1
|
Zhu Y, Zhang X, Tao W, Yang S, Qi H, Zhou Q, Su W, Zhang Y, Dong Y, Gan Y, Lei C, Zhang A. Mitigating the risk of antibiotic resistance and pathogenic bacteria in swine waste: The role of ectopic fermentation beds. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138221. [PMID: 40220395 DOI: 10.1016/j.jhazmat.2025.138221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The ectopic fermentation bed (EFB) is used to recycle animal waste, but the fate and dynamic change of antibiotic resistance genes (ARGs) with biocide or heavy metal resistance genes (B/MRGs) and pathogens remain unclear. We performed metagenomic sequencing on 129 samples to study the resistome and bacteriome in pig feces from 24 farms, comparing these profiles with EFBs from five farms, and one farm's EFB was monitored for 154 days. Results showed pig feces from different cities (Chengdu, Meishan, and Chongqing) shared 284 of 311 ARG subtypes, with over 70 % being high-risk ARGs, and 106 of 114 pathogenic bacteria. Swine farms were heavily contaminated with co-occurrences of risky ARGs, B/MRGs, and pathogenic hosts, particularly Escherichia coli and Streptococcus suis being hosts of multidrug ARGs. The application of EFBs markedly mitigated these risks in feces, showing a 3.09-fold decrease in high-risk ARGs, a 72.22 % reduction in B/MRGs, a 3.95-fold drop in prioritized pathogens, an 89.09 % decline in the relative abundance of pig pathogens, and a simplification of their correlation networks and co-occurrence patterns. A mantel analysis revealed that metal contents (Fe, Mn, and Cu) and time influenced pathogen and ARG profiles. Pathogens, ARGs, and risk ARGs exhibited periodic variations, peaking at days 14, 84, and 154, with 70-day intervals. This study provides a comprehensive assessment of the risks associated with pig feces and EFBs and demonstrates that EFBs reduce ARG risks by inhibiting their associations with B/MRGs and pathogens. These findings can help guide and improve the management of antimicrobial resistance and pathogenic contaminants in EFB applications to reduce environmental pollution.
Collapse
Affiliation(s)
- Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xialan Zhang
- Central Agricultural Broadcasting and Television School (Banan, Chongqing), Chongqing 401320, China
| | - Weilai Tao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shujian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoxuan Qi
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quan Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wen Su
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yanhang Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yongyi Dong
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Gan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Wang S, Li T, Yuan X, Yu J, Luan Z, Guo Z, Yu Y, Liu C, Duan C. Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137818. [PMID: 40054196 DOI: 10.1016/j.jhazmat.2025.137818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes.
Collapse
Affiliation(s)
- Sichen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Ting Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Xinqi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Ji Yu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Zhifei Luan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Zhaolai Guo
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Yadong Yu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China.
| |
Collapse
|
3
|
Qian L, Wang J, Shi Y, Lu Y, Liang R, Xu Q, Zhou X, Li X, Shao X. A novel tiered ecological risk framework linking metal-driven pollution to soil microbial dynamics in a fragile ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138563. [PMID: 40373402 DOI: 10.1016/j.jhazmat.2025.138563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Widespread soil heavy metal (HM) pollution has caused great concerns worldwide. A refined and cost-effective ecological risk assessment (ERA) is critical for managing these risks. Herein, we propose a novel tiered ERA framework to evaluate indigenous pollution-effect associations in contaminated soils. This framework progressively applies source apportionment, spatial regression, deterministic and probabilistic risk characterization, ecological surveys of soil phospholipid fatty acids (PLFAs), and successive multivariable statistics to provide comprehensive ERA evidence, as demonstrated in an ecologically fragile mining area. The risk screening phase identified Zn, Pb, Cd, Cu, and Hg as priority contaminants, and mining activities contributed 86.5 % (Zn), 87.2 % (Pb), 83.3 % (Cd), 64.6 % (Cu), and 52.3 % (Hg) of the total soil concentrations in the study area determined by the positive matrix factorization (PMF) model. The risk quotient of ecological criteria tailored to different land uses exhibited ecologically relevant risk grading. The risk quantification phase determined the overall risk probabilities to be 53.98 %, 11.12 %, 9.69 %, 5.03 % and 1.34 % for Zn, Pb, Cu, Cd and Hg, respectively, and provided adaptive HM priority lists with different risk grades. The risk causeeffect attribution phase confirmed that HMs significantly reduced soil fungal PLFA abundance and indirectly altered the PLFA structure by decreasing the soil pH. The proposed framework offers a cost-effective, refined and feasible technical support for ecological risk management in contaminated areas.
Collapse
Affiliation(s)
- Li Qian
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinghan Wang
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yajuan Shi
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems and Fujian Provincial Key Laboratory of Land and Ocean Interface, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Stake Key Laboratory of Marine Environmental Science, Xiamen University, Fujian 361102, China
| | - Ruoyu Liang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiuyun Xu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Xuan Zhou
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqing Shao
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Rajasekar A, Zhao C, Wu S, Murava RT, Norgbey E, Omoregie AI, Moy CKS. Removal of high concentrations of zinc, cadmium, and nickel heavy metals by Bacillus and Comamonas through microbially induced carbonate precipitation. Biodegradation 2025; 36:40. [PMID: 40323541 PMCID: PMC12053368 DOI: 10.1007/s10532-025-10131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Heavy metal pollution in urban freshwater, driven by anthropogenic activities, poses significant risks to aquatic ecosystems and human health due to its toxicity and persistence. Recently, urease-producing bacteria have gained attention for their ability to remove heavy metals through microbial-induced carbonate precipitation (MICP). In this study, eight urease-producing bacteria were exposed to individual solutions of zinc (Zn2+), cadmium (Cd2+), and nickel (Ni2+) at concentrations ranging from 0 to 6 mM to assess their resistance. Three strains-Bacillus subtilis HMZC1 (B2), Bacillus sp. HMZCSW (B6), and Comamonas sp. HMZC (B11)-survived at 4 mM and 6 mM, while most others could not tolerate 4 mM. Their urea-degrading ability was tested at different pH levels, identifying an optimal pH of 7 for MICP. Heavy metal carbonate precipitation experiments at 4 mM and 6 mM revealed that all three strains achieved > 93% removal of Zn2+, Ni2+, and Cd2+ within 72 h. Comamonas sp. HMZC exhibited the highest efficiency, achieving > 95% removal of certain heavy metals at 6 mM. Statistical analysis using one-way ANOVA revealed significant differences (p < 0.05) in heavy metal removal efficiencies among the strains for certain treatment conditions (Cd2+ and Zn2+ at 4 mM), although not all comparisons reached statistical significance. Scanning Electron Microscopy and X-ray Diffraction confirmed the morphology and composition of the precipitated heavy metal carbonates. Our findings demonstrate that urease-producing bacteria can effectively immobilize multiple heavy metals, highlighting the MICP process as a practical and sustainable biological approach for ecological restoration and wastewater treatment.
Collapse
Affiliation(s)
- Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China.
- School of Geography and Environmental Science, University of Reading, Reading, RG67BE, UK.
| | - Cailin Zhao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China
| | - Suowei Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China
| | - Raphinos Tackmore Murava
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China
| | - Eyram Norgbey
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China
- School of Geography and Environmental Science, University of Reading, Reading, RG67BE, UK
| | - Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia
| | - Charles K S Moy
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
5
|
Sun J, Zhang K, Zhang H. Predicting sorption of diverse organic compounds in soil-water systems: Meta-analysis, machine learning modeling, and global soil mapping. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137480. [PMID: 39908761 DOI: 10.1016/j.jhazmat.2025.137480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
In recent decades, the environmental detection of various organic compounds (OCs) has highlighted the limitations of conventional soil-water sorption models, which simplify complex experimental conditions and often overlook OCs with polyfunctional and ionizable structures. To address these shortcomings, we compiled a comprehensive soil-water sorption dataset encompassing 20,945 data points for 419 OCs with various functional groups and 1037 different soils. Meta-analysis of the dataset revealed the trends of soil sorption associated with OC substructures, soil properties, and solution conditions. Machine learning models employing the XGBoost algorithm, in conjunction with MACCS fingerprints and experimental conditions, were developed to cover the entire spectrum of speciation for cationic, neutral, and anionic species. Among these, the individual models tailored to each speciation achieved an overall root-mean-square-error value of 0.32 for log Kd. Model interpretation revealed that the models correctly understood the contributions of various substructures, such as multiple aromatic rings and nitrogen or oxygen atoms, to sorption. The models were also found to accurately capture isotherm nonlinearity and the pH effect on the sorption of ionizable OCs. Finally, utilizing soil properties from the Harmonized World Soil Database, the models predicted the sorption of diverse OCs based on global soil properties under simulated environmental scenarios.
Collapse
Affiliation(s)
- Jiachun Sun
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kai Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Song Y, Li T, Zhao F, Li Z, Bao R. Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137352. [PMID: 39862784 DOI: 10.1016/j.jhazmat.2025.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments. The arsenic exposure at concentrations of 0.12-20 mg/L As(III) resulted in rapid growth arrest of P. aeruginosa. Moreover, arsenic exposure significantly reduced the production of key virulence factors such as elastase (by 1.48- to 9.24-fold), pyocyanin, and flagella while increasing siderophore and extracellular polysaccharide production (by 1.44-1.75 and 1.36-2.59 times, respectively). Proteomic analysis revealed that both low (0.12 mg/L) and high (1.2 mg/L) As(III) levels activated an antioxidant defense response, with upregulation of Fnr-2, TrxB2, and Ohr. Furthermore, arsenic-induced the overexpression of multidrug resistance efflux proteins MexAB-OprM, MexCD-OprJ, and MexEF-OprN. At the same time, proteins associated with quorum sensing (QS), type III secretion system (T3SS), pyocyanin biosynthesis, and flagellar assembly were downregulated. In vitro assays confirmed that arsenic reduced bacterial virulence and significantly enhanced survival and proliferation under antibiotic treatment. These results indicate that arsenic exposure modulates the virulence and antibiotic resistance of P. aeruginosa, raising concerns about the public health risks posed by the convergence of arsenic-contaminated water and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu 610101, China.
