1
|
Wang Z, Du R, Wang C, Li X, Yue L, White JC, Cao X, Xing B. Fate and Toxicity of Carbon Black to Phytoplankton in Natural Lakes: Insight into the Role of Phototransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7699-7711. [PMID: 40211440 DOI: 10.1021/acs.est.4c13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Concern over the contamination of freshwater ecosystems with carbon black (CB) is increasing. Here, the toxicity of CB to phytoplankton (Chlorella pyrenoidosa) was evaluated; upon exposure, the median effective concentration for 72 h was 23.4 mg/L. CB underwent significant photooxidation during 15 days of light irradiation, although phototransformation was generally completed by day 7. Algal growth inhibition induced by phototransformed CB (TCB) at 1 mg/L was 64.1% greater than that induced by parent CB. Mechanistically, 1) phototransformation triggered the release of highly toxic byproducts, which inhibited algal growth by 18.9%; 2) metabolomic results demonstrate that the suppression of carbon and nitrogen assimilation in algal cells induced by TCB was 13.2-53.7% greater than that induced by CB; 3) TCB exhibited reactive oxygen species production ability, which triggered more significant algal membrane damage. A full-factorial experiment (26+1 runs) showed that the combined effect of temperature and suspended mineral particles, as well as electrical conductivity, was the primary environmental factor that mediated CB and TCB toxicity, respectively. The predicted toxicity of CB and TCB in Taihu Lake exhibited significant regional distribution, and TCB posed a greater environmental risk in aquatic ecosystems than CB. These findings highlight the importance of particulate contaminant transformation and environmental factors when evaluating their environmental risk.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruojin Du
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Gao S, Huang G, Zhang P, Yin J, Li M, Huang J, Zhao K, Han D. Interactive effects of nanoplastics, multi-contaminants, and environmental conditions on prairie aquatic ecosystems: A factorial composite toxicity analysis within a Canadian context. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135652. [PMID: 39226687 DOI: 10.1016/j.jhazmat.2024.135652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Limited data exist on the interactions between nanoplastics (NPs) and co-contaminants under diverse environmental conditions. Herein, a factorial composite toxicity analysis approach (FCTA) was developed to analyze the time-dependent composite effects of NPs (0 ∼ 60 mg/L), copper (Cu, 0.2 ∼ 6 mg/L) and phenanthrene (PHE, 0.001 ∼ 1 mg/L) on microalgae under diverse pH (6.7 ∼ 9.1), dissolved organic matter (DOM, 1.5 ∼ 25.1 mg/L), salinity (1 ∼ 417 mg/L) and temperature (23 ∼ 33 °C) within the Canadian prairie context. The toxic mechanism was revealed by multiple toxic endpoints. The combined toxicity of NPs, Cu and PHE within prairie aquatic ecosystems was assessed by the developed FCTA-multivariate regression model. Contrary to individual effects, NPs exhibited a promotional effect on microalgae growth under complex environmental conditions. Although Cu and PHE were more hazardous, NPs mitigated their single toxicity. Environmental conditions and exposure times significantly influenced the main effects and interactions of NPs, Cu and PHE. The synergistic effect of NPs*Cu and NPs*PHE on microalgae growth became antagonistic with increased pH or DOM. Microalgae in the Souris River, Saskatchewan, were projected to suffer the most toxic effects. Our findings have significant implications for the risk management of NPs.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Kai Zhao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
3
|
Nie E, Xu L, Chen Y, Chen Y, Lu Y, Zhang S, Yu Z, Li QX, Ye Q, Wang H. Effects of reduced graphene oxide nanomaterials on transformation of 14C-triclosan in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173858. [PMID: 38876353 DOI: 10.1016/j.scitotenv.2024.173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with 14C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to 14CO2 was inhibited by 48.2-79.3 % in 500 mg kg-1 RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of 14C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.
Collapse
Affiliation(s)
- Enguang Nie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yandao Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Samarakoon T, Fujino T. Toxicity of triclosan, an antimicrobial agent, to a nontarget freshwater zooplankton species, Moina macrocopa. ENVIRONMENTAL TOXICOLOGY 2024; 39:314-328. [PMID: 37705231 DOI: 10.1002/tox.23950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
The toxicity of triclosan (TCS) on the freshwater cladoceran Moina macrocopa was investigated by acute and chronic toxicity assessments followed by genotoxicity and oxidative stress response analyses. The 48-h LC50 of TCS for ≤24-h-old M. macrocopa was determined as 539 μg L-1 . Chronic exposure to TCS at concentrations ranging from 5 to 100 μg L-1 showed a stimulatory effect at low concentrations (≤10 μg L-1 ) and an inhibitory effect at high concentrations (≥50 μg L-1 ) on growth, reproduction, and population-growth-related parameters of M. macrocopa. The genotoxicity test results indicated that TCS concentrations ranging from 50 to 100 μg L-1 can alter individuals' DNA. Analysis of the antioxidant enzymes catalase (CAT) and glutathione s-transferase (GST) demonstrated increased levels of these enzymes at high TCS concentrations. Our results indicated that TCS concentrations found in the natural environment have minimal acute toxicity to M. macrocopa. However, TCS at even low concentrations can significantly affect its growth, reproduction, and population-growth-related characteristics. The observed responses suggest a hormetic dose-response pattern and imply a potential endocrine-disrupting effect of TCS. Our molecular and biochemical findings indicated that high concentrations of TCS have the potential to induce oxidative stress that may lead to DNA alterations in M. macrocopa.
Collapse
Affiliation(s)
- Thilomi Samarakoon
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
5
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
6
|
Gao S, Huang G, Zhang P, Xin X, Yin J, Han D, Song T, Rosendahl S, Read S. Rethinking the effects of micro/nanoplastics from the global environmental change and systematic perspective: An aquatic environmental system-based comprehensive assessment approach of micro/nanoplastic impacts. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131695. [PMID: 37257375 DOI: 10.1016/j.jhazmat.2023.131695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The study on micro/nanoplastic pollution should embrace complexity. Here, we aim to develop an aquatic environmental system-based comprehensive assessment approach of micro/nanoplastic impacts (ACAM) to evaluate the effects of micro/nanoplastics on aquatic ecosystems from the global environmental change (GEC) and systematic perspective. A case study for freshwater systems in Saskatchewan, Canada was conducted to evaluate the comprehensive effects of multiple GEC factors (polystyrene-nanoplastics (PS-NPs), N, P, salinity, dissolved organic matter (DOM), pH, hardness) on Asterococcus superbus based on ten ecologically relevant endpoints. It is found that at the cellular level, PS-NPs and N had an antagonistic interaction on microalgal growth in the Saskatchewan freshwater ecosystem; at the molecular level, the PS-NP-induced changes in lipid composition in microalgae were regulated by P, DOM, and pH. The significance ranking of factor effects suggested that instead of PS-NPs pollution, the fluctuations in pH level, DOM and N concentrations should be paid attention to first in Saskatchewan. Under the combined impact of PS-NPs and other GEC factors, microalgae at station 14 (Qu'Appelle River near highway 56) might have the minimum growth rate with [-0.048, 0.094] d-1 in Saskatchewan. These findings demonstrate the efficacy of the developed ACAM in a more comprehensive and context-specific assessment of MNP risks, providing new insight for the management of MNP pollution.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Gordon Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3Z6, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tangnyu Song
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Scott Rosendahl
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| |
Collapse
|
7
|
Atengueño-Reyes K, Velasquez-Orta SB, Yáñez-Noguez I, Monje-Ramirez I, Chávez-Mejía A, Orta Ledesma M. Microalgal consortium tolerance to bisphenol A and triclosan in wastewater and their effects on growth, biomolecule content and nutrient removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115117. [PMID: 37315359 DOI: 10.1016/j.ecoenv.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Amongst the many treatments available for the removal of emerging contaminants in wastewater, microalgal cultures have been shown to be effective. However, the effectiveness of exposure of a native microalgal consortium to emerging contaminants such as bisphenol-A (BPA) and triclosan (TCS) to determine the half-maximum effective concentrations (EC50) has not yet been determined. The effect on growth and nutrient removal of such a treatment as well as on the production of biomolecules such as carbohydrates, lipids, and proteins are, at present, unknown. In this study, the EC50 of BPA and TCS (96-hour experiments) was determined using a consortium of native microalgae (Scenedesmus obliquus and Desmodesmus sp.) to define the maximum tolerance to these contaminants. The effect of BPA and TCS in synthetic wastewater (SWW) was investigated in terms of microalgal growth, chlorophyll a (Chl-a), carbohydrate, lipid, and protein content, as well as nutrient removal. Assays were performed in heterotrophic conditions (12/12 light/dark cycles). EC50-96 h values of 17 mg/L and 325 µg/L for BPA and TCS, respectively, were found at 72 h. For an initial microalgal inoculum of ≈ 300 mg TSS/L (total suspended solids per litre), growth increased by 16.1% when exposed to BPA and 17.78% for TCS. At ≈ 500 mg TSS/L, growth increased by 8.25% with BPA and 9.92% with TCS, respectively. At the EC50-96 h concentrations determined in the study, BPA and TCS did not limit the growth of microalgae in wastewater. Moreover, they were found to stimulate the content of Chl-a, carbohydrates, lipids, proteins, and enhance nutrient removal. AVAILABILITY OF DATA AND MATERIAL: Data sharing not applicable to this article as no datasets were generated or analysed during the present study.
