1
|
Armstrong GJ, Janssen SE, Lepak RF, Rosera TJ, Peterson BD, Cushing ST, Tate MT, Hurley JP. Seasonal Stratification Drives Bioaccumulation of Pelagic Mercury Sources in Eutrophic Lakes. ACS ES&T WATER 2025; 5:2444-2454. [PMID: 40371376 PMCID: PMC12070409 DOI: 10.1021/acsestwater.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025]
Abstract
Increased lake eutrophication, influenced by changing climate and land use, alters aquatic cycling and bioaccumulation of mercury (Hg). Additionally, seasonally dynamic lake circulation and plankton community composition can confound our ability to predict changes in biological Hg concentrations and sources. To assess temporal variation, we examined seasonal total Hg (THg) and methylmercury (MeHg) concentrations and stable isotope values in seston, waters, sediments, and fish from two adjacent urban eutrophic lakes in Madison, Wisconsin. In Lake Monona, surface sediment THg concentrations were elevated due to comparably higher urbanization and historical industrial inputs, whereas Lake Mendota sediments had lower concentrations corresponding with largely agricultural and suburban surrounding watershed. Surface water THg and MeHg were similar between lakes and seasonally dynamic, but water profiles exhibited elevated concentrations in the meta- and hypolimnia, highlighting water column MeHg production. Seston MeHg concentrations were often highest at shoulder seasons, possibly owing to metalimnetic MeHg delivery, but also differences in biomass and water clarity. The Δ199Hg and δ202Hg values in seston were similar between lakes, despite differing sediment THg concentrations and isotope values, suggesting a shared bioaccumulated source of MeHg. Measurement of MeHg stable isotopes further elucidated that seston and fish predominantly bioaccumulated pelagic-sourced MeHg.
Collapse
Affiliation(s)
- Grace J. Armstrong
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah E. Janssen
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - Ryan F. Lepak
- U.S.
EPA Office of Research and Development, Center for Computational Toxicology
and Exposure, Great Lakes Ecology and Toxicology
Division, 6201 Congdon Blvd., Duluth, Minnesota 55804, United States
| | - Tylor J. Rosera
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - Benjamin D. Peterson
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Environmental Toxicology, University
of California-Davis, Davis, California 95616 United States
| | - Samia T. Cushing
- Freshwater@UW
Summer Research Opportunities Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael T. Tate
- U.S.
Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - James P. Hurley
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Aquatic Sciences Center, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Zhao Z, Hu G, Liu B, Chen Y, Jiang X, Chen X. Adaptability of Chub mackerel (Scomber japonicus) under El Niño and La Niña conditions: Body condition, feeding, and contaminant analysis. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107185. [PMID: 40318477 DOI: 10.1016/j.marenvres.2025.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
This study analyzes the effects of the El Niño and La Niña phenomena on the physiological ecology and mercury contamination levels of Chub mackerel, using samples collected from the Northwest Pacific region in 2021 (a La Niña year) and 2023 (an El Niño year). We analyzed body condition (Fulton's K index), trophic dynamics (δ13C, δ15N isotopes), and mercury levels in individuals across size classes (100-300 mm). The results indicate that, smaller mackerel (100-200 mm) exhibited significantly higher K values during El Niño (p < 0.05), whereas larger conspecifics (>250 mm) showed reduced condition. Sexual dimorphism in K (females > males) observed in 2021 disappeared under El Niño, suggesting climate-mediated shifts in energy allocation. Trophic niche breadth expanded during El Niño (6.88 vs. 4.12 SEAc), reflecting dietary diversification toward lower-trophic prey, as evidenced by depleted δ13C and δ15N values. Mercury concentrations surged in 2023, particularly in medium-to-large fish (151-300 mm, p < 0.01). This pattern likely reflects climate-driven intensification of mercury production under colder, oxygen-depleted conditions combined with trophic shifts toward larger, higher-trophic prey that biomagnify mercury more efficiently, collectively indicating that ENSO variability modulates both pollution bioavailability and contaminant transfer dynamics in pelagic food webs. These findings underscore the dual threats of climate-driven ecological disruption and pollution amplification in pelagic ecosystems. By elucidating size- and sex-specific vulnerabilities, this work provides actionable insights for adaptive fisheries management and highlights the urgent need to integrate climate and contaminant monitoring in marine conservation strategies.
Collapse
Affiliation(s)
- Zhenfang Zhao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Guanyu Hu
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Ocean Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Bilin Liu
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Ocean Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| | - Yingcong Chen
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoting Jiang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinjun Chen
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Ocean Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| |
Collapse
|
3
|
Vogl A, Desjardins K, Ponton DE, Winkler G, Amyot M. Diminishing Mercury Bioaccumulation in Zooplankton along an Estuarine Salinity Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4142-4152. [PMID: 39967451 DOI: 10.1021/acs.est.4c12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Estuarine transition zones (ETZs) are biogeochemically complex, nutrient-rich environments supporting diverse and productive food webs. They may also be sites of microbial production of methylmercury (MeHg) and bioaccumulation of this neurotoxicant at the base of the food web. However, the environmental drivers controlling these mechanisms are unclear. We studied the pattern of MeHg bioaccumulation in zooplankton along the 200 km ETZ of a large North American estuary, the St. Lawrence Estuary (Québec, Canada). Our approach integrated the dynamic variation in ETZ geochemistry, focusing on MeHg speciation change, alongside ecological factors, including community composition and stable isotopic tracers of diet and habitat. MeHg bioaccumulation decreased with distance downstream along the ETZ, driven by the salinity gradient and traced by the isotopic signature of sulfur in zooplankton. MeHg speciation modeling suggested that complexation to dissolved organic matter may be used as a proxy of the trophic transfer of MeHg to zooplankton. Further, the binding of MeHg to organic matter was reduced by the presence of chloride, thus reducing the trophic transfer of MeHg. We propose a conceptual model for MeHg cycling in ETZ of large estuaries that hypothesizes that higher-level consumers in turbid upstream regions may face heightened risks of MeHg toxicity but that Hg levels diminish drastically as salinity increases.
Collapse
Affiliation(s)
- Annabelle Vogl
- Déparment de Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Kimberley Desjardins
- Déparment de Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
- Ministère de l'Environnement, de la Lutte Contre les Changements Climatiques, de la Faune et des Parcs, Longueuil, Québec J4K 2TF, Canada
| | - Dominic E Ponton
- Déparment de Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Gesche Winkler
- Institut des Sciences de la mer, Québec-Océan, Université du Québec à Rimouski, Rimouski, Québec G5L 2A6, Canada
| | - Marc Amyot
- Déparment de Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
4
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Fang TH, Chang FW. Temporal variation of mercury and methyl mercury in water and accumulation by phytoplankton in the eutrophic estuary, northern Taiwan. MARINE POLLUTION BULLETIN 2024; 205:116624. [PMID: 38959573 DOI: 10.1016/j.marpolbul.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
Three surveys were carried out to study the phytoplankton role in influencing the Hg distribution in a poorly eutrophic estuary by measuring the total Hg (THg) and methylHg (MeHg) concentrations in waters and four-size fractions of phytoplankton. The THg and MeHg concentrations in waters and phytoplankton varied markedly temporal during the three surveys. The total concentrations of THg and MeHg in the four-size fractions of phytoplankton ranged between 0.62 and 28.15 mg/kg and 0.022-4.411 mg/kg, respectively. The dominance of THg and MeHg phytoplankton concentrations differed from different size fractions and varied with the various surveys. The huge uptake of Hg by abundant phytoplankton decreased both Hg concentrations in waters and phytoplankton, which was attributed to the biomass dilution effect during the July survey. The Hg partition between water and phytoplankton provided substantial evidence to illustrate the huge uptake of Hg by the abundant phytoplankton.
Collapse
Affiliation(s)
- Tien Hsi Fang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| | - Fu Wei Chang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| |
Collapse
|
6
|
Garcia-Arevalo I, Bérard JB, Bieser J, Le Faucheur S, Hubert C, Lacour T, Thomas B, Cossa D, Knoery J. Mercury Accumulation Pathways in a Model Marine Microalgae: Sorption, Uptake, and Partition Kinetics. ACS ES&T WATER 2024; 4:2826-2835. [PMID: 39021579 PMCID: PMC11251459 DOI: 10.1021/acsestwater.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
The accumulation of dissolved mercury (Hg) by phytoplankton is the largest concentration step along aquatic food chains. However, the cell uptake mechanisms remain unclear. In this study, the marine haptophyteTisochrysis lutea, a model phytoplankton species, was examined for its interactions with picomolar levels of dissolved inorganic divalent Hg (iHg) and monomethyl Hg (MMHg). For both these Hg species, the study observed their successive sorption and internalization over time, yielding Hg partition coefficients as well as sorption, uptake, and release rates. These results were integrated into a time-dependent, three-compartment model for marine cellular Hg accumulation that included exposure medium, phycosphere, and internalized mercury. Assuming equilibria and pseudo-first-order kinetics between compartments, this study obtained transfer rates of Hg between compartments. The results provide insight into the phycosphere as an intermediate compartment for Hg species accumulation and quantify its role in the internalization of Hg. Ultimately, the new model and its parametrization were successfully applied to literature data showing Hg cellular accumulation in different groups of marine phytoplankton, lending confidence in its robustness and potential contributions to help model the uptake of Hg in the aquatic food web.
