic and ARG profiling. Subsequently, Random Forest (RF)-based ML models were used to predict ARG profiles based on taxonomic composition and model validation on hospital wastewaters. Total ARG abundance was significantly higher in hospital wastewaters (15 ppm) than sewage (5 ppm), while the resistance towards methicillin, carbapenem, and fluoroquinolone were predominant. Although, Pseudomonas constituted major fraction, Streptomyces, Enterobacter, and Klebsiella were characteristic of hospital wastewaters. Prediction modeling showed that the relative abundance of pathogenic genera Escherichia, Vibrio, and Pseudomonas contributed most towards variations in total ARG count. Moreover, the model was able to identify host-specific patterns for contributing taxa and related ARGs with >90% accuracy in predicting the ARG subtype abundance. More than >80% accuracy was obtained for hospital wastewaters, demonstrating that the model can be validly extrapolated to different types of wastewater systems. Findings from the study showed that the ML approach could identify ARG profile based on bacterial composition including 16S rDNA amplicon data, and can serve as a viable alternative to metagenomic binning for identification of potential hosts of ARGs. Overall, this study demonstrates the promising application of ML techniques for predicting the spread of ARGs and provides guidance for early warning of ARBs emergence.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Azuma T, Usui M, Hasei T, Hayashi T. On-Site Inactivation for Disinfection of Antibiotic-Resistant Bacteria in Hospital Effluent by UV and UV-LED. Antibiotics (Basel) 2024; 13:711. [PMID: 39200012 PMCID: PMC11350808 DOI: 10.3390/antibiotics13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The problem of antimicrobial resistance (AMR) is not limited to the medical field but is also becoming prevalent on a global scale in the environmental field. Environmental water pollution caused by the discharge of wastewater into aquatic environments has caused concern in the context of the sustainable development of modern society. However, there have been few studies focused on the treatment of hospital wastewater, and the potential consequences of this remain unknown. This study evaluated the efficacy of the inactivation of antimicrobial-resistant bacteria (AMRB) and antimicrobial resistance genes (AMRGs) in model wastewater treatment plant (WWTP) wastewater and hospital effluent based on direct ultraviolet (UV) light irradiation provided by a conventional mercury lamp with a peak wavelength of 254 nm and an ultraviolet light-emitting diode (UV-LED) with a peak emission of 280 nm under test conditions in which the irradiance of both was adjusted to the same intensity. The overall results indicated that both UV- and UV-LED-mediated disinfection effectively inactivated the AMRB in both wastewater types (>99.9% after 1-3 min of UV and 3 min of UV-LED treatment). Additionally, AMRGs were also removed (0.2-1.4 log10 for UV 254 nm and 0.1-1.3 log10 for UV 280 nm), and notably, there was no statistically significant decrease (p < 0.05) in the AMRGs between the UV and UV-LED treatments. The results of this study highlight the importance of utilizing a local inactivation treatment directly for wastewater generated by a hospital prior to its flow into a WWTP as sewage. Although additional disinfection treatment at the WWTP is likely necessary to remove the entire quantity of AMRB and AMRGs, the present study contributes to a significant reduction in the loads of WWTP and urgent prevention of the spread of infectious diseases, thus alleviating the potential threat to the environment and human health risks associated with AMR problems.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| |
Collapse
|
12
|
Gehlot P, P H. Unveiling the ecological landscape of bacterial β-lactam resistance in Delhi-national capital region, India: An emerging health concern. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121288. [PMID: 38850900 DOI: 10.1016/j.jenvman.2024.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Inappropriate antibiotic use not only amplifies the threat of antimicrobial resistance (AMR), moreover exacerbates the spread of resistant bacterial strains and genes in the environment, underscoring the critical need for effective research and interventions. Our aim is to assess the prevalence and resistance characteristics of β-lactam resistant bacteria (BLRB) and β-lactamase resistant bacterial genes (BLRBGs) under various environmental conditions within Delhi NCR, India. Using a culture-dependent method, we isolated 130 BLRB from 75 different environmental samples, including lakes, ponds, the Yamuna River, agricultural soil, aquatic weeds, drains, dumping yards, STPs, and gaushalas. Tests for antibiotic susceptibility were conducted in addition to phenotypic and genotypic identification of BLs and integron genes. The water and sediment samples recorded an average bacterial abundance of 3.6 × 106 CFU/mL and an average ampicillin-resistant bacterial count of 2.2 × 106 CFU/mL, which can be considered a potent reservoir of BLRB and BLRBGs. The majority of the BLRB discovered are opportunistic pathogens from the Bacillus, Aeromonas, Pseudomonas, Enterobacter, Escherichia, and Klebsiella genera, with Multiple Antibiotic Resistance (MAR) index ≥0.2 against a wide variety of β-lactams and β-lactamase (BLs) inhibitor combinations. The antibiotic resistance pattern was similar in the case of bacteria isolated from STPs. Meanwhile, bacteria isolated from other sources were diverse in their antibiotic resistance profile. Interestingly, we discovered that 10 isolates of various origins produce both Extended Spectrum BLs and Metallo BLs, as well as found harboring blaTEM, blaCTX, blaOXA, blaSHV, int-1, and int-3 genes. Enterobacter cloacae (S50/A), a common nosocomial pathogen isolated from Yamuna River sediment samples at Nizamuddin point, possesses three BLRBGs (blaTEM, blaCTX, and blaOXA) and a MAR index of 1.0, which is a major cause for concern. Therefore, identifying the source, origin and dissemination of BLRB and BLRGs in the environment is of the utmost importance for designing effective mitigation approaches to reduce a load of antimicrobial resistance factors in the environmental settings.
Collapse
Affiliation(s)
- Priyanka Gehlot
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Hariprasad P
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
13
|
Reem A, Almansoob S, Senan AM, Kumar Raj A, Shah R, Kumar Shrewastwa M, Kumal JPP. Pseudomonas aeruginosa and related antibiotic resistance genes as indicators for wastewater treatment. Heliyon 2024; 10:e29798. [PMID: 38694026 PMCID: PMC11058306 DOI: 10.1016/j.heliyon.2024.e29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
This review aims to examine the existence of Pseudomonas aeruginosa (P. aeruginosa) and their antibiotic resistance genes (ARGs) in aquatic settings and the alternative treatment ways. P. aeruginosa in a various aquatic environment have been identified as contaminants with impacts on human health and the environment. P. aeruginosa resistance to multiple antibiotics, such as sulfamethoxazole, ciprofloxacin, quinolone, trimethoprim, tetracycline, vancomycin, as well as specific antibiotic resistance genes including sul1, qnrs, blaVIM, blaTEM, blaCTX, blaAIM-1, tetA, ampC, blaVIM. The development of resistance can occur naturally, through mutations, or via horizontal gene transfer facilitated by sterilizing agents. In addition, an overview of the current knowledge on inactivation of Pseudomonas aeruginosa and ARG and the mechanisms of action of various disinfection processes in water and wastewater (UV chlorine processes, catalytic oxidation, Fenton reaction, and ozonation) is given. An overview of the effects of nanotechnology and the resulting wetlands is also given.
