1
|
Adewuyi A. Biogeochemical dynamics and sustainable remediation of mercury in West African water systems. CHEMOSPHERE 2025; 379:144436. [PMID: 40288215 DOI: 10.1016/j.chemosphere.2025.144436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Pollution of environmental drinking water sources by mercury (Hg) in West Africa is challenging, with the need to develop strategies to understand its biogeochemical transformation and mitigation to provide clean drinking water void of Hg. This review evaluated the biogeochemical cycle of Hg in West African ecology and the mitigation of Hg contamination of drinking water sources in the West African region. The study revealed Hg-bearing mineral deposits and artisanal and small-scale gold mining as major sources of Hg in West African environment. West African countries must develop sustainable methods for removing Hg from water. However, bioremediation (including microbial and phytoremediation) and adsorption are promising methods for purifying Hg-contaminated environmental drinking water sources in West Africa. Microorganisms such as Arbuscular mycorrhizal, E. coli, Fusobacterium sp, Trichoderma viride, Gliocladium arborescens, Bascillus sp. and Brevibacterium cysticus have demonstrated the capacity to remediate Hg from the water system. Furthermore, plant species like Paspalum conjugatum, Cyperus kyllingia, and Lindernia crustacea revealed exciting capacity as phytoremediators of Hg. Activated carbon, clay and mineral clays are abundant resources in West Africa that can function as adsorbents for removing Hg during water treatment. However, future studies should focus on optimizing the field-scale application of bioremediation and adsorption methods as mitigation strategies and their long-term benefits in West Africa. It is essential that the government in West Africa fund initiatives and programmes that support the accomplishment of the Minamata Convention agreement, which favours the attainment of the sustainable development goal (SDG-6).
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; Institute for Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Manceau A, Bustamante P, Richy E, Cherel Y, Janssen SE, Glatzel P, Poulin BA. Mercury speciation and stable isotopes in emperor penguins: First evidence for biochemical demethylation of methylmercury to mercury-dithiolate and mercury-tetraselenolate complexes. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136499. [PMID: 39662347 DOI: 10.1016/j.jhazmat.2024.136499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Apex marine predators, such as toothed whales and large petrels and albatrosses, ingest mercury (Hg) primarily in the form of methylmercury (MeHg) via prey consumption, which they detoxify as tiemannite (HgSe). However, it remains unclear how lower trophic level marine predators, termed mesopredators, with elevated Hg concentrations detoxify MeHg and what chemical species are formed. To address this need, we used high energy-resolution X-ray absorption near edge structure spectroscopy paired with nitrogen (N) and Hg stable isotopes to identify the chemical forms of Hg, Hg sources, and species-specific δ202Hg isotopic values in emperor penguin, a mesopredator feeding primarily on Antarctic silverfish. The penguin liver contains variable proportions of MeHg and two main inorganic Hg complexes (IHg), Hg-dithiolate (Hg(SR)2) and Hg-tetraselenolate (Hg(Sec)4), each characterized by specific isotopic values (δ202MeHg = 0.3 ± 0.2 ‰, δ202Hg(SR)2 = -1.6 ± 0.2 ‰, δ202Hg(Sec)4 = -2.0 ± 0.1 ‰). Using δ15N as a tracer of food source, we show that Hg(SR)2 is likely not obtained through dietary intake, but rather is present as a biochemical demethylation product. Furthermore, on average, female penguins transferred Hg to the egg strictly as MeHg in the egg albumen but as mixtures of MeHg and IHg in the membrane (89 % and 11 %, respectively) and yolk (32 % MeHg and 68 % Hg(Sec)4). Despite IHg species in eggs, MeHg is still the main species quantitatively transferred by the mother to the chick because of the disproportionate mass of the MeHg-rich albumen compared to the yolk. This work highlights the transformation of MeHg to Hg(SR)2 during demethylation for the first time in multicellular organisms, but further work is needed to understand the formation of Hg(SR)2 in the presence of relatively abundant Se biomolecules in lower trophic level predator species.
Collapse
Affiliation(s)
- Alain Manceau
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France; ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Etienne Richy
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Sarah E Janssen
- US. Geological Survey, Upper Midwest Water Science Center, Madison, WI 53562, USA
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Brett A Poulin
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Médieu A, Spitz J, Point D, Sonke JE, Loutrage L, Laffont L, Chouvelon T. Mercury Stable Isotopes Reveal the Vertical Distribution and Trophic Ecology of Deep-Pelagic Organisms over the North-East Atlantic Ocean Continental Slope. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18733-18743. [PMID: 39392772 DOI: 10.1021/acs.est.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Deep-pelagic species are central to marine ecosystems and increasingly vulnerable to global change and human exploitation. To date, our understanding of these communities remains limited mainly due to the difficulty of observations, calling for complementary innovative tools to better characterize their ecology. We used mercury (Δ199Hg, δ202Hg, Δ201Hg, and Δ200Hg), carbon (δ13C), and nitrogen (δ15N) stable isotope compositions to segregate deep-pelagic species caught on the continental slope of the Bay of Biscay (NE Atlantic) according to their foraging depth and trophic ecology. Decreasing fish Δ199Hg values with corresponding depth estimates from the surface to down to 1,800 m confirmed that mercury isotopes are able to segregate deep species over a large vertical gradient according to their foraging depth. Results from isotopic compositions also identified different mercury sources, likely reflecting different trophic assemblages over the continental slope, in particular, the demersal influence for some species, compared to purely oceanic species. Overall, our results demonstrate how mercury stable isotopes can inform the vertical foraging habitat of little-known species and communities feeding in the deep.
Collapse
Affiliation(s)
- Anaïs Médieu
- Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
| | - Jérôme Spitz
- Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 La Rochelle Université/CNRS, 405 Route de Prissé La Charrière, 79360 Villiers-en-Bois, France
| | - David Point
- Géosciences Environnement Toulouse, UMR CNRS 5563/IRD 234, Université Paul Sabatier Toulouse 3, Toulouse 31400, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, UMR CNRS 5563/IRD 234, Université Paul Sabatier Toulouse 3, Toulouse 31400, France
| | - Liz Loutrage
- Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
| | - Laure Laffont
- Géosciences Environnement Toulouse, UMR CNRS 5563/IRD 234, Université Paul Sabatier Toulouse 3, Toulouse 31400, France
| | - Tiphaine Chouvelon
- Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| |
Collapse
|
4
|
Jung S, Besnard L, Li ML, R Reinfelder J, Kim E, Kwon SY, Kim JH. Interspecific Variations in the Internal Mercury Isotope Dynamics of Antarctic Penguins: Implications for Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6349-6358. [PMID: 38531013 DOI: 10.1021/acs.est.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mercury (Hg) biomonitoring requires a precise understanding of the internal processes contributing to disparities between the Hg sources in the environment and the Hg measured in the biota. In this study, we investigated the use of Hg stable isotopes to trace Hg accumulation in Adélie and emperor penguin chicks from four breeding colonies in Antarctica. Interspecific variation of Δ199Hg in penguin chicks reflects the distinct foraging habitats and Hg exposures in adults. Chicks at breeding sites where adult penguins predominantly consumed mesopelagic prey showed relatively lower Δ199Hg values than chicks that were primarily fed epipelagic krill. Substantial δ202Hg variations in chick tissues were observed in both species (Adélie: -0.11 to 1.13‰, emperor: -0.27 to 1.15‰), whereas only emperor penguins exhibited the lowest δ202Hg in the liver and the highest in the feathers. Our results indicate that tissue-specific δ202Hg variations and their positive correlations with % MeHg resulted from MeHg demethylation in the liver and kidneys of emperor penguin chicks, whereas Adélie penguin chicks showed different internal responses depending on their exposure to dietary MeHg. This study highlights the importance of considering intra- and interspecific variations in adult foraging ecology and MeHg demethylation when selecting penguin chicks for Hg biomonitoring.