Collapse
Affiliation(s)
| | | | - Johannes Bieser
- Institute
of Coastal Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Séverine Le Faucheur
- Université
de Pau et des Pays de l’Adour, E2S-UPPA, CNRS, IPREM, 64000 Pau, France
| | - Clarisse Hubert
- IFREMER,
PHYTOX Physiology and Toxins of Microalgae, F-44300 Nantes, France
| | - Thomas Lacour
- IFREMER,
PHYTOX Physiology and Toxins of Microalgae, F-44300 Nantes, France
| | - Bastien Thomas
- IFREMER,
CCEM Contamination Chimique des Écosystèmes Marins, F-44300 Nantes, France
| | - Daniel Cossa
- Université
Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- IFREMER,
CCEM Contamination Chimique des Écosystèmes Marins, F-44300 Nantes, France
| |
Collapse
|
7
|
Li Z, Wu Z, Bo S, Chi J, Cui X, He W, Cui X, Liu Y, Zhao Y, Tong Y. Role of low-proportion, hydrophobic dissolved organic matter components in inhibiting methylmercury uptake by phytoplankton. CHEMOSPHERE 2024; 358:142104. [PMID: 38653399 DOI: 10.1016/j.chemosphere.2024.142104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Uptake of methylmercury (MeHg), a potent neurotoxin, by phytoplankton is a major concern due to its role as the primary pathway for MeHg entry into aquatic food webs, thereby posing a significant risk to human health. While it is widely believed that the MeHg uptake by plankton is negatively correlated with the concentrations of dissolved organic matter (DOM) in the water, ongoing debates continue regarding the specific components of DOM that exerts the dominant influence on this process. In this study, we employed a widely-used resin fractionation approach to separate and classify DOM derived from algae (AOM) and natural rivers (NOM) into distinct components: strongly hydrophobic, weakly hydrophobic, and hydrophilic fractions. We conduct a comparative analysis of different DOM components using a combination of spectroscopy and mass spectrometry techniques, aiming to identify their impact on MeHg uptake by Microcystis elabens, a prevalent alga in freshwater environments. We found that the hydrophobic components had exhibited more pronounced spectral characteristics associated with the protein structures while protein-like compounds between hydrophobic and hydrophilic components displayed significant variations in both distributions and the values of m/z (mass-to-charge ratio) of the molecules. Regardless of DOM sources, the low-proportion hydrophobic components usually dominated inhibition of MeHg uptake by Microcystis elabens. Results inferred from the correlation analysis suggest that the uptake of MeHg by the phytoplankton was most strongly and negatively correlated with the presence of protein-like components. Our findings underscore the importance of considering the diverse impacts of different DOM fractions on inhibition of phytoplankton MeHg uptake. This information should be considered in future assessments and modeling endeavors aimed at understanding and predicting risks associated with aquatic Hg contamination.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; School of Resources and Environment, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shao Bo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Xiaomei Cui
- Key Laboratory of Biodiversity and Eco-Environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Biodiversity and Eco-Environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
8
|
Zhang L, Gao S, Song Y, Chen H, Wang L, Zhao Y, Cui J, Tang W. Trophic transfer of antibiotics in the benthic-pelagic coupling foodweb in a macrophyte-dominated shallow lake: The importance of pelagic-benthic coupling strength and baseline organism. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134171. [PMID: 38569339 DOI: 10.1016/j.jhazmat.2024.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
In lake ecosystems, pelagic-benthic coupling strength (PBCS) is closely related to foodweb structure and pollutant transport. However, the trophic transfer of antibiotics in a benthic-pelagic coupling foodweb (BPCFW) and the manner in which PBCS influences the trophic magnification factor (TMFs) of antibiotics is still not well understood in the whole lake. Herein, the trophic transfer behavior of 12 quinolone antibiotics (QNs) in the BPCFW of Baiyangdian Lake were studied during the period of 2018-2019. It was revealed that 24 dominant species were contained in the BPCFW, and the trophic level was 0.42-2.94. Seven QNs were detected in organisms, the detection frequencies of ofloxacin (OFL), flumequine (FLU), norfloxacin (NOR), and enrofloxacin (ENR) were higher than other QNs. The ∑QN concentration in all species was 11.3-321 ng/g dw. The TMFs for ENR and NOR were trophic magnification, while for FLU/OFL it was trophic dilution. The PBCS showed spatial-temporal variation, with a range of 0.6977-0.7910. The TMFs of ENR, FLU, and OFL were significantly positively correlated with PBCS. Phytoplankton and macrophyte biomasses showed indirect impact on the TMFs of QNs by directly influencing the PBCS. Therefore, the PBCS was the direct influencing factor for the TMFs of chemicals.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Sai Gao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Haoda Chen
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Linjing Wang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, 100085 Beijing, China.
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Hansen G, Shumway SE, Mason RP, Baumann Z. A Comparative Study of Mercury Bioaccumulation in Bivalve Molluscs from a Shallow Estuarine Embayment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:262-273. [PMID: 38531980 DOI: 10.1007/s00244-024-01058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
In estuarine food webs, bivalve molluscs transfer nutrients and pollutants to higher trophic levels. Mercury (Hg) pollution is ubiquitous, but it is especially elevated in estuaries historically impacted by industrial activities, such as those in the U.S. Northeast. Monomethylmercury (MeHg), the organic form of Hg, is highly bioaccumulative and transferable in the food web resulting in the highest concentrations in the largest and oldest marine predators. Patterns of Hg concentrations in marine bivalve molluscs, however, are poorly understood. In this study, inorganic Hg (iHg), MeHg, and the total Hg (THg) in soft tissues of the northern quahogs (Mercenaria mercenaria), eastern oysters (Crassostrea virginica), and ribbed mussels (Geukensia demissa) from eastern Long Island sound, a temperate estuary of the western North Atlantic Ocean was investigated. In all three species, concentrations of THg remained similar between the four sampling months (May, June, July, and September), and were mostly independent of animal size. In quahogs, MeHg and iHg displayed significant (p < 0.05) positive (iHg in May and June) and negative (MeHg in July and September) changes with shell height. Variability in concentrations of THg, MeHg, and iHg, both inter- and intra-specifically was high and greater in quahogs and oysters (THg: 37, 39%, MeHg: 28, 39%, respectively) than in mussels (THg: 13%, MeHg: 20%). The percentage of THg that was MeHg (%MeHg) was also highly variable in the three species (range: 10-80%), highlighting the importance of measuring MeHg and not only THg in molluscs.
Collapse
Affiliation(s)
- Gunnar Hansen
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT, 06340, USA
| | - Sandra E Shumway
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT, 06340, USA
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT, 06340, USA
| | - Zofia Baumann
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT, 06340, USA.
| |
Collapse
|
10
|
Trifari MP, Wooller MJ, Rea L, O'Hara TM, Lescord GL, Parnell AC, Barst BD. Compound-specific stable isotopes of amino acids reveal influences of trophic level and primary production sources on mercury concentrations in fishes from the Aleutian Islands, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168242. [PMID: 37918743 DOI: 10.1016/j.scitotenv.2023.168242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Total mercury concentrations ([THg]) exceed thresholds of concern in some Steller sea lion (Eumetopias jubatus) tissues from certain portions of the Aleutian Islands, Alaska. We applied compound-specific stable isotope analyses of both carbon and nitrogen in amino acids from fish muscle tissue to quantify the proportional contributions of primary production sources and trophic positions of eight prey species (n = 474 total) that are part of Steller sea lion diets. Previous THg analyses of fish muscle, coupled with monomethylmercury analyses of a subset of samples, substantiated previous findings that fishes from the west of Amchitka Pass, a discrete oceanographic boundary of the Aleutian Archipelago, have higher muscle Hg concentrations relative to fishes from the east. The δ13C values of essential amino acids (EAAs) in fish muscle demonstrated that although most fishes obtained their EAAs primarily from algae, some species varied in the extent to which they relied on this EAA source. The δ15N values of phenylalanine (0.9 to 7.8 ‰), an indicator of the isotopic baseline of a food web, varied widely within and among fish species. Trophic position estimates, accounting for this baseline variation, were higher from the west relative to the east of the pass for some fish species. Trophic magnification slopes using baseline-corrected trophic position estimates indicated similar rates of Hg biomagnification to the east and west of Amchitka Pass. Multiple linear regression models revealed that trophic position was the most important driver of fish muscle [THg] with less variation explained by other parameters. Thus, higher trophic positions but not the rate of Hg biomagnification to the west of Amchitka Pass may play a role in the regional differences in both fish and Steller sea lion [THg]. Although, differences in Hg contamination and uptake at the base of the east and west food webs could not be excluded.
Collapse
Affiliation(s)
- Michelle P Trifari
- Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, USA; Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Matthew J Wooller
- Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, USA; Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Lorrie Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Todd M O'Hara
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Bilingual Laboratory of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Gretchen L Lescord
- University of Florida, School of Forest Fisheries, and Geomatics Sciences, USA; Cooperative Freshwater Ecology Unit, Laurentian University, Ontario, Canada; Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada
| | - Andrew C Parnell
- Hamilton Institute, Insight Centre for Data Analytics, Maynooth University, Maynooth, Ireland
| | - Benjamin D Barst
- Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
11
|
Carrasco N, McGovern M, Evenset A, Søreide JE, Arts MT, Jonsson S, Poste AE. Seasonal riverine inputs may affect diet and mercury bioaccumulation in Arctic coastal zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167643. [PMID: 37806586 DOI: 10.1016/j.scitotenv.2023.167643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Climate change driven increases in permafrost thaw and terrestrial runoff are expected to facilitate the mobilization and transport of mercury (Hg) from catchment soils to coastal areas in the Arctic, potentially increasing Hg exposure of marine food webs. The main aim of this study was to determine the impacts of seasonal riverine inputs on land-ocean Hg transport, zooplankton diet and Hg bioaccumulation in an Arctic estuary (Adventfjorden, Svalbard). The Adventelva River was a source of dissolved and particulate Hg to Adventfjorden, especially in June and July during the river's main discharge period. Stable isotope and fatty acid analyses suggest that zooplankton diet varied seasonally with diatoms dominating during the spring phytoplankton bloom in May and with increasing contributions of dinoflagellates in the summer months. In addition, there was evidence of increased terrestrial carbon utilization by zooplankton in June and July, when terrestrial particles contributed substantially to the particulate organic matter pool. Total (TotHg) and methyl Hg (MeHg) concentrations in zooplankton increased from April to August related to increased exposure to riverine inputs, and to shifts in zooplankton diet and community structure. Longer and warmer summer seasons will probably increase riverine runoff and thus Hg exposure to Arctic zooplankton.
Collapse
Affiliation(s)
- Nathalie Carrasco
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9019 Tromsø, Norway; Oceanographic Institute - Prince Albert I Foundation, 98000, Monaco; Norwegian Institute for Water Research, 9007 Tromsø, Norway.
| | - Maeve McGovern
- Norwegian Institute for Water Research, 9007 Tromsø, Norway
| | | | | | - Michael T Arts
- Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Amanda E Poste
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9019 Tromsø, Norway; Norwegian Institute for Water Research, 9007 Tromsø, Norway; Norwegian Institute for Nature Research, 9296 Tromsø, Norway.
| |
Collapse
|
12
|
Shao B, Li Z, Wu Z, Yang N, Cui X, Lin H, Liu Y, He W, Zhao Y, Wang X, Tong Y. Impacts of autochthonous dissolved organic matter on the accumulation of methylmercury by phytoplankton and zooplankton in a eutrophic coastal ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122457. [PMID: 37633436 DOI: 10.1016/j.envpol.2023.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The bioaccumulation of methylmercury (MeHg) within the pelagic food webs is a crucial determinant of the MeHg concentration in the organisms at higher trophic levels. Dissolved organic matter (DOM) is recognized for its influence on mercury (Hg) cycling in the aquatic environment because of its role in providing metabolic substrate for heterotrophic organism and serving as a strong ligand for MeHg. However, the impact of DOM on MeHg bioaccumulation in pelagic food chains remain controversial. Here, we explored MeHg bioaccumulation within a pelagic food web in China, in the eutrophic Bohai Sea and adjacent seas, covering a range of DOM concentrations and compositions. Our findings show that elevated concentrations of dissolved organic carbon (DOC) and phytoplankton biomass may contribute to a reduction in MeHg uptake by phytoplankton. Moreover, we observe that a higher level of autochthonous DOM in the water may result in more significant MeHg biomagnification in zooplankton. This can be explained by alterations in the structure of pelagic food webs and/or an increase in the direct consumption of DOM and particulate organic matter (POM) containing MeHg. Our study offers direct field monitoring evidence of dual roles played by DOM in regulating MeHg transfers from water to phytoplankton and zooplankton in coastal pelagic food webs. A thorough understanding of the intricate interactions is essential for a more comprehensive evaluation of ecological risks associated with MeHg exposure in coastal ecosystems.
Collapse
Affiliation(s)
- Bo Shao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Ning Yang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Cui
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Huiming Lin
- College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yiwen Liu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yingxin Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejun Wang
- College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
13
|
Seelen E, Liem-Nguyen V, Wünsch U, Baumann Z, Mason R, Skyllberg U, Björn E. Dissolved organic matter thiol concentrations determine methylmercury bioavailability across the terrestrial-marine aquatic continuum. Nat Commun 2023; 14:6728. [PMID: 37872168 PMCID: PMC10593767 DOI: 10.1038/s41467-023-42463-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The most critical step for methylmercury (MeHg) bioaccumulation in aquatic food webs is phytoplankton uptake of dissolved MeHg. Dissolved organic matter (DOM) has been known to influence MeHg uptake, but the mechanisms have remained unclear. Here we show that the concentration of DOM-associated thiol functional groups (DOM-RSH) varies substantially across contrasting aquatic systems and dictates MeHg speciation and bioavailability to phytoplankton. Across our 20 study sites, DOM-RSH concentrations decrease 40-fold from terrestrial to marine environments whereas dissolved organic carbon (DOC), the typical proxy for MeHg binding sites in DOM, only has a 5-fold decrease. MeHg accumulation into phytoplankton is shown to be directly linked to the concentration of specific MeHg binding sites (DOM-RSH), rather than DOC. Therefore, MeHg bioavailability increases systematically across the terrestrial-marine aquatic continuum as the DOM-RSH concentration decreases. Our results strongly suggest that measuring DOM-RSH concentrations will improve empirical models in phytoplankton uptake studies and will form a refined basis for modeling MeHg incorporation in aquatic food webs under various environmental conditions.