| | - Tao Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 654399, China
| | - Fang Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ze Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Rui Bao
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
7
|
Ren H, Xiang Y, Zhang A, Zhao H, Tian H, Guo X, Zheng Y, Zhang B. Optimization and Mechanism of Ca 2+ Biosorption by Virgibacillus pantothenticus Isolated from Gelatine Wastewater. Pol J Microbiol 2025; 74:19-32. [PMID: 40146791 PMCID: PMC11949390 DOI: 10.33073/pjm-2025-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/24/2024] [Indexed: 03/29/2025] Open
Abstract
Gelatine-processing wastewater contains much residual sludge due to its high calcium ion concentration and chemical oxygen demand. In this study, N3-4, a microbial strain with excellent calcium tolerance capacity, was screened and identified as Virgibacillus pantothenticus using morphological observation, physiological and biochemical testing, and 16S rRNA sequence analysis. Its growth characteristics were investigated, and the maximum adsorption of calcium reached 572.43 μg/g under the optimal conditions (contact time, 72.68 min; biomass dosage, 1.3 g/l; initial calcium concentration, 142.01 mg/l). Conditions were optimized using response surface methodology and structural characterization. The structure of the bacterial pellets was altered from flat to rough, accompanied by bulges and sediments after Ca2+ treatment, according to structural characterization. Energy-dispersive X-ray spectroscopy of the bacterial precipitates under calcium(II) treatment revealed the immobilization of Ca2+ species on the bacterial cell surface. The results indicate that -OH, -NH2, C≡C, C=O, -CH2, -C-O-, and -C-N groups play a significant role in calcium dispersion on the surface of V. pantothenticus.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Yumeng Xiang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Aili Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hongyuan Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, United States
| | - Bingyun Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| |
Collapse
|
8
|
Zhang Y, Qian F, Bao Y. Variations of microbiota and metabolites in rhizosphere soil of Carmona microphylla at the co-contaminated site with polycyclic aromatic hydrocarbons and heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117734. [PMID: 39842173 DOI: 10.1016/j.ecoenv.2025.117734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Co-contamination with organic/inorganic compounds is common in industrial area and poses a great risk to local soil ecological environment. In this study, an operating ink factory site co-contaminated with polycyclic aromatic hydrocarbons (PAHs, mild to moderate pollution level) and heavy metals (HMs, heavy pollution level) was selected and screened for native vegetation, Carmona microphylla. High-throughput sequencing and metabolomics were mainly used to investigate the responses of soil bacteria and metabolites to the composite pollution and rhizosphere effect. As the results showed, among three pollution levels, a medium level of pollution was favorable to increase the richness and diversity of soil bacterial community, while high level of pollution greatly decreased special OTUs number. In addition, HMs were the most significant factors driving bacterial community structure, especially for Cd. The influence of medium molecular weight PAHs with 4 rings (MMW-PAHs) on dominant bacteria was greater than low molecular weight PAHs with 2-3 rings (LMW-PAHs) and high molecular weight PAHs with 5-6 rings (HMW-PAHs). Soil bacterial function was affected mainly by pollution level, but not rhizosphere effect, in which high pollution level changed α diversity and structure and composition of C- and N-cycling bacteria. Rhizosphere promoted network complexity by increasing the connection densities among bacterial communities, metabolites, soil properties and the involved number of metabolites. Compared to HMs, PAHs played a more important role in shaping bacterial community through affecting metabolites in non-rhizosphere soil, which was different from rhizosphere soil with a more significant effect of HMs than PAHs. Some key bacterial taxa have established resistance to HMs in rhizosphere soils, whereas they were sensitive to compound contamination in non-rhizosphere soils. Some key bacterial taxa are resistant to HMs in rhizosphere soils, whereas they are susceptible to complex contamination in non-rhizosphere soils, which could be a consequence of the rhizosphere by regulating soil metabolism. It also provides a valuable reference for how co-contaminants and rhizosphere effect shape together soil bacterial community through the changes of soil metabolites.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Huang Y, Zhu H, Zhao H, Xu H, Xiong X, Tang C, Xu J. Interactions between arsenic and nitrogen regulate nitrogen availability and arsenic mobility in flooded paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135981. [PMID: 39342852 DOI: 10.1016/j.jhazmat.2024.135981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
In paddy soils, arsenic (As) stress influences nitrogen (N) transformation while application of N fertilizers during rice cropping affects As transformation. However, specific interactive effects between As and N in flooded paddy soils on As mobility and N availability were unclear. Here, we examined N and As dynamics in flooded paddy soils treated with four As levels (0, 30, 80 and 150 mg kg-1) and three urea additions (0, 4 and 8 mmol N kg-1). Arsenic contamination inhibited diazotrophs (nifH) and fungi but promoted AOA and denitrification genes (narG, nirK, nirS), decreasing dissolved organic N, NH4+-N and NO3--N. Besides, urea application stimulated As- and Fe-reducing bacteria (arrA and Geo) coupled with anammox. On Day 28, the addition of 8 mmol N kg-1 increased total As concentrations in solutions of soils treated with 30 and 80 mg As kg-1 by 2.4 and 1.8 times compared with the nil-N control. In contrast, at 150 mg As kg-1, it decreased the total As concentration in soil solution by 63 % through facilitating As(III) oxidation coupled with NO3--N reduction. These results indicate that As contamination decreases N availability, but urea application affects As mobility, depending on As contamination level.
Collapse
Affiliation(s)
- Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hang Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haojie Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xinquan Xiong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences / La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Huang Y, Xiao Z, Wu S, Zhang X, Wang J, Huangfu X. Biochemical transformation and bioremediation of thallium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176028. [PMID: 39265674 DOI: 10.1016/j.scitotenv.2024.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Thallium (Tl) is a toxic element associated with minerals, and its redistribution is facilitated by both geological and anthropogenic activities. In the natural environment, the transformation and migration of Tl mediated by (micro)organisms have attracted increasing attention. This review presents an overview of the biochemical transformation of Tl and the bioremediation strategies for Tl contamination. In the environment, Tl exists in various forms and originates from diverse sources. The global distribution characteristics of Tl in various media are summarized here, while its speciation and toxicity mechanism to organisms are elucidated. Interactions between (micro)organisms and Tl are commonly observed in the environment. Microbial response mechanisms to typical Tl exposure are analyzed at both species and gene levels, and the possibility of microorganisms as bio-indicators for monitoring Tl contamination is also highlighted. The processes and mechanisms involved in the microbial and benthic mediated transformation of Tl, as well as its enrichment by plants, are discussed. Additionally, in situ bioremediation strategies for Tl contamination and bio-treatment techniques for Tl-containing wastewater are summarized. Finally, the existing knowledge gaps and future research challenges are emphasized, including Tl distribution characteristics in the atmosphere and ocean, the key molecular mechanisms underlying Tl transformation by organisms, the screening of potential Tl oxidizing microorganisms and hyperaccumulators, as well as the revelation of global biogeochemical cycling pathways of Tl.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhentao Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Zhu X, Ju W, Beiyuan J, Chao H, Zhang Z, Chen L, Cui Q, Qiu T, Zhang W, Huang M, Shen Y, Fang L. Bacterial consortium amendment effectively reduces Pb/Cd bioavailability in soil and their accumulation in wheat. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122789. [PMID: 39369534 DOI: 10.1016/j.jenvman.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Microbial remediation can maintain the sustainability of farmlands contaminated with heavy metals (HMs). However, the effects of bacterial consortium on crop growth and potential risks under HM stress, as well as its mechanisms, are still unclear compared with a single microorganism. Here, we investigated the effect of a bacterial consortium consisting of some HMs-resistant bacteria, including Bacillus cereus, Bacillus thuringiensis, and Herbaspirillum huttiense, on plant growth promotion and inhibition of Pb/Cd accumulation within different contaminated soil-wheat systems through pot experiments. The results showed that microbial inoculation alleviated HMs-induced growth inhibition by activating antioxidant enzymes and inhibiting lipid peroxidation, and enhanced plant growth in the bacterial consortium. Compared to a single strain (Bacillus cereus, Bacillus thuringiensis, or Herbaspirillum huttiense), the bacterial consortium was more conducive to improving root development and reducing the content of available HMs in soil (4.5-10.3%) and its transfer to shoot (4.3-8.4%). Moreover, bacterial consortium significantly increased soil enzyme activities and available nutrients, resulting in nearly twice that of a single strain on the effect of soil quality and plant growth. Correlation analysis and least square path analysis showed that the bacterial consortium could significantly reduce the HMs-enrichment/transport from soil to shoot than a single strain by regulating soil available HMs and biochemical properties, as well as the parameters for plant growth. This study emphasizes that bacterial consortium promotes the growth of the crop wheat and reduces the risk of HMs entering human food chain, further providing an effective strategy for the safe production of food crops in contaminated soils.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Materials Engineering, Shanxi College of Technology, Shuozhou, 036000, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Huang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
12
|
Jin J, Zhao D, Wang J, Wang Y, Zhu H, Wu Y, Fang L, Bing H. Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135438. [PMID: 39116750 DOI: 10.1016/j.jhazmat.2024.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microorganisms are pivotal in sustaining soil functions, yet the specific contributions of bacterial and fungal succession on the functions during vegetation restoration in metallic tailing reservoirs remains elusive. Here, we explored bacterial and fungal succession and their impacts on soil multifunctionality along a ∼50-year vegetation restoration chronosequence in China's largest vanadium titano-magnetite tailing reservoir. We found a significant increase in soil multifunctionality, an index comprising factors pertinent to soil fertility and microbially mediated nutrient cycling, along the chronosequence. Despite increasing heavy metal levels, both bacterial and fungal communities exhibited significant increase in richness and network complexity over time. However, fungi demonstrated a slower succession rate and more consistent composition than bacteria, indicating their relatively higher resilience to environmental changes. Soil multifunctionality was intimately linked to bacterial and fungal richness or complexity. Nevertheless, when scrutinizing both richness and complexity concurrently, the correlations disappeared for bacteria but remained robust for fungi. This persistence reveals the critical role of the fungal community resilience in sustaining soil multifunctionality, particularly through their stable interactions with powerful core taxa. Our findings highlight the importance of fungal succession in enhancing soil multifunctionality during vegetation restoration in metallic tailing reservoirs, and manipulating fungal community may expedite ecological recovery of areas polluted with heavy metals.