Collapse
Affiliation(s)
- Alariqi Reem
- Medical Laboratory Department, Faculty of Medical Sciences, Amran University, Yemen
| | - Siham Almansoob
- International department, Changsha medical university, Changsha, Hunan, 410000, China
| | - Ahmed M. Senan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Aditya Kumar Raj
- Department of Physiology, National Medical College, Birgunj, Nepal
| | - Rajesh Shah
- Department of Microbiology, Nepalgunj Medical College, Chisapani, Banke, Nepal
| | - Mukesh Kumar Shrewastwa
- Department of Biochemistry, Nepalgunj Medical College, Kohalpur, Banke, Nepal
- Department of Biochemistry (IMS & SUM hospital), SOA, deemed to be University, Bhubaneswar, India
| | | |
Collapse
|
14
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Shuai X, Zhou Z, Zhu L, Achi C, Lin Z, Liu Z, Yu X, Zhou J, Lin Y, Chen H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133790. [PMID: 38368689 DOI: 10.1016/j.jhazmat.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health. Hospital wastewater system (HWS) is an important source of antibiotic resistance genes (ARGs). The risk of ARGs in HWS is still an under-researched area. In this study, we collected publicly metagenomic datasets of 71 hospital wastewater samples from 18 hospitals in 13 cities. A total of 9838 contigs were identified to carry 383 unique ARGs across all samples, of which 2946 contigs were plasmid-like sequences. Concurrently, the primary hosts of ARGs within HWS were found to be Escherichia coli and Klebsiella pneumoniae. To further evaluate the risk of each ARG subtype, we proposed a risk assessment framework based on the importance of corresponding antibiotics as defined by the WHO and three other indicators - ARG abundance (A), mobility (M), and host pathogenicity (P). Ninety ARGs were identified as R1 ARGs having high-risk scores, which meant having a high abundance, high mobility, and carried by pathogens in HWS. Furthermore, 25% to 49% of genomes from critically important pathogens accessed from NCBI carried R1 ARGs. A significantly higher number of R1 ARGs was carried by pathogens in the effluents of municipal wastewater treatment plants from NCBI, highlighting the role of R1 ARGS in accelerating health and environmental risks.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Li Z, Guo X, Liu B, Huang T, Liu R, Liu X. Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants. WATER RESEARCH 2024; 253:121289. [PMID: 38341975 DOI: 10.1016/j.watres.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Antibiotic resistance poses a significant threat to global health, and the microbe-rich activated sludge environment may contribute to the dissemination of antibiotic resistance genes (ARGs). ARGs spread across various bacterial populations via multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages (phages). However, the potential role of phages in spreading ARGs in wastewater treatment systems remains unclear. This study characterized the core resistome, mobile genetic elements (MGEs), and virus-associated ARGs (vir_ARGs) in influents (Inf) and effluents (Eff) samples from nine WWTPs in eastern China. The abundance of ARGs in the Inf samples was higher than that in the Eff samples. A total of 21 core ARGs were identified, accounting for 38.70 %-83.70 % of the different samples. There was an increase in MGEs associated with phage-related processes from influents to effluents (from 12.68 % to 21.10 %). These MGEs showed strong correlations in relative abundance and composition with the core ARGs in the Eff samples. Across the Inf and Eff samples, 58 unique vir_ARGs were detected, with the Eff samples exhibiting higher diversity of vir_ARGs than the Inf samples. Statistical analyses indicated a robust relationship between core ARG profile, MGEs associated with phage-related processes, and vir_ARG composition in the Eff samples. Additionally, the co-occurrence of MGEs and ARGs in viral genomes was observed, ranging from 22.73 % to 68.75 %. This co-occurrence may exacerbate the persistence and spread of ARGs within WWTPs. The findings present new information on the changes in core ARGs, MGEs, and phage-associated ARGs from influents to effluents in WWTPs and provide new insights into the role of phage-associated ARGs in these systems.
Collapse
Affiliation(s)
- Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China.
| |
Collapse
|
17
|
Bombaywala S, Bajaj A, Dafale NA. Deterministic effect of oxygen level variation on shaping antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133047. [PMID: 38000281 DOI: 10.1016/j.jhazmat.2023.133047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L-1), normoxic (2-4 mg L-1), and hypoxic (0.5-1 mg L-1) conditions using lab-scale bioreactor. Composite inoculums in the reactor were designed to represent comprehensive microbial community and AR profile from selected activated sludge. RT-qPCR and metagenomic analysis showed an increase in ARG count (100.98 ppm) with enrichment of multidrug efflux pumps (acrAB, mexAB) in hyperoxic condition. Conversely, total ARGs decreased (0.11 ppm) under hypoxic condition marked by a major decline in int1 abundance. Prevalence of global priority pathogens increased in hyperoxic (22.5%), compared to hypoxic (0.9%) wherein major decrease were observed in Pseudomonas, Shigella, and Borrelia. The study observed an increase in superoxide dismutase (sodA, sodB), DNA repair genes (nfo, polA, recA, recB), and ROS (10.4 µmol L-1) in adapted biomass with spiked antibiotics. This suggests oxidative damage that facilitates stress-induced mutagenesis providing evidence for observed hyperoxic enrichment of ARGs. Moreover, predominance of catalase (katE, katG) likely limit oxidative damage that deplete ARG breeding in hypoxic condition. The study proposes a link between oxygen levels and AR development that offers insights into mitigation and intervention of AR by controlling oxygen-related stress and strategic selection of bacterial communities.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
C SK, Khanal S, Joshi TP, Khadka D, Tuladhar R, Joshi DR. Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123155. [PMID: 38114055 DOI: 10.1016/j.envpol.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The emergence of carbapenem resistant bacteria (CRB) possesses a remarkable threat to the health of humans. CRB and carbapenem resistance genes (CRGs) have frequently been reported in clinical isolates from hospitals, however, their occurrence and distribution in wastewaters from various sources and river water have not been emphasized in Nepal. So, this study aimed to detect carbapenem resistant bacterial isolates and their resistance determinants in river water and different types of wastewaters. River water and both untreated and treated wastewater samples from hospitals, pharmaceutical industries, and municipal sewage were collected in summer and winter seasons. From 68 grab wastewater samples, CRB were detected only in 16 samples, which included eight hospital wastewater, and four each from untreated municipal sewage and river water. A total of 25 CRB isolates were detected with dominance of E. coli (44.0%) and K. pneumoniae (24.0%). The majority of the isolates harbored blaNDM-1 (76.0%), followed by blaOXA (36.0%) and blaKPC (20.0%) genes. Hospital wastewater majorly contributed to the presence of blaNDM-1, blaKPC, and blaOXA along with intI1 genes compared to river water and untreated municipal sewage, especially during the winter season. However, CRB were not detected in treated effluents of hospitals and municipal sewage, and both influents and effluents from pharmaceutical industries. The combined presence of each blaNDM-1 & blaOXA and blaKPC & blaOXA occurred in 16.0% of the bacterial isolates. The increased minimum inhibitory concentration (MIC) of meropenem was significantly associated with the presence of CRGs. The results of this study highlight the significance of carbapenem resistance in bacteria isolated from wastewater and river water, and underscore the necessity for efficient monitoring and control strategies to prevent the dispersion of carbapenem resistance in the environment and its potential consequences on human health.
Collapse
Affiliation(s)
- Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Deegendra Khadka
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal.
| |
Collapse
|
19
|
Tang H, Liu Z, Hu B, Zhu L. D-Ring Modifications of Tetracyclines Determine Their Ability to Induce Resistance Genes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1338-1348. [PMID: 38157442 DOI: 10.1021/acs.est.3c07559] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Azuma T, Usui M, Hayashi T. Inactivation of antibiotic-resistant bacteria in hospital wastewater by ozone-based advanced water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167432. [PMID: 37777130 DOI: 10.1016/j.scitotenv.2023.167432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O3)-based advanced wastewater treatment systems (O3, O3/H2O2, O3/UV, and O3/UV/H2O2) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O3-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log10) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O3/UV and O3/UV/H2O2 treatments were significantly (P < 0.05) better than those in the O3 and O3/H2O2 treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O3-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
21
|
Seethalakshmi PS, RU VPN, Prabhakaran A, Prathiviraj R, Pamanji R, Kiran GS, Selvin J. Genomic investigation unveils high-risk ESBL producing Enterobacteriaceae within a rural environmental water body. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100216. [PMID: 38274946 PMCID: PMC10809108 DOI: 10.1016/j.crmicr.2023.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial resistance is regarded as a global threat to public health, animals, and the environment, emerging in response to extensive utilization of antimicrobials. The determinants of antimicrobial resistance are transported to susceptible bacterial populations through genetic recombination or through gene transfer, mediated by bacteriophages, plasmids, transposons, and insertion sequences. To determine the penetration of antimicrobial resistance into the bacterial population of the Thiruvandarkoil Lake, a water body located in the rural settings of Puducherry, India, culture-based microbiological and genomic approaches were used. Resistant bacterial isolates obtained from microbiological screening were subjected to whole genome sequencing and the genetic determinants of antimicrobial resistance were identified using in silico genomic tools. Cephalosporin-resistant isolates were found to produce extended spectrum beta lactamases, encoded by blaVEB-6 (in Proteus mirabilis PS01), blaSHV-12 and ompK36 mutation (in Klebsiella quasipneumoniae PS02) and blaSHV-12, blaACT-16, blaCTX-M and blaNDM-1 in (Enterobacter hormaechei PS03). Genes encoding heavy metal resistance, virulence and resistance to detergents were also detected in these resistant isolates. Among ESBL-producing organisms, one mcr-9-positive Enterobacter hormaechei was also identified in this study. To our knowledge, this is the first report of mcr-9 carrying bacterium in the environment in India. This study seeks the immediate attention of policy makers, researchers, government officials and environmental activists in India, to develop surveillance programs to monitor the dissemination of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | | | | | | | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
22
|
Kelly SA, O'Connell NH, Thompson TP, Dillon L, Wu J, Creevey C, Kiely P, Slevin B, Powell J, Gilmore BF, Dunne CP. Large-scale characterization of hospital wastewater system microbiomes and clinical isolates from infected patients: profiling of multi-drug-resistant microbial species. J Hosp Infect 2023; 141:152-166. [PMID: 37696473 DOI: 10.1016/j.jhin.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Hospital-acquired infections (HAIs) and infectious agents exhibiting antimicrobial resistance (AMR) are challenges globally. Environmental patient-facing wastewater apparatus including handwashing sinks, showers and toilets are increasingly identified as sources of infectious agents and AMR genes. AIM To provide large-scale metagenomics analysis of wastewater systems in a large teaching hospital in the Republic of Ireland experiencing multi-drug-resistant HAI outbreaks. METHODS Wastewater pipe sections (N=20) were removed immediately prior to refurbishment of a medical ward where HAIs had been endemic. These comprised toilet U-bends, and sink and shower drains. Following DNA extraction, each pipe section underwent metagenomic analysis. FINDINGS Diverse taxonomic and resistome profiles were observed, with members of phyla Proteobacteria and Actinobacteria dominating (38.23 ± 5.68% and 15.78 ± 3.53%, respectively). Genomes of five clinical isolates were analysed. These AMR bacterial isolates were from patients >48 h post-admission to the ward. Genomic analysis determined that the isolates bore a high number of antimicrobial resistance genes (ARGs). CONCLUSION Comparison of resistome profiles of isolates and wastewater metagenomes revealed high degrees of similarity, with many identical ARGs shared, suggesting probable acquisition post-admission. The highest numbers of ARGs observed were those encoding resistance to clinically significant and commonly used antibiotic classes. Average nucleotide identity analysis confirmed the presence of highly similar or identical genomes in clinical isolates and wastewater pipes. These unique large-scale analyses reinforce the need for regular cleaning and decontamination of patient-facing hospital wastewater pipes and effective infection control policies to prevent transmission of nosocomial infection and emergence of AMR within potential wastewater reservoirs.