Collapse
Affiliation(s)
- Emily Seelen
- University of Connecticut, Department of Marine Sciences, Groton, CT, USA.
- University of Southern California, Earth Sciences, Los Angeles, CA, USA.
| | | | - Urban Wünsch
- Technical University of Denmark, National Institute of Aquatic Resources, Section for Oceans and Arctic, 2800, Lyngby, Denmark
| | - Zofia Baumann
- University of Connecticut, Department of Marine Sciences, Groton, CT, USA
| | - Robert Mason
- University of Connecticut, Department of Marine Sciences, Groton, CT, USA
| | - Ulf Skyllberg
- Swedish University of Agricultural Sciences, Department of Forest Ecology and Management Umeå, Umeå, Sweden
| | - Erik Björn
- Umeå University, Department of Chemistry, Umeå, Sweden.
| |
Collapse
|
14
|
Tovar LR, Neves MC, Manhães BMR, Montanini G, Azevedo ADF, Lailson-Brito J, Bisi TL. Understanding trophic transference role in mercury biomagnification and bioaccumulation in the Atlantic spotted dolphin (Stenella frontalis). CHEMOSPHERE 2023; 338:139496. [PMID: 37451642 DOI: 10.1016/j.chemosphere.2023.139496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Mercury is a metal of toxicological importance that occurs naturally. However, its concentration can be affected by anthropogenic activities and has the potential to bioaccumulate and biomagnify in food webs. Thus, knowing how its concentration varies along the trophic levels allows us to understand its potential risks to the biota. The present study aimed to investigate mercury transfer through the Stenella frontalis food web in Ilha Grande Bay (IGB), Rio de Janeiro state, Brazil. Samples of muscle and liver of S. frontalis were obtained from carcasses (n = 8) found stranded in the IGB, and its potential prey species were collected in fishing landings in the same Bay (n = 145). Total mercury (THg) concentrations were determined by atomic absorption spectrometry, and the δ15N was determined by an isotope ratio mass spectrometer. To investigate how trophic transfer affects mercury contamination in biota, six linear models were applied between THg logarithmic concentrations and δ15N or trophic position (TP). The trophic magnification factor (TMF) was calculated from each model to estimate the trophic transfer. Mean THg concentration in S. frontalis was higher in the liver than in muscle, but no correlation was found with age and δ15N values. Instead, the hepatic and muscular THg concentrations positively correlated with the trophic position. In the summer, THg concentration, TP, and δ15N values in prey species varied significantly, as well as in the winter, except for THg concentration. All trophic transfer models were significant in both seasons, and the TMF >1. The present study showed that trophic transfer is an essential factor in mercury biomagnification in both seasons but is not the unique driver. Both δ15N and TP could explain mercury trophic transfer, but TP better integrates metabolic diversity and seasonality.
Collapse
Affiliation(s)
- Lucas Rodrigues Tovar
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil.
| | - Mariana Cappello Neves
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Bárbara M R Manhães
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Gleici Montanini
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Alexandre de Freitas Azevedo
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - José Lailson-Brito
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Tatiana Lemos Bisi
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| |
Collapse
|
15
|
Tesán-Onrubia JA, Heimbürger-Boavida LE, Dufour A, Harmelin-Vivien M, García-Arévalo I, Knoery J, Thomas B, Carlotti F, Tedetti M, Bănaru D. Bioconcentration, bioaccumulation and biomagnification of mercury in plankton of the Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 194:115439. [PMID: 37639915 DOI: 10.1016/j.marpolbul.2023.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Plankton plays a prominent role in the bioaccumulation of mercury (Hg). The MERITE-HIPPOCAMPE campaign was carried out in spring 2019 along a north-south transect including coastal and offshore areas of the Mediterranean Sea. Sampling of sea water and plankton by pumping and nets was carried out in the chlorophyll maximum layer. Two size-fractions of phytoplankton (0.7-2.7 and 2.7-20 μm) and five of zooplankton (between 60 and >2000 μm) were separated, and their total mercury (THg) and monomethylmercury (MMHg) contents were measured. Bioconcentration of THg was significantly higher in the smallest phytoplankton size-fraction dominated by Synechococcus spp. The bioaccumulation and biomagnification of MMHg in zooplankton was influenced by size, food sources, biochemical composition and trophic level. MMHg was biomagnified in the plankton food web, while THg decreased toward higher trophic levels. Higher MMHg concentrations were measured in oligotrophic areas. Plankton communities in the Southern Mediterranean Sea had lower MMHg concentrations than those in the Northern Mediterranean Sea. These results highlighted the influence of environmental conditions and trophodynamics on the transfer of Hg in Mediterranean plankton food webs, with implications for higher trophic level consumers.
Collapse
Affiliation(s)
| | | | - Aurélie Dufour
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | | | | | - Joël Knoery
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Bastien Thomas
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - François Carlotti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Marc Tedetti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Daniela Bănaru
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France.
| |
Collapse
|
16
|
Bartz KK, Hannam MP, Wilson TL, Lepak RF, Ogorek JM, Young DB, Eagles-Smith CA, Krabbenhoft DP. Understanding drivers of mercury in lake trout (Salvelinus namaycush), a top-predator fish in southwest Alaska's parklands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121678. [PMID: 37119998 PMCID: PMC10716799 DOI: 10.1016/j.envpol.2023.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Mercury (Hg) is a widespread element and persistent pollutant, harmful to fish, wildlife, and humans in its organic, methylated form. The risk of Hg contamination is driven by factors that regulate Hg loading, methylation, bioaccumulation, and biomagnification. In remote locations, with infrequent access and limited data, understanding the relative importance of these factors can pose a challenge. Here, we assessed Hg concentrations in an apex predator fish species, lake trout (Salvelinus namaycush), collected from 14 lakes spanning two National Parks in southwest Alaska, U.S.A. We then examined factors associated with the variation in fish Hg concentrations using a Bayesian hierarchical model. We found that total Hg concentrations in water were consistently low among lakes (0.11-0.50 ng L-1). Conversely, total Hg concentrations in lake trout spanned a thirty-fold range (101-3046 ng g-1 dry weight), with median values at 7 lakes exceeding Alaska's human consumption threshold. Model results showed that fish age and, to a lesser extent, body condition best explained variation in Hg concentration among fish within a lake, with Hg elevated in older, thinner lake trout. Other factors, including plankton methyl Hg content, fish species richness, volcano proximity, and glacier loss, best explained variation in lake trout Hg concentration among lakes. Collectively, these results provide evidence that multiple, hierarchically nested factors control fish Hg levels in these lakes.
Collapse
Affiliation(s)
- Krista K Bartz
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5th Avenue, Anchorage, AK, 99501, USA.
| | - Michael P Hannam
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5th Avenue, Anchorage, AK, 99501, USA
| | - Tammy L Wilson
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5th Avenue, Anchorage, AK, 99501, USA
| | - Ryan F Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA; U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Jacob M Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI, 53726, USA
| | - Daniel B Young
- National Park Service, Lake Clark National Park and Preserve, 240 West 5th Avenue, Anchorage, AK, 99501, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97330, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI, 53726, USA
| |
Collapse
|
17
|
Xing Z, Chang R, Song Z, Zhang Y, Muntean M, Feng K, Liu Y, Ma Z, Wang J, Zhang J, Wang H. International trade shapes global mercury-related health impacts. PNAS NEXUS 2023; 2:pgad128. [PMID: 37228509 PMCID: PMC10205471 DOI: 10.1093/pnasnexus/pgad128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) is a strong neurotoxin with substantial dangers to human health. Hg undergoes active global cycles, and the emission sources there of can also be geographically relocated through economic trade. Through investigation of a longer chain of the global biogeochemical Hg cycle from economic production to human health, international cooperation on Hg control strategies in Minamata Convention can be facilitated. In the present study, four global models are combined to investigate the effect of international trade on the relocation of Hg emissions, pollution, exposure, and related human health impacts across the world. The results show that 47% of global Hg emissions are related to commodities consumed outside of the countries where the emissions are produced, which has largely influenced the environmental Hg levels and human exposure thereto across the world. Consequently, international trade is found to enable the whole world to avoid 5.7 × 105 points for intelligence quotient (IQ) decline and 1,197 deaths from fatal heart attacks, saving a total of $12.5 billion (2020 USD) in economic loss. Regionally, international trade exacerbates Hg challenges in less developed countries, while resulting in an alleviation in developed countries. The change in economic loss therefore varies from the United States (-$4.0 billion) and Japan (-$2.4 billion) to China (+$2.7 billion). The present results reveal that international trade is a critical factor but might be largely overlooked in global Hg pollution mitigation.
Collapse
Affiliation(s)
| | | | - Zhengcheng Song
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yanxu Zhang
- To whom correspondence should be addressed: ;
| | - Marilena Muntean
- Directorate for Energy, Transport and Climate, Air and Climate Unit, European Commission, Joint Research Centre (JRC), Ispra, VA I-21027, Italy
| | - Kuishuang Feng
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yifan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jigan Wang
- School of Business, Hohai University, Nanjing 211100, China
| | - Jie Zhang
- School of Business, Hohai University, Nanjing 211100, China
| | - Haikun Wang
- To whom correspondence should be addressed: ;
| |
Collapse
|
18
|
Yue F, Li Y, Zhang Y, Wang L, Li D, Wu P, Liu H, Lin L, Li D, Hu J, Xie Z. Elevated methylmercury in Antarctic surface seawater: The role of phytoplankton mass and sea ice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163646. [PMID: 37094685 DOI: 10.1016/j.scitotenv.2023.163646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Methylmercury is a neurotoxin that is biomagnified in marine food webs. Its distribution and biogeochemical cycle in Antarctic seas are still poorly understood due to scarce studies. Here, we report the total methylmercury profiles (up to 4000 m) in unfiltered seawater (MeHgT) from the Ross Sea to the Amundsen Sea. We found high MeHgT levels in oxic unfiltered surface seawater (upper 50 m depth) in these regions. It was characterized by an obviously higher maximum concentration level of MeHgT (up to 0.44 pmol/L, at a depth of 3.35 m), which is higher than other open seas (including the Arctic Ocean, the North Pacific Ocean and the equatorial Pacific), and a high MeHgT average concentration in the summer surface water (SSW, 0.16 ± 0.12 pmol/ L). Further analyses suggest that the high phytoplankton mass and sea-ice fraction are important drivers of the high MeHgT level that we observed in the surface water. For the influence of phytoplankton, the model simulation showed that the uptake of MeHg by phytoplankton would not fully explain the high levels of MeHgT, and we speculated that high phytoplankton mass may emit more particulate organic matter as microenvironments that can sustain Hg in-situ methylation by microorganisms. The presence of sea-ice may not only harbor a microbial source of MeHg to surface water but also trigger increased phytoplankton mass, facilitating elevation of MeHg in surface seawater. This study provides insight into the mechanisms that impact the content and distribution of MeHgT in the Southern Ocean.