Collapse
Affiliation(s)
- Jiyuan Jin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Dongyan Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jipeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuhan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
13
|
Belkin P, Nechaeva Y, Blinov S, Vaganov S, Perevoshchikov R, Plotnikova E. Sediment microbial communities of a technogenic saline-alkaline reservoir. Heliyon 2024; 10:e33640. [PMID: 39071596 PMCID: PMC11283119 DOI: 10.1016/j.heliyon.2024.e33640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Various natural saline and alkaline habitats have recently been widely investigated, but knowledge of anthropogenic habitats with more complex environmental conditions is still lacking. This research looks at the structure of microbial communities in 18 bottom sediment samples from a technogenic water body with saline and alkaline composition. The core samples were collected from 2 columns in the western and eastern parts of an artificial water body at the Verkhnekamskoe Salt Deposit (Russia). The microbial community structure was studied using high-throughput 16S rRNA gene sequencing. The bottom sediment composition (salinity, pH, and toxic element content) varies greatly with depth and laterally throughout the study area. The study found a considerable difference in bacterial community diversity between the 2 columns, but no considerable difference was found between the communities at various depths of the studied layers. Proteobacteria, Firmicutes, and Actinobacteria, which are common in both natural and artificial saline and alkaline environments, make up the majority of the bacteria found in the samples. Studies have shown that salinity and total alkalinity are the key factors influencing the formation of microbial communities. Ralstonia and Pseudomonas were the two most common genera in the sediment samples. These two genera are known for having high metabolic flexibility, which means they can survive in extreme environments and use a variety of carbon compounds as energy sources. The study also found that Ralstonia is indicator bacteria in samples with the highest concentrations of toxic elements compared to the other samples. A relatively high microbial diversity was discovered in the studied anthropogenic water reservoir despite the extreme alkaline and saline conditions, but it is considerably lower than that found in natural, less alkaline habitats. This research offers insight into the mechanisms behind microbial community formation in complex anthropogenic environments and covers key factors in microbial community distribution.
Collapse
Affiliation(s)
- Pavel Belkin
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Yulia Nechaeva
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| | - Sergey Blinov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Sergey Vaganov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Roman Perevoshchikov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Elena Plotnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| |
Collapse
|
14
|
Bai X, Bol R, Chen H, Cui Q, Qiu T, Zhao S, Fang L. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134370. [PMID: 38688214 DOI: 10.1016/j.jhazmat.2024.134370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Plant growth-promoting bacteria (PGPB) offer a promising solution for mitigating heavy metals (HMs) stress in crops, yet the mechanisms underlying the way they operate in the soil-plant system are not fully understood. We therefore conducted a meta-analysis with 2037 observations to quantitatively evaluate the effects and determinants of PGPB inoculation on crop growth and HMs accumulation in contaminated soils. We found that inoculation increased shoot and root biomass of all five crops (rice, maize, wheat, soybean, and sorghum) and decreased metal accumulation in rice and wheat shoots together with wheat roots. Key factors driving inoculation efficiency included soil organic matter (SOM) and the addition of exogenous fertilizers (N, P, and K). The phylum Proteobacteria was identified as the keystone taxa in effectively alleviating HMs stress in crops. More antioxidant enzyme activity, photosynthetic pigment, and nutrient absorption were induced by it. Overall, using PGPB inoculation improved the growth performance of all five crops, significantly increasing crop biomass in shoots, roots, and grains by 33 %, 35 %, and 20 %, respectively, while concurrently significantly decreasing heavy metal accumulation by 16 %, 9 %, and 37 %, respectively. These results are vital to grasping the benefits of PGPB and its future application in enhancing crop resistance to HMs.
Collapse
Affiliation(s)
- Xiaohan Bai
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100 Yangling, China
| | - Roland Bol
- Institute of Bio‑ and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm Johnen Str, 52425 Jülich, Germany
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, 712100 Yangling, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, 712100 Yangling, China
| | - Linchuan Fang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100 Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 430070 Wuhan, China.
| |
Collapse
|
15
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
16
|
Zhu X, Xiang Q, Chen L, Chen J, Wang L, Jiang N, Hao X, Zhang H, Wang X, Li Y, Omer R, Zhang L, Wang Y, Zhuang Y, Huang J. Engineered Bacillus subtilis Biofilm@Biochar living materials for in-situ sensing and bioremediation of heavy metal ions pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133119. [PMID: 38134689 DOI: 10.1016/j.jhazmat.2023.133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The simultaneous sensing and remediation of multiple heavy metal ions in wastewater or soil with microorganisms is currently a significant challenge. In this study, the microorganism Bacillus subtilis was used as a chassis organism to construct two genetic circuits for sensing and adsorbing heavy-metal ions. The engineered biosensor can sense three heavy metal ions (0.1-75 μM of Pb2+ and Cu2+, 0.01-3.5 μM of Hg2+) in situ real-time with high sensitivity. The engineered B. subtilis TasA-metallothionein (TasA-MT) biofilm can specifically adsorb metal ions from the environment, exhibiting remarkable removal efficiencies of 99.5% for Pb2+, 99.9% for Hg2+and 99.5% for Cu2+ in water. Furthermore, this engineered strain (as a biosensor and absorber of Pb2+, Cu2+, and Hg2+) was incubated with biochar to form a hybrid biofilm@biochar (BBC) material that could be applied in the bioremediation of heavy metal ions. The results showed that BBC material not only significantly reduced exchangeable Pb2+ in the soil but also reduced Pb2+ accumulation in maize plants. In addition, it enhanced maize growth and biomass. In conclusion, this study examined the potential applications of biosensors and hybrid living materials constructed using sensing and adsorption circuits in B. subtilis, providing rapid and cost-effective tools for sensing and remediating multiple heavy metal ions (Pb2+, Hg2+, and Cu2+).
Collapse
Affiliation(s)
- Xiaojuan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinyuan Xiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Lin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianshu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Ning Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangrui Hao
- Shanghai Nong Le Biological Products Company Limited (NLBP), Shanghai 201419, PR China
| | - Hongyan Zhang
- Shanghai Nong Le Biological Products Company Limited (NLBP), Shanghai 201419, PR China
| | - Xinhua Wang
- Shanghai Jiao Tong University School of Agriculture and Biology, Shanghai 200240, PR China
| | - Yaqian Li
- Shanghai Jiao Tong University School of Agriculture and Biology, Shanghai 200240, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China.
| |
Collapse
|
17
|
Luo Y, Liao M, Lu X, Xu N, Xie X, Gao W. Unveiling the performance of a novel alkalizing bacterium Enterobacter sp. LYX-2 in immobilization of available Cd. J Environ Sci (China) 2024; 137:245-257. [PMID: 37980012 DOI: 10.1016/j.jes.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
A novel alkalizing strain Enterobacter sp. LYX-2 that could resist 400 mg/L Cd was isolated from Cd-contaminated soil, which immobilized 96.05% Cd2+ from medium. Cd distribution analysis demonstrated that more than half of the Cd2+ was converted into extracellular precipitated Cd through mobilization of the alkali-producing mechanism by the strain LYX-2, achieving the high immobilization efficiency of Cd2+. Biosorption experiments revealed that strain LYX-2 had superior biosorption capacity of 48.28 mg/g for Cd. Pot experiments with Brassica rapa L. were performed with and without strain LYX-2. Compared to control, 15.92% bioavailable Cd was converted to non-bioavailable Cd and Cd content in aboveground vegetables was decreased by 37.10% with addition of strain LYX-2. Available Cd was mainly immobilized through extracellular precipitation, cell-surface biosorption and intracellular accumulation of strain LYX-2, which was investigated through Cd distribution, Scanning Electron Microscope and Energy-Dispersive X-ray Spectroscopy (SEM-EDS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) analysis. In addition, the application of strain LYX-2 significantly promoted the growth of vegetables about 2.4-fold. Above results indicated that highly Cd-resistant alkalizing strain LYX-2, as a novel microbial passivator, had excellent ability and reuse value to achieve the remediation of Cd-contaminated soil coupled with safe production of vegetables simultaneously.
Collapse
Affiliation(s)
- Yixin Luo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| | - Xiongxiong Lu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China.