Collapse
Affiliation(s)
- Karina Atengueño-Reyes
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, CP 04510 Ciudad de México, Mexico
| | - Sharon B Velasquez-Orta
- School of Chemical Engineering and Advanced Materials, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Isaura Yáñez-Noguez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, CP 04510 Ciudad de México, Mexico
| | - Ignacio Monje-Ramirez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, CP 04510 Ciudad de México, Mexico
| | - Alma Chávez-Mejía
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, CP 04510 Ciudad de México, Mexico
| | - MaríaTeresa Orta Ledesma
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, CP 04510 Ciudad de México, Mexico.
| |
Collapse
|
8
|
Shi Z, Guo M, Du H, Yang K, Liu X, Xu H. Investigation of cytotoxic cadmium in aquatic green algae by synchrotron radiation-based Fourier transform infrared spectroscopy: Role of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161870. [PMID: 36731571 DOI: 10.1016/j.scitotenv.2023.161870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal Cd can cause severe toxicity on aquatic algae, but there are few studies on the cytotoxicity of heavy metal on algae based on synchrotron radiation technology. In this study, synchrotron radiation-based Fourier transform infrared spectromicroscopy (SR-FTIR) was used to characterize in vivo the toxic effects of Cd on Cosmarium sp. cells, emphasizing the influence of dissolved organic matter (DOM) on Cd toxicity. Results showed that, in the absence of DOM, obvious growth inhibition, cell volume reduction, and photosynthesis disruption could be observed with increasing Cd concentrations (0-500 μg/L). Based on the SR-FTIR imaging and functional group quantification, it was shown that the biosynthesis of biomolecules such as proteins, lipids, and carbohydrates was inhibited in algal cells. However, the addition of DOM caused significant heterogeneities in biomacromolecule biosynthesis that an increased biosynthesis of carbohydrates and structural lipids but an inhibited biosynthesis of proteins and storage lipids were observed. Furthermore, the correlation analysis and principal component analysis showed a good correlation between v(C-OH)/Amide II and biochemical parameters, indicating that changes of carbohydrates could be used as the biomarker to indicate the cytotoxicity of heavy metals to algal cells. These findings provide insight into the mechanisms of heavy metal cytotoxicity to aquatic algae and systematic cytotoxicity assessment under various aquatic conditions.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Huacheng Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
9
|
Lu S, Wang J, Wang B, Xin M, Lin C, Gu X, Lian M, Li Y. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. WATER RESEARCH 2023; 230:119591. [PMID: 36638740 DOI: 10.1016/j.watres.2023.119591] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have captured global concern due to their detrimental effects on aquatic organisms. Thirty PPCPs were analyzed in the water of the Jiaozhou Bay watershed, the Yellow Sea (YS) and the East China Sea (ECS) in China to investigate the distribution and risk of PPCPs from rivers to coastal seas, which are not yet well documented. The results showed the prevalence of the target PPCPs with a downward trend in detection frequencies and total concentrations from rivers (675 ng/L on average) to bay (166 ng/L) and to coastal seas (103 ng/L). Antibiotics and personal care products (PCPs) were dominated by amoxicillin (AMOX) and p-hydroxybenzoic acid, respectively, while the dominant estrogens were inconsistent in different regions. Spatially, the total PPCP concentrations were higher in the ECS than that in the YS due to the larger quantity of sewage flowing into the ECS. Additionally, higher total PPCP concentrations were appeared in the southeastern waters outside the Yangtze estuary and Hangzhou Bay of the ECS. The PPCP mixtures might pose medium to high risk to aquatic organisms in general. The total risk quotient (RQT) of antibiotics and PCPs to algae was higher than that to crustacean and fish, while estrogens may cause the greatest damage to fish. Despite the higher PPCP concentrations in river water than in seawater, the RQT of PPCPs in bay water was generally higher than that in river water, which may be associated with the susceptibility of marine organisms. Furthermore, the high-risk pollutants that need special concern in different regions were clarified, showing that AMOX, 17ß-estradiol, and estriol deserve the highest-priority in rivers, bay, and coastal waters, respectively.
Collapse
Affiliation(s)
- Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jing Wang
- Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chunye Lin
- Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- Beijing Normal University, Beijing 100875, China
| | - Yun Li
- Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Isolation and identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Pony Seed and evaluation of the inhibitory mechanisms. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
11
|
Impact of Intersectoral Dependencies in National Production on Wastewater Discharges: An Extended Input–Output Study of the Croatian Economy. WATER 2022. [DOI: 10.3390/w14132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Croatian economy performs unfavorably in terms of the impact of production on wastewater discharges, which is particularly pronounced in the industrial sectors. Each unit of gross industrial value added produced in Croatia generates significantly more wastewater discharges than in most European countries with a similar level of economic development. Moreover, in 2020, only 26.9% of the total industrial wastewater discharges of the Croatian economy were treated, while 76.2% of the total industrial wastewater discharges were directly discharged into the environment. Since most of the industrial production in the Croatian economy is destined to meet the intermediate needs of other sectors, policy makers in Croatia must take into account that the level of industrial wastewater discharges is also influenced by the production level of sectors that depend on the intermediate products of wastewater-intensive industries. For this reason, we developed a wastewater extended input–output model of the Croatian economy to determine and analyze the impact of intersectoral linkages in Croatian production systems on the amount of untreated wastewater discharges. The results of the study show that wastewater flows in the Croatian economy are largely generated by the processes of production and consumption of intermediate products from the chemical and petroleum refining sectors, which also account for the largest share of the calculated wastewater footprint of total Croatian production. In light of the emerging empirical evidence, it can be concluded that targeting market-based and regulation-based measures at wastewater-intensive producers is not sufficient to reduce the relatively high level of untreated wastewater discharges in the Croatian economy. There is also a need for appropriate integrated policy measures in sectors that have a large wastewater footprint due to their established supply chains.
Collapse
|
12
|
Wang TT, Wang S, Shao S, Wang XD, Wang DY, Liu YS, Ge CJ, Ying GG, Chen ZB. Perfluorooctanoic acid (PFOA)-induced alterations of biomolecules in the wetland plant Alismaorientale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153302. [PMID: 35066035 DOI: 10.1016/j.scitotenv.2022.153302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been widely studied by researchers due to their environmental persistence, chemical stability and potential toxicity. Some researchers have reported the physiological and biochemical toxicity of PFASs on plants through traditional and innovative methods; however, the changes in biological macromolecules caused by PFASs are rarely studied. Here, Fourier transform infrared spectroscopy (FTIR) was used to study how exposure to perfluorooctanoic acid (PFOA) alters the structure and function of biomolecules of the wetland plant Alisma orientale. Biomass results showed that PFOA had negative effects on plant growth. FTIR results showed that PFOA could result in changes in the structures, compositions, and functions of lipids, proteins and DNA in plant cells. In the treatment groups, the ratios of CH3 to lipids and carbonyl esters to lipids increased compared with the control, while the ratios of CH2 to lipids and olefinicCH to lipids decreased, which indicated lipid peroxidation caused by PFOA exposure. Changes in the compositions and secondary structures of proteins were also found, which were indicated by the decreased ratio of amide I to amide II and the increased ratio of β-sheet to α-helix in the treatment groups compared to the control. Moreover, PFOA affected the composition of DNA by promoting the B- to A-DNA transition. These results showed that the mechanism of PFOA toxicity toward plants at the biochemical level could be illustrated by FTIR.