Collapse
Affiliation(s)
- S A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - N H O'Connell
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland; School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland
| | - T P Thompson
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - L Dillon
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - J Wu
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - C Creevey
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - P Kiely
- School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland
| | - B Slevin
- Department of Infection Prevention and Control, University Hospital Limerick, Limerick, Ireland
| | - J Powell
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland; School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland
| | - B F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - C P Dunne
- School of Medicine and Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
23
|
Johar AA, Salih MA, Abdelrahman HA, Al Mana H, Hadi HA, Eltai NO. Wastewater-based epidemiology for tracking bacterial diversity and antibiotic resistance in COVID-19 isolation hospitals in Qatar. J Hosp Infect 2023; 141:209-220. [PMID: 37634602 DOI: 10.1016/j.jhin.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Hospitals are hotspots for antimicrobial resistance genes (ARGs), and play a significant role in their emergence and spread. Large numbers of ARGs will be ejected from hospitals via wastewater systems. Wastewater-based epidemiology has been consolidated as a tool to provide real-time information, and represents a promising approach to understanding the prevalence of bacteria and ARGs at community level. AIMS To determine bacterial diversity and identify ARG profiles in hospital wastewater pathogens obtained from coronavirus disease 2019 (COVID-19) isolation hospitals compared with non-COVID-19 facilities during the pandemic. METHODS Wastewater samples were obtained from four hospitals: three assigned to patients with COVID-19 patients and one assigned to non-COVID-19 patients. A microbial DNA quantitative polymerase chain reaction was used to determine bacterial diversity and ARGs. FINDINGS The assay recorded 27 different bacterial species in the samples, belonging to the following phyla: Firmicutes (44.4%), Proteobacteria (33.3%), Actinobacteria (11%), Bacteroidetes (7.4%) and Verrucomicrobiota (3.7%). In addition, 61 ARGs were detected in total. The highest number of ARGs was observed for the Hazem Mebaireek General Hospital (HMGH) COVID-19 patient site (88.5%), and the lowest number of ARGs was found for the HMGH non-patient site (24.1%). CONCLUSION The emergence of contaminants in sewage water, such as ARGs and high pathogen levels, poses a potential risk to public health and the aquatic ecosystem.
Collapse
Affiliation(s)
- A A Johar
- Research and Development Department, Barzan Holdings, Doha, Qatar
| | - M A Salih
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | | | - H Al Mana
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - H A Hadi
- Communicable Diseases Centre, Infectious Disease Division, Hamad Medical Corporation, Doha, Qatar
| | - N O Eltai
- Biomedical Research Centre, Qatar University, Doha, Qatar.
| |
Collapse
|
24
|
Ma LC, Zhao HQ, Wu LB, Cheng ZL, Liu C. Impact of the microbiome on human, animal, and environmental health from a One Health perspective. SCIENCE IN ONE HEALTH 2023; 2:100037. [PMID: 39077043 PMCID: PMC11262275 DOI: 10.1016/j.soh.2023.100037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/21/2023] [Indexed: 07/31/2024]
Abstract
The microbiome encompasses the genomes of the microorganisms that inhabit specific environments. One Health is an emerging concept, recognised as a cohesive, harmonising approach aimed at sustainably improving the well-being of humans, animals, and the environment. The microbiome plays a crucial role in the One Health domain, facilitating interactions among humans, animals, and the environment, along with co-evolution, co-development, co-metabolism, and co-regulation with their associated humans and animals. In addition, the microbiome regulates environmental health through interactions with plant microbiota, which actively participate in substance cycling (particularly the carbon and nitrogen cycles) and influence the overall energy flow in the biosphere. Moreover, antibiotic resistance genes present in microbiota can lead to widespread drug resistance in both humans and animals. This review explores the impact of the microbiome on humans, animals, and the environment, highlighting the significance of focusing on this field in One Health research.