Collapse
Affiliation(s)
- Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Eunhee Kim
- Citizens' Institute for Environmental Studies (CIES), Seoul 03039, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, South Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Incheon 21990, South Korea
| |
Collapse
|
5
|
Sisma-Ventura G, Silverman J, Guy-Haim T, Stern N, Shachnai A, Mar Mori M, Abu Khadra M, Jacobson Y, Segal Y, Katz T, Herut B. Accumulation of total mercury in deep-sea sediments and biota across a bathymetric gradient in the Southeastern Mediterranean Sea. CHEMOSPHERE 2024; 351:141201. [PMID: 38246502 DOI: 10.1016/j.chemosphere.2024.141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
This study explores the accumulation of total mercury (THg) in deep-sea sediments and demersal megafauna of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) across bathymetric gradients in the range 35-1900 m, sampled in seven cruises during 2013, 2017-2021, and 2023. Measurements of THg were conducted in surficial (0.0-0.5 cm) and subsurface (9.0-10 cm) sediments, demersal sharks, demersal teleost fish, and benthic crustaceans. Sedimentary organic carbon and biota δ13C and δ15N values were determined to explore possible foraging habitats and dietary sources of THg. The results exhibit an increasing trend of THg in surficial sediments with increasing bottom depth, while in the subsurface, pre-industrial sediments, THg remains lower, slightly increasing with depth. Having no major terrestrial point sources in this area, this increasing trend of THg in surficial sediments across bathymetric gradients is controlled by atmospheric mercury deposition, scavenged by the biological pump, and by lateral transport of particulate Hg in winnowed fine particles from the shelf. Similarly, the THg in benthic crustaceans and demersal fish ranged between 0.02 and 2.71 μg g-1 wet weight (0.06 and 10.8 μg g-1 dry weight) and increased with muscle δ13C as a function of distance offshore, while presenting a low THg-δ15N bio-magnification power. Our results suggest that foraging habitats, longevity, and species-specific depth distribution control their muscle THg bioaccumulation. Despite this complexity, the pooling of THg in megafauna into specific deep zones reflected the trend of increasing anthropogenic THg across bathymetric gradients. Furthermore, many of the biota measurements exceeded safe consumption thresholds for Hg and therefore, should be considered carefully in the development and regulation of deep-sea trawling in this region.
Collapse
Affiliation(s)
- Guy Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel.
| | - Jacob Silverman
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Nir Stern
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Aviv Shachnai
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Maya Mar Mori
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Maria Abu Khadra
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Yitzhak Jacobson
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Yael Segal
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Timor Katz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 310800, Israel; Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Sackett DK, Chrisp JK, Farmer TM. Isotopes and otolith chemistry provide insight into the biogeochemical history of mercury in southern flounder across a salinity gradient. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:233-246. [PMID: 38284178 DOI: 10.1039/d3em00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Methylmercury (MeHg) continues to pose a significant global health risk to wildlife and humans through fish consumption. Despite numerous advancements in understanding the mercury (Hg) cycle, questions remain about MeHg sources that accumulate in fish, particularly across transitional coastal areas, where harvest is prominent and Hg sources are numerous. Here we used a unique combination of Hg and nutrient isotopes, and otolith chemistry to trace the biogeochemical history of Hg and identify Hg sources that accumulated in an economically important fish species across Mobile Bay, Alabama (USA). Fish tissue Hg in our samples primarily originated from wet deposition within the watershed, and partly reflected legacy industrial Hg. Results also suggest that little Hg was lost through photochemical processes (<10% of fish tissue Hg underwent photochemical processes). Of the small amount that did occur, photodegradation of the organic form, MeHg, was not the dominant process. Biotic transformation processes were estimated to have been a primary driver of Hg fractionation (∼93%), with isotope results indicating methylation as the primary biotic fractionation process prior to Hg entering the foodweb. On a finer scale, individual lifetime estuarine habitat use influenced Hg sources that accumulated in fish and fish Hg concentrations, with runoff from terrestrial Hg sources having a larger influence on fish in freshwater regions of the estuary compared to estuarine regions. Overall, results suggest increases in Hg inputs to the Mobile Bay watershed from wet deposition, turnover of legacy sources, and runoff are likely to translate into increased uptake into the foodweb.
Collapse
Affiliation(s)
- Dana K Sackett
- Department of Environmental Science and Technology, University of Maryland, 8127 Regents Dr, College Park, MD 20742, USA.
| | - Jared K Chrisp
- Department of Forestry and Environmental Conservation, Clemson University, 262 Lehotsky Hall, Clemson, SC 29634, USA
| | - Troy M Farmer
- Department of Forestry and Environmental Conservation, Clemson University, 262 Lehotsky Hall, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Kim D, Won EJ, Cho HE, Lee J, Shin KH. New insight into biomagnification factor of mercury based on food web structure using stable isotopes of amino acids. WATER RESEARCH 2023; 245:120591. [PMID: 37690411 DOI: 10.1016/j.watres.2023.120591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Although many attempts have been carried out to elaborate trophic magnification factor (TMF) and biomagnification factor (BMF), such as normalizing the concentration of pollutants and averaging diet sources, the uncertainty of the indexes still need to be improved to assess the bioaccumulation of pollutants. This study first suggests an improved BMF (i.e., BMF') applied to mercury bioaccumulation in freshwater fish from four sites before and after rainfall. The diet source and TP of each fish were identified using nitrogen stable isotope of amino acids (δ15NAAs) combined with bulk carbon stable isotope (δ13C). The BMF' was calculated normalizing with TP and diet contributions derived from MixSIAR. The BMF' values (1.3-27.2 and 1.2-27.8), which are representative of the entire food web, were generally higher than TMF (1.5-13.9 and 1.5-14.5) for both total mercury and methyl mercury, respectively. The BMF' implying actual mercury transfer pathway is more reliable index than relatively underestimated TMF for risk assessment. The ecological approach for BMF calculations provides novel insight into the behavior and trophic transfer of pollutants like mercury.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
8
|
Bouchet S, Soerensen AL, Björn E, Tessier E, Amouroux D. Mercury Sources and Fate in a Large Brackish Ecosystem (the Baltic Sea) Depicted by Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14340-14350. [PMID: 37698522 DOI: 10.1021/acs.est.3c03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Identifying Hg sources to aquatic ecosystems and processes controlling the levels of monomethylmercury (MMHg) is critical for developing efficient policies of Hg emissions reduction. Here we measured Hg concentrations and stable isotopes in sediment, seston, and fishes from the various basins of the Baltic Sea, a large brackish ecosystem presenting extensive gradients in salinity, redox conditions, dissolved organic matter (DOM) composition, and biological activities. We found that Hg mass dependent fractionation (Hg-MDF) values in sediments mostly reflect a mixing between light terrestrial Hg and heavier industrial sources, whereas odd Hg isotope mass independent fractionation (odd Hg-MIF) reveals atmospheric inputs. Seston presents intermediate Hg-MDF and odd Hg-MIF values falling between sediments and fish, but in northern basins, high even Hg-MIF values suggest the preferential accumulation of wet-deposited Hg. Odd Hg-MIF values in fish indicate an overall low extent of MMHg photodegradation due to limited sunlight exposure and penetration but also reveal large spatial differences. The photodegradation extent is lowest in the central basin with recurrent algal blooms due to their shading effect and is highest in the northern, least saline basin with high concentrations of terrestrial DOM. As increased loads of terrestrial DOM are expected in many coastal areas due to global changes, its impact on MMHg photodegradation needs to be better understood and accounted for when predicting future MMHg concentrations in aquatic ecosystems.