Collapse
Affiliation(s)
- Tuan-Tuan Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Shuai Shao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Xiao-Di Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ding-Ying Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Cheng-Jun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhong-Bing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Lu S, Wang B, Xin M, Wang J, Gu X, Lian M, Li Y, Lin C, Ouyang W, Liu X, He M. Insights into the spatiotemporal occurrence and mixture risk assessment of household and personal care products in the waters from rivers to Laizhou Bay, southern Bohai Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152290. [PMID: 34902407 DOI: 10.1016/j.scitotenv.2021.152290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Household and personal care products (HPCPs) are a kind of contaminants closely related to daily life, capturing worldwide concern. To our knowledge, this is the first attempt focusing on the spatiotemporal occurrence and mixture risk of HPCPs in the waters from rivers to Laizhou Bay. Nine HPCPs were quantitated in 216 water samples gathered from Laizhou Bay and its adjacent rivers in 2018, 2019, and 2021 to reveal the spatiotemporal occurrence and mixture ecological risks in Laizhou Bay. Eight HPCPs were detected with detection frequencies ranging from 74% to 100%. The total concentrations were in the ranges 105-721 ng L-1 in river water and 51.3-332 ng L-1 in seawater. The HPCPs were dominated by p-hydroxybenzoic and triclosan, which together contributed over 75% of the total HPCPs. The average level of the total HPCP concentration in the summer of 2018 (96.1 ng L-1) was slightly exceed that in the spring of 2019 (91.6 ng L-1), which is associated with the higher usage of HPCPs and enhanced tourism during summer. However, the highest total concentrations were found in spring of 2021 (124 ng L-1 in average), which was attribute to a higher level of methylparaben, a predominant paraben used as preservatives in commercial pharmaceuticals of China. Influenced by riverine inputs and ocean currents, higher HPCP concentrations in Laizhou Bay were found nearby the estuary of Yellow River and the southern part of the bay. Triclosan should be given constant concern considering its medium to high risks (RQ > 0.1) in nearly 80% of the water samples. The cumulative risk assessment in two approaches revealed that HPCP mixtures generally elicit medium or high risk to three main aquatic taxa. Considering the worldwide outbreak of COVID-19, the levels and risks of multiple HPCPs in natural waters requires constant attention in future studies.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jing Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yun Li
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Cao L, Wang J, Wang Z, Yu S, Cheng Y, Ma J, Xie P. Inactivation of Microcystis Aeruginosa by peracetic acid combined with ultraviolet: Performance and characteristics. WATER RESEARCH 2022; 208:117847. [PMID: 34794020 DOI: 10.1016/j.watres.2021.117847] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The inactivation of algae by a combined process of peracetic acid and ultraviolet irradiation (UV/PAA) was systematically investigated by choosing Microcystis aeruginosa as the reference algal species. Both hydroxyl (HO•) and organic radicals (RO•) contributed to the cell integrity loss and RO• played the dominant roles. The algae inactivation kinetics can be well fitted by the typical Hom model, showing that the inactivation kinetic curves followed a type of shoulder and exponential reduction. The initial shoulder might be induced by the protection from the cell wall. Although the results from the cell morphology, UV-vis spectra and fluorescence excitation-emission matrices analysis suggested the cell lysis and the release of algal organic matter (AOM) in the UV/PAA process, the AOM could be subsequently degraded. Humic acid (1 - 5 mg/L) inhibited the algal cell inactivation, and the presence of chloride (0.5 - 2 mM) had little effect on the cell viability reduction. However, the addition of bicarbonate (1 - 5 mM) promoted cell integrity loss. The UV/PAA process displayed better performance under the natural water background, demonstrating the extensive potential for the practical application of this approach. This study suggests that the UV/PAA process is an effective strategy for algae inactivation.
Collapse
Affiliation(s)
- Lisan Cao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiwen Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
15
|
Barón-Sola Á, Toledo-Basantes M, Arana-Gandía M, Martínez F, Ortega-Villasante C, Dučić T, Yousef I, Hernández LE. Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126502. [PMID: 34214848 DOI: 10.1016/j.jhazmat.2021.126502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. μSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 μM Cd and 15 μM Hg after short-term (24 h) treatments. This occurred in a context where metals triggered intracellular oxidative stress and chloroplast damage, along with autophagy induction by overexpressing AUTOPHAGY-RELATED PROTEIN 8 (ATG8). Thin layer chromatography analysis confirmed that toxic metals promoted remarkable changes in lipid profile, with higher degree of esterified fatty acid unsaturation as detected by gas chromatography coupled with mass spectrometry. Under Cd stress, there was specifically higher unsaturation of free fatty acids, while Hg led to stronger unsaturation in monogalactosyldiacylglycerol. μSR-FTIR spectroscopy proved as a valuable tool to identify biochemical alterations in microalgae, information that could be exploited to optimise approaches for metal decontamination.
Collapse
Affiliation(s)
- Ángel Barón-Sola
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Margarita Toledo-Basantes
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - María Arana-Gandía
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Tanja Dučić
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Luis E Hernández
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain.
| |
Collapse
|
16
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
17
|
Lu Y, Sun R, Zhang C, Ding S, Ying M, Shan S. In situ analysis of antibiotic resistance genes in anaerobically digested dairy manure and its subsequent disposal facilities. BIORESOURCE TECHNOLOGY 2021; 333:124988. [PMID: 33894444 DOI: 10.1016/j.biortech.2021.124988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The metagenomic and quantitative polymerase chain reaction approaches were combined to evaluate the profiles of ARGs and plasmids in anaerobically digested dairy manure in situ and reveal the persistence and elevation of typical ARGs and plasmids in its subsequent disposal facilities in CAFOs, respectively. Our results indicated that the typical ARGs and plasimd were mainly sul2, mefa, tetm-01, tetm-02, tetw, aph3iiia, and clostridioides difficile strain 12,038 plasmid unnamed in CAFOs, some of which greatly enriched in AD residue after its storage, especially sul1 and sul2. Meantime, the AD slurry recycling introduced the bacteria carrying ARGs into soil, especially Romboutsia genus, which greatly enriched sul2, tetm-01, tetm-02, aphiiia, and mefa. In the present study, ARGs occurrence, persistence and distribution were understood through in situ analysis of their profiles during dairy manure AD treatment and subsequent disposals in CAFOs, which are helpful for controlling the potential environmental risks from dairy manure recycling.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Renhua Sun
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Changai Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Shaohua Ding
- Grain and Oil Crops Technology Extension Center of Shaoxing City, Shaoxing 312000, China
| | - Mengfei Ying
- Grain and Oil Crops Technology Extension Center of Shaoxing City, Shaoxing 312000, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
18
|
Xin X, Huang G, Zhang B, Zhou Y. Trophic transfer potential of nTiO 2, nZnO, and triclosan in an algae-algae eating fish food chain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105824. [PMID: 33857870 DOI: 10.1016/j.aquatox.2021.105824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 05/15/2023]
Abstract
Little is known about the trophic transfer of nanoparticles and personal care products via dietary exposure in an algae-algae eating fish food chain. The bioaccumulation of nano-TiO2 (P25 - nTiO2), nano-ZnO (nZnO), and triclosan (TCS) in eight different combinations were explored in this study through algae, Asterococcus superbus, to fish, Gyrinocheilus aymonieri. Results found the bioaccumulation of TCS changed with algal biomass, while the bioaccumulation of Ti and Zn varied with the amount of lipids and proteins in algal cells. In algae, Ti was in the form of nTiO2 and Zn in the form of zinc ion. Due to dietary exposure, Ti and Zn quantity in fish was closely related to that in algae. The quantity of Ti and Zn in algae and fish exposed to the interaction of nTiO2 * nZnO* TCS was higher than that in other treatments. The uptake of Ti and Zn in algae exposed to the interaction of nTiO2 * nZnO had been inhibited, and the corresponding fish also had less Ti and Zn in their tissues. nTiO2-containing treatments had higher Ti proportion in muscle than gill in fish. Treatment nZnO had the most Zn in gill, whereas nZnO * TCS-containing treatments had higher Zn proportion in gut than other tissues. No observation of TCS in fish in all treatments suggested the removal and metabolism of TCS might be induced by tissue recovery and acclimation. This is the first report on trophic transfer of mixed nanoparticles and personal care product in an algae-algae eating fish two-stage food chain.