| | - Weiming Gao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Liu G, Lin Y, Li S, Shi C, Zhang D, Chen L. Degradation of ciprofloxacin by persulfate activated by Fe(III)-doped BiOCl composite photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87830-87850. [PMID: 37434054 DOI: 10.1007/s11356-023-28490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Fe-BOC-X photocatalyst was successfully prepared by solvothermal method. The photocatalytic activity of Fe-BOC-X was determined by ciprofloxacin (CIP), a typical fluoroquinolone antibiotic. Under sunlight irradiation, all Fe-BOC-X showed better CIP removal performance than original BiOCl. In comparison, the photocatalyst with iron content of 50 wt% (Fe-BOC-3) has excellent structural stability and the best adsorption photodegradation efficiency. The removal rate of CIP (10 mg/L) by Fe-BOC-3 (0.6 g/L) reached 81.4% within 90 min. At the same time, the effects of photocatalyst dosage, pH, persulfate, persulfate concentration, and combinations of different systems (PS, Fe-BOC-3, Vis/PS, Vis/Fe-BOC-3, Fe-BOC-3/PS, and Vis/Fe-BOC-3/PS) on the reaction were systematically discussed. In reactive species trapping experiments, electron spin resonance (ESR) signals revealed that the photogenerated holes (h+), hydroxyl radical (•OH), sulfate radical (•SO4-), and superoxide radical (•O2-) played an important role in CIP degradation; hydroxyl radicals (•OH) and sulfate radicals (•SO4-) play a major role. Various characterization methods have demonstrated that Fe-BOC-X has larger specific surface area and pore volume than original BiOCl. UV-vis DRS indicate that Fe-BOC-X has wider visible light absorption and faster photocarrier transfer and provides abundant surface oxygen absorption sites for effective molecular oxygen activation. Accordingly, a large number of active species were produced and participated in the photocatalytic process, thus effectively promoting the degradation of ciprofloxacin. Based on HPLC-MS analysis, two possible decomposition pathways of CIP were finally proposed. The main degradation pathways of CIP are mainly due to the high electron density of piperazine ring in CIP molecule, which is mainly attacked by various free radicals. The main reactions include piperazine ring opening, decarbonylation, decarboxylation, and fluorine substitution. This study can better open up a new way for the design of visible light driven photocatalyst and provide more ideas for the removal of CIP in water environment.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Siwen Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, Japan
| | - Dongyan Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Lei Chen
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
19
|
Chau TP, Devanesan S, Farhat K, Liu X, Jhanani GK. Phytoremediation efficiency of Vigna mungo with the amalgamation of indigenous metal tolerant bacterial strain on metal polluted agriculture soil. ENVIRONMENTAL RESEARCH 2023:116291. [PMID: 37276971 DOI: 10.1016/j.envres.2023.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
This research was performed to evaluate physico-chemical properties of farmland soil nearby the magnesite mine site. Unexpectedly, few physico-chemical properties were crossing the acceptable limits. Particularly, the quantities of Cd (112.34 ± 3.25), Pb (386.42 ± 11.71), Zn (854.28 ± 3.53), and Mn (2538 ± 41.11) were crossing the permissible limits. Among 11 bacterial cultures isolated from the metal contaminated soil, 2 isolates names as SS1 and SS3 showed significant multi-metal tolerance up to the concentration of 750 mg L-1. Furthermore, these strains also showed considerable metal mobilization as well as absorption ability on metal contaminated soil under in-vitro conditions. In a short duration of treatment, these isolates effectively mobilize and absorb the metals from the polluted soil. The results obtained from the greenhouse investigation with Vigna mungo revealed that the among various treatment (T1 to T5) groups, the T3 (V.mungo + SS1+SS3) showed remarkable phytoremediation potential (Pb: 50.88, Mn: 152, Cd: 14.54, and Zn: 67.99 mg kg-1) on metal contaminated soil. Furthermore, these isolates influence the growth as well as biomass of V.mungo under greenhouse conditions on metal contaminated soil. These findings suggest that combining multi-metal tolerant bacterial isolates can improve the phytoextraction efficiency of V.mungo on metal-contaminated soil.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|
20
|
Gao H, Zhao R, Wu Z, Ye J, Duan L, Yu R. New insights into exogenous N-acyl-homoserine lactone manipulation in biological nitrogen removal system against ZnO nanoparticle shock. BIORESOURCE TECHNOLOGY 2023; 370:128567. [PMID: 36596365 DOI: 10.1016/j.biortech.2022.128567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The effects and mechanisms of three N-acyl-homoserine lactones (AHLs) (C4-HSL, C6-HSL, and C10-HSL) on responses of biological nitrogen removal (BNR) systems to zinc oxide nanoparticle (NP) shock were investigated. All three AHLs improved the NP-impaired ammonia oxidation rates by up to 50.0 % but inhibited the denitrification process via regulating nitrogen metabolism-related enzyme activities. C4-HSL accelerated the catalase activity by 13.2 %, while C6-HSL and C10-HSL promoted the superoxide dismutase activity by 26.6 % and 18.4 %, respectively, to reduce reactive oxygen species levels. Besides, the enhancements of tryptophan protein and humic acid levels in tightly-bound extracellular polymeric substance by AHLs were vital for NP toxicity attenuation. The metabonomic analysis demonstrated that all three AHLs up-regulated the levels of lipid- and antioxidation-related metabolites to advance the system's resistance to NP shock. The "dual character" of AHLs emphasized the concernment of legitimately employing AHLs to alleviate NP stress for BNR systems.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zeyu Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Lijie Duan
- Guangdong Institute of Socialism, Guangzhou, Guangdong 510400, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
21
|
Xie S, Wang W, Li N, Wen C, Zhu S, Luo X. Effect of Drying-Rewetting cycles on the metal adsorption and tolerance of natural biofilms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116922. [PMID: 36462490 DOI: 10.1016/j.jenvman.2022.116922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Drying-rewetting (D-RW) cycles can induce changes in biofilms by forcing the microbial community to tolerate and adapt to environmental pressure. Existing studies have mostly focused on the impact of D-RW cycles on the microbial community structure, and little attention has been paid to how D-RW cycles may change the biofilm tolerance and adsorption of heavy metals. We experimentally evaluated the effect of repeated D-RW cycles on the Cd2+ and Pb2+ adsorption and tolerance of biofilms. The equilibrium adsorption capacity of the biofilm decreased as the number of D-RW cycles was increased, which was attributed to a change in affinity between the biofilm and metal ions. For a binary metal system, the D-RW cycles affected the competitive adsorption of Cd2+ and Pb2+ by the biofilm. A synergistic effect was observed with one and three D-RW cycles, while an antagonistic effect was observed for the control film and five D-RW cycles. The tolerance of the biofilm to Cd2+ and Pb2+ increased with the number of D-RW cycles. The stress from the D-RW cycles may have increased the relative abundance of drought-tolerant bacteria, which altered the biofilm functions and thus indirectly affected the heavy metal adsorption capacity.
Collapse
Affiliation(s)
- Shanshan Xie
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Wenwen Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
22
|
Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. DIVERSITY 2023. [DOI: 10.3390/d15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heavy metals and flooding are among the primary environmental factors affecting plants and microorganisms. This review separately considers the impact of heavy metal contamination of soils on microorganisms and plants, on plant and microbial biodiversity, and on plant–microorganism interactions. The use of beneficial microorganisms is considered one of the most promising methods of increasing stress tolerance since plant-associated microbes reduce metal accumulation, so the review focuses on plant–microorganism interactions and their practical application in phytoremediation. The impact of flooding as an adverse environmental factor is outlined. It has been shown that plants and bacteria under flooding conditions primarily suffer from a lack of oxygen and activation of anaerobic microflora. The combined effects of heavy metals and flooding on microorganisms and plants are also discussed. In conclusion, we summarize the combined effects of heavy metals and flooding on microorganisms and plants.
Collapse
|
23
|
Naz M, Dai Z, Hussain S, Tariq M, Danish S, Khan IU, Qi S, Du D. The soil pH and heavy metals revealed their impact on soil microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115770. [PMID: 36104873 DOI: 10.1016/j.jenvman.2022.115770] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial community is the main indicator having a crucial role in the remediation of polluted soils. These microbes can alter soil pH, organic matter in soils (SOM), soil physic-chemical properties, and potential soil respiration rate via their enzymatic activities. Similarly, heavy metals also have a crucial role in soil enzymatic activities. For this purpose, a number of methods are studied to evaluate the impact of soil pH (a key factor in the formation of biogeographic microbial patterns in bacteria) on bacterial diversity. The effects of pH on microbial activity are glamorous but still unclear. Whereas, some studies also indicate that soil pH alone is not the single key player in the diversity of soil bacteria. Ecological stability is achieved in a pollution-free environment and pH value. The pH factor has a significant impact on the dynamics of microbes' communities. Here, we try to discuss factors that directly or indirectly affect soil pH and the impact of pH on microbial activity. It is also discussed the environmental factors that contribute to establishing a specific bacterial community structure that must be determined. From this, it can be concluded that the environmental impact on soil pH, reducing soil pH and interaction with this factor, and reducing the effect of soil pH on soil microbial community.
Collapse
Affiliation(s)
- Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology Suzhou, 215009, Jiangsu Province, PR China.
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang Province, PR China
| | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy College, Lahore, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| |
Collapse
|
24
|
Zaharia MM, Bucatariu F, Vasiliu AL, Mihai M. Stable and reusable acrylic ion-exchangers. From HMIs highly polluted tailing pond to safe and clean water. CHEMOSPHERE 2022; 304:135383. [PMID: 35718040 DOI: 10.1016/j.chemosphere.2022.135383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The application of several ion-exchange resins (IExR) with amino and amphoteric functionalities in batch retention of heavy metal ions (HMIs) (Cu(II), Fe(II), Mn(II), Zn(II)) from mono- and multicomponent simulated waters and from real polluted water collected from tailings pond of Tarnita (Suceava, Romania) sterile dump is deeply herein explored. The tested resins exhibited high sorption capacities, as evaluated by atomic absorption spectrometry, results supported by infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The effect of pH on the IExR sorption capacity in competitive condition evidenced the optimum pH where IExR sorption efficiency is maximum. Reutilization of IExR in six consecutive sorption/desorption/regeneration cycles showed their renewable sorption properties. Wheat germination tests demonstrated that the Tarnita collected water had a high toxic effect whereas the resulted supernatant after batch sorption was nontoxic. The study shows that HMIs content after IExR sorption is under the admitted maximum level for surface water, and represents an important step on the efforts to solve the environmental problem in Tarnita area, by removing the main contaminants found in the local river water.
Collapse
Affiliation(s)
- Marius-Mihai Zaharia
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Florin Bucatariu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Ana-Lavinia Vasiliu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Marcela Mihai
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
25
|
Signorini M, Midolo G, Cesco S, Mimmo T, Borruso L. A Matter of Metals: Copper but Not Cadmium Affects the Microbial Alpha-Diversity of Soils and Sediments - a Meta-analysis. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02115-4. [PMID: 36180621 DOI: 10.1007/s00248-022-02115-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) accumulation in soil affects plants and soil fauna, yet the effect on microbial alpha-diversity remains unclear, mainly due to the absence of dedicated research synthesis (e.g. meta-analysis). Here, we report the first meta-analysis of the response of soil microbial alpha-diversity to the experimental addition of cadmium (Cd) and copper (Cu). We considered studies conducted between 2013 and 2022 using DNA metabarcoding of bacterial and fungal communities to overcome limitations of other cultivation- and electrophoresis-based techniques. Fungi were discarded due to the limited study number (i.e. 6 studies). Bacterial studies resulted in 66 independent experiments reported in 32 primary papers from four continents. We found a negative dose-dependent response for Cu but not for Cd for bacterial alpha-diversity in the environments, only for Cu additions exceeding 29.6 mg kg-1 (first loss of - 0.06% at 30 mg kg-1). The maximal loss of bacterial alpha-diversity registered was 13.89% at 3837 mg kg-1. Our results first highlight that bacterial communities behave differently to soil pollution depending on the metal. Secondly, our study suggests that even extreme doses of Cu do not cause a dramatic loss in alpha-diversity, highlighting how the behaviour of bacterial communities diverges from soil macro-organisms.