Collapse
Affiliation(s)
- Sylvain Bouchet
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| |
Collapse
|
9
|
Jiang Y, Zeng Y, Lu R, Zhang Y, Long L, Zheng X, Luo X, Mai B. Application of amino acids nitrogen stable isotopic analysis in bioaccumulation studies of pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163012. [PMID: 36965734 DOI: 10.1016/j.scitotenv.2023.163012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Accurately quantifying trophic positions (TP) to describe food web structure is an important element in studying pollutant bioaccumulation. In recent years, compound-specific nitrogen isotopic analysis of amino acids (AAs-N-CSIA) has been progressively applied as a potentially reliable tool for quantifying TP, facilitating a better understanding of pollutant food web transfer. Therefore, this review provides an overview of the analytical procedures, applications, and limitations of AAs-N-CSIA in pollutant (halogenated organic pollutants (HOPs) and heavy metals) bioaccumulation studies. We first summarize studies on the analytical techniques of AAs-N-CSIA, including derivatization, instrumental analysis, and data processing methods. The N-pivaloyl-i-propyl-amino acid ester method is a more suitable AAs derivatization method for quantifying TP. The AAs-N-CSIA application in pollutant bioaccumulation studies (e.g., Hg, MeHg, and HOPs) is discussed, and its application in conjunction with various techniques (e.g., spatial analysis, food source analysis, and compound tracking techniques, etc.) to research the influence of pollutant levels on organisms is summarized. Finally, the limitations of AAs-N-CSIA in pollutant bioaccumulation studies are discussed, including the use of single empirical values of βglu/phe and TDFglu/phe that result in large errors in TP quantification. The weighted βglu/phe and the multi-TDFglu/phe models are still challenging to solve for accurate TP quantification of omnivores; however, factors affecting the variation of βglu/phe and TDFglu/phe are unclear, especially the effect of pollutant bioaccumulation in organisms on internal AA metabolic processes.
Collapse
Affiliation(s)
- Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Long
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
10
|
Zhou Z, Wang H, Li Y. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162485. [PMID: 36858226 DOI: 10.1016/j.scitotenv.2023.162485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) has seven stable isotopes that can be utilized to trace the sources of Hg and evaluate the importance of transport and transformation processes in the cycling of Hg in the environment. The ocean is an integral part of the Earth and plays an important role in the global mercury cycle. However, there is a lack of a systematic review of Hg stable isotopes in marine environments. This review is divided into four sections: a) advances in Hg stable isotope analysis, b) the isotope ratios of Hg in various marine environmental matrices (seawater, sediment, and organisms), c) processes governing stable Hg isotope ratios in the ocean, and d) application of Hg stable isotopes to understand biotic uptake and migration. Mercury isotopes have provided much useful information on marine Hg cycling that cannot be given by Hg concentrations alone. This includes (i) sources of Hg in coastal or estuarine environments, (ii) transformation pathways and mechanisms of different forms of Hg in marine environments, (iii) trophic levels and feeding guilds of marine fish, and (iv) migration/habitat changes of marine fish. With the improvement of methods for seawater Hg isotope analysis (especially species-specific methods) and the measurement of Hg isotope fractionation during natural biogeochemical processes in the ocean, Hg stable isotopes will advance our understanding of the marine Hg cycle in the future, e.g., mercury exchange at the sea-atmosphere interface and seawater-sediment interface, contributions of different water masses to Hg in the ocean, fractionation mechanisms of Hg and MeHg transformation in seawater.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
11
|
Muñoz-Abril L, Valle CA, Alava JJ, Janssen SE, Sunderland EM, Rubianes-Landázuri F, Emslie SD. Elevated Mercury Concentrations and Isotope Signatures (N, C, Hg) in Yellowfin Tuna (Thunnus albacares) from the Galápagos Marine Reserve and Waters off Ecuador. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2732-2744. [PMID: 35975428 DOI: 10.1002/etc.5458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We examined how dietary factors recorded by C and N influence Hg uptake in 347 individuals of yellowfin tuna (Thunnus albacares), an important subsistence resource from the Galápagos Marine Reserve (Ecuador) and the Ecuadorian mainland coast in 2015-2016. We found no differences in total Hg (THg) measured in red muscle between the two regions and no seasonal differences, likely due to the age of the fish and slow elimination rates of Hg. Our THg concentrations are comparable to those of other studies in the Pacific (0.20-9.60 mg/kg wet wt), but a subset of individuals exhibited the highest Hg concentrations yet reported in yellowfin tuna. Mercury isotope values differed between Δ199 Hg and δ202Hg in both regions (Δ199 Hg = 2.86 ± 0.04‰ vs. Δ199 Hg = 2.33 ± 0.07‰), likely related to shifting food webs and differing photochemical processing of Hg prior to entry into the food web. There were significantly lower values of both δ15 N and δ13 C in tuna from Galápagos Marine Reserve (δ15 N: 8.5-14.2‰, δ13 C: -18.5 to -16.1‰) compared with those from the Ecuadorian mainland coast (δ15 N: 8.3-14.4‰, δ13 C: -19.4 to -11.9‰), of which δ13 C values suggest spatially constrained movements of tuna. Results from the pooled analysis, without considering region, indicated that variations in δ13 C and δ15 N values tracked changes of Hg stable isotopes. Our data indicate that the individual tuna we used were resident fish of each region and were heavily influenced by upwellings related to the eastern Pacific oxygen minimum zone and the Humboldt Current System. The isotopes C, N, and Hg reflect foraging behavior mainly on epipelagic prey in shallow waters and that food web shifts drive Hg variations between these populations of tuna. Environ Toxicol Chem 2022;41:2732-2744. © 2022 SETAC.