Collapse
Affiliation(s)
- Ling-chao Ma
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
| | - Han-qing Zhao
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
| | - Logan Blair Wu
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zi-le Cheng
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Ameen F, Mostafazadeh R, Hamidian Y, Erk N, Sanati AL, Karaman C, Ayati A. Modeling of adsorptive removal of azithromycin from aquatic media by CoFe 2O 4/NiO anchored microalgae-derived nitrogen-doped porous activated carbon adsorbent and colorimetric quantifying of azithromycin in pharmaceutical products. CHEMOSPHERE 2023; 329:138635. [PMID: 37068612 DOI: 10.1016/j.chemosphere.2023.138635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Herein, it was aimed to optimize the removal process of Azithromycin (Azi) from the aquatic environment via CoFe2O4/NiO nanoparticles anchored onto the microalgae-derived nitrogen-doped porous activated carbon (N-PAC), besides developing a colorimetric method for the swift monitoring of Azi in pharmaceutical products. In this study, the Spirulina platensis (Sp) was used as a biomass resource for fabricating CoFe2O4/NiO@N-PAC adsorbent. The pores of N-PAC mainly entail mesoporous structures with a mean pore diameter of 21.546 nm and total cavity volume (Vtotal) of 0.033578 cm3. g-1. The adsorption studies offered that 98.5% of Azi in aqueous media could remove by CoFe2O4/NiO@N-PAC. For the cyclic stability analysis, the adsorbent was separated magnetically and assessed at the end of five adsorption-desorption cycles with a negligible decrease in adsorption. The kinetic modeling revealed that the adsorption of Azi onto the CoFe2O4/NiO@N-PAC was well-fitted to the second-order reaction kinetics, and the highest adsorption capacity was found as 2000 mg. g-1 at 25 °C based on the Langmuir adsorption isotherm model at 0.8 g. L-1 adsorbent concentration. The Freundlich isotherm model had the best agreement with the experimental data. Thermodynamic modeling indicated the spontaneous and exothermic nature of the adsorption process. Moreover, the effects of pH, temperature, and operating time were also optimized in the colorimetric Azi detection. The blue ion-pair complexes between Azi and Coomassie Brilliant Blue G-250 (CBBG-250) reagent followed Beer's law at wavelengths of 640 nm in the concentration range of 1.0 μM to 1.0 mM with a 0.94 μM limit of detection (LOD). In addition, the selectivity of Azi determination was verified in presence of various species. Furthermore, the applicability of CBBG-250 dye for quantifying Azi was evaluated in Azi capsules as real samples, which revealed the acceptable recovery percentage (98.72-101.27%). This work paves the way for engineering advanced nanomaterials for the removal and monitoring of Azi and assures the sustainability of environmental protection and public health.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Reza Mostafazadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Yasamin Hamidian
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Ali Ayati
- ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
26
|
Sewage-based surveillance shows presence of Klebsiella pneumoniae resistant against last resort antibiotics in the population in Bergen, Norway. Int J Hyg Environ Health 2023; 248:114075. [PMID: 36521369 DOI: 10.1016/j.ijheh.2022.114075] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to understand the prevalence of antibiotic resistance in Klebsiella pneumoniae present in the population in Bergen city, Norway using city-scale sewage-based surveillance, as well as the potential spread of K. pneumoniae into the marine environment through treated sewage. From a total of 30 sewage samples collected from five different sewage treatment plants (STPs), 563 presumptive K. pneumoniae isolates were obtained on Simmons Citrate Agar with myo-Inositol (SCAI) plates, and 44 presumptive K. pneumoniae isolates on SCAI plates with cefotaxime. Colistin resistance was observed in 35 isolates, while cefotaxime resistance and tigecycline resistance was observed in only five isolates each, out of 563 presumptive K. pneumoniae isolates. All 44 isolates obtained on cefotaxime-containing plates were multidrug-resistant, with 25% (n = 11) showing resistance against tigecycline. Clinically important acquired antibiotic resistance genes (ARGs), like blaCTX-M-14, blaCTX-M-15, qnrS1, aac(3)-IIe, tet(A), and sul1, were detected in several sequenced Klebsiella spp. isolates (n = 53). All sequenced colistin-resistant isolates (n = 13) had a mutation in the mgrB gene with nucleotide substitution at position C88T creating a premature stop codon. All sequenced tigecycline-resistant isolates (n = 4) harbored a Tet(A) variant with 22 amino acid (aa) substitutions compared to the reference protein. The sequenced K. pneumoniae isolates (n = 44) belonged to 22 different sequence types (STs) with ST730 (29.5%) as most prevalent, followed by pathogenic ST307 (11.4%). Virulence factors, including aerobactin (iutA), enterobactin (entABCDEFS and fepABCDG), salmochelin (iro), and yersiniabactin (ybt) were detected in several sequenced K. pneumoniae isolates, suggesting pathogenicity potential. Heavy metal resistance genes were common in sequenced K. pneumoniae isolates (n = 44) with silver (silABCEFPRS) and copper (pcoABDRS) resistance genes present in 79.5% of the isolates. Sewage-based surveillance can be a useful tool for understanding antibiotic resistance in pathogens present within a population and to provide up-to date information on the current resistance situation. Our study presents a framework for population-based surveillance of resistance in K. pneumoniae.
Collapse
|
27
|
Talat A, Blake KS, Dantas G, Khan AU. Metagenomic Insight into Microbiome and Antibiotic Resistance Genes of High Clinical Concern in Urban and Rural Hospital Wastewater of Northern India Origin: a Major Reservoir of Antimicrobial Resistance. Microbiol Spectr 2023; 11:e0410222. [PMID: 36786639 PMCID: PMC10100738 DOI: 10.1128/spectrum.04102-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
India is one of the largest consumers and producers of antibiotics and a hot spot for the emergence and proliferation of antimicrobial resistance genes (ARGs). Indian hospital wastewater (HWW) accumulates ARGs from source hospitals and often merges with urban wastewater, with the potential for environmental and human contamination. Despite its putative clinical importance, there is a lack of high-resolution resistome profiling of Indian hospital wastewater, with most studies either relying on conventional PCR-biased techniques or being limited to one city. In this study, we comprehensively analyzed antibiotic resistomes of wastewater from six Indian hospitals distributed in rural and urban areas of northern India through shotgun metagenomics. Our study revealed the predominance of ARGs against aminoglycoside, macrolide, carbapenem, trimethoprim, and sulfonamide antibiotics in all the samples through both read-based analysis and assembly-based analysis. We detected the mobile colistin resistance gene mcr-5.1 for the first time in Indian hospital sewage. blaNDM-1 was present in 4 out of 6 samples and was carried by Pseudomonas aeruginosa in HWW-2, Klebsiella pneumoniae in HWW-4 and HWW-6, and Acinetobacter baumanii in HWW-5. Most ARGs were plasmid-mediated and hosted by Proteobacteria. We identified virulence factors and transposable elements flanking the ARGs, highlighting the role of horizontal gene transmission of ARGs. IMPORTANCE There is a paucity of research on detailed antibiotic resistome and microbiome diversity of Indian hospital wastewater. This study reports the predominance of clinically concerning ARGs such as the beta-lactamases blaNDM and blaOXA and the colistin resistance gene mcr and their association with the microbiome in six different Indian hospital wastewaters of both urban and rural origin. The abundance of plasmid-mediated ARGs and virulence factors calls for urgent AMR crisis management. The lack of proper wastewater management strategies meeting international standards and open drainage systems further complicates the problem of containing the ARGs at these hospitals. This metagenomic study presents the current AMR profile propagating in hospital settings in India and can be used as a reference for future surveillance and risk management of ARGs in Indian hospitals.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kevin S. Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
28
|
Shukla R, Ahammad SZ. Performance assessment of a modified trickling filter and conventional activated sludge process along with tertiary treatment in removing emerging pollutants from urban sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159833. [PMID: 36374754 DOI: 10.1016/j.scitotenv.2022.159833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The absence of effective wastewater treatment technology to eliminate emerging pollutants from municipal sewage has become a pressing issue. In this study, the efficacy of a novel modified trickling filter (MTF), conventional activated sludge process (ASP) and two tertiary systems (UV and ozonation) were compared in eliminating antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and pharmaceuticals and personal care products (PPCPs) from urban sewage. MTF and ASP resulted in >1 log unit reduction in the abundance of ARB, while for ARGs, the removal was observed in the range of 0.1 to 1.7 log units. In MTF, ARGs were substantially removed in the aerobic zone compared to the anoxic zone. The relative abundance of most of the ARGs either decreased or remained unchanged during MTF and ASP operations. However, the relative abundance of most of the ARGs increased in the secondary sludge generated from ASP. The concentration of PPCPs such as atenolol, sulfamethazine, triclosan, and ranitidine was reduced by MTF by >80 %. Overall, the results indicated that MTF followed by ozonation is the most effective combination for removing emerging contaminants from municipal sewage.
Collapse
Affiliation(s)
- Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
29
|
Girijan SK, Pillai D. Genetic diversity and prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in aquatic environments receiving untreated hospital effluents. JOURNAL OF WATER AND HEALTH 2023; 21:66-80. [PMID: 36705498 DOI: 10.2166/wh.2022.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The spread of extended-spectrum beta-lactamase (ESBL)-producing bacteria in the environment has been recognized as a challenge to public health. The aim of the present study was to assess the occurrence of ESBL-producing Escherichia coli and Klebsiella pneumoniae from selected water bodies receiving hospital effluents in Kerala, India. Nearly 69.8% of Enterobacteriaceae isolates were multi-drug resistant by the Kirby-Bauer disc diffusion method. The double disc synergy test was used to detect the ESBL production and the genes responsible for imparting resistance were detected by PCR. Conjugation experiments confirmed the mechanism of plasmid-mediated transfer of resistance. The prevalence of ESBL production in E. coli and K. pneumoniae was 49.2 and 46.8%, respectively. Among the ESBL-encoding genes, blaCTX-M was the most prevalent group followed by blaTEM, blaOXA, blaCMY, and blaSHV. The results suggest that healthcare settings are one of the key contributors to the spread of ESBL-producing bacteria, not only through cross-transmission and ingestion of antibiotics but also through the discharge of waste without a proper treatment, leading to harmful effects on the aquatic environment. The high prevalence of ESBL-producing Enterobacteriaceae with resistance genes in public water bodies even post-treatment poses a serious threat.