Collapse
Affiliation(s)
- Marco Signorini
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy.
| | - Gabriele Midolo
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy.
| |
Collapse
|
26
|
Zhu Y, Zhou S, Zhu J, Wang P, Wang X, Jia X, Wågberg T, Hu G. Mesoporous carbon decorated with MIL-100(Fe) as an electrochemical platform for ultrasensitive determination of trace cadmium and lead ions in surface water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113987. [PMID: 35994906 DOI: 10.1016/j.ecoenv.2022.113987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In this work, MIL-100(Fe)-decorated mesoporous carbon powders (MC@MIL-100(Fe)) were prepared by in situ growth of MIL-100(Fe) on the surface of ZIF-8 framework-based mesoporous carbons (MC). The hybrid material was characterized using SEM equipped with EDS mapping for morphology investigation, X-ray photoelectron spectroscopy for chemical valence analysis, and X-ray diffraction for crystal structure determination. The developed sensor separated from the traditional bismuth film decoration, and simultaneously, MC@MIL-100(Fe) was applied for the first time to electrochemically detect trace amounts of Pb(II) and Cd(II). The fabricated MC@MIL-100(Fe)-based electrochemical sensor showed excellent response to the target analytes at -0.55 and - 0.75 V for lead and cadmium ions, respectively. By adjusting some measurement parameters, that is, the loading concentration of MC@MIL-100(Fe), acidity of the HAc-NaAc buffer (ABS), deposition potential, and deposition time, the analytical performance of the proposed electrochemical sensor was examined by exploring the calibration curve, repeatability, reproducibility, stability, and anti-interference under optimized conditions. The response current of the proposed MC@MIL-100(Fe) electrochemical sensor showed a well-defined linear relationship in the concentration ranges of 2-250 and 2-270 μg·L-1 for Cd(II) and Pb(II), respectively. In addition, the detection limits of the sensor for Cd(II) and Pb(II) were 0.18 and 0.15 μg L-1, respectively, which are well below the World Health Organization (WHO) drinking water guideline value. The MC@MIL-100(Fe) can be potentially used as an electrochemical platform for monitoring heavy metals in surface water, with satisfactory results.
Collapse
Affiliation(s)
- Yelin Zhu
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinzhong Wang
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Department of Physics, Umeå University, Umeå 901 87, Sweden.
| |
Collapse
|
27
|
Li P, Hao H, Bai Y, Li Y, Mao X, Xu J, Liu M, Lv Y, Chen W, Ge D. Convolutional neural networks-based health risk modelling of some heavy metals in a soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156466. [PMID: 35690189 DOI: 10.1016/j.scitotenv.2022.156466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The long-term consumption of heavy metal-rich rice can cause serious harm to human health. However, the existing health risk assessment (HRA) can only be performed after the rice has been harvested, and this approach belongs to a passive and lagging pattern. This study is the first to explore the feasibility of health risk (HR) prediction by proposing the indirect model CNNHR-IND and the direct model CNNHR-DIR based on the convolutional neural network (CNN) technology. The dataset included 390 pairs of soil-rice samples collected from You County, China, with 17 environmental covariates. The R2 values for CNNHR-IND for non-carcinogenic and carcinogenic risks were 0.578 and 0.554, respectively, and those for CNNHR-DIR were 0.647 and 0.574, respectively. The results demonstrated that both models performed well, especially CNNHR-DIR had a higher estimation accuracy. The spatial autocorrelation analysis indicated that CNNHR-DIR exerted no systematic bias in the prediction results for health risks, confirming the rationality of the CNNHR-DIR model. The sensitivity analysis further confirmed the generalizability and robustness of CNNHR-DIR. This study proved the feasibility of HR prediction and the potential of CNN technology in HRA, and is significant regarding early risk warnings of rice planting and the sustainable development of public health.
Collapse
Affiliation(s)
- Panpan Li
- College of Computer, National University of Defense Technology, Changsha 410003, PR China
| | - Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Yang Bai
- General Hospital of Northern Theater Command, Shenyang 110000, PR China
| | - Yuanyuan Li
- Hunan Pinbiao Huace Testing Technology Co., Ltd, Changsha 410100, PR China
| | - Xiaoguang Mao
- College of Computer, National University of Defense Technology, Changsha 410003, PR China.
| | - Jianjun Xu
- College of Computer, National University of Defense Technology, Changsha 410003, PR China
| | - Meng Liu
- General Hospital of Northern Theater Command, Shenyang 110000, PR China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
28
|
Sharma R, Jasrotia T, Umar A, Sharma M, Sharma S, Kumar R, Alkhanjaf AAM, Vats R, Beniwal V, Kumar R, Singh J. Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: An experimental and mechanistic approach. ENVIRONMENTAL RESEARCH 2022; 212:113337. [PMID: 35469857 DOI: 10.1016/j.envres.2022.113337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report a bacteria-based strategy as an efficient, reasonable, benign, and promising methodology for remediating heavy metals fed waterbodies. The contemporary study deals with isolating, screening, and characterizing heavy metal resistive bacteria from metal-rich sites. The transcriptome analysis reveals the identity of the isolated species as Bacillus pumilus and Bacillus cereus. Batch studies put forth the bioremoval results in designed conditions of different pH, concentration, dose, and time. The mechanistic actions are drawn using complementary techniques such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The theory of surface adsorption of lead (Pb(II)) and nickel (Ni(II)) is further fostered by the application of adsorption isotherms. The conducted studies establish the bacterial morphological stratagems and multifarious biochemical approaches for countering metallic ions of Pb(II) and Ni(II). The exhibition of significant removal results by the isolated bacterial strains in simulated water samples with remarkable proliferation rates has opened up its favorability for industrial platforms.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India
| | - Teenu Jasrotia
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| | - Monu Sharma
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India
| | - Sonu Sharma
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Abdulrab Ahmed M Alkhanjaf
- Molecular Diagnostics, Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Rajeev Vats
- Scientist E and Head, Northern Regional Laboratory, Bureau of Indian Standards, Mohali, Punjab, India
| | - Vikas Beniwal
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India.
| | - Joginder Singh
- Department of Chemistry¸ Maharishi Markandeshwar (Deemed to Be University), Mullana (Ambala), 133207, Haryana, India
| |
Collapse
|
29
|
Geng H, Wang F, Yan C, Ma S, Zhang Y, Qin Q, Tian Z, Liu R, Chen H, Zhou B, Yuan R. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129045. [PMID: 35525218 DOI: 10.1016/j.jhazmat.2022.129045] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, the metal(loid) fractions in two alkaline iron tailings areas with similar physico-chemical properties and the enrichment ability of dominant plants in these areas were investigated. Additionally, high-throughput sequencing and metagenome analysis were used to examine the rhizosphere microbial community structures and their strategies and potential for carbon fixation, nitrogen metabolism, and metal(loid) resistance in mining areas. Results showed that Salsola collina, Setaria viridis, and Xanthium sibiricum have strong enrichment capacity for As, and the maximum transport factor for Mn can reach 4.01. The richness and diversity of bacteria were the highest in rhizosphere tailings, and the dominant phyla were Proteobacteria, Actinobacteria, Ascomycota, and Thaumarchaeota. The key taxa present in rhizosphere tailings were generally metal(loid) resistant, especially Sphingomonas, Pseudomonas, Nocardioides, and Microbacterium. The reductive citrate cycle was the main carbon fixation pathway of microorganisms in tailings. Rhizosphere microorganisms have evolved a series of survival strategies and can adapt to oligotrophic and metal(loid) polluted mining environments. The results of this study provide a basis for the potential application of plant-microbial in situ remediation of alkaline tailings.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China.
| | - Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yiyue Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, Beijing 101500, China
| | - Ruiping Liu
- Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, 15 Shixing St, Shijingshan District, Beijing 100043, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
30
|
Wu P, Rane NR, Xing C, Patil SM, Roh HS, Jeon BH, Li X. Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129002. [PMID: 35490635 DOI: 10.1016/j.jhazmat.2022.129002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive understanding of the cellular response of microbes to metal stress is necessary for the rational development of microbe-based biosorbents for metal removal. The present study investigated the copper (Cu) sorption and resistance mechanism of Bacillus cereus strain T6, a newly isolated Cu-resistant bacterium, by integrative analyses of physiochemistry, genomics, transcriptomics, and metabolomics. The growth inhibition assay and biosorption determination showed that this bacterium exhibited high tolerance to Cu, with a minimum inhibitory concentration of 4.0 mM, and accumulated Cu by both extracellular adsorption and intracellular binding. SEM microscopic images and FTIR spectra showed significant cellular surface changes at the high Cu level but not at low, and the involvement of surface functional groups in the biosorption of Cu, respectively. Transcriptomic and untargeted metabolomic analyses detected 362 differentially expressed genes and 60 significantly altered metabolites, respectively. Integrative omics analyses revealed that Cu exposure dramatically induced a broad spectrum of genes involved in Cu transport and iron homeostasis, and suppressed the denitrification pathway, leading to significant accumulation of metabolites for metal transporter synthesis, membrane remolding, and antioxidant activities. The results presented here provide a new perspective on the intricate regulatory network of Cu homeostasis in bacteria.
Collapse
Affiliation(s)
- Ping Wu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chao Xing
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
31
|
Li P, Hao H, Zhang Z, Mao X, Xu J, Lv Y, Chen W, Ge D. A field study to estimate heavy metal concentrations in a soil-rice system: Application of graph neural networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155099. [PMID: 35398437 DOI: 10.1016/j.scitotenv.2022.155099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Accurate prediction of the concentration of heavy metals is of great significance for assessing the quality of agricultural products and reducing health risks. However, the complexity and interconnectivity of the farmland ecosystem restricts the improvement of the prediction accuracy of traditional methods. This research explored the application potential of graph neural network (GNN) technology, which can extract and learn information in large-scale networks in detail, in the field of heavy metal prediction for the first time. In this study, a heavy metal prediction model for rice, CoNet-GNN, was proposed with 17 environmental factors as input variables using the co-occurrence network and GNN. Experimental results using a dataset from a field study showed that the R2 of CoNet-GNN for predicting Cd, Pb, Cr, As, and Hg had outstanding values of 0.872, 0.711, 0.683, 0.489, and 0.824, respectively. Sensitivity analysis further indicated that CoNet-GNN had good stability and robustness. Compared with random forest, gradient boosting, and multilayer perceptron, CoNet-GNN made a remarkable improvement to the prediction accuracy of all studied heavy metals. Therefore, CoNet-GNN can effectively simulate the rich relationships and laws between various factors in the soil-rice system and effectively characterize the influence diffusion path. Furthermore, it provides new ideas for heavy metal prediction based on network research methods and expands the technical scope of heavy metal evaluation.