Collapse
Affiliation(s)
- Fange Yue
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Longquan Wang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongwei Liu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijin Lin
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Dong Li
- Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China
| | - Ji Hu
- Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
19
|
Tesán-Onrubia JA, Tedetti M, Carlotti F, Tenaille M, Guilloux L, Pagano M, Lebreton B, Guillou G, Fierro-González P, Guigue C, Chifflet S, Garcia T, Boudriga I, Belhassen M, Zouari AB, Bănaru D. Spatial variations of biochemical content and stable isotope ratios of size-fractionated plankton in the Mediterranean Sea (MERITE-HIPPOCAMPE campaign). MARINE POLLUTION BULLETIN 2023; 189:114787. [PMID: 36878021 DOI: 10.1016/j.marpolbul.2023.114787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Plankton represents the main source of carbon in marine ecosystems and is consequently an important gateway for contaminants into the marine food webs. During the MERITE- HIPPOCAMPE campaign in the Mediterranean Sea (April-May 2019), plankton was sampled from pumping and net tows at 10 stations from the French coast to the Gulf of Gabès (Tunisia) to obtain different size fractions in contrasted regions. This study combines various approaches, including biochemical analyses, analyses of stable isotope ratios (δ13C, δ15N), cytometry analyses and mixing models (MixSiar) on size-fractions of phyto- and zooplankton from 0.7 to >2000 μm. Pico- and nanoplankton represented a large energetic resource at the base of pelagic food webs. Proteins, lipids, and stable isotope ratios increased with size in zooplankton and were higher than in phytoplankton. Stable isotope ratios suggest different sources of carbon and nutrients at the base of the planktonic food webs depending on the coast and the offshore area. In addition, a link between productivity and trophic pathways was shown, with high trophic levels and low zooplankton biomass recorded in the offshore area. The results of our study highlight spatial variations of the trophic structure within the plankton size-fractions and will contribute to assess the role of the plankton as a biological pump of contaminants.
Collapse
Affiliation(s)
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - François Carlotti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Melissa Tenaille
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Loïc Guilloux
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marc Pagano
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Benoit Lebreton
- UMR 7266 Littoral Environnement et Sociétés (CNRS - La Rochelle Université), La Rochelle, France
| | - Gaël Guillou
- UMR 7266 Littoral Environnement et Sociétés (CNRS - La Rochelle Université), La Rochelle, France
| | - Pamela Fierro-González
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Théo Garcia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Ismail Boudriga
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, 24, Salammbô 2025, Tunisia
| | - Malika Belhassen
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, 24, Salammbô 2025, Tunisia
| | - Amel Bellaaj Zouari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, 24, Salammbô 2025, Tunisia
| | - Daniela Bănaru
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| |
Collapse
|
20
|
Wang H, Hu D, Wen W, Lin X, Xia X. Warming Affects Bioconcentration and Bioaccumulation of Per- and Polyfluoroalkyl Substances by Pelagic and Benthic Organisms in a Water-Sediment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3612-3622. [PMID: 36808967 DOI: 10.1021/acs.est.2c07631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Warming and exposure to emerging global pollutants, such as per- and polyfluoroalkyl substances (PFAS), are significant stressors in the aquatic ecosystem. However, little is known about the warming effect on the bioaccumulation of PFAS in aquatic organisms. In this study, the pelagic organisms Daphnia magna and zebrafish, and the benthic organism Chironomus plumosus were exposed to 13 PFAS in a sediment-water system with a known amount of each PFAS at different temperatures (16, 20, and 24 °C). The results showed that the steady-state body burden (Cb-ss) of PFAS in pelagic organisms increased with increasing temperatures, mainly attributed to increased water concentrations. The uptake rate constant (ku) and elimination rate constant (ke) in pelagic organisms increased with increasing temperature. In contrast, warming did not significantly change or even mitigate Cb-ss of PFAS in the benthic organism Chironomus plumosus, except for PFPeA and PFHpA, which was consistent with declined sediment concentrations. The mitigation could be explained by the decreased bioaccumulation factor due to a more significant percent increase in ke than ku, especially for long-chain PFAS. This study suggests that the warming effect on the PFAS concentration varies among different media, which should be considered for their ecological risk assessment under climate change.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diexuan Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xiaohan Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Jędruch A, Falkowska L, Saniewska D, Grajewska A, Bełdowska M, Meissner W, Kalisińska E, Duzinkiewicz K, Pacyna JM. Mercury in the Polish part of the Baltic Sea: A response to decreased atmospheric deposition and changing environment. MARINE POLLUTION BULLETIN 2023; 186:114426. [PMID: 36473245 DOI: 10.1016/j.marpolbul.2022.114426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Our review of the literature showed that since the beginning of the socio-economic transformation in Poland in the 1990s, the downward trend in Hg emissions and its deposition in the southern Baltic Sea was followed by a simultaneous decrease in Hg levels in water and marine plants and animals. Hg concentrations in the biota lowered to values that pose no or low risk to wildlife and seafood consumers. However, in the first decade of the current century, a divergence between these two trends became apparent and Hg concentrations in fish, herring and cod, began to rise. Therefore, increasing emission-independent anthropogenic pressures, which affect Hg uptake and trophodynamics, remobilization of land-based and marine legacy Hg deposits, as well as the structure of the food web, can undermine the chances of reducing both the Hg pool in the marine environment and human Hg exposure from fish.
Collapse
Affiliation(s)
- Agnieszka Jędruch
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland; Polish Academy of Sciences, Institute of Oceanology, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Lucyna Falkowska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Dominika Saniewska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Grajewska
- Institute of Meteorology and Water Management - National Research Institute, Jerzego Waszyngtona 42, 81-342 Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Włodzimierz Meissner
- University of Gdańsk, Faculty of Biology, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Elżbieta Kalisińska
- Pomeranian Medical University, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Kazimierz Duzinkiewicz
- Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Józef M Pacyna
- AGH University of Science and Technology, Faculty of Energy and Fuels, Adama Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
22
|
He T, Mao X, Lin H, Hassan MM, Zhu S, Lu Q, Qin J, Su S. Methylmercury bioaccumulation in water flea Daphnia carinata by AIEgen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114271. [PMID: 36370670 DOI: 10.1016/j.ecoenv.2022.114271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Mercury ion (Hg2+) is a toxic heavy metal ion and Hg2+ is convertible to methylmercury (MeHg) by many aquatic microorganisms, leading to bioaccumulation and biomagnification in aquatic organisms, which can interfere with brain development and function in humans. This study employs a newly developed AIEgen (Aggregation-induced emission fluorogen) to quantify and visualise the process of MeHg bioaccumulation in vivo on the species of water flea Daphnia carinata. Two approaches to MeHg absorption were taken, either by direct incubation in a MeHg solution or by indirect consumption of algae contaminated with MeHg. We analysed the relationship between the ratio of photoluminescence (PL) intensities (I585/I480) and MeHg concentration (CMeHg) and generated a master curve for determining MeHg concentration based on the measurement of PL intensities. Fluorescent image analysis showed the occurrence of MeHg in D. carinata to be mainly in the compound eyes, optic nerve and carapace. This study indicates that MeHg absorption can be quantified and visualised in the body of zooplankton, and the MeHg transfer to zooplankton is more likely through direct exposure than via indirect food intake. The accumulation of MeHg in the eye and the nervous system could be the cause of the high mortality of D. carinata exposed to MeHg in water.
Collapse
Affiliation(s)
- Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangdong 510641, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Md Mahbubul Hassan
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Song Zhu
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Qun Lu
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia.
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
24
|
Li Z, Chi J, Shao B, Wu Z, He W, Liu Y, Sun P, Lin H, Wang X, Zhao Y, Chen L, Tong Y. Inhibition of methylmercury uptake by freshwater phytoplankton in presence of algae-derived organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120111. [PMID: 36075338 DOI: 10.1016/j.envpol.2022.120111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
As the first step of methylmercury (MeHg) entry into the aquatic food webs, MeHg uptake by phytoplankton is crucial in determining the final human MeHg exposure risks. MeHg availability to plankton is regulated by dissolved organic matter (DOM) in the water, while the extent of the impacts can vary largely based on the sources of DOM. Here, we investigated impacts of DOM sources on MeHg bioconcentration by three freshwater phytoplankton species (i.e. S. quadricauda, Chlorella sp., Microcystis elabens) in the laboratory system. We found that algae-derived DOM would prohibited the cellular MeHg bioconcentration by a percent up to 77-93%, while the soil-derived DOM didn't show similar inhibition effects. DOM characterization by the excitation‒emission matrices, Fourier transform infrared spectrum, ultra‒high performance liquid chromatography‒tandem quadrupole time of flight mass spectrometry shown that the molecular size of S-containing compound, rather than thiol concentration, has played a crucial role in regulating the MeHg uptake by phytoplankton. Climate change and increasing nutrient loadings from human activities may affect plankton growth in the freshwater, ultimately changing the DOM compositions. Impacts of these changes on cellular MeHg uptakes by phytoplankton should be emphasized when exploring the aquatic Hg cycling and evaluating their risks to human beings and wild life.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huiming Lin
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Long Chen
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
25
|
Li M, Liu B, Guo H, Wang H, Shi Q, Xu M, Yang M, Luo X, Wang L. Reclaimable MoS 2 Sponge Absorbent for Drinking Water Purification Driven by Solar Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11718-11728. [PMID: 35917327 DOI: 10.1021/acs.est.2c03033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the fast development of modern industries, scarcity of freshwater resources caused by heavy metal pollution (i.e., Hg2+) has become a severe issue for human beings. Herein, a 3D-MoS2 sponge as an excellent absorbent is fabricated for mercury removal due to its multidimensional adsorption pathways, which decreases the biomagnification effect of methylmercury in water bodies. Furthermore, a secondary water purification strategy is employed to harvest drinkable water with the exhausted adsorbents, thus alleviating the crisis of drinking water shortage. Compared to the conventional landfill treatment, the exhausted MoS2 sponge absorbents are further functionalized with a poly(ethylene glycol) (PEG) layer to prevent the heavy metals from leaking and enhance the hydrophilicity for photothermal conversion. The fabricated evaporator displays excellent evaporation rates of ∼1.45 kg m-2 h-1 under sunlight irradiation and produces freshwater with Hg2+ under the WHO drinking water standard at 0.001 mg L-1. These results not only assist in avoiding the biodeposition effect of mercury in water but also provide an environment-friendly strategy to recycle hazardous adsorbents for water purification.