Collapse
Affiliation(s)
- Laia Muñoz-Abril
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galápagos Science Center, Puerto Baquerizo Moreno, Ecuador
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
| | - Carlos A Valle
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galápagos Science Center, Puerto Baquerizo Moreno, Ecuador
| | - Juan José Alava
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah E Janssen
- Upper Midwest Water Science Center, US Geological Survey, Middleton, Wisconsin, USA
| | - Elsie M Sunderland
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | - Francisco Rubianes-Landázuri
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galápagos Science Center, Puerto Baquerizo Moreno, Ecuador
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| |
Collapse
|
12
|
Sartori EM, Dalfior BM, Provete CS, Cordeiro SG, Dias Carneiro MTW, Lelis MDFF, Barroso GF, Brandão GP. Hg Pollution Indices along the Reis Magos River Basin-Brazil: A Precursory Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12626. [PMID: 36231928 PMCID: PMC9564948 DOI: 10.3390/ijerph191912626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Mercury is a metal present in the Earth's crust, but due to human contribution, its concentration can increase, causing environmental impacts to aquatic ecosystems, among others. The Reis Magos River Hydrographic Basin represents economic and socio-environmental importance for the state of Espírito Santo, Brazil. However, there are not many publications regarding the quality of water and sediments, so no data is reported concerning the total concentration of Hg. Thus, the present work aimed to evaluate the distribution of total Hg in water and sediments along this hydrographic basin. For a better inference, physicochemical parameters of the water were determined (temperature, pH, electrical conductivity, oxidation-reduction potential (ORP), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), and salinity), and in the sediments, the contents of matter organic matter, pH, carbonates and granulometry. Mercury determination was performed by Thermodecomposition and Amalgamation Atomic Absorption Spectrometry (TDA AAS) with a DMA-80 spectrometer. The Hg determined in the water was lower than the limit of quantification, 0.14 µg∙L-1, which is lower than the maximum limits recommended by world reference environmental agencies. In the sediment samples, the Hg found were below 170 µg∙kg-1, values below which there is less possibility of an adverse effect on the biota. However, when the degree of anthropic contribution was evaluated using the Geoaccumulation index (IGeo), the contamination factor (CF), and the ecological risk potential index (EF), there was evidence of moderate pollution. Thus, this highlighted the need for monitoring the region since climatic variations and physical-chemical parameters influence the redistribution of Hg between the water/sediment interface.
Collapse
Affiliation(s)
- Eldis Maria Sartori
- Laboratory of Atomic Spectrometry (LEA)—Chemistry Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | - Bruna Miurim Dalfior
- Laboratory of Atomic Spectrometry (LEA)—Chemistry Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | - Carolina Scocco Provete
- Laboratory of Atomic Spectrometry (LEA)—Chemistry Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | - Suellen Geronimo Cordeiro
- Laboratory of Atomic Spectrometry (LEA)—Chemistry Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | | | | | - Gilberto Fonseca Barroso
- Limnology and Environmental Planning Laboratory (LimnoLab)—Department of Oceanography and Ecology, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| | - Geisamanda Pedrini Brandão
- Laboratory of Atomic Spectrometry (LEA)—Chemistry Department, Federal University of Espírito Santo, Vitória 29075-910, Brazil
| |
Collapse
|
13
|
Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156558. [PMID: 35710002 DOI: 10.1016/j.scitotenv.2022.156558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, can be formed, migrated and transformed in environmental compartments, accompanying with unique mass-dependent and mass-independent fractionation of mercury (Hg). These Hg isotope fractionation signals have great potential to probe the transformation and transport of MeHg in aquatic environments. However, the majority of studies to date have focused on total Hg isotopic composition, with less attention to the isotopic fractionation of MeHg due to technical difficulties in analysis, which severely hinders the understanding of MeHg isotopic fractionation and its applications. This review a) evaluates the reported analytical methods for Hg isotopic composition of MeHg, including online and offline measurement techniques; b) summarizes the extent and characteristics of Hg isotopic fractionation during MeHg transport and transformation, focusing on methylation, demethylation, trophic transfer and internal metabolism; and c) briefly discusses several applications of MeHg isotopic fractionation signatures in estimating the extent of photodemethylation, tracing the source of Hg species, and diagnosing reaction mechanisms. Additionally, the existing problems and future directions in MeHg isotope fractionation are highlighted to improve the analytical protocol for Hg isotope fractionation and deepen our understanding of Hg isotope fractionation in the biogeochemical cycling of MeHg.
Collapse
Affiliation(s)
- Lian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
14
|
Yang YH, Kwon SY, Tsui MTK, Motta LC, Washburn SJ, Park J, Kim MS, Shin KH. Ecological Traits of Fish for Mercury Biomonitoring: Insights from Compound-Specific Nitrogen and Stable Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10808-10817. [PMID: 35852377 DOI: 10.1021/acs.est.2c02532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We coupled compound-specific isotopic analyses of nitrogen (N) in amino acids (δ15NGlu, δ15NPhe) and mercury stable isotopes (δ202Hg, Δ199Hg) to quantify ecological traits governing the concentration, variability, and source of Hg in largemouth bass (LB) and pike gudgeon (PG) across four rivers, South Korea. PG displayed uniform Hg concentration (56-137 ng/g), trophic position (TPcorrected; 2.6-3.0, n = 9), and N isotopes in the source amino acid (δ15NPhe; 7-13‰), consistent with their specialist feeding on benthic insects. LB showed wide ranges in Hg concentration (45-693 ng/g), TPcorrected (2.8-3.8, n = 14), and δ15NPhe (1.3-16‰), reflecting their opportunistic feeding behavior. Hg sources assessed using Hg isotopes reveal low and uniform Δ199Hg in PG (0.20-0.49‰), similar to Δ199Hg reported in sediments. LB displayed site-specific δ202Hg (-0.61 to -0.04‰) and Δ199Hg (0.53-1.09‰). At the Yeongsan River, LB displayed elevated Δ199Hg and low δ15NPhe, consistent with Hg and N sourced from the atmosphere. LB at the Geum River displayed low Δ199Hg and high δ15NPhe, both similar to the isotope values of anthropogenic sources. Our results suggest that a specialist fish (PG) with consistent ecological traits and Hg concentration is an effective bioindicator species for Hg. When accounting for Hg sources, however, LB better captures site-specific Hg sources.
Collapse
Affiliation(s)
- Yo Han Yang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, South Block, Science Centre, Shatin, Hong Kong SAR 999077, China
| | - Laura C Motta
- Department of Chemistry, State University of New York at Buffalo, 312 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Spencer J Washburn
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, South Korea
| |
Collapse
|
15
|
Zou C, Yin D, Wang R. Mercury and selenium bioaccumulation in wild commercial fish in the coastal East China Sea: Selenium benefits versus mercury risks. MARINE POLLUTION BULLETIN 2022; 180:113754. [PMID: 35605374 DOI: 10.1016/j.marpolbul.2022.113754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the contents of total mercury (THg), methylmercury (MeHg) and selenium (Se) in 22 fish species and 10 invertebrate species from the coastal East China Sea. The THg and MeHg contents were significantly higher in benthic fishes. Both Hg and Se biomagnified in the food webs, with evidences of associations during trophic transfer. In addition, Se:Hg molar ratio and Se health benefit value (HBVSe) were used as novel criteria for Hg exposure risk assessments, showing that Se presented in molar excess of Hg in all samples, which would negate the risks of Hg toxicity. HBVSe provided more informative results than Se:Hg molar ratio, pointing to possibly lower health risks for some fishes containing high levels of Hg and Se. Although the HBVSe results challenge the traditional Hg health risk assessment, its future application still requires worldwide comprehensive investigations.