Collapse
Affiliation(s)
- Sneha Kalasseril Girijan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| |
Collapse
|
30
|
Wu D, Zhao J, Su Y, Yang M, Dolfing J, Graham DW, Yang K, Xie B. Explaining the resistomes in a megacity's water supply catchment: Roles of microbial assembly-dominant taxa, niched environments and pathogenic bacteria. WATER RESEARCH 2023; 228:119359. [PMID: 36423548 DOI: 10.1016/j.watres.2022.119359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) in drinking water sources suggest the possible presence of resistant microorganisms that jeopardize human health. However, explanations for the presence of specific ARGs in situ are largely unknown, especially how their prevalence is affected by local microbial ecology, taxa assembly and community-wide gene transfer. Here, we characterized resistomes and bacterial communities in the Taipu River catchment, which feeds a key drinking water reservoir to a global megacity, Shanghai. Overall, ARG abundances decreased significantly as the river flowed downstream towards the reservoir (P < 0.01), whereas the waterborne bacteria assembled deterministically (|βNRI| > 2.0) as a function of temperature and dissolved oxygen conditions with the assembly-dominant taxa (e.g. Ilumatobacteraceae and Cyanobiaceae) defining local resistomes (P < 0.01, Cohen's D = 4.22). Bacterial hosts of intragenomic ARGs stayed at the same level across the catchment (60 ∼ 70 genome copies per million reads). Among them, the putative resistant pathogens (e.g. Burkholderiaceae) carried mixtures of ARGs that exhibited high transmission probability (transfer counts = 126, P < 0.001), especially with the microbial assembly-dominant taxa. These putative resistant pathogens had densities ranging form 3.0 to 4.0 × 106 cell/L, which was more pronouncedly affected by resistome and microbial assembly structures than environmental factors (SEM, std-coeff β = 0.62 vs. 0.12). This work shows that microbial assembly and resistant pathogens play predominant roles in prevelance and dissemination of resistomes in receiving water, which deserves greater attention in devisng control strategies for reducing in-situ ARGs and resistant strains in a catchment.
Collapse
Affiliation(s)
- Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou 550001, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jue Zhao
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Mengjie Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jan Dolfing
- Faculty Energy and Environment, Northumbria University, Newcastle upon Tyne, NE1 8QH, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Kai Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
31
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
32
|
Su H, Wu C, Han P, Liu Z, Liang M, Zhang Z, Wang Z, Guo G, He X, Pang J, Wang C, Weng S, He J. The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129543. [PMID: 35870206 DOI: 10.1016/j.jhazmat.2022.129543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexFYTV-1, mexFYTV-2, mexFYTV-3, vanRYTV-1, vanSYTV-1 (carried by unclassified viruses), and bacAYTB-1 (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.
Collapse
Affiliation(s)
- Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Chengcheng Wu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Peiyun Han
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zixuan Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Mincong Liang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Zheng Zhang
- Baidu International Technology (Shenzhen), Shenzhen 518062, China
| | - Zhike Wang
- Hainan Guodun Information Development, Haikou 570206, China
| | - Guangyu Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Xinyi He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhu Pang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Azuma T, Murakami M, Sonoda Y, Ozaki A, Hayashi T. Occurrence and Quantitative Microbial Risk Assessment of Methicillin-Resistant Staphylococcus aureus (MRSA) in a Sub-Catchment of the Yodo River Basin, Japan. Antibiotics (Basel) 2022; 11:1355. [PMID: 36290013 PMCID: PMC9598951 DOI: 10.3390/antibiotics11101355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
The occurrence of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) in a sub-catchment of the Yodo River Basin, a representative water system of a drinking water source in Japan, was investigated. The chromogenic enzyme-substrate medium method was used for the detection of S. aureus and MRSA by the presence or absence of antimicrobials in the medium for viable bacteria in a culture-based setting. The contributions of S. aureus and MRSA from wastewater to the rivers were estimated based on mass flux-based analysis, and quantitative microbial risk assessment (QMRA) was further conducted for S. aureus and MRSA in river environments. The mean abundance of S. aureus and MRSA was 31 and 29 CFU/mL in hospital effluent, 124 and 117 CFU/mL in sewage treatment plant (STP) influent, 16 and 13 CFU/mL in STP effluent, and 8 and 9 CFU/mL in river water, respectively. Contribution of the pollution load derived from the target STP effluent to river water ranged from 2% to 25%. The QMRA showed that to achieve the established health benchmarks, the drinking water treatment process would need to yield 1.7 log10 and 2.9 log10 inactivation in terms of infection risk and disability-adjusted life year (DALY) indexes, respectively. These findings highlight the link between medical environment and the importance of environmental risk management for antimicrobial-resistant bacteria in aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
| | - Michio Murakami
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Techno Alliance C209, 2-8 Yamadaoka, Suita 565-0871, Japan
| | - Yuki Sonoda
- Nursing Unit, Jyoban Hospital of Tokiwa Foundation, 57 Kaminodai, Jyoban-Kamiyunaga-Yamachi, Iwaki 972-8322, Japan
| | - Akihiko Ozaki
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, 57 Kaminodai, Jyoban-Kamiyunaga-Yamachi, Iwaki 972-8322, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nankonaka, Osaka 559-0033, Japan
| |
Collapse
|
34
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
35
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
36
|
Bastidas-Caldes C, Romero-Alvarez D, Valdez-Vélez V, Morales RD, Montalvo-Hernández A, Gomes-Dias C, Calvopiña M. Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective. Infect Drug Resist 2022; 15:5759-5779. [PMID: 36204394 PMCID: PMC9531622 DOI: 10.2147/idr.s371845] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
- Doctoral Program in Public and Animal Health, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
- Correspondence: Carlos Bastidas-Caldes, One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, 170124, Ecuador, Tel +593 983 174949, Email
| | - Daniel Romero-Alvarez
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | - Victor Valdez-Vélez
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Roberto D Morales
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Andrés Montalvo-Hernández
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Cicero Gomes-Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Manuel Calvopiña
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
37
|
Asaduzzaman M, Rousham E, Unicomb L, Islam MR, Amin MB, Rahman M, Hossain MI, Mahmud ZH, Szegner M, Wood P, Islam MA. Spatiotemporal distribution of antimicrobial resistant organisms in different water environments in urban and rural settings of Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154890. [PMID: 35364179 DOI: 10.1016/j.scitotenv.2022.154890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The spatial distribution of clinically important antibiotic resistant bacteria (ARB) and associated genes is important to identify the environmental distribution of contamination and 'hotspots' of antimicrobial resistance (AMR). We conducted an integrated survey of AMR in drinking water, wastewater and surface water (rivers and ponds) in three settings in Bangladesh: rural households, rural poultry farms, and urban food markets. Spatial mapping was conducted via geographic information system (GIS) using ArcGIS software. Samples (n = 397) were analyzed for the presence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec), carbapenem-resistant E. coli (CR-Ec) and resistance genes (blaCTX-M-1,blaNDM-1). In rural households, 5% of drinking water supply samples tested positive for ESBL-Ec, and a high proportion of wastewater, pond and river water samples were positive for ESBL-Ec (90%, 76%, and 85%, respectively). In poultry farms, 10% of drinking water samples tested positive for ESBL-Ec compared to a high prevalence in wastewater, pond and river water (90%, 68%, and 85%, respectively). CR-Ec prevalence in household wastewater and pond water was relatively low (8% and 5%, respectively) compared to river water (33%). In urban areas, 38% of drinking water samples and 98% of wastewater samples from food markets tested positive for ESBL-Ec while 30% of wastewater samples tested positive for CR-Ec. Wastewaters had the highest concentrations of ESBL-Ec, CR-Ec, blaCTXM-1 and blaNDM-1 and these were significantly higher in urban compared to rural samples (p < 0.05). ESBL-Ec is ubiquitous in drinking water, wastewater and surface water bodies in both rural and urban areas of Bangladesh. CR-Ec is less widespread but found at a high prevalence in wastewater discharged from urban food markets and in rural river samples. Surveillance and monitoring of antibiotic resistant organisms and genes in waterbodies is an important first step in addressing environmental dimensions of AMR.