Collapse
Affiliation(s)
- Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Zhang Y, Pan D, Yang Z, Gao X, Dang Y. Angiotensin I-Converting enzyme (ACE) inhibitory and dipeptidyl Peptidase-4 (DPP-Ⅳ) inhibitory activity of umami peptides from Ruditapes philippinarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111265] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Xin X, Huang G, Zhang B. Review of aquatic toxicity of pharmaceuticals and personal care products to algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124619. [PMID: 33248823 DOI: 10.1016/j.jhazmat.2020.124619] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) have been frequently detected in the environment around the world. Algae play a significant role in aquatic ecosystem, thus the influence on algae may affect the life of higher trophic organisms. This review provides a state-of-the-art overview of current research on the toxicity of PPCPs to algae. Nanoparticles, contained in personal care products, also have been considered as the ingredients of PPCPs. PPCPs could cause unexpected effects on algae and their communities. Chlorophyta and diatoms are more accessible and sensitive to PPCPs. Multiple algal endpoints should be considered to provide a complete evaluation on PPCPs toxicity. The toxicity of organic ingredients in PPCPs could be predicted through quantitative structure-activity relationship model, whereas the toxicity of nanoparticles could be predicted with limitations. Light irradiation can change the toxicity through affecting algae and PPCPs. pH and natural organic matter can affect the toxicity through changing the existence of PPCPs. For joint and tertiary toxicity, experiments could be conducted to reveal the toxic mechanism. For multiple compound mixture toxicity, concentration addition and independent addition models are preferred. However, there has no empirical models to study nanoparticle-contained mixture toxicity. Algae-based remediation is an emerging technology to prevent the release of PPCPs from water treatment plants. Although many individual algal species are identified for removing a few compounds from PPCPs, algal-bacterial photobioreactor is a preferable alternative, with higher chances for industrial applications.
Collapse
Affiliation(s)
- Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada.
| |
Collapse
|
21
|
Lu Y, Li J, Meng J, Zhang J, Zhuang H, Zheng G, Xie W, Ping L, Shan S. Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143473. [PMID: 33203566 DOI: 10.1016/j.scitotenv.2020.143473] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Animal manures are commonly applied to soil which possibly promote the spread of antibiotic resistance from soil to human beings via food chains. Biogas slurry is an end product of anaerobic digestion of animal manures, which has been widely applied as fertilizers in the agricultural soil. However, effect of long-term biogas slurry application on the soil antibiotic resistance and the associated mechanism still remains unclear. The present study characterized antibiotics, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community, in different agricultural soils unamended (BS-) and amended (BS+) with biogas slurry (8-18 years) in five field experiments. Our results indicated that long-term application of biogas slurry largely increased the concentrations of tetracyclines in soils, and greatly increased the abundances of ARGs, transposase gene (Tn916/1545) and ARGs-associated bacteria. Long-term application of biogas slurry led to tetracyclines accumulation and ARGs enrichment in agricultural soil, and the selection pressure from tetracyclines and the increase of Tn916/1545 abundace become potential contributors for the increase of soil antibiotic resistance via promoting the enrichment of ARG-associated bacteria. The results of the present study should be taken into consideration to develop policy and practice for mitigating the enrichment and spread of antibiotic resistance during the recycling of biogas slurry into agricultural soil.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jingming Li
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jun Meng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanying Xie
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
22
|
Yin J, Huang G, An C, Zhang P, Xin X, Feng R. Exploration of nanocellulose washing agent for the green remediation of phenanthrene-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123861. [PMID: 33264936 DOI: 10.1016/j.jhazmat.2020.123861] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons are hazardous contaminants existing ubiquitously in polluted soil. In this study, using nanocellulose (CNC) fluid as an eco-friendly agent was proposed for the first time in the remediation of phenanthrene (PHE) contaminated soil. The effects of environmental factors on the mobilization of PHE in soil by CNC nanofluid was investigated using factorial analysis. The results showed that temperature and ionic strength had a significant influence on PHE removal, which were associated with the viscosity and zeta potential change in the nanofluid. The analysis based on two-dimensional correlation spectroscopy integrated with FTIR and synchrotron-based XRF imaging revealed that metals and minerals in soil played important roles in PHE detachment. The hydroxyl groups on CNC bonded with Fe-O, Si-O, and Mn-O in soil as time went on, and eventually achieved PHE mobilization through the interruption of PHE/SOM-metal/mineral linkages. The complexation and transport of PHE/SOM-metals/minerals from soil particles to the aqueous phase could be the primary PHE removal mechanism. Besides, the biotoxicity study displayed a detoxification effect of CNC nanofluid on PHE contaminants in soil. This study offers new insight into a cost-effective and biodegradable nanocellulose washing agent, which can be a good alternative to the available site remediation options.
Collapse
Affiliation(s)
- Jianan Yin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2V3, Canada
| |
Collapse
|
23
|
Xin X, Huang G, An C, Lu C, Xiong W. Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122855. [PMID: 32473326 DOI: 10.1016/j.jhazmat.2020.122855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/07/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Toxic effects on Asterococcus superbus were studied based on different combinations of P25-TiO2, nano-ZnO and triclosan under multiple illumination conditions. A full factorial design (2 × 2×2 × 3) was implemented to explore interactive effects, and to identify significant factors. The results showed illumination is the most important factor with significance and becomes one of the main reasons to affect chlorophyll pigments, photosynthesis activity, unsaturated fatty acids, mitochondria function, and cause oxidative stress. Triclosan considerably affects cell viability, photosynthesis activity, lipid peroxidation and protein structure, for which triclosan is more significant than nano-ZnO. P25 is significant for oxidative stress, antioxidant enzyme, and lipid peroxidation. P25 * nano-ZnO is the only significant interaction of pollutants, affecting macromolecules, lipid peroxidation, and photosynthesis activity. High-order interactions play significant roles in affecting multiple molecular components. Two groups of endpoints are best to reflect alga responses to interactively effects from P25, nano-ZnO, and triclosan. One is ROS, chlorophyll pigments, TBARS, area, MTT, and MMP, and the other one is chlorophyll pigments, ROS, TBARS, CAT, MTT and SOD. Our findings can be instructive for a comprehensive comparison among interactions of multiple pollutants and environmental factors in natural waters, such that more robust environmental toxicity analyses can be performed.
Collapse
Affiliation(s)
- Xiaying Xin
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, A1C 5S7, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chen Lu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Wenhui Xiong
- Stantec Consulting Ltd., Saskatoon, S7K 0K3, Canada
| |
Collapse
|
24
|
Xiong Q, Liu YS, Hu LX, Shi ZQ, Ying GG. Levofloxacin and sulfamethoxazole induced alterations of biomolecules in Pseudokirchneriella subcapitata. CHEMOSPHERE 2020; 253:126722. [PMID: 32289608 DOI: 10.1016/j.chemosphere.2020.126722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
Levofloxacin (LEV) and sulfamethoxazole (SMX) are two extensively used antibiotics. Most investigations have been concentrated on the toxic effects of antibiotics on algal species evaluated with traditional ecotoxicological endpoints; however, limited information is available on the alterations in biomolecules induced by antibiotics. Here we investigated alterations in the structure and function of biomolecules to a model species Pseudokirchneriella subcapitata following exposure of LEV and SMX by applying Fourier transform infrared spectroscopy (FTIR). The growth inhibition tests revealed that both LEV and SMX had negative effects on algal growth, while SMX was found to be more toxic to P. subcapitata than LEV. Based on the FTIR analysis, alterations in the structure, composition and function of lipids and proteins were observed on microalgal cells, which were correlated with the dosage of LEV and SMX. As a result of lipid peroxidation induced by LEV and SMX, an increase in the lipid/protein ratio and decrease in the ratios of CH2/lipid, CH3/lipid, carbonyl ester/lipid and olefinic = CH/lipid were observed in all treatment groups with respect to the reference control. Moreover, alterations in the composition and secondary structure of proteins were also observed in accompany with a decrease in the Amide I/Amide II ratio and an increase of the loose β-sheet structure protein. LEV caused an elevated level of lipid peroxidation, while SMX induced a more obvious protein aggregation. The findings from this study showed that FTIR could reveal the toxic mechanism of these two antibiotics to algae at the biochemical level by linking alterations in biomolecules to biochemical dynamics and function.