Collapse
Affiliation(s)
- Chenxi Zou
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
16
|
Le Croizier G, Sonke JE, Lorrain A, Renedo M, Hoyos-Padilla M, Santana-Morales O, Meyer L, Huveneers C, Butcher P, Amezcua-Martinez F, Point D. Foraging plasticity diversifies mercury exposure sources and bioaccumulation patterns in the world's largest predatory fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127956. [PMID: 34986563 DOI: 10.1016/j.jhazmat.2021.127956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 05/04/2023]
Abstract
Large marine predators exhibit high concentrations of mercury (Hg) as neurotoxic methylmercury, and the potential impacts of global change on Hg contamination in these species remain highly debated. Current contaminant model predictions do not account for intraspecific variability in Hg exposure and may fail to reflect the diversity of future Hg levels among conspecific populations or individuals, especially for top predators displaying a wide range of ecological traits. Here, we used Hg isotopic compositions to show that Hg exposure sources varied significantly between and within three populations of white sharks (Carcharodon carcharias) with contrasting ecology: the north-eastern Pacific, eastern Australasian, and south-western Australasian populations. Through Δ200Hg signatures in shark tissues, we found that atmospheric Hg deposition pathways to the marine environment differed between coastal and offshore habitats. Discrepancies in δ202Hg and Δ199Hg signatures among white sharks provided evidence for intraspecific exposure to distinct sources of marine methylmercury, attributed to population and ontogenetic shifts in foraging habitat and prey composition. We finally observed a strong divergence in Hg accumulation rates between populations, leading to three times higher Hg concentrations in large Australasian sharks compared to north-eastern Pacific sharks, and likely due to different trophic strategies adopted by adult sharks across populations. This study illustrates the variety of Hg exposure sources and bioaccumulation patterns that can be found within a single species and suggests that intraspecific variability needs to be considered when assessing future trajectories of Hg levels in marine predators.
Collapse
Affiliation(s)
- Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin 82040, Mexico.
| | - Jeroen E Sonke
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Marina Renedo
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C, Sinaloa 1540, Col. Las Garzas, C.P. 23070 La Paz, B.C.S., Mexico; Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, CO 80908, USA
| | | | - Lauren Meyer
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; Georgia Aquarium, Atlanta, GA 30313, USA
| | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Paul Butcher
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia
| | - Felipe Amezcua-Martinez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin 82040, Mexico
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
17
|
Tartu S, Blévin P, Bustamante P, Angelier F, Bech C, Bustnes JO, Chierici M, Fransson A, Gabrielsen GW, Goutte A, Moe B, Sauser C, Sire J, Barbraud C, Chastel O. A U-Turn for Mercury Concentrations over 20 Years: How Do Environmental Conditions Affect Exposure in Arctic Seabirds? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2443-2454. [PMID: 35112833 DOI: 10.1021/acs.est.1c07633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
- Fram Centre, Akvaplan-niva AS, Tromsø 9296, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, La Rochelle 17000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Claus Bech
- Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jan Ove Bustnes
- Fram Centre, Norwegian Institute for Nature Research (NINA), Tromsø 9296, Norway
| | - Melissa Chierici
- Fram Centre, Institute of Marine Research (IMR), Tromsø 9296, Norway
| | | | | | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, Paris F-75005, France
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway
| | - Christophe Sauser
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Julien Sire
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
18
|
Sun L, Chen W, Yuan D, Zhou L, Lu C, Zheng Y. Distribution and Transformation of Mercury in Subtropical Wild-Caught Seafood from the Southern Taiwan Strait. Biol Trace Elem Res 2022; 200:855-867. [PMID: 33792858 DOI: 10.1007/s12011-021-02695-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Wild-caught seafood contains significant amounts of mercury. Investigating the mercury accumulation levels in wild-caught seafood and analyzing its migration and transformation are of great value for assessing the health risks of mercury intake and for the tracking of mercury sources. We determined the concentrations and stable mercury isotopic compositions (δ202Hg, Δ199Hg, Δ200Hg, and Δ201Hg) of 104 muscle samples collected from 38 species of seafood typically harvested from the Taiwan Shallow Fishing Ground (TSFG), Southern Taiwan Strait. Overall, the concentrations of total mercury (THg) and methylmercury (MeHg) ranged from 11 to 479 ng/g (dry weight, dw) and 10 to 363 ng/g (dw), respectively, and were below the threshold value established by the USEPA and the Chinese government. Demersal and near-benthic species accumulated more mercury than pelagic or mesopelagic species. The characteristics of mercury isotopes in wild-caught marine species differed in terms of vertical and horizontal distribution. Considering the known peripheral land sources of mercury (Δ199Hg ≈ 0), the mercury in seafood from the TSFG (Δ199Hg > 0) did not originate from anthropogenic emissions. The ratio of Δ199Hg and Δ201Hg (1.18 ± 0.03) suggested that the photoreduction of Hg (II) and the photo-degradation of MeHg equally contributed to mass-independent fractionation. Based on the values of Δ199Hg/δ202Hg (1.18 ± 0.03), about 67% of the mercury in seawater had undergone microbial demethylation prior to methylation and entering the seafood. Additionally, the vertical distribution of Δ200Hg in seafood from different water depths implies that mercury input was in part caused by atmospheric deposition. Our results provide detailed information on the sources of mercury and its transfer in the food web in offshore fishing grounds.
Collapse
Affiliation(s)
- Lumin Sun
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China.
| | - Weijia Chen
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China
| | - Dongxing Yuan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China
| | - Liang Zhou
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
| | - Changyi Lu
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China
| | - Yingjie Zheng
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
| |
Collapse
|
19
|
Besnard L, Le Croizier G, Galván-Magaña F, Point D, Kraffe E, Ketchum J, Martinez Rincon RO, Schaal G. Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: Insights from mercury stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117066. [PMID: 33892372 DOI: 10.1016/j.envpol.2021.117066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The decline of shark populations in the world ocean is affecting ecosystem structure and function in an unpredictable way and new ecological information is today needed to better understand the role of sharks in their habitats. In particular, the characterization of foraging patterns is crucial to understand and foresee the evolution of dynamics between sharks and their prey. Many shark species use the mesopelagic area as a major foraging ground but the degree to which different pelagic sharks rely on this habitat remains overlooked. In order to depict the vertical dimension of their trophic ecology, we used mercury stable isotopes in the muscle of three pelagic shark species (the blue shark Prionace glauca, the shortfin mako shark Isurus oxyrinchus and the smooth hammerhead shark Sphyrna zygaena) from the northeastern Pacific region. The Δ199Hg values, ranging from 1.40 to 2.13‰ in sharks, suggested a diet mostly based on mesopelagic prey in oceanic habitats. We additionally used carbon and nitrogen stable isotopes (δ13C, δ15N) alone or in combination with Δ199Hg values, to assess resource partitioning between the three shark species. Adding Δ199Hg resulted in a decrease in trophic overlap estimates compared to those based on δ13C/δ15N alone, demonstrating that multi-isotope modeling is needed for accurate trophic description of the three species. Mainly, it reveals that they forage at different average depths and that resource partitioning is mostly expressed through the vertical dimension within pelagic shark assemblages. Concomitantly, muscle total mercury concentration (THg) differed between species and increased with feeding depth. Overall, this study highlights the key role of the mesopelagic zone for shark species foraging among important depth gradients and reports new ecological information on trophic competition using mercury isotopes. It also suggests that foraging depth may play a pivotal role in the differences between muscle THg from co-occurring high trophic level shark species.