Collapse
Affiliation(s)
- Meng Li
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Bowen Liu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Hongmin Guo
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Haotian Wang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Quanyu Shi
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Mengwen Xu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Mengqing Yang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi, P. R. China
| | - Lidong Wang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
26
|
Mason RP, Coulibaly M, Hansen G, Inman H, Myer PK, Yao KM. An examination of mercury levels in the coastal environment and fish of Cote d'Ivoire. CHEMOSPHERE 2022; 300:134609. [PMID: 35430197 DOI: 10.1016/j.chemosphere.2022.134609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Artisanal and small-scale gold mining (ASGM), energy production and other industrial inputs are a major source of anthropogenic mercury (Hg) to the aquatic environment globally, and these inputs have led to environmental contamination and human exposure. While studies have documented the effects of Hg inputs to rivers and marine waters of the West African region, estuarine waters of Cote d'Ivoire have been understudied, besides the waters surrounding Abidjan. To fill this gap, and to examine the potential for human exposure to methylmercury (MeHg), we measured the concentrations of total Hg, MeHg, and ancillary parameters in water (dissolved and particulate phases), sediment and fish to determine the extent of environmental impact and the potential for MeHg exposure for people consuming these fish. Levels of Hg and MeHg in sediment were elevated in the vicinity of the urban environment (up to 0.3 ng/g dry weight (dw) MeHg and 623 ng/g dw total Hg) and lowest in the more remote estuarine environments. Measurements of Hg in tuna and other larger pelagic coastal species indicated that levels were elevated but comparable to other North Atlantic regions. However, levels of Hg in fish, even smaller estuarine species, were such that the rural and urban populations are potentially being exposed to unsafe levels of MeHg, primarily as a result of the relatively high fish consumption in Cote d'Ivoire compared to other countries. Overall, both local point sources and the transport of Hg used in interior ASGM activities are the sources for Hg contamination to these coastal waters.
Collapse
Affiliation(s)
- R P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - M Coulibaly
- Ecole Normale Superieure (ENS), Abidjan, Cote d'Ivoire
| | - G Hansen
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - H Inman
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - P K Myer
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - K M Yao
- Oceanographic Institute, Abidjan, Cote d'Ivoire
| |
Collapse
|
27
|
Li ML, Gillies EJ, Briner R, Hoover CA, Sora KJ, Loseto LL, Walters WJ, Cheung WWL, Giang A. Investigating the dynamics of methylmercury bioaccumulation in the Beaufort Sea shelf food web: a modeling perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1010-1025. [PMID: 35748915 DOI: 10.1039/d2em00108j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High levels of methylmercury (MeHg) have been reported in Arctic marine biota, posing health risks to wildlife and human beings. Although MeHg concentrations of some Arctic species have been monitored for decades, the key environmental and ecological factors driving temporal trends of MeHg are largely unclear. We develop an ecosystem-based MeHg bioaccumulation model for the Beaufort Sea shelf (BSS) using the Ecotracer module of Ecopath with Ecosim, and apply the model to explore how MeHg toxicokinetics and food web trophodynamics affect bioaccumulation in the BSS food web. We show that a food web model with complex trophodynamics and relatively simple MeHg model parametrization can capture the observed biomagnification pattern of the BSS. While both benthic and pelagic production are important for transferring MeHg to fish and marine mammals, simulations suggest that benthic organisms are primarily responsible for driving the high trophic magnification factor in the BSS. We illustrate ways of combining empirical observations and modelling experiments to generate hypotheses about factors affecting food web bioaccumulation, including the MeHg elimination rate, trophodynamics, and species migration behavior. The results indicate that population dynamics rather than MeHg elimination may determine population-wide concentrations for fish and lower trophic level organisms, and cause large differences in concentrations between species at similar trophic levels. This research presents a new tool and lays the groundwork for future research to assess the pathways of global environmental changes in MeHg bioaccumulation in Arctic ecosystems in the past and the future.
Collapse
Affiliation(s)
- Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA.
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, BC, Canada.
| | - Emma J Gillies
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, BC, Canada.
| | - Renea Briner
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA.
| | - Carie A Hoover
- Marine Affairs Program, Dalhousie University, Halifax, NS, Canada
| | - Kristen J Sora
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Lisa L Loseto
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
- Centre for Earth Observation Science, Department Environment and Geography, Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
| | - William J Walters
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Giang
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Li ML, Kwon SY, Poulin BA, Tsui MTK, Motta LC, Cho M. Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9182-9195. [PMID: 35723432 PMCID: PMC9261262 DOI: 10.1021/acs.est.1c08631] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Monitoring mercury (Hg) levels in biota is considered an important objective for the effectiveness evaluation of the Minamata Convention. While many studies have characterized Hg levels in organisms at multiple spatiotemporal scales, concentration analyses alone often cannot provide sufficient information on the Hg exposure sources and internal processes occurring within biota. Here, we review the decadal scientific progress of using Hg isotopes to understand internal processes that modify the speciation, transport, and fate of Hg within biota. Mercury stable isotopes have emerged as a powerful tool for assessing Hg sources and biogeochemical processes in natural environments. A better understanding of the tissue location and internal mechanisms leading to Hg isotope change is key to assessing its use for biomonitoring. We synthesize the current understanding and uncertainties of internal processes leading to Hg isotope fractionation in a variety of biota, in a sequence of better to less studied organisms (i.e., birds, marine mammals, humans, fish, plankton, and invertebrates). This review discusses the opportunities and challenges of using certain forms of biota for Hg source monitoring and the need to further elucidate the physiological mechanisms that control the accumulation, distribution, and toxicity of Hg in biota by coupling new techniques with Hg stable isotopes.
Collapse
Affiliation(s)
- Mi-Ling Li
- School
of Marine Science and Policy, University
of Delaware, 201 Robinson Hall, Newark, Delaware 19716, United
States
| | - Sae Yun Kwon
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, South Korea
- Institute
for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Martin Tsz-Ki Tsui
- School
of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Laura C. Motta
- Department
of Chemistry, University at Buffalo, 359 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Moonkyoung Cho
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, South Korea
| |
Collapse
|
29
|
Qu P, Pang M, Wang P, Ma X, Zhang Z, Wang Z, Gong Y. Bioaccumulation of mercury along continuous fauna trophic levels in the Yellow River Estuary and adjacent sea indicated by nitrogen stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128631. [PMID: 35306412 DOI: 10.1016/j.jhazmat.2022.128631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg), and its organic forms, are some of the most hazardous elements, with strong toxicity, persistence, and biological accumulation in marine organisms. Hg accumulation in continuous trophic levels (TL) in marine food chains remains unclear. In this study, individual invertebrate and fish samples collected from the Yellow River Estuary adjacent sea were grouped into continuous TL ranges, and the bioaccumulations of total Hg (THg) and methylmercury (MeHg) were analyzed. The trophic magnification factor in invertebrates and fish was 1.40 and 1.72 for THg, and 2.56 and 2.17 for MeHg, indicating that both THg and MeHg were significantly biomagnified with increasing TL in both invertebrates and fish through trophic transfer. To evaluate the health risk of seafood consumption, the target hazard quotient (THQ) was calculated. Increasing THQ values indicated that the health risks of invertebrate and fish consumption in humans, especially children, were both elevated with increasing TL. THQ values > 1 indicated that consumption of invertebrates at a TL above 4.0 and fish above 4.5 may pose a relatively higher risk for children. Therefore, the consumption of both individual invertebrates and fish at high trophic positions may present greater health risk, especially in young children.
Collapse
Affiliation(s)
- Pei Qu
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Min Pang
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China.
| | - Penggong Wang
- China Certification & Inspection Group Shandong Testing Co., LTD., Jiaozhou District, Qingdao City, Shandong, China
| | - Xuli Ma
- China Certification & Inspection Group Shandong Co., LTD., Shinan District, Qingdao City, Shandong, China
| | - Zhaohui Zhang
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Zongling Wang
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Yuchen Gong
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao City, Shandong, China
| |
Collapse
|
30
|
Lepak RF, Ogorek JM, Bartz KK, Janssen SE, Tate MT, Runsheng Y, Hurley JP, Young DB, Eagles-Smith CA, Krabbenhoft DP. Using carbon, nitrogen, and mercury isotope values to distinguish mercury sources to Alaskan lake trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:312-319. [PMID: 35685226 PMCID: PMC9171711 DOI: 10.1021/acs.estlett.2c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Lake trout (Salvelinus namaycush), collected from 13 remote lakes located in southwestern Alaska, were analyzed for carbon, nitrogen, and mercury (Hg) stable isotope values to assess the importance of migrating oceanic salmon, volcanic activity, and atmospheric deposition to fish Hg burden. Methylmercury (MeHg) bioaccumulation in phytoplankton (5.0 - 6.9 kg L-1) was also measured to quantify the basal uptake of MeHg to these aquatic food webs. Hg isotope values in lake trout revealed that while the extent of precipitation-delivered Hg was similar across the entire study area, volcanic Hg is likely an important additional source to lake trout in proximate lakes. In contrast, migratory salmon (Oncorhynchus nerka) deliver little MeHg to lake trout directly, although indirect delivery processes via decay could exist. A high level of variability in carbon, nitrogen, and Hg isotope values indicate niche partitioning in lake trout populations within each lake and that a complex suite of ecological interactions is occurring, complicating the conceptually linear assessment of contaminant source to receiving organism. Without connecting energy and contaminant isotope axes, we would not have understood why lake trout from these pristine lakes have highly variable Hg burdens despite consistently low water Hg and comparable age-length dynamics.
Collapse
Affiliation(s)
- Ryan F Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Jacob M Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI 53726, USA
| | - Krista K Bartz
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5 Avenue, Anchorage, AK, 99501, USA
| | - Sarah E Janssen
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI 53726, USA
| | - Michael T Tate
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI 53726, USA
| | - Yin Runsheng
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - James P Hurley
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- University of Wisconsin Aquatic Sciences Center, Madison, WI 53706, USA
| | - Daniel B Young
- National Park Service, Lake Clark National Park and Preserve, 240 West 5 Avenue, Anchorage, AK, 99501, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR 97330, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI 53726, USA
| |
Collapse
|
31
|
Fioramonti NE, Ribeiro Guevara S, Becker YA, Riccialdelli L. Mercury transfer in coastal and oceanic food webs from the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 175:113365. [PMID: 35114547 DOI: 10.1016/j.marpolbul.2022.113365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of contaminants, such as mercury (Hg), in marine trophic webs is a critical topic in the scientific community due to the high concentrations encountered in organisms. In this study we attempted to provide information on total Hg accumulation patterns and possible pathways of trophic transfers assessed in combination with δ13C and δ15N to understand how this contaminant permeates three sub-Antarctic food webs: the Beagle Channel (BC), the Atlantic coast of Tierra del Fuego (AC-TDF) and Burdwood Bank (BB). We found a site-specific pattern of Hg transfer and biomagnification processes, while the oceanic BB showed major Hg transfer through the pelagic domain, coastal sectors (BC and AC-TDF) indicate a general biodilution process but with Hg concentrations incrementing with the benthivory grade. This represents a dissimilar Hg bioavailability for marine consumers that rely on different diet and forage in different habitats, and may become an issue of important conservation concern for these southern areas.
Collapse
Affiliation(s)
- N E Fioramonti
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina.
| | - S Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av E. Bustillo Km 9.500, Bariloche, Argentina
| | - Y A Becker
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
32
|
Wu P, Dutkiewicz S, Monier E, Zhang Y. Bottom-Heavy Trophic Pyramids Impair Methylmercury Biomagnification in the Marine Plankton Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15476-15483. [PMID: 34738802 DOI: 10.1021/acs.est.1c04083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Methylmercury (CH3Hg+, MMHg) in the phytoplankton and zooplankton, which form the bottom of marine food webs, is a good predictor of MMHg in top predators, including humans. Therefore, evaluating the potential exposure of MMHg to higher trophic levels (TLs) requires a better understanding of relationships between MMHg biomagnification and plankton dynamics. In this study, a coupled ecological/physical model with 366 plankton types of different sizes, biogeochemical functions, and temperature tolerance is used to simulate the relationships between MMHg biomagnification and the ecosystem structure. The study shows that the MMHg biomagnification becomes more significant with increasing TLs. Trophic magnification factors (TMFs) in the lowest two TLs show the opposite spatial pattern to TMFs in higher TLs. The low TMFs are usually associated with a short food-chain length. The less bottom-heavy trophic pyramids in the oligotrophic oceans enhance the MMHg trophic transfer. The global average TMF is increased from 2.3 to 2.8 in the warmer future with a medium climate sensitivity of 2.5 °C. Our study suggests that if there are no mitigation measures for Hg emission, MMHg in the high-trophic-level plankton is increased more dramatically in the warming future, indicating greater MMHg exposure for top predators such as humans.