Collapse
Affiliation(s)
- Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Zhou-Qi Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W. Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water. CHEMOSPHERE 2020; 245:125545. [PMID: 31864067 DOI: 10.1016/j.chemosphere.2019.125545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ceramic water filter is suitable for low-income families and rural communities in developing countries to obtain safe drinking water because of its low cost and good performance. As an innovative effort, the ceramic disk filter coated with Ag/ZnO nanocomposites (AZ-CDF) was proposed in this study. The manufacture of AZ-CDFs was optimized by experiments based on the Box-Behnken design. The results of thermal field emission scanning electron microscopy (TFE-SEM) and very powerful elemental and structural probe employing radiation from a synchrotron (VESPERS) indicated that Ag/ZnO nanocomposites were mainly distributed on the upper surface of AZ-CDF. The antibacterial activity of AZ-CDF was investigated by detecting the variation of cell status and intracellular reactive oxygen species during a period of time using flow cytometry. Both non-photocatalytic and photocatalytic antibacterial activities of Ag/ZnO nanocomposite contributed to the bacterial reduction property of AZ-CDF. During filtration, the initial Escherichia coli (E. coli) concentration and illumination intensity also influenced the E. coli removal performance of AZ-CDF. When the light illumination intensity was 7000 Lux, AZ-CDF was appropriate to treat the water contaminated by E. coli concentration of less than 103 cfu/mL. Increasing illumination intensity resulted in the improvement of E. coli removal performance of AZ-CDF. It was concluded the main mechanisms for the E. coli removal of AZ-CDF were filtration, non-photocatalytic and photocatalytic antibacterial activities.
Collapse
Affiliation(s)
- Jing Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Xiaying Xin
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, A1B 3X5, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yanyun Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2 V3, Canada
| | - Wenhui Xiong
- Stantec Consulting Ltd, Saskatoon, S7K 0K3, Canada
| |
Collapse
|
26
|
Song P, Huang G, Hong Y, An C, Xin X, Zhang P. A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems. CHEMOSPHERE 2020; 240:124868. [PMID: 31542583 DOI: 10.1016/j.chemosphere.2019.124868] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Multi-soil-layering (MSL) system with brick-wall pattern structure and gravitational flow can be used for decentralized rural domestic sewage treatment. The capability of soil for contaminant removal is maximized within soil mixture blocks (SMBs). However, the performance of removing nitrate was still not ideal during operation. To improve its performance in MSL system, the relationship between biophysiological characteristics of denitrifying species and operating conditions was studied. Microbial species diversity of activated sludge and soil samples were analyzed. The significant effects of independent factors and their interactions on microbial species diversity and denitrifying species abundance were revealed on the basis of factorial analysis. The results indicated activated sludge in SMBs played a key role in increasing the richness of denitrifying species in MSL system. Slow-release poly (butylene succinate) (PBS) had the most dominant positive effect on increasing denitrifying species abundance. Submersion had significantly positive effect on species richness in SMBs. These three factors, including activated sludge, PBS in SMBs, and submersion condition had different significant effects on microbial responses. They were favorable for denitrification and ensuring a better removal efficiency of nitrate and total nitrogen. The porous zeolites were served as the habitats for most of aerobic bacteria to form biofilms, which could promote the oxygen consumption in both sewage and system to improve denitrification in SMBs. The results could help on the enhancement of denitrification in MSL system from biophysiological insights. It can provide a sound strategy for using MSL system with great performance on contaminant removal.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Yongyuan Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| |
Collapse
|
27
|
Zheng B, Huang G, Liu L, Guan Y, Zhai M. Dynamic wastewater-induced research based on input-output analysis for Guangdong Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113502. [PMID: 31706757 DOI: 10.1016/j.envpol.2019.113502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/23/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Large amounts of wastewater discharge have emerged as a burden in the process of industrialization and urbanization. In this study, a dynamic wastewater-induced input-output model is developed to systematically analyze the related situation. The developed model is applied to Guangdong Province, China to analyze its prominent characteristics from 2002 to 2015. Combining input-output analysis, ecological network analysis and structural decomposition analysis, the developed model reveals issues of direct and indirect discharges, relationships among various discharges, and driving forces of wastewater discharges. It is uncovered that Primary Manufacturing and Advanced Manufacturing dominate the system because of significant temporal and spatial variations in wastewater discharge. In addition, Manufacturing of paper, computer and machinery and Services are the key industries responsible for large amounts of wastewater discharge and unhealthy source-discharge relationships. The largest wastewater discharge occurred in 2005 and indirect wastewater discharge is the main form. Furthermore, final demand is found to be the biggest driving force of wastewater discharge. Finally, a three-phase policy implementation system implemented in stages proposes solutions to wastewater problems.
Collapse
Affiliation(s)
- Boyue Zheng
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Lirong Liu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Yuru Guan
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | - Mengyu Zhai
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
28
|
Zhao YQ, Zhang L, Tao J, Chi CF, Wang B. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs). Food Res Int 2019; 121:197-204. [DOI: 10.1016/j.foodres.2019.03.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
|
29
|
Xin X, Huang G, An C, Weger H, Cheng G, Shen J, Rosendahl S. Analyzing the Biochemical Alteration of Green Algae During Chronic Exposure to Triclosan Based on Synchrotron-Based Fourier Transform Infrared Spectromicroscopy. Anal Chem 2019; 91:7798-7806. [PMID: 31117408 DOI: 10.1021/acs.analchem.9b01417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study explored the chronic toxicity of triclosan to green microalga Chlorococcum sp. under multiple interactions among multiple environmental conditions. This is the first study on chronic algal toxicity to combine synchrotron-based Fourier transform infrared spectromicroscopy, factorial analysis, principal component analysis, and stepwise-cluster analysis. Such a combination helps to reveal the toxic mechanism at the molecular level and explore the inner correlationship among multiple environmental conditions. In the 120-h test, nitrogen content became the most significant factor of the physiochemical properties. Some insignificant factors in the 48-h test became significant in the 120-h test. Temperature * nitrogen content, temperature * phosphorus content, and pH * phosphorus content were the most significant two-order interactions. Temperature * pH * NaCl concentration and temperature * NaCl concentration * phosphorus content were the most significant three-order interactions. More high-order interactions became significant in the 120-h test, indicating the complexity and impacts of all the factors may increase when time was extended. The chronic toxicity of triclosan presented more distinguishable variations among treatments based on biochemical alterations. These results demonstrate that the sensitivity and fragility of algae to triclosan can be amplified with time extension. Long-term exposure can be applied to better evaluate and predict the environmental toxicity behavior of triclosan. It can also help with environmental evaluation and risk management of real-world triclosan toxicity.
Collapse
Affiliation(s)
- Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Saskatchewan S4S 0A2 , Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Saskatchewan S4S 0A2 , Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering , Concordia University , Montreal , Québec H3G 1M8 , Canada
| | - Harold Weger
- Department of Biology , University of Regina , Regina , Saskatchewan S4S 0A2 , Canada
| | - Guanhui Cheng
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Saskatchewan S4S 0A2 , Canada
| | - Jian Shen
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Saskatchewan S4S 0A2 , Canada
| | - Scott Rosendahl
- Canadian Light Source , Saskatoon , Saskatchewan S7N 2 V3 , Canada
| |
Collapse
|
30
|
Hong Y, Huang G, An C, Song P, Xin X, Chen X, Zhang P, Zhao Y, Zheng R. Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:273-284. [PMID: 30952048 DOI: 10.1016/j.jenvman.2019.03.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Domestic sewage in rural areas is often poorly treated and discharged into waters, resulting in negative impacts on regional environment, natural resources and human health. A cost-efficient decentralized sewage treatment technology is sustainably necessary for rural areas. In this study, a modified multi-soil-layering (MSL) system was developed to specifically treat low C/N ratio domestic sewage in rural areas. The results proved the good performance of MSLs in sewage treatment under complex conditions. The highest degradation rates of COD, TP, NH4+-N, NO3--N, TN among all the devices could reach 98.29%, 100%, 76.60%, 96.15% and 69.86%, respectively. During the operation, MSL5 and MSL6 showed the best overall performance of contaminant removal. The effects of single factors and their interactions on the performance of MSL systems were further revealed through factorial analyses. In order to simulate and predict nitrogen removal of MSL system, a statistical relationship between TN removal rate and operation parameters was also successfully developed based on stepwise cluster analysis. Such modeling of nitrogen removal model can help develop an optimal strategy for the operation of MSL in treating low C/N ratio sewage from rural areas.
Collapse
Affiliation(s)
- Yongyuan Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Pei Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yanyun Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Rubing Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
31
|
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int J Mol Sci 2019; 20:ijms20102492. [PMID: 31137560 PMCID: PMC6567089 DOI: 10.3390/ijms20102492] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.