Collapse
Affiliation(s)
- Panpan Li
- College of Computer, National University of Defense Technology, Changsha 410005, PR China
| | - Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Zhuo Zhang
- College of Information and Communication Technology, Guangzhou College of Commerce, Guangzhou 510000, PR China.
| | - Xiaoguang Mao
- College of Computer, National University of Defense Technology, Changsha 410005, PR China
| | - Jianjun Xu
- College of Computer, National University of Defense Technology, Changsha 410005, PR China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
32
|
Luo X, Yang Y, Xie S, Wang W, Li N, Wen C, Zhu S, Chen L. Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128832. [PMID: 35390615 DOI: 10.1016/j.jhazmat.2022.128832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Drying and rewetting can markedly influence the microbial structure and function of river biofilm communities and potentially result in the release of metal ions from biofilms containing metals. However, little information is available on the response of metal-enriched biofilms to drying and rewetting over time. In this study, natural biofilms were allowed to develop in four rotating annular bioreactors for 2-11 weeks, followed by drying for 5 days and rewetting for another 5 days. Subsequently, we assessed Zn, Cd, and As desorption from the biofilms and other related parameters (microbial community structure, biofilm morphology, enzyme activity, and surface components as well as characteristics). High-throughput sequencing of the 16 S rRNA gene and confocal laser scanning microscopy revealed that the biofilm architecture and bacterial communities were distinct in different growth phases and under drying and rewetting conditions (permutational multivariate analysis of variance; p = 0.001). Proteobacteria was the dominant bacterial phylum, accounting for 69.7-90.1% of the total content. Kinetic experiments revealed that the drying and rewetting process increased metal desorption from the biofilm matrix. The desorption of heavy metals was affected by the age of the biofilm, with the maximum amount of metal ions released from 2-week-old biofilms (one-way ANOVA, Zn: p < 0.001; Cd: p = 0.008; As: p < 0.001). The modifications in biofilm properties and decreased diversity of the bacterial community (paired t-test, p < 0.05) after drying and rewetting decreased the number of specific binding sites for metal ions. In addition, negatively charged arsenate and other anions in the liquid phase could compete with As ions for adsorption sites to promote the release of As(V) and/or reductive desorption of As(III). The results of this study and their interpretation are expected to help refine the behaviors of heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shanshan Xie
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Wenwen Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
33
|
Han H, Wu X, Bolan N, Kirkham MB, Yang J, Chen Z. Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions. CHEMOSPHERE 2022; 293:133534. [PMID: 34999099 DOI: 10.1016/j.chemosphere.2022.133534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In heavy metal-contaminated farmland, microorganisms or organic fertilizers can be used to minimize heavy metal uptake by crops to ensure food safety. However, the mechanisms by which urease-producing and metal-immobilizing bacteria combined with manure inhibit Cd uptake in wheat (Triticum aestivum L.) remain unclear. Herein, the effects of Enterobacter bugandensis TJ6, sheep manure (SM), and TJ6 combined with SM on Cd uptake by wheat and the mechanisms involved were investigated under field conditions. The results showed that strain TJ6 increased the urease activity and the proportion of strains with a high Cd adsorption capacity in SM, thereby enhancing the Cd adsorption capacity of SM in solution. Strain TJ6 combined with SM improved the rhizosphere soil urease activity, NH4+/NO3- ratio, and pH, thus reducing the Cd content (75.9%) in wheat grain. In addition, TJ6+SM reduced the bacterial community diversity but shifted the structure of the bacterial community in rhizosphere soil. Interestingly, the relative abundances of urease-producing bacteria and metal-immobilizing bacteria (Enterobacter, Bacillus, Exiguobacterium, Rhizobium, and Serratia) in rhizosphere soil were enriched, which enhanced wheat resistance to Cd toxicity. These results showed that urease-producing and metal-immobilizing bacteria combined with sheep manure can inhibit the uptake of Cd by wheat.
Collapse
Affiliation(s)
- Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xuejiao Wu
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan Campus, NSW, 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| |
Collapse
|
34
|
Xu S, Li L, Zhan J, Guo X. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114418. [PMID: 34999283 DOI: 10.1016/j.jenvman.2021.114418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, a co-composting of rural organic solid waste (rural sewage sludge, kitchen waste and corn stalks) was conducted to analyze the variation of heavy metals (As, Cu, Cr, Ni, Pb, Hg, and Zn) and their major influencing factors. During composting, significant changes were observed in the total contents of heavy metals (p < 0.01): the total concentrations of As, Cu, Hg, Pb and Zn increased by 7.5%, 54.1%, 26.3%, 15.8%, and 34.2%, whereas that of Cr and Ni decreased by 71.3% and 33.4%, respectively. Heavy metals were mainly bound to the oxidizable and residual fractions. Spearman and Redundancy analysis (RDA) indicated that substances were significantly correlated with the changes in speciation of heavy metals, among all the factors, while pH and temperature were the dominating environmental influencing parameters. Several metal-resistant bacterial genera (Pseudomonas, Paenibacillus, Bacillus, Acinetobacter, Desulfovibrio, and Ochrobactrum, etc) were observed, with significant explanatory capacity for the changes in heavy metals. Composting showed a poor effect on heavy metal passivation, except for that of As. After composting, the heavy metal contents were consistent with the application standards. The evaluation of potential ecological risk showed a high cumulative ecological risk (336.9) of heavy metals. This study provides technical support and practical information for the disposal and safe recycling for rural organic solid waste.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
35
|
She J, Liu J, He H, Zhang Q, Lin Y, Wang J, Yin M, Wang L, Wei X, Huang Y, Chen C, Lin W, Chen N, Xiao T. Microbial response and adaption to thallium contamination in soil profiles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127080. [PMID: 34523503 DOI: 10.1016/j.jhazmat.2021.127080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a trace metal with high toxicity. Comprehensive investigation of spatial distribution of Tl and microorganism is still limited in soils from mining area. In this study, 16S rRNA sequencing and network analysis were used for deciphering the co-occurrence patterns of bacterial communities in two different types of soil profiles around a typical Tl-bearing pyrite mine. The results showed that geochemical parameters (such as pH, S, Tl, Fe and TOM) were the driving forces for shaping the vertical distribution of microbial community. According to network analysis, a wide diversity of microbial modules were present in both soil profiles and affected by depth, significantly associated with variations in Tl geochemical fractionation. Phylogenetic information further unveiled that the microbial modules were mainly dominated by Fe reducing bacteria (FeRB), Fe oxidizing bacteria (FeOB), S oxidizing bacteria and Mn reducing bacteria. The results of metagenome indicated that Fe, Mn and S cycle in soil are closely involved in the biogeochemical cycle of Tl. The findings of co-occurrence patterns in the bacterial network and correlation between microorganisms and different geochemical fractions of Tl may benefit the strategy of bioremediation of Tl-contaminated soils with indigenous microbes.
Collapse
Affiliation(s)
- Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yeliang Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Changzhi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenli Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Nan Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
36
|
Brito HS, Carraça EV, Palmeira AL, Ferreira JP, Vleck V, Araújo D. Benefits to Performance and Well-Being of Nature-Based Exercise: A Critical Systematic Review and Meta-Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:62-77. [PMID: 34919375 DOI: 10.1021/acs.est.1c05151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prior reviews point to the superior benefits of exercising in nature vs in conventional indoor venues, particularly in terms of well-being. However, physical exercise performance, neither in terms of efficacy nor efficiency, has not been sufficiently addressed by past reviews of this topic. Therefore, we conducted both a systematic review and meta-analysis of the experimental literature that relates to differences in exercise performance and well-being between exercising in nature and in conventional indoor venues. Forty-nine relevant studies─the outcome data of which were used for the systematic review─were located within the Web of Science, PubMed, and Scopus databases. The meta-analyses, using data from twenty-four of the relevant studies, revealed no significant overall environmental effect on task performance efficacy outcomes (p = 0.100). For nature-based exercise, however, marginally positive cognitive performance outcomes (p = 0.059), lower ratings of perceived exhaustion (p = 0.001), and higher levels of vigor (p = 0.017) were observed, indicating higher performance efficiency. As for the effects of environment on well-being, positive affect was significantly higher for nature-based exercise (p = 0.000), while perceived stress was significantly higher for indoor exercise (p = 0.032). These results must, however, be interpreted with caution. High levels of bias and between-study heterogeneity were observed. Nonetheless, given several noticeable trends in the results, it may be that exercising in nature enhances the efficiency of exercise task performance to a greater extent than does indoor exercise.
Collapse
Affiliation(s)
- Henrique S Brito
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada - Dafundo, 1499-002, Lisbon Portugal
| | - Eliana V Carraça
- CIDEFES, Faculdade de Educação Física e Desporto, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 1749-024, Lisbon Portugal
| | - António L Palmeira
- CIDEFES, Faculdade de Educação Física e Desporto, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 1749-024, Lisbon Portugal
| | - José P Ferreira
- CIDAF, Faculdade de Ciências do Desporto e Educação Física, Universidade de Coimbra, Estádio Universitário de Coimbra, 3040-248, Coimbra, Portugal
| | - Veronica Vleck
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada - Dafundo, 1499-002, Lisbon Portugal
| | - Duarte Araújo
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada - Dafundo, 1499-002, Lisbon Portugal
| |
Collapse
|
37
|
Zhang Y, Sun Q, Wang J, Ma Y, Cao B. Responses of heavy metals mobility and resistant bacteria to adding time of activated carbon during chicken manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118070. [PMID: 34479158 DOI: 10.1016/j.envpol.2021.118070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
With the wide application of compost in agriculture, heavy metals (HMs) continue to accumulate in the soil environment, which poses a great threat to the health of the soil environment. Therefore, it is critical for effectively reduce the mobility of HMs. In this study, the influence of activated carbon (AC) addition time on mobility of HMs (Cu, Zn and Pb) and HMs resistant bacteria structure were evaluated during chicken manure composting. The result showed that the addition of AC in the thermophilic period could effectively reduce the mobility of HMs. Subsequently, high-throughput sequencing results showed that the dominant phyla were Proteobacteria, Firmicutes, Actinbacteria, Deinococcus-Thermus, Chloroflexi, Gemmatimonadetes and Bacteroidetes within the sample, which were ubiquitous and abundant in composting. The Redundancy analysis (RDA) results indicated that the mobility of HMs (Cu, Zn and Pb) by superior bacteria fate varied in AC amendment composting. Ultimately, a regulation method is proposed to influence the mobility of HMs by regulating the bacteria community in the AC compost. Our current studies suggest that the addition of AC during compost preparation (thermophilic period) is an effective strategy in regulating the mobility (bioavailability) of HMs, thereby significantly reducing environmental pollution problems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Qinghong Sun
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianmin Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuexuan Ma
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Cao
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
38
|
Xu S, Xiaojing L, Xinyue S, Wei C, Honggui L, Shiwen X. Pig lung fibrosis is active in the subacute CdCl 2 exposure model and exerts cumulative toxicity through the M1/M2 imbalance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112757. [PMID: 34509164 DOI: 10.1016/j.ecoenv.2021.112757] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollutant cadmium (Cd) can cause macrophage dysfunction, and the imbalance of M1/M2 is involved in the process of tissue fibrosis. In order to explore the effect of subacute CdCl2 exposure on pig lung tissue fibers and its mechanism, based on the establishment of this model, ICP-MS, H&E staining, Masson staining, Immunofluorescence, RT-PCR, and Western Blot methods were used to detect related indicators. The results found that lung tissue fibrosis, Cd content significantly increased, lung tissue ion disturbance, miR-20a-3p down-regulation, M1/M2 imbalance, LXA4/FPR2 content decreased, MDA content increased, NF-κB/NLRP3, TGFβ pathway, PPARγ/Wnt pathway activated, and the expression of fibrosis-related factors increased. The above results indicate that subacute CdCl2 exposure increase Cd content in the pig lungs, which leads to M1/M2 imbalance and down-regulates the content of LXA4/FPR2, further activates the oxidative stress/NF-κB/NLRP3 pathway, thereby activating the TGFβ and PPARγ/Wnt pathways to induce fibrosis. This study aims to reveal the toxic effects of CdCl2 and will provide new insights into the toxicology of Cd.