Collapse
Affiliation(s)
- Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh.
| | - Emily Rousham
- Centre for Global Health and Human Development, School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Leanne Unicomb
- Environmental Intervention Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Md Rayhanul Islam
- Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mohammed Badrul Amin
- Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mahdia Rahman
- Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Muhammed Iqbal Hossain
- Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Zahid Hayat Mahmud
- Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mark Szegner
- Geography and Environment, School of Social Sciences and Humanities, Loughborough University, Loughborough, UK
| | - Paul Wood
- Geography and Environment, School of Social Sciences and Humanities, Loughborough University, Loughborough, UK
| | - Mohammad Aminul Islam
- Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
38
|
Konopka JK, Chatterjee P, LaMontagne C, Brown J. Environmental impacts of mass drug administration programs: exposures, risks, and mitigation of antimicrobial resistance. Infect Dis Poverty 2022; 11:78. [PMID: 35773680 PMCID: PMC9243877 DOI: 10.1186/s40249-022-01000-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Mass drug administration (MDA) of antimicrobials has shown promise in the reduction and potential elimination of a variety of neglected tropical diseases (NTDs). However, with antimicrobial resistance (AMR) becoming a global crisis, the risks posed by widespread antimicrobial use need to be evaluated. As the role of the environment in AMR emergence and dissemination has become increasingly recognized, it is likewise crucial to establish the role of MDA in environmental AMR pollution, along with the potential impacts of such pollution. This review presents the current state of knowledge on the antimicrobial compounds, resistant organisms, and antimicrobial resistance genes in MDA trials, routes of these determinants into the environment, and their persistence and ecological impacts, particularly in low and middle-income countries where these trials are most common. From the few studies directly evaluating AMR outcomes in azithromycin MDA trials, it is becoming apparent that MDA efforts can increase carriage and excretion of resistant pathogens in a lasting way. However, research on these outcomes for other antimicrobials used in MDA trials is sorely needed. Furthermore, while paths of AMR determinants from human waste to the environment and their persistence thereafter are supported by the literature, quantitative information on the scope and likelihood of this is largely absent. We recommend some mitigative approaches that would be valuable to consider in future MDA efforts. This review stands to be a valuable resource for researchers and policymakers seeking to evaluate the impacts of MDA.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Pranab Chatterjee
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Connor LaMontagne
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA
| |
Collapse
|
39
|
Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11070849. [PMID: 35884103 PMCID: PMC9312076 DOI: 10.3390/antibiotics11070849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance (AMR) circulates through humans, animals, and the environments, requiring a One Health approach. Recently, urban sewage has increasingly been suggested as a hotspot for AMR even in high-income countries (HICs), where the water sanitation and hygiene infrastructure are well-developed. To understand the current status of AMR in wastewater in a HIC, we reviewed the epidemiological studies on AMR in the sewage environment in Japan from the published literature. Our review showed that a wide variety of clinically important antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antimicrobial residues are present in human wastewater in Japan. Their concentrations are lower than in low- and middle-income countries (LMICs) and are further reduced by sewage treatment plants (STPs) before discharge. Nevertheless, the remaining ARB and ARGs could be an important source of AMR contamination in river water. Furthermore, hospital effluence may be an important reservoir of clinically important ARB. The high concentration of antimicrobial agents commonly prescribed in Japan may contribute to the selection and dissemination of AMR within wastewater. Our review shows the importance of both monitoring for AMR and antimicrobials in human wastewater and efforts to reduce their contamination load in wastewater.
Collapse
|
40
|
Mutuku C, Melegh S, Kovacs K, Urban P, Virág E, Heninger R, Herczeg R, Sonnevend Á, Gyenesei A, Fekete C, Gazdag Z. Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant. Antibiotics (Basel) 2022; 11:antibiotics11060776. [PMID: 35740182 PMCID: PMC9219941 DOI: 10.3390/antibiotics11060776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/11/2023] Open
Abstract
Antimicrobials in wastewater promote the emergence of antibiotic resistance, facilitated by selective pressure and transfer of resistant genes. Enteric bacteria belonging to Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Citrobacter species (n = 126) from hospital effluents and proximate wastewater treatment plant were assayed for susceptibility to four antimicrobial classes. The β-lactamase encoding genes harbored in plasmids were genotyped and the plasmids were sequenced. A multidrug resistance phenotype was found in 72% (n = 58) of E. coli isolates, 70% (n = 43) of Klebsiella species isolates, and 40% (n = 25) of Enterobacter and Citrobacter species. Moreover, 86% (n = 50) of E. coli, 77% (n = 33) of Klebsiella species, and 25% (n = 4) of Citrobacter species isolates phenotypically expressed extended spectrum β-lactamase. Regarding ESBL genes, blaCTX-M-27 and blaTEM-1 were found in E. coli, while Klebsiella species harbored blaCTX-M-15, blaCTX-M-30, or blaSHV-12. Genes coding for aminoglycoside modifying enzymes, adenylyltransferases (aadA1, aadA5), phosphotransferases (aph(6)-1d, aph(3″)-Ib), acetyltransferases (aac(3)-IIa), (aac(6)-Ib), sulfonamide/trimethoprim resistant dihydropteroate synthase (sul), dihydrofolate reductase (dfrA), and quinolone resistance protein (qnrB1) were also identified. Monitoring wastewater from human sources for acquired resistance in clinically important bacteria may provide a cheaper alternative in regions facing challenges that limit clinical surveillance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary; (R.H.); (C.F.)
- Correspondence: (C.M.); (Z.G.)
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622 Pécs, Hungary; (S.M.); (K.K.); (Á.S.)
| | - Krisztina Kovacs
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622 Pécs, Hungary; (S.M.); (K.K.); (Á.S.)
| | - Peter Urban
- Bioinformatics Research Group, Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (R.H.); (A.G.)
| | - Eszter Virág
- Educomat Ltd., Iskola utca 12/A, 8360 Keszthely, Hungary;
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| | - Reka Heninger
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary; (R.H.); (C.F.)
| | - Robert Herczeg
- Bioinformatics Research Group, Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (R.H.); (A.G.)
| | - Ágnes Sonnevend
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622 Pécs, Hungary; (S.M.); (K.K.); (Á.S.)
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (R.H.); (A.G.)
| | - Csaba Fekete
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary; (R.H.); (C.F.)
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary; (R.H.); (C.F.)
- Correspondence: (C.M.); (Z.G.)
| |
Collapse
|
41
|
Detection of Carbapenem-resistant Enterobacteriaceae by Real-Time PCR and Assessment of Hospitalization Related Risk Factors Associated with their Fecal Carriage: A Case-control Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Opportunistic behavior of commensal bacteria during severe infection, especially of the intestine is always considered as a predisposing threat for the severely ill patient admitted to hospitals. A descriptive-analytical case-control study was carried out to detect the prevalence and risk factor analysis of fecal carriage of Carbapenem-resistant Enterobacteriaceae. Patients having fecal carriage of Carbapenem-resistant Enterobacteriaceae were considered as cases and patients who were without Carbapenem-resistant Enterobacteriaceae were taken as the control in a proportion of 1:4. Carbapenem-resistant Enterobacteriaceae (CRE) was confirmed by both conventional as well as molecular methods. Methods such as Combined Disk Test, mCIMtest, and RAPIDEC CarbaNP Test were used for phenotypic identification of CRE, Whereas Real-Time (RT)-PCR was used for the detection of bla-gene encoded for CRE (blaNDM1, blaVIM, blaKPC, blaIMP, and blaOXA48). All patients belonging to medicine wards were included in the study. we screened 436 patients during the study and found 160 patients suitable for our study, out of which 32 (20%) were cases and 128 (80%) were controls. We found a total number of 25 genes out of 16 isolates, where NDM 1 was identified in maximum numbers followed by KPC &VIM. Standard statistical analyses such as chi-squire and odd ratios were conducted to determine the risk factor of different variables. Stepwise multiple logistic regressions were carried out, where we found, that transfer from other wards to medicine ward, use of nebulizer and intravenous catheter, and use of multiple antibiotics were still statistically significant. Implementation of Multi-modal colonization prevention and control is the need for the present situation throughout the world.
Collapse
|
42
|
Ma X, Dong X, Cai J, Fu C, Yang J, Liu Y, Zhang Y, Wan T, Lin S, Lou Y, Zheng M. Metagenomic Analysis Reveals Changes in Bacterial Communities and Antibiotic Resistance Genes in an Eye Specialty Hospital and a General Hospital Before and After Wastewater Treatment. Front Microbiol 2022; 13:848167. [PMID: 35663906 PMCID: PMC9162037 DOI: 10.3389/fmicb.2022.848167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in hospital wastewater poses a great threat to public health, and wastewater treatment plants (WWTPs) play an important role in reducing the levels of ARB and ARGs. In this study, high-throughput metagenomic sequencing was used to analyze the bacterial community composition and ARGs in two hospitals exposed to different antibiotic use conditions (an eye specialty hospital and a general hospital) before and after wastewater treatment. The results showed that there were various potential pathogenic bacteria in the hospital wastewater, and the abundance and diversity of the influent ARGs in the general hospital were higher than those in the eye hospital. The influent of the eye hospital was mainly composed of Thauera and Pseudomonas, and sul1 (sulfonamide) was the most abundant ARG. The influent of the general hospital contained mainly Aeromonas and Acinetobacter, and tet39 (tetracycline) was the most abundant ARG. Furthermore, co-occurrence network analysis showed that the main bacteria carrying ARGs in hospital wastewater varied with hospital type; the same bacteria in wastewater from different hospitals could carry different ARGs, and the same ARG could also be carried by different bacteria. The changes in the bacterial community and ARG abundance in the effluent from the two hospitals showed that the activated sludge treatment and the direct chlorination disinfection can effectively remove some bacteria and ARGs in wastewater but have limitations. The species diversity increased significantly after the activated sludge treatment, while the direct chlorination disinfection did not increase the diversity. The activated sludge treatment has a better effect on the elimination of ARGs than the direct chlorination disinfection. In summary, we investigated the differences in bacterial communities and ARGs in wastewater from two hospitals exposed to different antibiotic usage conditions, evaluated the effects of different wastewater treatment methods on the bacterial communities and ARGs in hospital wastewater, and recommended appropriate methods for certain clinical environments.