Collapse
Affiliation(s)
- Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
32
|
Peng FJ, Hu LX, Pan CG, Ying GG, Van den Brink PJ. Insights into the sediment toxicity of personal care products to freshwater oligochaete worms using Fourier transform infrared spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:296-302. [PMID: 30716664 DOI: 10.1016/j.ecoenv.2019.01.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 05/23/2023]
Abstract
Personal care products (PCPs) are ubiquitous in the environment due to their wide use in daily life. However, there are insufficient sediment toxicity data of PCPs under ecologically relevant conditions. Here we used Fourier transform infrared spectroscopy (FTIR) to investigate the sediment toxicity of triclosan (TCS) and galaxolide (HHCB) to two freshwater benthic macroinvertebrates, Limnodrilus hoffmeisteri and Branchiura sowerbyi, in microcosms containing a diverse biological community. Exposure to 8 µg TCS/g and 100 µg HHCB/g dry weight (dw) sediment induced significant biochemical alterations in the L. hoffmeisteri tissue. 8 µg TCS/g primarily affected proteins and nucleic acid while 100 µg HHCB/g mainly affected proteins and lipids of L. hoffmeisteri. However, 0.8 µg TCS/g and 30 µg HHCB/g did not cause significant subcellular toxicity to L. hoffmeisteri. In contrast, exposure of B. sowerbyi to 30 µg HHCB/g led to significant biochemical changes, including proteins, polysaccharides and lipids. Therefore, B. sowerbyi was more sensitive to sediment-associated HHCB than L. hoffmeisteri. Such effects were significantly enhanced when the HHCB concentration increased to 100 µg/g dw where death of B. sowerbyi occurred. These results demonstrate the application of FTIR spectroscopy to sediment toxicity testing of chemicals to benthic invertebrates with biochemical alterations as endpoints that are more sensitive than standard toxic endpoints (e.g., survival and growth).
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Li-Xin Hu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chang-Gui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
33
|
Zheng G, Lu Y, Wang D, Zhou L. Importance of sludge conditioning in attenuating antibiotic resistance: Removal of antibiotic resistance genes by bioleaching and chemical conditioning with Fe[III]/CaO. WATER RESEARCH 2019; 152:61-73. [PMID: 30660902 DOI: 10.1016/j.watres.2018.12.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Conditioning can drastically improve the dewaterability of sewage sludge and thus it is widely practiced in most wastewater treatment plants (WWTPs). In WWTPs, various antibiotic resistance genes (ARGs) present in sewage are concentrated in the sewage sludge, but the effect of sludge conditioning on ARGs in sewage sludge remains unclear. Here, we evaluated and compared the effectiveness of four sludge conditioning methods (namely chemical conditioning with polyacrylamide (PAM), chemical conditioning with Fe[III]/CaO, bioleaching conditioning, and chemical acidification conditioning) and an aerobic incubation control in removing 46 target ARGs and intI1 from a municipal sewage sludge. The damage of sludge microbial cells and the change in the sludge bacterial community during the various sludge conditioning treatments were also characterized. The results suggested that the chemical conditioning with PAM and aerobic incubation treatment did not remove ARGs and intI1 from the sewage sludge. The chemical acidification reduced the absolute abundances of most ARGs and intI1, but increased their relative abundances. However, the chemical conditioning with Fe[III]/CaO and bioleaching conditioning reduced both the absolute and relative abundances of most ARGs and removed a majority of extracellular ARGs in the sludge. During sludge conditioning treatments, the sludge microbial cells were severely damaged to decrease the total bacterial biomass in sludge, and accordingly the bacterial hosts carrying ARGs and intI were effectively damaged to reduce the absolute abundances of most ARGs and intI1. In addition, the sludge bacterial community in conditioned sludge determined the relative abundances of residual ARGs. Our findings suggest that sludge conditioning can be an important sludge treatment process in attenuating antibiotic resistance in sewage sludge, and bioleaching and chemical conditioning with Fe[III]/CaO can be employed as effective conditioning ways to reduce ARGs in sewage sludge, potentially limiting their release to the environment.
Collapse
Affiliation(s)
- Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
34
|
Kumar R, Sarmah AK, Padhye LP. Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:649-659. [PMID: 30605791 DOI: 10.1016/j.jenvman.2018.12.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 05/08/2023]
Abstract
Seasonal variations in the concentrations and fate of 20 selected pharmaceuticals and personal care products (PPCPs) were investigated over one year in a wastewater treatment plant in New Zealand, which relies on a membrane bioreactor (MBR) and Bardenpho as parallel processes for its secondary treatment. Results showed that all of the monitored PPCPs were detected in the wastewater influent. Nonsteroidal anti-inflammatory drugs (NSAIDS) and caffeine were predominant in the influent, whereas in the effluent, β-blockers and benzotriazole were present at significant concentrations. Total PPCPs' concentration in the influent was found to be 130 μg/L. Average removal efficiency was found to be ≥ 99% for acetaminophen, caffeine, TCEP, naproxen, and ibuprofen, whereas <50% of trimethoprim, metoprolol, and benzotriazole were removed. Contrary to the existing literature, no significant differences were found in the removal of PPCPs through MBR and Bardenpho processes, hinting that optimally operated Bardenpho can be equally effective in the removal of emerging contaminants as MBR. The occurrence and removal efficiencies of PPCPs were found to exhibit significant seasonal variations, with the highest influent concentrations of PPCPs reported in autumn and winter. Heavy rainfall had an insignificant impact on PPCPs' removal efficiencies although it resulted in much-diluted concentrations of PPCPs in the influent. Spearman's correlation analysis showed significant correlations between PPCPs' mass loads in the influent, wastewater quality parameters, and environmental factors. It was also found that, except sulfamethoxazole, ecotoxicity risks were minimal for the rest of the monitored PPCPs in wastewater effluent.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
35
|
Xin X, Huang G, An C, Raina-Fulton R, Weger H. Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2189-2198. [PMID: 30673261 DOI: 10.1021/acs.est.9b00259] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study explored the long-term impacts of a pulse disturbance of triclosan on five nontarget green algae in Lake Erie. Comprehensive analyses were performed using multiple physiological end points at community and subcellular scales. The toxic mechanism of triclosan in a wide range of concentrations was analyzed. The diverse sensitivity of algae species and complex interrelationships among multiple end points were revealed. The results showed the taxonomic groups of algae were the key issue for sensitivity difference. High doses of triclosan caused irreversible damage on algae, and environmentally relevant doses initiated either inhibition or stimulation. Smaller cells had higher sensitivity to triclosan, while larger cells had a wider size variation after exposure. Colonial cells were less sensitive than unicells. For chlorophyll, there were better dose-response relationships in Chlorococcum sp., Chlamydomonas reinhardtii CPCC 12 and 243 than Asterococcus superbus and Eremosphaera viridis. For chlorophyll fluorescence, Fv/ Fm was the most sensitive parameter, and qN was more sensitive than qP. Triclosan showed long-term effects on biochemical components, such as lipids, proteins, and nucleic acids. The findings will be helpful for a systematic and complete assessment of triclosan toxicity in natural waters and the development of appropriate strategies for its risk management.
Collapse
Affiliation(s)
- Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Canada S4S 0A2
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina , Canada S4S 0A2
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering , Concordia University , Montreal , Canada H3G 1M8
| | - Renata Raina-Fulton
- Department of Chemistry and Biochemistry , University of Regina , Regina , Canada S4S 0A2
| | - Harold Weger
- Department of Biology , University of Regina , Regina , Canada S4S 0A2
| |
Collapse
|
36
|
Shen Y, Chu L, Zhuan R, Xiang X, Sun H, Wang J. Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation: A new insight into a sustainable management of antibiotic fermentative residuals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:171-178. [PMID: 30472560 DOI: 10.1016/j.jenvman.2018.11.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Antibiotic fermentative residues are categorized into hazardous wastes in China due to the existence of antibiotic resistance genes (ARGs) and residual antibiotics How to treat and manage these wastes is a new challenge. This paper investigated the treatment of erythromycin thiocyanate fermentation (EryTcF) residues using ionizing radiation technology for removing ARGs and antibiotics from the fermentation residues. The results showed that as exposed the EryTcF residues to gamma radiation, the abundance of four macrolide resistance genes (ereA, ermB, mefA and mpfB) decreased 1.0-1.3 log with 90-95% removal, and around 56% of erythromycin was removed at absorbed dose of 30 kGy and room temperature (19-22 °C). Direct action of γ-ray radiation contributed to 42-53% of ARGs removal and indirect action (radicals' reaction) was mainly responsible for erythromycin removal (84%). The positive correlation between total ARGs and Shannon index was observed. The potential ARGs-linked hosts were assigned to genera Aeromonas and Enterobacteriaceae and their abundance decreased by 36-43% at 30 kGy. Radiation has not obvious influence on the nutrient components of residues, such as protein content, suggesting that the radiation treated fermentative residues can be used as fertilizer, which is favorable for the development of recycling economy in antibiotic pharmaceutical factory. The results could provide a new insight into a sustainable management of antibiotic fermentative residuals.