Collapse
Affiliation(s)
- Shi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Xiaojing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sun Xinyue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cui Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Liu Honggui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
39
|
Lin H, Chen G, Zhao H, Cao Y. Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113458. [PMID: 34358938 DOI: 10.1016/j.jenvman.2021.113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas putida is potentially used in the bioremediation of heavy metals (HMs). Its response to different HMs in different environments is still not fully understood. This study investigated resistance against 12 kinds of metals by P. putida CZ1 planktonic cells and its biofilm in LB and mineral medium (MM). P. putida CZ1 biofilms have high resistance and accumulation capacity for Cu2+, Zn2+, Pb2+, Fe3+, Mn2+, Al3+ and Ni2+, but less resistance to Co2+, Cd2+, Cr2O72-, Ag+ and Hg2+. Biofilms were 2-8 times more resistant to Cu2+ and Zn2+ than planktonic cells. There was a strong correlation between the P content and the accumulation of Cu2+, Zn2+, Fe3+, Mn2+, Pb2+, Ni2+and Al3+ respectively. Confocal laser scanning microscopy (CLSM) combined with live/dead staining study found that cells in the biofilms can keep viable after 36 h under MIC of Cu2+ or Zn2+ both in LB and MM. When the metal concentration increased, cells can be killed gradually. For Cu2+, Zn2+, Fe3+, Mn2+, Pb2+ and Ni2+, higher resistance was found in MM (2-4 times higher) than in LB and higher accumulation of these metals were also found in MM. P. putida CZ1 biofilm cultured in MM with citric acid as carbon source had stronger resistance and accumulation ability to Cu2+, Zn2+, Pb2+, Fe3+, Mn2+, and Ni2+. This suggested that P. putida CZ1 had greater remediation potential for these metals in organic acid rich environments.
Collapse
Affiliation(s)
- Huirong Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Guangcun Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Hongmei Zhao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yuanqing Cao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510080, PR China
| |
Collapse
|
40
|
Zhao H, Lin J, Wang X, Shi J, Dahlgren RA, Xu J. Dynamics of Soil Microbial N-Cycling Strategies in Response to Cadmium Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14305-14315. [PMID: 34617741 DOI: 10.1021/acs.est.1c04409] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally increasing trace metal contamination of soils requires a better mechanistic understanding of metal-stress impacts on microbially mediated nutrient cycling. Herein, a 5-month laboratory experiment was employed to assess the effects of cadmium (Cd) on soil microbial N-cycling processes and associated functional gene abundance, with and without urea amendment. In non-N-amended soils, Cd progressively stimulated microbial populations for N acquisition from initial dissolved organic N (DON) to later recalcitrant organic N. The acceleration of N catabolism was synchronously coupled with C catabolism resulting in increased CO2/N2O fluxes and adenosine triphosphate (ATP) contents. The abundance of microbes deemed inefficient in N catabolism was gradually repressed after an initial stimulation period. We posit that enhanced exergonic N processes diminished the need for endergonic activities as a survival strategy for N communities experiencing metal stress. With urea amendment, Cd exhibited an initial stimulation effect on soil nitrification and a later a promotion effect on mineralization, along with an increase in the associated microbial populations. In N-amended soils, Cd accelerated N/C transformation processes, but decreased N2O and CO2 fluxes by 19 and 14%, respectively. This implies that under eutrophic conditions, Cd synchronously altered microbial C/N metabolism from a dominance of catabolic to anabolic processes. These results infer a nutrient-based adjustment of microbial N-cycling strategies to enhance their metal resistance.
Collapse
Affiliation(s)
- Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
41
|
Zhou Y, Awasthi SK, Liu T, Verma S, Zhang Z, Pandey A, Varjani S, Li R, Taherzadeh MJ, Awasthi MK. Patterns of heavy metal resistant bacterial community succession influenced by biochar amendment during poultry manure composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126562. [PMID: 34252662 DOI: 10.1016/j.jhazmat.2021.126562] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to investigate the heavy metal resistant bacteria (HMRB) community succession and bacterial activity in poultry manure (PM) composting. Five different concentration of chicken manure biochar (CMB) at 0%, 2%, 4%, 6%, and 10% on a dry weight basis was applied with initial feedstock (poultry manure + wheat straw) and indicated with T1, T2, T3, T4, and T5. In addition, high-throughput sequencing, principal coordinate analysis, and correlation analysis were used to analyze the evolution of HMRB communities during composting. The study indicated that crucial phyla were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The bacterial diversity in the CMB amendment treatment was higher than in the control treatment, and T4 treatment has the highest among all CMB applied treatments. Moreover, results from CCA indicated that T4 and T5 treatments quickly enters the high-temperature period which is maintained for 5 days, and is significantly positively correlated with Proteobacteria, and Actinobacteria. These findings offer insight into potential strategies to understand the succession of HMRBs during PM reuse. Overall, the above results show the addition of 6% biochar (T4) was potentially beneficial to enrich the abundance of bacterial community to improve composting environment quality and composting efficiency. In addition, effective to immobilized the heavy metals and HMRB in the end product.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|
42
|
Duan Y, Yang J, Guo Y, Wu X, Tian Y, Li H, Awasthi MK. Pollution control in biochar-driven clean composting: Emphasize on heavy metal passivation and gaseous emissions mitigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126635. [PMID: 34329093 DOI: 10.1016/j.jhazmat.2021.126635] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Present study was focus on the pollution control aspect of gaseous mitigation and heavy metal passivation as well as their associated bacterial communities driven by apple tree branch biochar (BB) during sheep manure composting. Six treatment was performed with distinct concentration of BB from 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% as T1 to T6. Compared with compost without additive, biochar-based composting recorded faster thermophilic process (4thd) and longer duration (12-14d), lower gaseous emission in terms of ammonia (5.37-10.29 g), nitrous oxide (0.12-0.47 g) and methane (4.38-30.29 g). Notably highest temperature (65.3 ℃) and active thermophilic duration (14d), minimized gaseous volatilization were detected in 10%BB composting. Aspect of non-degradability and enrichment-concentration properties of heavy metals, the total copper (Cu) and zinc (Zn) were increased (from initial 12.71-17.91 to final 16.36-29.36 mg/kg and 107.39-146.58-161.48-211.91 mg/kg). In view of available diethylene triamine pentacetic acid (DTPA) extractable form, DTPA-Cu and DTPA-Zn from 4.29 to 6.57 and 31.66-39.32 mg/kg decreased to 3.75-4.82 and 23.43-40.54 mg/kg, especially the maximized passivation rate of 46.95% and 56.27% were present in 10%BB composting. Additionally, bacterial diversity of biochar-based composting was increased (1817-2310 OTUs) than control (1686 OTUs) and dominant by Firmicutes (52.75%), Bacteroidetes (28.41%) and Actinobacteriota (13.98%). Validated 10% biochar-based composting is the optimal option for effectively control environmental pollution to obtain hygienic composting.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jianfeng Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yaru Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoping Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuli Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
43
|
Barón-Sola Á, Toledo-Basantes M, Arana-Gandía M, Martínez F, Ortega-Villasante C, Dučić T, Yousef I, Hernández LE. Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126502. [PMID: 34214848 DOI: 10.1016/j.jhazmat.2021.126502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. μSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 μM Cd and 15 μM Hg after short-term (24 h) treatments. This occurred in a context where metals triggered intracellular oxidative stress and chloroplast damage, along with autophagy induction by overexpressing AUTOPHAGY-RELATED PROTEIN 8 (ATG8). Thin layer chromatography analysis confirmed that toxic metals promoted remarkable changes in lipid profile, with higher degree of esterified fatty acid unsaturation as detected by gas chromatography coupled with mass spectrometry. Under Cd stress, there was specifically higher unsaturation of free fatty acids, while Hg led to stronger unsaturation in monogalactosyldiacylglycerol. μSR-FTIR spectroscopy proved as a valuable tool to identify biochemical alterations in microalgae, information that could be exploited to optimise approaches for metal decontamination.