Collapse
Affiliation(s)
- Xueli Ma
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xu Dong
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiabei Cai
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Chunyan Fu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jing Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yuan Liu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yan Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Tian Wan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Shudan Lin
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Li X, Wen C, Liu C, Lu S, Xu Z, Yang Q, Chen Z, Liao H, Zhou S. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer. J Environ Sci (China) 2022; 115:363-373. [PMID: 34969463 DOI: 10.1016/j.jes.2021.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
The global dissemination of antibiotic resistance genes (ARGs), especially via plasmid-mediated horizontal transfer, is becoming a pervasive health threat. While our previous study found that herbicides can accelerate the horizontal gene transfer (HGT) of ARGs in soil bacteria, the underlying mechanisms by which herbicides promote the HGT of ARGs across and within bacterial genera are still unclear. Here, the underlying mechanism associated with herbicide-promoted HGT was analyzed by detecting intracellular reactive oxygen species (ROS) production, extracellular polymeric substance composition, cell membrane integrity and proton motive force combined with genome-wide RNA sequencing. Exposure to herbicides induced a series of the above bacterial responses to promote HGT except for the ROS response, including compact cell-to-cell contact by enhancing pilus-encoded gene expression and decreasing cell surface charge, increasing cell membrane permeability, and enhancing the proton motive force, providing additional power for DNA uptake. This study provides a mechanistic understanding of the risk of bacterial resistance spread promoted by herbicides, which elucidates a new perspective on nonantibiotic agrochemical acceleration of the HGT of ARGs.
Collapse
Affiliation(s)
- Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyun Lu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongbing Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
44
|
Teban-Man A, Szekeres E, Fang P, Klümper U, Hegedus A, Baricz A, Berendonk TU, Pârvu M, Coman C. Municipal Wastewaters Carry Important Carbapenemase Genes Independent of Hospital Input and Can Mirror Clinical Resistance Patterns. Microbiol Spectr 2022; 10:e0271121. [PMID: 35234513 PMCID: PMC8941857 DOI: 10.1128/spectrum.02711-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
The spatiotemporal variation of several carbapenemase-encoding genes (CRGs) was investigated in the influent and effluent of municipal WWTPs, with or without hospital sewage input. Correlations among gene abundances, bacterial community composition, and wastewater quality parameters were tested to identify possible predictors of CRGs presence. Also, the possible role of wastewaters in mirroring clinical resistance is discussed. The taxonomic groups and gene abundances showed an even distribution among wastewater types, meaning that hospital sewage does not influence the microbial diversity and the CRG pool. The bacterial community was composed mainly of Proteobacteria, Firmicutes, Actinobacteria, Patescibacteria, and Bacteroidetes. Acinetobacter spp. was the most abundant group and had the majority of operational taxonomic units (OTUs) positively correlated with CRGs. This agrees with recent reports on clinical data. The influent samples were dominated by blaKPC, as opposed to effluent, where blaIMP was dominant. Also, blaIMP was the most frequent CRG family observed to correlate with bacterial taxa, especially with the Mycobacterium genus in effluent samples. Bacterial load, blaNDM, blaKPC, and blaOXA-48 abundances were positively correlated with BOD5, TSS, HEM, Cr, Cu, and Fe concentrations in wastewaters. When influent gene abundance values were converted into population equivalent (PE) data, the highest copies/1 PE were identified for blaKPC and blaOXA-48, agreeing with previous studies regarding clinical isolates. Both hospital and non-hospital-type samples followed a similar temporal trend of CRG incidence, but with differences among gene groups. Colder seasons favored the presence of blaNDM, blaKPC and blaOXA-48, whereas warmer temperatures show increased PE values for blaVIM and blaIMP. IMPORTANCE Wastewater-based epidemiology has recently been recognized as a valuable, cost-effective tool for antimicrobial resistance surveillance. It can help gain insights into the characteristics and distribution of antibiotic resistance elements at a local, national, and even global scale. In this study, we investigated the possible use of municipal wastewaters in the surveillance of clinically relevant carbapenemase-encoding genes (CRGs), seen as critical antibiotic resistance determinants. In this matter, our results highlight positive correlations among CRGs, microbial diversity, and wastewater physical and chemical parameters. Identified predictors can provide valuable data regarding the level of raw and treated wastewater contamination with these important antibiotic resistance genes. Also, wastewater-based gene abundances were used for the first time to observe possible spatiotemporal trends of CRGs incidence in the general population. Therefore, possible hot spots of carbapenem resistance could be easily identified at the community level, surpassing the limitations of health care-associated settings.
Collapse
Affiliation(s)
- Adela Teban-Man
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | - Peiju Fang
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Adriana Hegedus
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | | | - Marcel Pârvu
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Cristian Coman
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Inactivation of Antibiotic-Resistant Bacteria in Wastewater by Ozone-Based Advanced Water Treatment Processes. Antibiotics (Basel) 2022; 11:antibiotics11020210. [PMID: 35203813 PMCID: PMC8868322 DOI: 10.3390/antibiotics11020210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
The inactivating effect of ozone (O3)-based advanced oxidation processes (AOPs) (O3/H2O2, O3/UV, and O3/UV/H2O2 systems) on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in sewage treatment plant (STP) wastewater was investigated. The AMRB were grouped into six classes: carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE); these classes constituted the World Health Organization (WHO) global priority list of AMRB. The results indicate that O3-based advanced wastewater treatment inactivated all AMRB and AMSB (>99.9%) after 10 min of treatment, and significant differences (p < 0.5) were not observed in the disinfection of AMRB and AMSB by each treatment. Altered taxonomic diversity of micro-organisms based on 16S rRNA gene sequencing via O3/UV and O3/UV/H2O2 treatment showed that advanced wastewater treatments not only inactivated AMRB but also removed antimicrobial resistance genes (AMRGs) in the wastewater. Consequently, this study recommends the use of advanced wastewater treatments for treating the STP effluent, reducing environmental pollution, and alleviating the potential hazard to human health caused by AMRB, AMSB, and infectious diseases. Overall, this study provides a new method for assessing environmental risks associated with the spread of AMRB and AMSB in aquatic environments, while keeping the water environment safe and maintaining human health.