Collapse
Affiliation(s)
- Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Climate Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erwan Monier
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California 95616, United States
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
33
|
Ogorek JM, Lepak RF, Hoffman JC, DeWild JF, Rosera TJ, Tate MT, Hurley JP, Krabbenhoft DP. Enhanced Susceptibility of Methylmercury Bioaccumulation into Seston of the Laurentian Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12714-12723. [PMID: 34460225 PMCID: PMC10630952 DOI: 10.1021/acs.est.1c02319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mercury concentrations in the Laurentian Great Lakes waters are among the lowest reported in the literature, while game fish concentrations approach consumption advisory limits, particularly in Lakes Superior, Huron, and Michigan, indicating efficient methylmercury transfer from water to game fish. To determine if increased transfer efficiency is evident within the lower food web, we measured (2010-2018) mercury and dissolved organic carbon (DOC) in water, and in size-sieved seston, dietary tracers (carbon and nitrogen isotope ratios), phytoplankton methylmercury bioaccumulation, and methylmercury biomagnification between increasing seston size fractions. We observed consistently low filter-passing methylmercury (<0.010 ng L-1) and comparatively variable DOC (1.1 to 3.4 mg L-1) concentrations. Methylmercury biomagnification factors between size-sieved seston were similar between lakes. Bioaccumulation factors in phytoplankton were among the highest in the literature (log 5.5 to 6.1), exceeding those in oceans, smaller lakes, and streams, and was influenced by DOC. Higher bioaccumulation rates increase the susceptibility of methylmercury accumulation into the food web. Because mercury is dominantly delivered to the Great Lakes through the atmosphere and the biota therein is highly susceptible to methylmercury uptake, we propose that the Laurentian Great Lakes are excellent sentinels to trace the success of efforts to decrease global mercury emissions (e.g., Minamata Treaty) in the future.
Collapse
Affiliation(s)
- Jacob M Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Ryan F Lepak
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency Office of Research and Development, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
- Environmental Chemistry and Technology program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel C Hoffman
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency Office of Research and Development, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - John F DeWild
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Tylor J Rosera
- Environmental Chemistry and Technology program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael T Tate
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - James P Hurley
- Environmental Chemistry and Technology program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Aquatic Sciences Center, 1975 Willow Dr.;, Madison, Wisconsin 53706, United States
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| |
Collapse
|
34
|
Different Mercury Species Partitioning and Distribution in the Water and Sediment of a Eutrophic Estuary in Northern Taiwan. WATER 2021. [DOI: 10.3390/w13182471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The total Hg and methyl Hg in waters and sediments, as well as particulate total Hg (PTHg), were analyzed to study their distribution and partitioning in the Danshuei River Estuary (DRE), northern Taiwan. TOC and grain size were also determined in the sediment samples. The dissolved total Hg (DTHg) in waters ranged from 24.0 to 45.8 ng/L. The dissolved methyl Hg (DMeHg) concentrations contributed 0.6–30.4% of the DTHg pool, with the higher percentage appearing in the upper estuary. The DMeHg concentration positively correlated with the Chl.a within the estuary, suggesting that phytoplankton plays an important role in influencing the DMeHg concentration. The partitioning results indicated that DTHg chiefly dominates the THg (DTH + PTHg) pool, especially at a salinity of >15 psu region. The value of partition coefficient, log(KD), was within a range of 3.54 to 4.68, and the value linearly decreased with increasing salinity. The sediment total Hg (STHg) concentrations ranged from 80 to 379 ng/g, and most data exceeded the NOAA guidelines value (ERL < 150 ng/g), indicating that the DRE is contaminated with Hg. The STHg concentrations inversely and positively correlated with the grain size and TOC content, respectively, suggesting that sediment Hg distributions are strongly influenced by the both parameters.
Collapse
|
35
|
Gosnell KJ, Dam HG, Mason RP. Mercury and methylmercury uptake and trophic transfer from marine diatoms to copepods and field collected zooplankton. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105446. [PMID: 34418733 DOI: 10.1016/j.marenvres.2021.105446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) and methylmercury (CH3Hg) are found at trace levels in most marine waters. These species, particularly CH3Hg, then ominously bioaccumulate through marine food chains eventually reaching potentially harmful levels in top oceanic wildlife. Accordingly, it is important to measure and evaluate uptake at environmentally relevant concentrations where trophic transfer initiates; during uptake in primary producers, and consumption by plankton grazers. Experiments using cultured copepods (Acartia tonsa) and field zooplankton assemblages were performed with two different sized diatom species labeled with stable isotopes of inorganic Hg (200Hg) and CH3Hg (CH3199Hg) at different concentrations. We observed size-specific effects on algal uptake and transfer to copepods, in addition to effects of Hg species concentration. Prey size effects were likewise observed on copepod assimilation efficiencies (AE). Average AE of 200Hg for copepods feeding on smaller diatoms was 50%, and 39% for larger diatoms. The AEs were much greater for CH3199Hg, yielding 71% for the smaller and 88% for the larger diatoms. These experiments add evidence demonstrating a significant relationship between Hg and CH3Hg exposure concentration and subsequent algal uptake and transfer to zooplankton. Furthermore, results imply that facilitated uptake of CH3Hg into algae occurs at low (~pM) concentrations, which has been suggested but not confirmed in previous research.
Collapse
Affiliation(s)
- Kathleen J Gosnell
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
36
|
Zhang Y, Song Z, Huang S, Zhang P, Peng Y, Wu P, Gu J, Dutkiewicz S, Zhang H, Wu S, Wang F, Chen L, Wang S, Li P. Global health effects of future atmospheric mercury emissions. Nat Commun 2021; 12:3035. [PMID: 34031414 PMCID: PMC8144432 DOI: 10.1038/s41467-021-23391-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Mercury is a potent neurotoxin that poses health risks to the global population. Anthropogenic mercury emissions to the atmosphere are projected to decrease in the future due to enhanced policy efforts such as the Minamata Convention, a legally-binding international treaty entered into force in 2017. Here, we report the development of a comprehensive climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury and its application to project the health effects of future atmospheric emissions. Our results show that the accumulated health effects associated with mercury exposure during 2010-2050 are $19 (95% confidence interval: 4.7-54) trillion (2020 USD) realized to 2050 (3% discount rate) for the current policy scenario. Our results suggest a substantial increase in global human health cost if emission reduction actions are delayed. This comprehensive modeling approach provides a much-needed tool to help parties to evaluate the effectiveness of Hg emission controls as required by the Minamata Convention.
Collapse
Affiliation(s)
- Yanxu Zhang
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Zhengcheng Song
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Shaojian Huang
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Peng Zhang
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Yiming Peng
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Peipei Wu
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Jing Gu
- grid.41156.370000 0001 2314 964XSchool of Atmospheric Sciences, Nanjing University, Nanjing, P. R. China
| | - Stephanie Dutkiewicz
- grid.116068.80000 0001 2341 2786Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Huanxin Zhang
- grid.214572.70000 0004 1936 8294Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA USA ,grid.259979.90000 0001 0663 5937Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI USA
| | - Shiliang Wu
- grid.259979.90000 0001 0663 5937Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI USA ,grid.259979.90000 0001 0663 5937Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Feiyue Wang
- grid.21613.370000 0004 1936 9609Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB Canada
| | - Long Chen
- grid.22069.3f0000 0004 0369 6365Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, P. R. China
| | - Shuxiao Wang
- grid.12527.330000 0001 0662 3178School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, P. R. China ,grid.12527.330000 0001 0662 3178State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, P. R. China
| | - Ping Li
- grid.458468.30000 0004 1806 6526State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, P. R. China
| |
Collapse
|
37
|
Ponton DE, Lavoie RA, Leclerc M, Bilodeau F, Planas D, Amyot M. Understanding Food Web Mercury Accumulation Through Trophic Transfer and Carbon Processing along a River Affected by Recent Run-of-river Dams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2949-2959. [PMID: 33534545 DOI: 10.1021/acs.est.0c07015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unlike large dams which favor methylation of Hg in flooded soils over long periods, run-of-river dams are designed to flood a limited area of soils and are therefore not expected to significantly affect mercury (Hg) cycling or carbon processing. We studied the Hg and carbon cycles within food webs from several sectors along the Saint-Maurice River, Quebec, Canada, that differ in how they are influenced by two run-of-river dams and other watershed disturbances. We observed peak Hg concentrations in fish five-year postimpoundment, but these levels were reduced three years after this peak. Methylmercury concentrations in low trophic level fish and invertebrates were related to their carbon source (δ13C) rather than their trophic positions (δ15N). Biomagnification, measured by trophic magnification slopes, was driven mainly by methylmercury concentrations in low-trophic level organisms and environmental factors related to organic matter degradation and Hg-methylation. River sectors, δ13C and δ15N, predicted up to 80% of the variability in food web methylmercury concentrations. The installation of run-of-river dams and the related pondages, in association with other watershed disturbances, altered carbon processing, promoted Hg-methylation and its accumulation at the base of the food web, and led to a temporary increase in Hg levels in fish.
Collapse
Affiliation(s)
- Dominic E Ponton
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Raphaël A Lavoie
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
- Canadian Wildlife Service, Environment and Climate Change Canada, 801-1550 Avenue d'Estimauville, Québec, Québec G1J 0C3, Canada
| | - Maxime Leclerc
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - François Bilodeau
- Direction Environnement, Hydro-Québec, 800 Boul. De Maisonneuve Est, Montréal, Québec H2Z 1A4, Canada
| | - Dolors Planas
- GRIL, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec H2X 3Y7, Canada
| | - Marc Amyot
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
38
|
Wang H, Xia X, Wang Z, Liu R, Muir DCG, Wang WX. Contribution of Dietary Uptake to PAH Bioaccumulation in a Simplified Pelagic Food Chain: Modeling the Influences of Continuous vs Intermittent Feeding in Zooplankton and Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1930-1940. [PMID: 33448220 DOI: 10.1021/acs.est.0c06970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary uptake is important for trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in the freshwater pelagic ecosystem. In this study, we hypothesized that both the dietary uptake rate and interval significantly influenced its relative contribution to bioaccumulation. We developed a toxicokinetic model framework for the bioaccumulation of deuterated PAHs (PAHs-d10) in aquatic organisms considering different feeding intervals ranging from none for phytoplankton to approximately continuous for zooplankton to discrete for fish and built a simple artificial freshwater pelagic food chain composed of algae Chlorella vulgaris, zooplankton Daphnia magna, and zebrafish. We conducted bioaccumulation experiments and simulations for Daphnia magna and zebrafish under different algal densities based on our model. The results showed that intermittent feeding led to a large fluctuation in the PAH-d10 concentrations in zebrafish compared to a leveled-off pattern in Daphnia magna because of approximately continuous feeding. Trophic dilution of PAHs-d10 occurred in the food chain when there was waterborne-only uptake, but dietary uptake largely mitigated its extent that depended on dietary uptake rates. The assimilation efficiency, dietary uptake rate, and its relative contribution to bioaccumulation of PAHs-d10 in zebrafish were all higher than those in Daphnia magna, suggesting that dietary uptake played a more important role in bioaccumulation of PAHs at higher trophic-level organisms.