Collapse
Affiliation(s)
- Yunpeng Shen
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| | - Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Run Zhuan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xianhong Xiang
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| | - Hui Sun
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
37
|
Xiong Q, Hu LX, Liu YS, Wang TT, Ying GG. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:197-207. [PMID: 30584953 DOI: 10.1016/j.aquatox.2018.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 05/21/2023]
Abstract
Antibiotics have been frequently detected in the aquatic environment, and they may affect aquatic organisms such as algae. Here we investigated toxicity of chloramphenicol (CAP) and roxithromycin (ROX) on four species of green algae (Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, and Scenedesmus acuminatus) at biochemical level by Fourier transform infrared spectroscopy (FTIR). The results revealed that both CAP and ROX had negative effects on algal growth and caused alterations of biochemical components. The toxic effects varied among the four algal species and S. acuminatus was found to be less sensitive than the other three species to the antibiotics. Even with similar mechanism of action, ROX displayed more adverse effects to algae than CAP. Both antibiotics could affect algae by inhibiting fatty acid synthesis and promoting protein and DNA aggregation, thus leading to accumulation of lipid peroxidation products, increment of the loose β-sheet structure protein and transformation of B-DNA to Z-DNA. The findings from this study revealed the toxic mechanism of antibiotics to algae at the biochemical level.
Collapse
Affiliation(s)
- Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Xin Hu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Tuan-Tuan Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
38
|
Sathe SS, Mahanta C. Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: Assessment and mitigation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:166-181. [PMID: 30342329 DOI: 10.1016/j.jenvman.2018.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Arsenic contaminated shallow aquifers evaluation, mitigation, and management strategies are the challenging task to all the hydrologist and provide a safe drinking water demand in the Holocene age, alluvial aquifers. To manage and mitigate such problems, we used numerical groundwater modeling software (GMS 10.2), for the development of 3D transient state predictive (groundwater flow and contaminant transport) conceptual model for two topographically different arsenic contaminated regions. The models were built by using the measured hydro-geological data, empirical values, and equations. Groundwater flow calibration, sensitivity analyses, and validation were performed for each soil parameters, varying boundary conditions and for alternate meteorological scenarios. The MODFLOW results suggested that, the distribution of As contaminant was directly controlled by the complex hydrostratigraphy, surface water bodies and indirectly controlled by the change in meteorological conditions. The MT3DMS model, for As contaminant transport, used for the assessment of shallow and deeper aquifers. The results showed that the downward movement of As has made the deeper aquifer unsafe for drinking water and irrigation purposes. However, the aquifers and regions with high flushing capability, negligible vertical hydraulic conductivity can be delineated as As safe groundwater source, irrespective of their sediment color. Therefore, for the geogenic source of As, both the simulation results inferred that to estimate and mitigate As contaminant groundwater aquifers or regions, the numerical modeling solution is a technically viable means an effective decision-making tool.
Collapse
Affiliation(s)
- Sandip S Sathe
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Chandan Mahanta
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
39
|
Robust Linear Programming and Its Application to Water and Environmental Decision-Making under Uncertainty. SUSTAINABILITY 2018. [DOI: 10.3390/su11010033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we introduce a robust linear programming approach for water and environmental decision-making under uncertainty. This approach is of significant practical utility to decision makers for obtaining reliable and robust management decisions that are “immune” to the uncertainty attributable to data perturbations. The immunization guarantees that the chosen robust management plan will be implementable with no violation of the mandatory constraints of the problem being studied—i.e., natural resource supply constraint, environmental carrying capacity constraint, environmental pollution control constraint, etc.—and that the actual value of the objective will be no worse than the given estimation if the perturbations of data fall within the specified uncertainty set. A simplified example in regional water quality management is provided to help water and environmental practitioners to better understand how to implement robust linear programming from the perspective of application, as well as to illustrate the significance and necessity of implementing robust optimization techniques in real-world practices. Robust optimization is a growing research field that requires more interdisciplinary research efforts and engagements from water and environmental practitioners. Both may benefit from the advances of management science.
Collapse
|
40
|
Li S, Ju H, Ji M, Zhang J, Song K, Chen P, Mu G. Terrestrial humic-like fluorescence peak of chromophoric dissolved organic matter as a new potential indicator tracing the antibiotics in typical polluted watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:65-76. [PMID: 30212676 DOI: 10.1016/j.jenvman.2018.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/26/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Natural surface waters are threatened globally by antibiotics pollution. In this study, we analyzed antibiotics and CDOM (Chromophoric dissolved organic matter) fluorescence in different water bodies using HPLC method and Excitation Emission Matrix- Parallel factor analysis, respectively. A combination of field studies in the Yinma River Watershed were conducted in rivers, reservoirs and urban rivers, and 65 CDOM and antibiotic samples were taken in April, May, July, and August 2016. EEM-PARAFAC analysis identified two components; a humic-like (C1) component and a tryptophan-like (C2) component. The redundancy analysis (RDA) demonstrated that CDOM could explain 38.2% (two axes) of the five antibiotics in reservoirs (N = 31), and 26.0% (two axes) of those in rivers and urban water (N = 30). Furthermore, the Pearson correlation coefficient between Sulfamethoxazole and C1 in reservoir water was 0.91 (t-test, 2-tailed, p < 0.01), and that between Sulfamethoxazole and C2 was 0.68 (t-test, 2-tailed, p < 0.01). This indicated that the humic-like component of CDOM PARAFAC fluorescence could detect Sulfamethoxazole contamination levels in the homogenized reservoir waters. Our results identified Sulfamethoxazole and Quinolones (Norfloxacin, 16.5 ng L-1; Enrofloxacin, 0.3 ng L-1; Ciprofloxacin, 30.9 ng L-1) at mean concentrations of 369.5 ng L-1 and 15.9 ng L-1, respectively, which were the higher levels in natural surface waters. The FTIR spectroscopy of the mixture of humic acid and sulfamethoxazole showed that the absorbance at 3415 cm-1 linked to OH stretching of OH groups and at 1386 cm-1 because of OH bending and vibration of COOH groups became weaker, indicating that COOH groups of humic acid can adsorb and react with -NH2 of sulfamethoxazole. The CDOM PARAFAC components can be adapted for online or in situ fluorescence measurements as an early warning of Sulfamethoxazole distribution and contamination in similar aquatic environments.
Collapse
Affiliation(s)
- Sijia Li
- School of Environment, Northeast Normal University, Changchun 130024, PR China.
| | - Hanyu Ju
- School of Environment, Northeast Normal University, Changchun 130024, PR China.
| | - Meichen Ji
- School of Environment, Northeast Normal University, Changchun 130024, PR China.
| | - Jiquan Zhang
- School of Environment, Northeast Normal University, Changchun 130024, PR China.
| | - Kaishan Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academic Science, Changchun 130102, PR China.
| | - Peng Chen
- School of Tourism and Geography Sciences, Jilin Normal University, Siping 136000, PR China.