Collapse
Affiliation(s)
- Ángel Barón-Sola
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Margarita Toledo-Basantes
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - María Arana-Gandía
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Tanja Dučić
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Luis E Hernández
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain.
| |
Collapse
|
44
|
Ke B, Nguyen H, Bui XN, Bui HB, Nguyen-Thoi T. Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112808. [PMID: 34034129 DOI: 10.1016/j.jenvman.2021.112808] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal adsorption onto biochar is an effective method for the treatment of the heavy metal contamination of water and wastewater. This study aims to evaluate the heavy metals sorption efficiency of different biochar characteristics and propose a novel intelligence method for predicting the sorption efficiency of heavy metal onto biochar with high accuracy based on the back-propagation neural network (BPNN) and fuzzy C-means clustering algorithm (FCM), named as FCM-BPNN. Accordingly, the FCM algorithm was used to simulate the properties of metal adsorption data and divide them into clusters with similar features. The clustering results showed that the FCM algorithm simulated metal adsorption data's properties very well and classified them based on biochar characteristics and adsorption conditions. Afterward, BPNN models were well-developed based on these clusters, and their outcomes were then combined (i.e., FCM-BPNN). The results indicated that the FCM-BPNN model could predict heavy metal's sorption efficiency onto biochar with a promising result (i.e., RMSE of 0.036, R2 of 0.987, RSE of 0.006, MAPE of 0.706, and VAF of 98.724). Whereas the BPNN model, without optimizing the FCM algorithm, was proved with lower performance (RMSE = 0.050, R2 = 0.977, RSE = 0.011, MAPE = 0.802, and VAF = 97.662). These findings revealed that the FCM algorithm's presence impressively improved the BPNN model's accomplishment in predicting heavy metal's sorption efficiency onto biochar, and the proposed FCM-BPNN model can improve water/wastewater treatment plants' quality and provide a more efficient process for heavy metals with performance superiority.
Collapse
Affiliation(s)
- Bo Ke
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China; School of Urban Construction, Wuchang University of Technology, Wuhan, 430223, China
| | - Hoang Nguyen
- Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam.
| | - Xuan-Nam Bui
- Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam; Center for Mining, Electro-Mechanical Research, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam.
| | - Hoang-Bac Bui
- Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, 100000, Viet Nam; Center for Excellence in Analysis and Experiment, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, 100000, Viet Nam.
| | - Trung Nguyen-Thoi
- Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
45
|
Deng R, Huang D, Lei L, Zhou C, Yin L, Liu X, Chen S, Li R, Tao J. Stabilization of lead in polluted sediment based on an eco-friendly amendment strategy: Microenvironment response mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125534. [PMID: 33730642 DOI: 10.1016/j.jhazmat.2021.125534] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Stabilization is the most important remediation mechanisms for sediment polluted heavy metals. However, little research has been done on the identification of microenvironmental response and internal correlation, as well as synergistic mechanisms during heavy metal remediation. This study aims to investigate the inner response mechanisms of microenvironment after the lead (Pb) are gradually stabilized in sediment. An eco-friendly amendment strategy which firstly used 100% biodegradable sophorolipids (SOP) to modify chlorapatite (ClAP) for the fabrication of SOP@nClAP was applied in this study. The stabilization efficiency of Pb was significantly improved by SOP@nClAP compared with ClAP. Most importantly, the high-throughput sequencing showed that the dominant species in the sediment changed with the stabilization of Pb. The decrease of Proteobacteria and increase of Firmicutes, especially the Sedimentibacter within the phylum Firmicute directly suggested that large amounts of Pb were stabilized. This research is not only devoted to stabilize Pb in sediment by eco-friendly amendment strategy, but also keep a watchful eye on microenvironment response mechanisms during the Pb stabilization in sediment. Therefore, this study lays a foundation for the future application of more heavy metal amendment strategies in the sediment environment and improves the possibility of large-scale site amendment.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
46
|
Wang X, Xia R, Sun M, Hu F. Metagenomic sequencing reveals detoxifying and tolerant functional genes in predominant bacteria assist Metaphire guillelmi adapt to soil vanadium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125666. [PMID: 34088179 DOI: 10.1016/j.jhazmat.2021.125666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Due to extensive vanadium (V) mining and processing, an increasing amount of V has accumulated in soil, which poses a threat to public health. Consequently, we used earthworm (Metaphire guillelmi) incubation trials in V-contaminated soil (0-300 mg kg-1) to explore the response of soil indigenous bacteria and earthworm intestinal bacteria to V stress. Metagenomic analysis revealed that V exposure changed the bacterial composition in the soil and the worm gut. However, although the core species varied between soil and worm gut, the two systems shared the predominant bacteria, including Staphylococcus, Nocardioides, Streptococcus, and Nitrosopumilales. Two functional genotypes were detected in the shared core species, i.e., reductive genes and resistant genes. The reductive genes mainly consisted of those involved in glutathione, cysteine, methionine, sulfur, and nitrogen metabolisms. The resistant genes included those encoding the oxidation damage repair system, the outer membrane protein, the antioxidant enzyme system, the metal-binding, and the heavy-metal efflux. Therefore, the shared core species exert a comprehensive strategy to survive V stress involving the alliance of heavy metal detoxifying and tolerant genes. This study provides novel information about the detoxification mechanisms of bacterial populations in soil and worm gut to survive V stress.
Collapse
Affiliation(s)
- Xinwei Wang
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Xia
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Wang C, Liu S, Wang P, Chen J, Wang X, Yuan Q, Ma J. How sediment bacterial community shifts along the urban river located in mining city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42300-42312. [PMID: 33811632 DOI: 10.1007/s11356-020-12031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Bacterial communities play critical roles in biogeochemical cycles and serve as sensitive indicators of environmental fluctuation. However, the influence of mineral resource exploitation on shaping the bacterial communities in the urban river is still ambiguous. In this study, high-throughput sequencing was used to determine the spatial distribution of the sediment bacterial communities along an urban river in the famous mining city Panzhihua of China. The results showed that mineral resource exploitation had a significant impact on the urban river bacterial community structure but not on the bacterial ecological functions. Distinct families of bacteria often associated with nutrients (i.e., Comamonadaceae and Sphingomonadaceae) and metal contaminants (i.e., Rhodobacteraceae) were more predominant in the residential and mining area, respectively. Relative to dispersal dynamics, environmentally induced species sorting may primarily influence bacterial community structure. Heavy metals and sediment physicochemical properties had both similar and significant influence on shaping bacterial community structure. Among heavy metals, essential metal elements explained more rates of bacterial variation than toxic metals at moderate contaminant levels. Moreover, the bacteria with multiple metal resistances identified in culture-dependent experiments were probably not suitable for indicating heavy metal contamination in field research. Thus, several sensitive bacterial genera such as Rhodobacter, Hylemonella, and Dechloromonas were identified as potential bioindicators to monitor metals (iron and titanium) and nutrients (phosphorus and organic carbon) in the river ecosystem of the Panzhihua region. Together, these results profiled the coupling effect of urbanization and mineral resource utilization on shaping sediment bacterial communities in urban rivers.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Jingjie Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| |
Collapse
|
48
|
Han H, Zhang H, Qin S, Zhang J, Yao L, Chen Z, Yang J. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. CHEMOSPHERE 2021; 276:130157. [PMID: 33714158 DOI: 10.1016/j.chemosphere.2021.130157] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Microbial passivation remediation of heavy metal-contaminated farmland has attracted increasing attention. However, the molecular mechanism by which heavy metal-immobilizing bacteria inhibit the uptake of Cd and Pb by wheat is not clear. Herein, a heavy metal-immobilizing bacterium, Enterobacter bugandensis TJ6, was used to reveal its immobilization mechanisms of Cd and Pb and inhibition of Cd and Pb uptake by wheat using metabolomics and proteomics. Compared with the control, strain TJ6 significantly reduced (44.7%-56.6%) the Cd and Pb contents of wheat roots and leaves. Strain TJ6 reduced the Cd and Pb concentrations by adsorption, intracellular accumulation, and bioprecipitation in solution. Untargeted metabolomics showed that strain TJ6 produced indole-3-acetic acid (IAA), betaine, and arginine under Cd and Pb stress, significantly improving the resistance of strain TJ6 and wheat to Cd and Pb. Label-free proteomics showed that 143 proteins were upregulated and 61 proteins were downregulated in wheat roots in the presence of strain TJ6. The GO items of the differentially expressed proteins (DEPs) involved in protein-DNA complexes, DNA packaging complexes, and peroxidase activity were enriched. In addition, the ability of wheat roots to synthesize abscisic acid and jasmonic acid was improved. In conclusion, strain TJ6 reduced Cd and Pb uptake in wheat through its own adsorption of Cd and Pb and regulation of wheat root DNA repair ability, plant hormone levels, and antioxidant activities. These results provide new insights and a theoretical basis for the application of heavy metal-immobilizing bacteria in safe wheat production.
Collapse
Affiliation(s)
- Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hao Zhang
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Shanmei Qin
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jun Zhang
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Lunguang Yao
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Zhaojin Chen
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
49
|
Song C, Zhao Y, Pan D, Wang S, Wu D, Wang L, Hao J, Wei Z. Heavy metals passivation driven by the interaction of organic fractions and functional bacteria during biochar/montmorillonite-amended composting. BIORESOURCE TECHNOLOGY 2021; 329:124923. [PMID: 33711715 DOI: 10.1016/j.biortech.2021.124923] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to identify critical driving factors and pathways of mitigating heavy metals (HM) bioavailability during biochar/montmorillonite-amended composting: emphasize on the interaction effect between organic constituents and functional bacteria. Organic components, such as humus (HS), humic (HA) and fulvic acid (FA) and dissolved organic carbon (DOC), exhibited indivisible links with Cu and Zn speciation, which confirmed their vital roles on deactivating Cu and Zn. Network analysis indicated that biochar/montmorillonite obviously increased the diversity of Cu resistant/actor and Zn actor bacteria, which aided in HM passivation. Although multiple pathways were involved in regulating Cu/Zn passivation, the interaction of bacteria and organic constituents was the most critical driving factor. Given that, promoting potential HM resistant/actor bacteria utilizing and transforming low-humification organic fractions coupling with elevating high-humification constituents were the optimal pathway. This study is helpful to practical application of biochar/montmorillonite to inactivate HM for industrial composting.
Collapse
Affiliation(s)
- Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Delong Pan
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Di Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingkun Hao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
50
|
Awasthi SK, Duan Y, Liu T, Zhang Z, Pandey A, Varjani S, Awasthi MK, Taherzadeh MJ. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting? JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124593. [PMID: 33316669 DOI: 10.1016/j.jhazmat.2020.124593] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1-T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88-14.32%), Actinobacteria (35.20-4.99%), Bacteroidetes (0.05-15.07%) and Proteobacteria (0.01-20.28%) with elevated biochar concentration (0%-10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Frontier Research Lab, Yonsei University, Seoul, South Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar - 382010, Gujarat, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|