Collapse
|
46
|
Zhu L, Shuai XY, Lin ZJ, Sun YJ, Zhou ZC, Meng LX, Zhu YG, Chen H. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. WATER RESEARCH 2022; 209:117907. [PMID: 34864622 DOI: 10.1016/j.watres.2021.117907] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater contains abundant antibiotics, antibiotic resistance genes (ARGs), and pathogens. Last-resort antibiotic resistance genes (LARGs) include the New Delhi metallo-β-lactamase gene blaNDM, mobile colistin resistance gene mcr and tigecycline resistance gene tet(X) which confers resistance to carbapenems, colistin and tigecycline. The presence and significance of LARGs in hospital wastewater treatment systems (HWTS) have not yet been systematically explored. Here, LARG variants were shown to be prevalent both influents and effluents of HWTS. A total of 989 Enterobacteriaceae isolates that confer resistance to last-resort antibiotics were collected from effluents and multiple genetic contexts of LARGs were analyzed. LARGs-carrying plasmids were confirmed to show high multidrug phenotypes and transferability. We also discovered the co-occurrence of plasmids harboring blaNDM-1 and mcr-1 in single Escherichia coli, as well as E. coli HM016 containing two unique mcr-1-carrying plasmids. This result might accelerate co-dissemination of LARGs under environmental selection pressure. Different core genetic arrangements in these strains suggest several evolutionary pathways in HWTS. The resistance functions of LARGs were confirmed in vitro and in vivo by mass spectrometry. This study provides novel insights into the diversity, genetic context and function of critical ARGs in HWTS. The results raise the concern that LARGs may further spread into the environment, thus, more stringent discharge standards and regulations for hospital wastewater are urgently needed.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Xin-Yi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ze-Jun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yu-Jie Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Zhen-Chao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ling-Xuan Meng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR. China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR. China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China.
| |
Collapse
|
47
|
Dai D, Brown C, Bürgmann H, Larsson DGJ, Nambi I, Zhang T, Flach CF, Pruden A, Vikesland PJ. Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. MICROBIOME 2022; 10:20. [PMID: 35093160 PMCID: PMC8801152 DOI: 10.1186/s40168-021-01216-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND There is concern that the microbially rich activated sludge environment of wastewater treatment plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long-read (nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated sludge relative to those in influent sewage across five WWTPs from three continents. RESULTS The abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative pathogens decreased 75-90% from influent sewage (192-605 gc/Gb) to activated sludge (31-62 gc/Gb) at all five WWTPs. Long reads enabled quantification of the percent abundance of ARGs with mobility potential (i.e., located on plasmids or co-located with other mobile genetic elements (MGEs)). The abundance of plasmid-associated ARGs decreased at four of five WWTPs (from 40-73 to 31-68%), and ARGs co-located with transposable, integrative, and conjugative element hallmark genes showed similar trends. Most ARG-associated elements decreased 0.35-13.52% while integrative and transposable elements displayed slight increases at two WWTPs (1.4-2.4%). While resistome and taxonomic compositions both shifted significantly, host phyla for chromosomal ARG classes remained relatively consistent, indicating vertical gene transfer via active biomass growth in activated sludge as the key pathway of chromosomal ARG dissemination. CONCLUSIONS Overall, our results suggest that the activated sludge process acted as a barrier against the proliferation of most ARGs, while those that persisted or increased warrant further attention. Video abstract.
Collapse
Affiliation(s)
- Dongjuan Dai
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Helmut Bürgmann
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - D G Joakim Larsson
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Indumathi Nambi
- Department of Civil Engineering, Indian Institute of Technology, Madras, India
| | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Carl-Fredrik Flach
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
48
|
Pereira AL, de Oliveira PM, Faria-Junior C, Alves EG, de Castro E Caldo Lima GR, da Costa Lamounier TA, Haddad R, de Araújo WN. Environmental spreading of clinically relevant carbapenem-resistant gram-negative bacilli: the occurrence of bla KPC-or-NDM strains relates to local hospital activities. BMC Microbiol 2022; 22:6. [PMID: 34979901 PMCID: PMC8725513 DOI: 10.1186/s12866-021-02400-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background Aquatic matrices impacted by sewage may shelter carbapenem-resistant (CR) Gram-negative bacilli (GNB) harboring resistance genes of public health concern. In this study, sewage treatment plants (STPs) servicing well-defined catchment areas were surveyed for the presence of CR-GNB bearing carbapenemase genes (blaKPC or blaNDM). Results A total of 325 CR-GNB were recovered from raw (RS) and treated (TS) sewage samples as well as from water body spots upstream (UW) and downstream (DW) from STPs. Klebsiella-Enterobacter (KE) group amounted to 116 isolates (35.7%). CR-KE isolates were recovered from TS, DW (35.7%) and RS samples (44.2%) (p = 0.001); but not from UW samples. KE isolates represented 65.8% of all blaKPC or blaNDM positive strains. The frequency of blaKPC-or-NDM strains was positively associated with the occurrence of district hospitals located near STPs, as well as with the number of hospitalizations and of sewer connections serviced by the STPs. blaKPC-or-NDM strains were recovered from ST samples in 7 out of 14 STPs, including four tertiary-level STPs; and from 6 out of 13 DW spots whose RS samples also had blaKPC-or-NDM strains. Conclusions Clinically relevant GNB bearing blaKPC-or-NDM resist sewage treatments and spread into environmental aquatic matrices mainly from STPs impacted by hospital activities. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02400-1.
Collapse
Affiliation(s)
- Alex Leite Pereira
- Campus of Ceilândia, University of Brasília. Centro Metropolitano, Conjunto A, Ceilândia Sul, Brasília, DF, CEP: 72220-275, Brazil.
| | - Pâmela Maria de Oliveira
- Campus of Ceilândia, University of Brasília. Centro Metropolitano, Conjunto A, Ceilândia Sul, Brasília, DF, CEP: 72220-275, Brazil
| | - Célio Faria-Junior
- Central Laboratory for Public Health (LACEN-DF), SGAN 601, Asa Norte, Brasília, DF, CEP: 70830-010, Brazil
| | - Everton Giovanni Alves
- Central Laboratory for Public Health (LACEN-DF), SGAN 601, Asa Norte, Brasília, DF, CEP: 70830-010, Brazil
| | | | - Thaís Alves da Costa Lamounier
- Campus of Ceilândia, University of Brasília. Centro Metropolitano, Conjunto A, Ceilândia Sul, Brasília, DF, CEP: 72220-275, Brazil
| | - Rodrigo Haddad
- Campus of Ceilândia, University of Brasília. Centro Metropolitano, Conjunto A, Ceilândia Sul, Brasília, DF, CEP: 72220-275, Brazil
| | - Wildo Navegantes de Araújo
- Campus of Ceilândia, University of Brasília. Centro Metropolitano, Conjunto A, Ceilândia Sul, Brasília, DF, CEP: 72220-275, Brazil
| |
Collapse
|
49
|
Baghal Asghari F, Dehghani MH, Dehghanzadeh R, Farajzadeh D, Shanehbandi D, Mahvi AH, Yaghmaeian K, Rajabi A. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. Sci Rep 2021; 11:24519. [PMID: 34972828 PMCID: PMC8720092 DOI: 10.1038/s41598-021-04254-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
The performance of ozonation for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) using Escherichia coli and Pseudomonas aeruginosa carrying ARGs from hospital wastewaters was evaluated in this study. Bacterial inactivation was determined using plate count methods and real time PCR for ARG damage (Sul1, blatem, blactx, blavim and qnrS). The reduction rate of bacterial cells and ARGs was increased by different amounts of transferred ozone dose from 11 to 45 mg/L. The concentration of 108 cfu/ml bacteria was reduced to an acceptable level by ozone treatment after a 5 min contact time, Although the removal rate was much higher for concentrations of 106 cfu/ml and 104 cfu/ml bacteria. Overall, the tendency of gene reduction by ozonation from more to less was 16S rRNA > sul1 > blatem > blactx > qnrS > blavim. Given that plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process, our results can provide important insights into the fate of ARGs during hospital wastewater ozonation.
Collapse
Affiliation(s)
- Farzaneh Baghal Asghari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Environmental Research, Center for Water Quality Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Dehghanzadeh
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Rajabi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
O'Malley K, McNamara P, McDonald W. Antibiotic resistance genes in an urban stream before and after a state fair. JOURNAL OF WATER AND HEALTH 2021; 19:885-894. [PMID: 34874897 DOI: 10.2166/wh.2021.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global spread of antibiotic resistance genes (ARGs) concomitant with a decrease in antibiotic effectiveness is a major public health issue. While research has demonstrated the impact of various urban sources, such as wastewater treatment plant (WWTP) effluent, stormwater runoff, and industrial discharge on ARG abundance in receiving waters, the impact of short-term gatherings such as state fairs is not comprehensively understood. The objective of this research was to explore the impact of a 2-week Wisconsin State Fair gathering - over 1.1 million visitors and 7,100 farm animals - on the abundance of the ARG blaTEM, the integrase of the class 1 integron (intI1), a marker for horizontal gene transfer, and the 16S rRNA gene, a marker for total biomass, in an urban stream receiving runoff from the state fair. Stream samples downstream of the state fair were taken before and after the event and quantified via a droplet digital polymerase chain reaction. The absolute abundance of all genes was significantly higher (p<0.05) following the event. This research showcases the prevalence and persistence of ARG contamination in an urban stream before and after a state fair gathering, suggesting that short-term events can be a significant source of ARGs into the environment.
Collapse
Affiliation(s)
- Kassidy O'Malley
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Patrick McNamara
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Walter McDonald
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| |
Collapse
|