Collapse
Affiliation(s)
- Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zixuan Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ran Liu
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1 Canada
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, Research Centre for the Oceans and Human Health, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
39
|
Moriarity RJ, Liberda EN, Tsuji LJS. Using a geographic information system to assess local scale methylmercury exposure from fish in nine communities of the Eeyou Istchee territory (James Bay, Quebec, Canada). ENVIRONMENTAL RESEARCH 2020; 191:110147. [PMID: 32877705 DOI: 10.1016/j.envres.2020.110147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Exposure to methylmercury is a concern for those who rely on fish as a traditional food in the Eeyou Istchee territory of James Bay, Quebec, Canada, because industrial land uses overlap with community water bodies where fish are harvested. Consequently, this study assessed if traditional practices, particularly fishing, increased the risk of exposure to methylmercury from the consumption of locally harvested fish. We designed a geographic information system (GIS) that included land use and fish methylmercury tissue concentrations to assess clustering of potential hot spots. We also used generalized linear models to assess the association of fish consumption to blood organic-mercury concentrations, and logistic regression models to assess the probability of fish exceeding the safety threshold for methylmercury tissue concentrations in areas of high intensity land use. The GIS demonstrated significant clustered hot spots around regions of hydroelectric and mining land use. Our results also revealed that adult consumption of pike, lake trout and/or walleye, and child consumption of pike or walleye were significantly associated with blood organic-mercury concentrations. Further, large fish harvested in a community with high intensity land use yielded a 77% probability that the fish exceeded the safety threshold. From a human exposure perspective, our study highlights the need for further research on children who consume fish from this region.
Collapse
Affiliation(s)
- Robert J Moriarity
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada.
| | - Eric N Liberda
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Leonard J S Tsuji
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Fulke AB, Kotian A, Giripunje MD. Marine Microbial Response to Heavy Metals: Mechanism, Implications and Future Prospect. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:182-197. [PMID: 32596744 DOI: 10.1007/s00128-020-02923-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Growing levels of pollution in marine environment has been a matter of serious concern in recent years. Increased levels of heavy metals due to improper waste disposal has led to serious repercussions. This has increased occurrences of heavy metals in marine fauna. Marine microbes are large influencers of nutrient cycling and productivity in oceans. Marine bacteria show altered metabolism as a strategy against metal induced stress. Understanding these strategies used to avoid toxic effects of heavy metals can help in devising novel biotechnological applications for ocean clean-up. Using biological tools for remediation has advantages as it does not involve harmful chemicals and it shows greater flexibility to environmental fluctuations. This review provides a comprehensive insight on marine microbial response to heavy metals and sheds light on existing knowledge about and paves for new avenues in research for bioremediation strategies.
Collapse
Affiliation(s)
- Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India.
| | - Atul Kotian
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India
| | | |
Collapse
|
41
|
Tang CH, Chen WY, Wu CC, Lu E, Shih WY, Chen JW, Tsai JW. Ecosystem metabolism regulates seasonal bioaccumulation of metals in atyid shrimp (Neocaridina denticulata) in a tropical brackish wetland. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105522. [PMID: 32544806 DOI: 10.1016/j.aquatox.2020.105522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Natural dissolved organic matter (DOM) forms the base of aquatic food webs and is a key environmental factor that affects the bioavailability of metals for aquatic organisms. Aquatic communities are naturally exposed simultaneously to environments containing a mixture of metals and varying DOM levels and compositions. However, the exact effect of DOM on metal bioaccumulation is difficult to predict due to temporal and spatial variations in sources, production, and consumption of DOM, and to interactions between DOM and metals. Ecosystem metabolism describes the process of organic carbon production and consumption and, therefore, the trophic status of ecosystems. However, whether and how ecosystem metabolism determines the seasonality of metal bioaccumulation remains unclear. The present study used in-situ water quality sondes and discrete field samplings to establish the relationship between the seasonality of ecosystem metabolism; related environmental and limnological regulators; the metal speciation and concentration in bulk water and sediments; and their metal bioaccumulation. The target population consisted of atyid shrimp (Neocaridina denticulata) in a brackish constructed wetland in tropical Taiwan was sampled between August 2014 and November 2015. Metal bioaccumulation displayed distinct seasonal patterns that peaked in summer (Cu, Cd, Cr, Zn, Mn, and Se) or winter (Pb and Ni). The in situ production (gross primary production) and heterotrophic consumption (ecosystem respiration) of organic matter significantly decreased with increasing waterborne DOM levels in this heterotrophic wetland. Both dissolved free metals bioavailable for respiratory surfaces (As, Zn, Cu, and Cr) and insoluble metals available for dietary intake (Mn and Ni) decreased with increasing DOM, as well as with decreasing gross primary production and ecosystem respiration. Seasonal variations of metal bioaccumulation also paralleled the transition in wetland trophic status, which reflected the effect of potential qualitative changes in the wetland DOM pool. Bioaccumulation of most metals displayed strong correlations with gross primary production, ecosystem respiration, and wetland trophic status. Our findings demonstrated that ecosystem metabolism can play a key mediating role in the seasonality of metal bioaccumulation in atyid shrimp, as it links the variation and interaction between DOM level/source, the speciation/bioavailability, and the uptake efficiency for metals by aquatic organisms. This study contributes to the temporal-specific risk assessment of aquatic metal exposure in regional environmental settings. It also reveals ecosystem-specific spectra in the context of changes in climate and environment.
Collapse
Affiliation(s)
- Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-Sen University, 70 Lienhai Road, Kaohsiung 804, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung 807, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Ezekiel Lu
- Department of Biological Science and Technology, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Wan-Yu Shih
- Department of Science Education and Application, National Taichung University of Education, No. 140, Minsheng Rd., Taichung 403, Taiwan
| | - Jein-Wen Chen
- Department of Food and Beverage Management, Cheng-Shiu University, No. 840, Chengcing Road, Kaohsiung 83347, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng-Shiu University, No. 840, Chengcing Road, Kaohsiung 83347, Taiwan; Super Micro Mass Research and Technology Center, Cheng-Shiu University, No. 840, Chengcing Road, Kaohsiung 83347, Taiwan
| | - Jeng-Wei Tsai
- Department of Biological Science and Technology, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
42
|
Lippold A, Aars J, Andersen M, Aubail A, Derocher AE, Dietz R, Eulaers I, Sonne C, Welker JM, Wiig Ø, Routti H. Two Decades of Mercury Concentrations in Barents Sea Polar Bears ( Ursus maritimus) in Relation to Dietary Carbon, Sulfur, and Nitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7388-7397. [PMID: 32410455 DOI: 10.1021/acs.est.0c01848] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Temporal trends of total mercury (THg) were examined in female polar bear (Ursus maritimus) hair (n = 199) from the Barents Sea in 1995-2016. In addition, hair values of stable isotopes (n = 190-197) of carbon (δ13C), sulfur (δ34S), and nitrogen (δ15N) and information on breeding status, body condition, and age were obtained. Stable isotope values of carbon and sulfur reflect dietary source (e.g., marine vs terrestrial) and the nitrogen trophic level. Values for δ13C and δ34S declined by -1.62 and -1.18‰ over the time of the study period, respectively, while values for δ15N showed no trend. Total Hg concentrations were positively related to both δ13C and δ34S. Yearly median THg concentrations ranged from 1.61 to 2.75 μg/g and increased nonlinearly by 0.86 μg/g in total over the study. Correcting THg concentrations for stable isotope values of carbon and sulfur and additionally breeding status and age slightly accelerated the increase in THg concentrations; however, confidence intervals of the raw THg trend and the corrected THg trend had substantial overlap. The rise in THg concentrations in the polar bear food web was possibly related to climate-related re-emissions of previously stored Hg from thawing sea-ice, glaciers, and permafrost.
Collapse
Affiliation(s)
- Anna Lippold
- Fram Centre, Norwegian Polar Institute, Tromsø 9296, Norway
| | - Jon Aars
- Fram Centre, Norwegian Polar Institute, Tromsø 9296, Norway
| | | | - Aurore Aubail
- Littoral, Environment and Societies (CNRS/La Rochelle University), La Rochelle 17000, France
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Rune Dietz
- Institute of Bioscience, Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark
| | - Igor Eulaers
- Institute of Bioscience, Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark
| | - Christian Sonne
- Institute of Bioscience, Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark
| | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States
- University of Oulu, Oulu 90014, Finland
- University of the Arctic, Rovaniemi 96460, Finland
| | - Øystein Wiig
- Fram Centre, Norwegian Polar Institute, Tromsø 9296, Norway
- Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | - Heli Routti
- Fram Centre, Norwegian Polar Institute, Tromsø 9296, Norway
| |
Collapse
|
43
|
Wu P, Zakem EJ, Dutkiewicz S, Zhang Y. Biomagnification of Methylmercury in a Marine Plankton Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5446-5455. [PMID: 32054263 DOI: 10.1021/acs.est.9b06075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Methylmercury is greatly bioconcentrated and biomagnified in marine plankton ecosystems, and these communities form the basis of marine food webs. Therefore, the evaluation of the potential exposure of methylmercury to higher trophic levels, including humans, requires a better understanding of its distribution in the ocean and the factors that control its biomagnification. In this study, a coupled physical/ecological model is used to simulate the trophic transfer of monomethylmercury (MMHg) in a marine plankton ecosystem. The model includes phytoplankton, a microbial community, herbivorous zooplankton (HZ), and carnivorous zooplankton (CZ). The model captures both shorter food chains in oligotrophic regions, with small HZ feeding on small phytoplankton, and longer chains in higher nutrient conditions, with larger HZ feeding on larger phytoplankton and larger CZ feeding on larger HZ. In the model, trophic dilution occurs in the food webs that involve small zooplankton, as the grazing fluxes of small zooplankton are insufficient to accumulate more MMHg in themselves than in their prey. The model suggests that biomagnification is more prominent in large zooplankton and that the microbial community plays an important role in the trophic transfer of MMHg. Sensitivity analyses show that with increasing body size, the sensitivity of the trophic magnification ratio to grazing, mortality rates, and food assimilation efficiency (AEC) increases, while the sensitivity to excretion rates decreases. More predation or a longer zooplankton lifespan may lead to more prominent biomagnification, especially for large species. Because lower AEC results in more predation, modeled ratios of MMHg concentrations between large plankton are doubled or even tripled when the AEC decreases from 50% to 10%. This suggests that the biomagnification of large zooplankton is particularly sensitive to food assimilation efficiency.
Collapse
Affiliation(s)
- Peipei Wu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Emily J Zakem
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089 United States
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Yanxu Zhang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
44
|
Meng M, Sun RY, Liu HW, Yu B, Yin YG, Hu LG, Chen JB, Shi JB, Jiang GB. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121379. [PMID: 31611019 DOI: 10.1016/j.jhazmat.2019.121379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) speciation and isotopic compositions in a large-scale food web and seawater from Chinese Bohai Sea were analyzed to investigate methylmercury (MeHg) sources and Hg cycling. The biota showed ∼5‰ variation in mass dependent fractionation (MDF, -4.57 to 0.53‰ in δ202Hg) and mostly positive odd-isotope mass independent fractionation (odd-MIF, -0.01 to 1.21‰ in Δ199Hg). Both MDF and odd-MIF in coastal biota showed significant correlations with their trophic levels and MeHg fractions, likely reflecting a preferential trophic transfer of MeHg with higher δ202Hg and Δ199Hg than inorganic Hg. The MDF and odd-MIF of biota were largely affected by their feeding habits and living territories, and MeHg in pelagic food web was more photodegraded than in coastal food web (21-31% vs. 9-11%). From the Hg isotope signatures of pelagic biota and extrapolated coastal MeHg, we suggest that MeHg in the food webs was likely derived from sediments. Interestingly, we observed complementary even-MIF (mainly negative Δ200Hg of -0.36 to 0.08‰ and positive Δ204Hg of -0.05 to 0.82‰) in the biota and a significant linear slope of -0.5 for Δ200Hg/Δ204Hg. This leads us to speculate that atmospheric Hg0 is an important source to bioaccumulated MeHg, although the exact source-receptor relationships need further investigation.