Collapse
Affiliation(s)
- Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France.
| | - Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN S/n, 23096, La Paz, B.C.S., Mexico
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Edouard Kraffe
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - James Ketchum
- Pelagios-Kakunja, Cuauhtémoc 155, 23096, La Paz, B.C.S., Mexico
| | - Raul Octavio Martinez Rincon
- CONACyT-Centro de Investigaciónes Biológicas Del Noroeste, S.C. (CIBNOR), Av. IPN 195, 23096, La Paz, B.C.S., Mexico
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| |
Collapse
|
20
|
Maurice L, Croizier GL, Morales G, Carpintero N, Guayasamin JM, Sonke J, Páez-Rosas D, Point D, Bustos W, Ochoa-Herrera V. Concentrations and stable isotopes of mercury in sharks of the Galapagos Marine Reserve: Human health concerns and feeding patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112122. [PMID: 33725489 DOI: 10.1016/j.ecoenv.2021.112122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks (Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation (MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks (Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respectively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the determination of THg concentration provides straight-forward evidence of the human health risks associated with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging strategies of these marine predators. CAPSULE: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern associated to their consumption.
Collapse
Affiliation(s)
- Laurence Maurice
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France; Universidad Andina Simón Bolívar, Área de Salud, P.O. Box 17-12-569, Quito, Ecuador.
| | - Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Gabriela Morales
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France; Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías, Instituto Biosfera, Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Natalia Carpintero
- Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías, Instituto Biosfera, Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Juan M Guayasamin
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto Biósfera USFQ, Diego de Robles y Vía Interoceánica, Quito, Ecuador; Universidad San Francisco de Quito, Galápagos Science Center, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - Jeroen Sonke
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Diego Páez-Rosas
- Universidad San Francisco de Quito, Galápagos Science Center, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Walter Bustos
- Parque Nacional Galápagos, Av. Charles Darwin s/n, Santa Cruz, Ecuador
| | - Valeria Ochoa-Herrera
- Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías, Instituto Biosfera, Diego de Robles y Vía Interoceánica, Quito, Ecuador; Universidad San Francisco de Quito, Galápagos Science Center, Isla San Cristóbal, Islas Galápagos, Ecuador
| |
Collapse
|
21
|
Le Croizier G, Lorrain A, Sonke JE, Hoyos-Padilla EM, Galván-Magaña F, Santana-Morales O, Aquino-Baleytó M, Becerril-García EE, Muntaner-López G, Ketchum J, Block B, Carlisle A, Jorgensen SJ, Besnard L, Jung A, Schaal G, Point D. The Twilight Zone as a Major Foraging Habitat and Mercury Source for the Great White Shark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15872-15882. [PMID: 33238094 DOI: 10.1021/acs.est.0c05621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The twilight zone contains the largest biomass of the world's ocean. Identifying its role in the trophic supply and contaminant exposure of marine megafauna constitutes a critical challenge in the context of global change. The white shark (Carcharodon carcharias) is a threatened species with some of the highest concentrations of neurotoxin methylmercury (MeHg) among marine top predators. Large white sharks migrate seasonally from coastal habitats, where they primarily forage on pinnipeds, to oceanic offshore habitats. Tagging studies suggest that while offshore, white sharks may forage at depth on mesopelagic species, yet no biochemical evidence exists. Here, we used mercury isotopic composition to assess the dietary origin of MeHg contamination in white sharks from the Northeast Pacific Ocean. We estimated that a minimum of 72% of the MeHg accumulated by white sharks originates from the consumption of mesopelagic prey, while a maximum of 25% derives from pinnipeds. In addition to highlighting the potential of mercury isotopes to decipher the complex ecological cycle of marine predators, our study provides evidence that the twilight zone constitutes a crucial foraging habitat for these large predators, which had been suspected for over a decade. Climate change is predicted to expand the production of mesopelagic MeHg and modify the mesopelagic biomass globally. Considering the pivotal role of the twilight zone is therefore essential to better predict both MeHg exposure and trophic supply to white sharks, and effectively protect these key vulnerable predators.
Collapse
Affiliation(s)
- Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Anne Lorrain
- Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France
| | - Jeroen E Sonke
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - E Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, Colorado 80908, United States
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | | | - Marc Aquino-Baleytó
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - Edgar E Becerril-García
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - Gádor Muntaner-López
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - James Ketchum
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
| | - Barbara Block
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, United States
| | - Aaron Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware 19958, United States
| | - Salvador J Jorgensen
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Lucien Besnard
- Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France
| | - Armelle Jung
- Des Requins et Des Hommes (DRDH), BLP/Technopole Brest-Iroise, 15 rue Dumont d'Urville, Plouzané 29860, France
| | | | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
22
|
Abstract
Mercury is a globally distributed neurotoxic pollutant that can be biomagnified in marine fish to levels that are harmful for consumption by humans and other animals. The degree to which mercury has infiltrated the oceans yields important information on the biogeochemistry of mercury and its expected effects on fisheries during changing mercury emissions scenarios. Mercury isotope measurement of biota from deep-sea trenches was used to demonstrate that surface-ocean-derived mercury has infiltrated the deepest locations in the oceans. It was found that when fish living in the surface ocean die and their carcasses sink (along with marine particles), they transfer large amounts of mercury to the trench foodwebs leading to high concentrations of mercury in trench biota. Mercury isotopic compositions of amphipods and snailfish from deep-sea trenches reveal information on the sources and transformations of mercury in the deep oceans. Evidence for methyl-mercury subjected to photochemical degradation in the photic zone is provided by odd-mass independent isotope values (Δ199Hg) in amphipods from the Kermadec Trench, which average 1.57‰ (±0.14, n = 12, SD), and amphipods from the Mariana Trench, which average 1.49‰ (±0.28, n = 13). These values are close to the average value of 1.48‰ (±0.34, n = 10) for methyl-mercury in fish that feed at ∼500-m depth in the central Pacific Ocean. Evidence for variable contributions of mercury from rainfall is provided by even-mass independent isotope values (Δ200Hg) in amphipods that average 0.03‰ (±0.02, n = 12) for the Kermadec and 0.07‰ (±0.01, n = 13) for the Mariana Trench compared to the rainfall average of 0.13 (±0.05, n = 8) in the central Pacific. Mass-dependent isotope values (δ202Hg) are elevated in amphipods from the Kermadec Trench (0.91 ±0.22‰, n = 12) compared to the Mariana Trench (0.26 ±0.23‰, n = 13), suggesting a higher level of microbial demethylation of the methyl-mercury pool before incorporation into the base of the foodweb. Our study suggests that mercury in the marine foodweb at ∼500 m, which is predominantly anthropogenic, is transported to deep-sea trenches primarily in carrion, and then incorporated into hadal (6,000-11,000-m) food webs. Anthropogenic Hg added to the surface ocean is, therefore, expected to be rapidly transported to the deepest reaches of the oceans.