| | - Guangyi Mu
- Institute of Grass Science, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
41
|
Song P, Huang G, An C, Shen J, Zhang P, Chen X, Shen J, Yao Y, Zheng R, Sun C. Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:536-546. [PMID: 29990903 DOI: 10.1016/j.scitotenv.2018.06.331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The discharge of wastewater in rural areas without effective treatment may result in contamination of surrounding surface water and groundwater resources. This study explored the wastewater treatment performance of multi-soil-layering (MSL) systems through interactive factorial analysis. MSL systems showed good performances under various operating conditions. The COD and BOD5 removal rates in MSL systems could reach 98.53 and 93.66%, respectively. The performances of MSL systems in TP removal stayed at high levels ranged from 97.97 to 100% throughout the experiments. The NH4+ - N removal rates of the well performed MSL systems reached highest levels ranging from 89.96 to 100%. The TN removal rates of aerated MSL systems ranged from 51.11 to 64.44% after 72 days of operation. The independent effects of bottom submersion, microbial amendment and aeration, as well as most interactions were significant. The performance of MSL systems was mainly affected by bottom submersion and aeration as well as their interactions. Aeration was the most positive factor for the removal of organic matter, TP and NH4+ - N. However, oxygenated environment was unfavorable for NO3- - N removal. In the submerged area with limited oxygen, the microbial transformation of NO3- - N still occurred. A stepwise-cluster inference model was developed for tackling the multivariate nonlinear relationships in contaminant removal processes. The results can help obtain a better understanding of the complicated processes among contaminant removal in MSL systems.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Ju Shen
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Jian Shen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yao Yao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Rubing Zheng
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Chaoxing Sun
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
42
|
Yari AR, Mohammadi MJ, Geravandi S, Doosti Z, Matboo SA, Jang SA, Nazari S. Assessment of microbial quality of household water output from desalination systems by the heterotrophic plate count method. JOURNAL OF WATER AND HEALTH 2018; 16:930-937. [PMID: 30540267 DOI: 10.2166/wh.2018.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Point-of-use household water desalination systems (HWDSs) are becoming popular in Iran because of the deterioration of drinking water. This study aimed to determine the microbial quality of output water from HWDSs in Qom, Iran by using the heterotrophic plate count (HPC) method. Samples of input and output water from 30 HWDSs were collected over a six-month period. Heterotrophic bacteria were tested using the pour plate technique. At the first sampling stage, the HPC level in 23% of samples exceeded the 500 CFU/ml threshold level. On average, for 50% of samples, the HPC level of input samples was 0-10 CFU/ml, for 42% it was 10-100 CFU/ml and for 8% it was 100-500 CFU/ml. For output samples, for 25%, the level of HPC was 0-10 CFU/ml, for 43% it was 10-100 CFU/ml, for 24% it was 100-500 CFU/ml and for 8% it exceeded 500 CFU/ml. For total coliforms the most probable number test was positive for the first and third stages of sampling (3% input samples). The comparison of the averages with national standard values shows that in some cases, the contamination of output water from HWDSs in the city of Qom has been above the standard values.
Collapse
Affiliation(s)
- Ahmad Reza Yari
- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Zohreh Doosti
- Department of Counsult, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Shahram Arsang Jang
- Department of Public Health, School of Health, Qom University of Medical Sciences, Qom, Iran
| | - Shahram Nazari
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran E-mail:
| |
Collapse
|
43
|
Shen J, Huang G, An C, Song P, Xin X, Yao Y, Zheng R. Biophysiological and factorial analyses in the treatment of rural domestic wastewater using multi-soil-layering systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:83-94. [PMID: 30114576 DOI: 10.1016/j.jenvman.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Multi-soil-layering (MSL) system was developed as an attractive alternative to traditional land-based treatment techniques. Within MSL system, the environmental cleanup capability of soil is maximized, while the soil microbial communities may also change during operation. This study aimed to reveal the nature of biophysiological changes in MSL systems during operation. The species diversity in soil mixture blocks was analyzed using Illumina HiSeq sequencing of the 16S rRNA gene. The interactive effects of operating factors on species richness, community diversity and bacteria abundance correlated with COD, N and P removal were revealed through factorial analysis. The results indicated the main factors, aeration, bottom submersion and microbial amendment, had different significant effects on microbial responses. The surface area and porosity of zeolites in permeable layers decreased due to the absorption of extracellular polymeric substances. The findings were applied for the design and building of a full-size MSL system in field and satisfied removal efficiency was achieved. The results of this study can help better understand the mechanisms of pollutant reduction within MSL systems from microbial insights. It will have important implications for developing appropriate strategies for operating MSL systems with high efficiency and less risks.
Collapse
Affiliation(s)
- Ju Shen
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Pei Song
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yao Yao
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Rubing Zheng
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
44
|
Estimation of the Nutrient and Chlorophyll a Reference Conditions in Taihu Lake Based on A New Method with Extreme⁻Markov Theory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112372. [PMID: 30373173 PMCID: PMC6266888 DOI: 10.3390/ijerph15112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/04/2022]
Abstract
The nutrient reference conditions of lakes play a key role for lake water quality control and water resource management. The inferential models are important methods for calculating reference values; however, the dependence and “cluster” in time series make time series data difficult to be applied in these methods. A new method based on Markov chain theory, which is used for modeling the dependence of data, and extreme statistics was proposed. The new method was used to estimate the nutrient and chlorophyll a reference conditions in Taihu Lake, which is the third largest freshwater lake in China. The results showed that there was remarkable dependence between the effective observations of total nitrogen (TN), total phosphorus (TP), and chlorophyll a. The recommended reference conditions of TN, TP, and chlorophyll a in Taihu Lake were 0.69 mg/L, 0.029 mg/L, and 1.89 μg/L. Their 95% confidence intervals were 0.62–0.76 mg/L, 0.028–0.030 mg/L, and 1.55–2.23 μg/L. These results were consistent with previous researches, which showed that the proposed method is reliable and effective. The length of the intervals was remarkably reduced when compared with several methods. This implied that the proposed method could make full use of the observation data in time series and significantly improve the precision of the estimation results of reference conditions. In general, the proposed method could provide high precision and reliable lake nutrient reference conditions, which would be beneficial to lake water resource management and can be used for estimating the TN, TP, and chlorophyll a reference conditions of other lakes.
Collapse
|
45
|
Denitrification-Potential Evaluation and Nitrate-Removal-Pathway Analysis of Aerobic Denitrifier Strain Marinobacter hydrocarbonoclasticus RAD-2. WATER 2018. [DOI: 10.3390/w10101298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An aerobic denitrifier was isolated from a long-term poly (3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV-supported denitrification reactor that operated under alternate aerobic/anoxic conditions. The strain was identified as Marinobacter hydrocarbonoclasticus RAD-2 based on 16S rRNA-sequence phylogenetic analysis. Morphology was observed by scanning electron microscopy (SEM), and phylogenetic characteristics were analyzed with the API 20NE test. Strain RAD-2 showed efficient aerobic denitrification ability when using NO3−-N or NO2−-N as its only nitrogen source, while heterotrophic nitrification was not detected. The average NO3−-N and NO2−-N removal rates were 6.47 mg/(L·h)and 6.32 mg/(L·h), respectively. Single-factor experiments indicated that a 5:10 C/N ratio, 25–40 °C temperature, and 100–150 rpm rotation speed were the optimal conditions for aerobic denitrification. Furthermore, the denitrifying gene napA had the highest expression on a transcriptional level, followed by the denitrifying genes nirS and nosZ. The norB gene was found to have significantly low expression during the experiment. Overall, great aerobic denitrification ability makes the RAD-2 strain a potential alternative in enhancing nitrate management for marine recirculating aquaculture system (RAS) practices.
Collapse
|
46
|
Water Quality of Inflows to the Everglades National Park over Three Decades (1985⁻2014) Analyzed by Multivariate Statistical Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091882. [PMID: 30200259 PMCID: PMC6165038 DOI: 10.3390/ijerph15091882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
The Everglades, a vast subtropical wetland, dominates the landscape of south Florida and is widely recognized as an ecosystem of great ecological importance. Data from seven inflow sites to the Everglades National Park (ENP) were analyzed over three decades (1985–2014) for temporal trends by the STL (integrated seasonal-trend decomposition using LOESS) method. A cluster analysis (CA) and principal component analysis (PCA) were applied for the evaluation of spatial variation. The results indicate that the water quality change trend is closely associated with rainfall. Increasing rainfall results in increasing flow and thus, decreasing concentrations of nitrogen and phosphorus. Based on 10 variables, the seven sampling stations were classified by CA into four distinct clusters: A, B, C, and D. The PCA analysis indicated that total nitrogen (TN) and total phosphorus (TP) are the main pollution factors, especially TN. The results suggest that non-point sources are the main pollution sources and best management practices (BMPs) effectively reduce organic nitrogen. However, TN and TP control is still the focus of future work in this area. Increasing the transfer water quantity can improve the water quality temporarily and planting submersed macrophytes can absorb nitrogen and phosphorus and increase the dissolved oxygen (DO) concentration in water, continuously improving the water quality.
Collapse
|
47
|
Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine. WATER 2018. [DOI: 10.3390/w10070873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|