Collapse
Affiliation(s)
- Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruo-Yu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiu-Bin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
45
|
Sun R, Mo Y, Feng X, Zhang L, Jin L, Li Q. Effects of typical algae species (Aphanizomenon flosaquae and Microcystis aeruginosa) on photoreduction of Hg 2+ in water body. J Environ Sci (China) 2019; 85:9-16. [PMID: 31471035 DOI: 10.1016/j.jes.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 06/10/2023]
Abstract
Photoreduction characteristics of divalent inorganic mercury (Hg2+) in the presence of specific algae species are still not well known. Laboratory experiments were conducted in the present study to identify the effects of different concentrations of living/dead algae species, including Aphanizomenon flosaquae (AF) and Microcystis aeruginosa (MA), on the photoreduction rate of Hg2+ under various light conditions. The experimental results showed that percentage reduction of Hg2+ was significantly influenced by radiation wavelengths, and dramatically decreased with the presence of algae. The highest percentage reduction of Hg2+ was induced by UV-A, followed by UV-B, visible light and dark for both living and dead AF, and the order was dark > UV-A > UV-B > visible light for both living and dead MA. There were two aspects, i.e., energy and attenuation rate of light radiation and excrementitious generated from algae metabolisms, were involved in the processes of Hg2+ photoreduction with the presence of algae under different light conditions. The percentage reduction of Hg2+ decreased from 15% to 11% when living and dead AF concentrations increased by 10 times (from 106 to 105 cells/mL), and decreased from11% to ~9% in the case of living and dead MA increased. Algae can adsorb Hg2+ and decrease the concentration of free Hg2+, thus inhibiting Hg2+ photoreduction, especially under the conditions with high concentrations of algae. No significant differences were found in percentage reduction of Hg2+ between living and dead treatments of algae species. The results are of great importance for understanding the role of algae in Hg2+ photoreduction.
Collapse
Affiliation(s)
- Rongguo Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| | - Yafei Mo
- School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Lin Jin
- School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| | - Qiuhua Li
- School of Chemistry and Material, Guizhou Normal University, Guiyang, China
| |
Collapse
|
46
|
Curtis AN, Bourne K, Borsuk ME, Buckman KL, Demidenko E, Taylor VF, Chen CY. Effects of temperature, salinity, and sediment organic carbon on methylmercury bioaccumulation in an estuarine amphipod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:907-916. [PMID: 31412494 PMCID: PMC6697058 DOI: 10.1016/j.scitotenv.2019.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
Mercury (Hg) is a global contaminant that poses a human health risk in its organic form, methylmercury (MeHg), through consumption of fish and fishery products. Bioaccumulation of Hg in the aquatic environment is controlled by a number of factors expected to be altered by climate change. We examined the individual and combined effects of temperature, sediment organic carbon, and salinity on the bioaccumulation of MeHg in an estuarine amphipod, Leptocheirus plumulosus, when exposed to sediment from two locations in the Gulf of Maine (Kittery and Bass Harbor) that contained different levels of MeHg and organic carbon. Higher temperatures and lower organic carbon levels individually increased uptake of MeHg by L. plumulosus as measured by the biota-sediment accumulation factor (BSAF), while the effect of salinity on BSAF differed by sediment source. Multi-factor statistical modeling using all data revealed a significant interaction between temperature and organic carbon for both sediments, in which increased temperature had a negative effect on BSAF at the lowest carbon levels and a positive effect at higher levels. Our results suggest that increased temperature and carbon loading, of a magnitude expected as a result from climate change, could be associated with a net decrease in amphipod BSAF of 50 to 71%, depending on sediment characteristics. While these are only first-order projections, our results indicate that the future fate of MeHg in marine food webs is likely to depend on a number of factors beyond Hg loading.
Collapse
Affiliation(s)
- Amanda N Curtis
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| | - Kimberly Bourne
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Mark E Borsuk
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Kate L Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States; Department of Mathematics, Dartmouth College, NH 03755, United States
| | - Vivien F Taylor
- Department of Earth Science, Dartmouth College, Hanover, NH 03755, United States
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| |
Collapse
|
47
|
Buck DG, Evers DC, Adams E, DiGangi J, Beeler B, Samánek J, Petrlik J, Turnquist MA, Speranskaya O, Regan K, Johnson S. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:956-966. [PMID: 31412499 DOI: 10.1016/j.scitotenv.2019.06.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
We present data on a rapid assessment of fish Hg concentrations from 40 different waterbodies in 26 countries that includes data on 451 fish of 92 species. Significant differences in fish Hg concentrations were observed across fish foraging guilds and in general, higher trophic level fish (i.e., piscivores and carnivores) showed the highest mean total Hg (THg) concentrations. However, elevated THg concentrations observed in a lower trophic level, detrivorous species highlights the importance of understanding Hg concentrations across a wide range of trophic levels, and also characterizing site-specific processes that influence methylmercury (MeHg) bioavailability. A linear mixed effects model was used to evaluate the effects of length, trophic level, sampling location, and taxonomy on THg concentrations. A positive, significant relationship between THg in fish and fish size, trophic level, and latitude of the sampling site was observed. A comparison of Hg concentrations across all sites identifies biological mercury hotspots, as well as sites with reduced Hg concentrations relative to our overall sampling population mean Hg concentration. Results from this study highlight the value of rapid assessments on the availability of methylmercury in the environment using fish as bioindicators and the need for expanded biomonitoring efforts in understudied regions of the world. This study also provides insights for the future design and implementation of large-scale Hg biomonitoring efforts intended to evaluate the effectiveness of future Hg reduction strategies instituted by the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- David G Buck
- Shoals Marine Laboratory, School of Marine Sciences and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA; Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA.
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | - Evan Adams
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | | | - Bjorn Beeler
- IPEN, Första Långgatan 18, 413 28 Göteborg, Sweden
| | - Jan Samánek
- Arnika Association, Chlumova 17, Prague 3 130 00, Czech Republic
| | - Jindrich Petrlik
- Arnika Association, Chlumova 17, Prague 3 130 00, Czech Republic
| | - Madeline A Turnquist
- The Intelligence Group LLC, 443 North Franklin St., Suite 220, Syracuse, NY 13204, USA
| | - Olga Speranskaya
- Eco-Accord Center for Environment and Sustainable Development, P.O. Box 43, Moscow 129090, Kuusinena Str. 21 B, Russia
| | - Kevin Regan
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | - Sarah Johnson
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| |
Collapse
|
48
|
Subhavana KL, Qureshi A, Roy A. Mercury levels in human hair in South India: baseline, artisanal goldsmiths and coal-fired power plants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:697-705. [PMID: 30631141 DOI: 10.1038/s41370-018-0107-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
India is a major emitter of mercury to the environment, mainly due to emissions from coal-fired power plants. Consumption of fish and rice, two important pathways for human exposure to mercury, is particularly high in South India. Here, we report concentrations of total mercury in hair (THghair) in 668 participants from South India. Three cities were covered: (i) a city on the east coast with four active coal-fired thermal power plants (Nellore), (ii) a city on the west coast with no major mercury source (Vasco da Gama), and (iii) a metropolitan city in the interior with no major mercury source (Hyderabad). Geometric mean of THghair of the entire study population is 0.14 µg/g (95% confidence interval, CI: 0.13-0.15 µg/g). Significant predictor variables are age, fish consumption, and occupations such as dental studies, subsistence fishing, and artisanal goldsmithing (which is different from artisanal scale gold mining). Our results support the hypothesis that people living in a city with active coal-fired power plants may have higher THghair than those in cities with no major mercury source.
Collapse
Affiliation(s)
- K L Subhavana
- Indian Institute of Technology (IIT) Hyderabad, Kandi, TS, 502285, India
| | - Asif Qureshi
- Indian Institute of Technology (IIT) Hyderabad, Kandi, TS, 502285, India.
| | - Arpita Roy
- Indian Institute of Technology (IIT) Hyderabad, Kandi, TS, 502285, India
| |
Collapse
|
49
|
Schartup AT, Thackray CP, Qureshi A, Dassuncao C, Gillespie K, Hanke A, Sunderland EM. Climate change and overfishing increase neurotoxicant in marine predators. Nature 2019; 572:648-650. [PMID: 31391584 DOI: 10.1038/s41586-019-1468-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/03/2019] [Indexed: 11/10/2022]
Abstract
More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone1. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean2, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion3. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (Gadus morhua) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (Thunnus thynnus) due to increases in seawater temperature between a low point in 1969 and recent peak levels-which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions4 suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.
Collapse
Affiliation(s)
- Amina T Schartup
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA. .,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Asif Qureshi
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Clifton Dassuncao
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kyle Gillespie
- Fisheries and Oceans Canada, St Andrews Biological Station, St Andrews, New Brunswick, Canada
| | - Alex Hanke
- Fisheries and Oceans Canada, St Andrews Biological Station, St Andrews, New Brunswick, Canada
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, USA. .,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
50
|
Buckman KL, Seelen EA, Mason RP, Balcom P, Taylor VF, Ward JE, Chen CY. Sediment organic carbon and temperature effects on methylmercury concentration: A mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1316-1326. [PMID: 30970496 PMCID: PMC6461384 DOI: 10.1016/j.scitotenv.2019.02.302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
The fate and mobility of mercury, and its bioaccumulation primarily as methylmercury (MeHg), in marine ecosystems are influenced by climate related environmental factors, including increased temperature and carbon loading. To investigate the interactions between sediment organic carbon and temperature MeHg bioaccumulation, mesocosm experiments were conducted examining relationships between sediment, water column and biota (sediment-dwelling amphipod and juvenile oyster) MeHg concentration. Experimental treatments consisted of a two by two design of high and low temperature (15 & 25 °C) and high and low sediment organic carbon (4-5% and 13% LOI, pre-experiment). Sediment organic carbon had significant individual effects on MeHg concentration in water and biota, with higher carbon associated with lower MeHg. Temperature individual effects were significant for sediment, water, and only amphipod MeHg concentration, with higher temperature treatments indicating higher MeHg concentration. There were significant temperature × carbon interactions observed for sediment, dissolved, and oyster MeHg concentration. Sediment carbon reduction had greater influence than temperature on increasing MeHg concentrations in both the water column and biota. MeHg concentrations in the bulk sediment were not correlated with MeHg in the water column or in the biota, indicating that even when sediments are the only source of MeHg, bulk sediment measurements do not provide a good proxy for bioaccumulation and that the concentration in bulk sediments is not the primary determinant of MeHg entry into the food web.
Collapse
Affiliation(s)
- K L Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America.
| | - E A Seelen
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America
| | - R P Mason
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America
| | - P Balcom
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
| | - V F Taylor
- Department of Earth Science, Dartmouth College, Hanover, NH, United States of America
| | - J E Ward
- Department of Marine Science, University of Connecticut, Groton, CT, United States of America
| | - C Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|