Collapse
|
23
|
Le Croizier G, Lorrain A, Sonke JE, Jaquemet S, Schaal G, Renedo M, Besnard L, Cherel Y, Point D. Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114931. [PMID: 32590319 DOI: 10.1016/j.envpol.2020.114931] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
In coastal ecosystems, top predators are exposed to a wide variety of nutrient and contaminant sources due to the diversity of trophic webs within inshore marine habitats. Mercury contamination could represent an additional threat to shark populations that are declining worldwide. Here we measured total mercury, carbon and nitrogen isotopes, as well as mercury isotopes, in two co-occurring shark species (the bull shark Carcharhinus leucas and the tiger shark Galeocerdo cuvier) and their potential prey from a coastal ecosystem of the western Indian Ocean (La Réunion Island). Our primary goals were to (i) determine the main trophic Hg sources for sharks and (ii) better characterize their diet composition and foraging habitat. Hg isotope signatures (Δ199Hg and δ202Hg) of shark prey suggested that bull sharks were exposed to methylmercury (MeHg) produced in offshore epipelagic waters, while tiger sharks were exposed to offshore mesopelagic MeHg with additional microbial transformation in slope sediments. Δ199Hg values efficiently traced the ecology of the two predators, demonstrating that bull sharks targeted coastal prey in shallow waters while tiger sharks were mainly foraging on mesopelagic species in the deeper waters of the island slope. Unexpectedly, we found a positive shift in δ202Hg (>1‰) between sharks and their prey, leading to high δ202Hg values in the two shark species (e.g. 1.91 ± 0.52‰ in bull sharks). This large shift in δ202Hg indicates that sharks may display strong MeHg demethylation abilities, possibly reflecting evolutionary pathways for mitigating their MeHg contamination.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Sébastien Jaquemet
- Laboratoire ENTROPIE, UMR 9220 CNRS/IRD/Université de La Réunion, 15 Avenue René Cassin, BP 92003, 97744, Saint-Denis, La Réunion, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Marina Renedo
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
24
|
Le Croizier G, Lorrain A, Schaal G, Ketchum J, Hoyos-Padilla M, Besnard L, Munaron JM, Le Loc'h F, Point D. Trophic resources and mercury exposure of two silvertip shark populations in the Northeast Pacific Ocean. CHEMOSPHERE 2020; 253:126645. [PMID: 32283423 DOI: 10.1016/j.chemosphere.2020.126645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Worldwide shark populations have experienced rapid declines over the last decades, mainly due to overfishing. Marine protected areas (MPAs) have thus become an indispensable tool for the protection of these marine predators. Two recently-created MPAs in the Northeast Pacific Ocean, the Revillagigedo National Park and Clipperton Atoll, are characterized by different trophic structures potentially influencing the trophic niche and contaminant exposure of resident sharks in these two sites. In this context, we used carbon (δ13C) and nitrogen (δ15N) stable isotope analyzes as well as total mercury concentrations ([THg]) to assess the effect of foraging site on the trophic niche and Hg levels of juvenile silvertip (ST) sharks Carcharhinus albimarginatus. Analyzing fin clip samples from Revillagigedo and Clipperton, we found that shark δ15N varied spatially in relation to δ15N baselines, suggesting similar trophic position in both MPAs. Moreover, δ13C values indicated that ST sharks from Revillagigedo would feed on different food webs (i.e. both benthic and pelagic) while individuals from Clipperton would only rely on benthic food webs. These differences between MPAs led to a weak overlap of isotopic niches between the two populations, highlighting the site residency of juvenile ST sharks. Within each population, [THg] was not correlated with trophic tracers (δ15N and δ13C) and was also similar between populations. This study revealed no influence of site or food web in [THg] and raises the question of the origin of Hg exposure for reef shark populations in the Northeast Pacific Ocean.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France; Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - James Ketchum
- Pelagios Kakunjá A.C., Sinaloa 1540, Las Garzas, 23070, La Paz, Baja California Sur, Mexico; Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, Mexico
| | - Mauricio Hoyos-Padilla
- Pelagios Kakunjá A.C., Sinaloa 1540, Las Garzas, 23070, La Paz, Baja California Sur, Mexico; Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, Mexico; Fins Attached Marine Conservation, Colorado Springs, USA
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | | | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
25
|
Tsui MTK, Blum JD, Kwon SY. Review of stable mercury isotopes in ecology and biogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135386. [PMID: 31839301 DOI: 10.1016/j.scitotenv.2019.135386] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the advent of cold vapor-multicollector-inductively coupled plasma mass spectrometry (CV-MC-ICP-MS) in the past two decades, many research groups studying mercury (Hg) biogeochemistry have integrated stable Hg isotopes into their research. Currently, >200 studies using this technique have been published and this has greatly enhanced our understanding of the Hg biogeochemical cycle beyond what Hg concentration and speciation analyses alone can provide. These studies are largely divided into two groups: (i) controlled experiments investigating fractionation of Hg isotopes and refining tools of isotopic analyses, and (ii) studies of natural variations of Hg isotopes. It is now known that Hg isotopes undergo both mass dependent fractionation (MDF; reported as the ratio of mass 202Hg to 198Hg) and mass independent fractionation (MIF), with MIF occurring at odd masses (199Hg, 201Hg) to a larger magnitude and at even masses (200Hg, 204Hg) to a much smaller magnitude. The two types of MIF are controlled by different photochemical processes. The range of isotopic variations of MDF, odd-MIF, and even-MIF are now well documented in a diverse set of environmental samples, and researchers are continuing to explore how the field of Hg isotope biogeochemistry can be further developed and taken to the next level of understanding. One application that has received considerable attention is the use of Hg isotopes to examine the environmental controls on the production and degradation of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg. Since MeHg is efficiently assimilated and biomagnified along food chains, MeHg has the potential to be a robust ecological tracer. In this review, we give an updated overview of the field of Hg isotopes and focus on how Hg isotopes of MeHg can be used to address fundamental ecological questions, including energy transfer across ecosystem interfaces and as a tracer for animal movements.
Collapse
Affiliation(s)
- Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
26
|
Meng M, Sun RY, Liu HW, Yu B, Yin YG, Hu LG, Chen JB, Shi JB, Jiang GB. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121379. [PMID: 31611019 DOI: 10.1016/j.jhazmat.2019.121379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) speciation and isotopic compositions in a large-scale food web and seawater from Chinese Bohai Sea were analyzed to investigate methylmercury (MeHg) sources and Hg cycling. The biota showed ∼5‰ variation in mass dependent fractionation (MDF, -4.57 to 0.53‰ in δ202Hg) and mostly positive odd-isotope mass independent fractionation (odd-MIF, -0.01 to 1.21‰ in Δ199Hg). Both MDF and odd-MIF in coastal biota showed significant correlations with their trophic levels and MeHg fractions, likely reflecting a preferential trophic transfer of MeHg with higher δ202Hg and Δ199Hg than inorganic Hg. The MDF and odd-MIF of biota were largely affected by their feeding habits and living territories, and MeHg in pelagic food web was more photodegraded than in coastal food web (21-31% vs. 9-11%). From the Hg isotope signatures of pelagic biota and extrapolated coastal MeHg, we suggest that MeHg in the food webs was likely derived from sediments. Interestingly, we observed complementary even-MIF (mainly negative Δ200Hg of -0.36 to 0.08‰ and positive Δ204Hg of -0.05 to 0.82‰) in the biota and a significant linear slope of -0.5 for Δ200Hg/Δ204Hg. This leads us to speculate that atmospheric Hg0 is an important source to bioaccumulated MeHg, although the exact source-receptor relationships need further investigation.
Collapse
Affiliation(s)
- Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruo-Yu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiu-Bin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
27
|
Liu H, Yu B, Fu J, Li Y, Yang R, Zhang Q, Liang Y, Yin Y, Hu L, Shi J, Jiang G. Different circulation history of mercury in aquatic biota from King George Island of the Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:892-897. [PMID: 31085475 DOI: 10.1016/j.envpol.2019.04.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
To trace the circulation history of aquatic bioavailable Hg in the Antarctic, the species and isotopic compositions of Hg in sediment, Archaeogastropoda (Agas), Neogastropoda (Ngas), and fish collected from King George Island were studied in detail. Positive mass independent fractionation (MIF) was observed and positively correlated with the percentages of methylmercury (MeHg%) in Agas and Ngas, suggesting an effect of MeHg accumulation during trophic transfer on MIF signatures. However, both the ratios of Δ199Hg/δ202Hg and Δ199Hg/Δ201Hg indicated different circulation histories of Hg in Agas, Ngas, and fish. The microbial methylation in sediment was the primary source of MeHg in Agas and Ngas (Δ199Hg/δ202Hg ∼0, Δ199Hg/Δ201Hg ∼1.00). In contrast, the MeHg in fish (Δ199Hg/δ202Hg = 0.55 ± 0.06, Δ199Hg/Δ201Hg = 1.19 ± 0.17) came from the combined sources of residual MeHg which had sunk from the surface water and microbial-methylated MeHg in sediments, and the bioavailable Hg in the sediments contributed to approximately 44% of the total Hg in fish. Subsequently, the Δ199Hg values of bioavailable MeHg and IHg in sediments were quantitatively calculated, which provided key end-member information for future source apportionment in the Antarctic and other pelagic regions. It was also found that the Hg accumulated in Agas and Ngas had no history of MeHg photo-degradation, indicating that the methylated Hg in benthic zones suffered little photo-degradation and thus presented high bioavailability and environmental risk.
Collapse
Affiliation(s)
- Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Le Croizier G, Schaal G, Point D, Le Loc'h F, Machu E, Fall M, Munaron JM, Boyé A, Walter P, Laë R, Tito De Morais L. Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2129-2140. [PMID: 30290354 DOI: 10.1016/j.scitotenv.2018.09.330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Bioaccumulation of toxic metal elements including mercury (Hg) can be highly variable in marine fish species. Metal concentration is influenced by various species-specific physiological and ecological traits, including individual diet composition and foraging habitat. The impact of trophic ecology and habitat preference on Hg accumulation was analyzed through total Hg concentration and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the muscle of 132 fish belonging to 23 different species from the Senegalese coast (West Africa), where the marine ecosystem is submitted to nutrient inputs from various sources such as upwelling or rivers. Species-specific ecological traits were first investigated and results showed that vertical (i.e. water column distribution) and horizontal habitat (i.e. distance from the coast) led to differential Hg accumulation among species. Coastal and demersal fish were more contaminated than offshore and pelagic species. Individual characteristics therefore revealed an increase of Hg concentration in muscle that paralleled trophic level for some locations. Considering all individuals, the main carbon source was significantly correlated with Hg concentration, again revealing a higher accumulation for fish foraging in nearshore and benthic habitats. The large intraspecific variability observed in stable isotope signatures highlights the need to conduct ecotoxicological studies at the individual level to ensure a thorough understanding of mechanisms driving metal accumulation in marine fish. For individuals from a same species and site, Hg variation was mainly explained by fish length, in accordance with the bioaccumulation of Hg over time. Finally, Hg concentrations in fish muscle are discussed regarding their human health impact. No individual exceeded the current maximum acceptable limit for seafood consumption set by both the European Union and the Food and Agriculture Organization of the United Nations. However, overconsumption of some coastal demersal species analyzed here could be of concern regarding human exposure to mercury.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France; Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France.
| | - Gauthier Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - David Point
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - François Le Loc'h
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Eric Machu
- Laboratoire d'Océanographie Physique et Spatiale (LOPS), UMR 6523 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29280 Plouzané, France; Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Université Cheikh Anta DIOP de Dakar, Ecole Supérieure Polytechnique, BP 5085, Dakar Fann, Sénégal
| | - Massal Fall
- Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Université Cheikh Anta DIOP de Dakar, Ecole Supérieure Polytechnique, BP 5085, Dakar Fann, Sénégal; Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT/ISRA), BP 2241, Dakar, Sénégal
| | - Jean-Marie Munaron
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Aurélien Boyé
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Pierre Walter
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Raymond Laë
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Luis Tito De Morais
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| |
Collapse
|
29
|
Renedo M, Amouroux D, Pedrero Z, Bustamante P, Cherel Y. Identification of sources and bioaccumulation pathways of MeHg in subantarctic penguins: a stable isotopic investigation. Sci Rep 2018; 8:8865. [PMID: 29891979 PMCID: PMC5995893 DOI: 10.1038/s41598-018-27079-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
Seabirds are widely used as bioindicators of mercury (Hg) contamination in marine ecosystems and the investigation of their foraging strategies is of key importance to better understand methylmercury (MeHg) exposure pathways and environmental sources within the different ecosystems. Here we report stable isotopic composition for both Hg mass-dependent (e.g. δ202Hg) and mass-independent (e.g. Δ199Hg) fractionation (proxies of Hg sources and transformations), carbon (δ13C, proxy of foraging habitat) and nitrogen (δ15N, proxy of trophic position) in blood of four species of sympatric penguins breeding at the subantarctic Crozet Islands (Southern Indian Ocean). Penguins have species-specific foraging strategies, from coastal to oceanic waters and from benthic to pelagic dives, and feed on different prey. A progressive increase to heavier Hg isotopic composition (δ202Hg and Δ199Hg, respectively) was observed from benthic (1.45 ± 0.12 and 1.41 ± 0.06‰) to epipelagic (1.93 ± 0.18 and 1.77 ± 0.13‰) penguins, indicating a benthic-pelagic gradient of MeHg sources close to Crozet Islands. The relative variations of MeHg concentration, δ202Hg and Δ199Hg with pelagic penguins feeding in Polar Front circumpolar waters (1.66 ± 0.11 and 1.54 ± 0.06‰) support that different MeHg sources occur at large scales in Southern Ocean deep waters.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France. .,CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France.
| | - David Amouroux
- CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France
| | - Zoyne Pedrero
- CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-Université de La Rochelle, 79360, Villiers-en-Bois, France.
| |
Collapse
|